POLNI HORMONI HIPOTALAMUSNO-HIPOFIZNO- TESTIKULARNA OSA

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "POLNI HORMONI HIPOTALAMUSNO-HIPOFIZNO- TESTIKULARNA OSA"

Transcript

1 POLNI HORMONI ANDROGENI : testosteron glavni androgen: u tkivima sa visokim sadržajem 5αreduktaze (koža i prostata). Prehormon za DHT. Ostali androgeni : DHEA, DHEA-S, androstenedion, androstenediol. Testosteron i androstenedion glavni prekurzori za estradiol i estron. HIPOTALAMUSNO-HIPOFIZNO- TESTIKULARNA OSA - GnRH (hipotalamus) stimulacija i oslobađanja FSH i LH. - Cirkadijana varijacija izčlučivanja GnRH,FSH i LH. - Polni hormoni i inhibin (testisi) kontrola izlučivanja LH i FSH negativna povratna sprega. Sekreciju LH inhibira testosteron i metabolite (estradiol, DHT). - Smanjen broj Leidig-ovih ćelija (testosteron)- povećana koncentracija LH. 1

2 BIOSINTEZA I METABOLIZAM TESTOSTERONA POREMEĆAJI MUŠKOG REPRODUKTIVNOG SISTEMA Hipogonadizam smanjena funkcija testisaretardacija polnog razvoja. Fetalni hipogonadizam : enzimski poremećaji : a) 17α-hidroksilaza smanjeno stvaranje kortizola i polnih steroida (osim progesterona). Povećane konc. kortikosterona, 11-DOC, progesterona, pregnenolona i 17-hidroksiprogesterona. 2

3 b) nedostatak 17β-ketosteroid reduktaze ne stvara se testosteron iz androstenediona. c) poremećaj androgenskih receptora. Postnatalni hipogonadizam nedostatak 5αreduktaze dvopolne genitalije. Hipogonadotropni hipogonadizam oboljenje hipotalamusa ili tireoideje. Hipogonadizam i anospermija nasleđivanje autonomno dominantno. Nivoi testosterona, LH i FSH niski. Postpubertalni hipogonadizam : oboljenje hipotalamusa, hipofize ili gonada. Primarno - testikularno oštećenje : povišen nivo LH i FSH, snižen testosteron. Impotencija : isključivanje psiholoških, neuroloških i vaskularnih poremećaja indikovano određivanje LH i FSH. Povišene vrednosti - potvrda primarnog hipogonadizma. Ginekomastija tumori germinativnih ćelija, adrenalnih žlezda, testisa, jetre, hipofizni adenom. Karakterističan patološki nizak odnos testosteron/estradiol. 3

4 Metode određivanja ukupnog testosterona u krvi - Najčešće korišćene metode : RIA i neizotopske iminometode. - Antitela na testosteron unakrsna reakcija sa DHT. Pre određivanja neophodno hromatografsko razdvajanje. -Konc. zavisi od starosti. Visok porast u pubertetu, blago opadanje nakon 50.god. Najviši nivo ujutru, uveče < za 25%. -Izlučivanje epizodno kao i LH treba određivati zajedno. Metode određivanja slobodnog testosterona u krvi Određivanje slobodne i slabo vezane frakcije testosterona ravnotežnom dijalizom ili ultrafiltracijom. Određivanje slobodne i slabo vezane frakcije selektivnom precipitacijom čvsto vezane forme. Određivanje slobodnog hormona direktnim imunoesejom. Izračunavanje odnosa koji odražava pul testosterona. Izračunavanje koncentracije testosteronskog pula korišćenjem matematičkog modela. 4

5 ODREĐIVANJE DHEA I DHEA-S Značaj : ispitivanje produkcije adrenalnih androgena (procena hiperplazije, adrenalni tumori), zakasneli pubertet, hirzuitizam. Metoda izbora imunoesej (RIA i neizotopske). Neophodan predtretman : konc. DHEA je 1000 puta niža od DHEA-S. Vrednosti DHEA-S su povećane kod PCO, CAH i adrenalnih kortikalnih tumora. DHEA (ne i DHEA-S) pokazuje cirkadijane varijacije. Određivanje 17-ketosteroida 17-ketosteroidi (17-KS) metaboliti prekurzora koje luče adrenalne žlezde, testisi i delom ovariji. Muškarci : 1/3 metaboliti testosterona iz testisa, 2/3 iz adrenalnih žlezda. Žene : samo iz adrenalnih žlezda. Određivanje : procena adrenalne androgene produkcije. 5

6 NIVOI GONADOTROPINA U URINU Gonadotropini pulsirajući ritam sekrecije. Interpretacija niskih nivoa : a) sakupljanje 3 pojedinačna uzorka krvi u toku od 1h. Sjedine se i određuju kao jedan; b) u određenim vremenskim intervalima tokom 3h, sakupljaju se uzorci urina za određivanje FSH i LH. Prednost određivanja u urinu tokom 3h integriše se pulsativnost pituitarnog izlučivanja. -Za određivanje testosterona prvi jutarnji urin najveća koncentracija. hcg-stimulacioni TEST Kod muškaraca sa graničnim ili sniženim vrednostima ukupnog testosterona. -hcg se vezuje za LH receptore normalnih testisa i stimuliše produkciju testosterona. -Nakon uzimanja jutarnjeg uzorka urina im jedinica hcg određivanje testosterona nakon 3 dana. 6

7 -Nemogućnost povećanja testosterona za 5,2 nmol/l poremećaj funkcije testisa i primarni gonadizam. Gn-RH-STIMULACIONI TEST -Kod pacijenata sa hipogonadotropnim hipogonadizmom : davanje GnRH razlikovanje hipotalamusne disfunkcije od oboljenja hipofize. -Kod zdravih osoba dolazi do povećanja gonadotropina za najmanje 10 IJ/L. KLOMIFEN STIMULACIONI TEST -Provera hipotalamusno-hipofizne rezerve. - Klomifen lek sa anti-estrogenskim efektom, aktivira sekreciju GnRH u hipotalamusu blokiranjem negativne povratne sprege estradiola. -Inhibicija estradiola aktivacija GnRH, stimulacija FSH i LH. 7

8 ESTROGENI Ženski polni hormoni sa progesteronom učestvuju u regulaciji menstrualnog ciklusa i održavanju trudnoće. Kod negravidnih žena folikuli jajnika i corpus luteum, u trudnoći placenta. Za razliku od adrenalnog korteksa normalni ovariji nemaju 21-hidroksilazu i 11β-hidroksilazu nemogu da proizvode glukokortikoide i mineralokortikoide. Kod negravidnih mikrogramske količine estrogena, kod gravidnih miligramske. 8

9 Klinički značaj Određivanje estradiola dovoljno za procenu funkcije ovarija. Estron dijagnoza postmenopauzalnog krvarenja i poremećaj menstruacije kao posledica ekstragrandularne produkcije estrona. Estrogeni uticaj na proteine plazme : povećavaju novoe SHBG, CBG i TBG. Povećani i proteini koji vezuju Cu i Fe kao odgovor na estrogen. Porast HDL i VLDL. Uticaj na kosti povoljan smanjuju reapsorbciju kostiju. PROGESTERON Poseban značaj za pripremu uterusa za implantaciju blastocita i održavanje trudnoće. Kod negravidnih žena- corpus luteum. U trudnoći- placenta. Biosinteza isti put kao i u adrenalnom korteksu. Inicijacija i kontrola izlučivanja regulišu LH i FSH. 9

10 REPRODUKTIVNA ENDOKRINOLOGIJA ŽENA PUBERTET : rast estrogena kao odgovor na nivo gonadotropina (odgovor na GnRH). Povećano lučenje povećanje uterusa i grudi. Neonatalni gonadotropini suprimovani visokim nivoom cirkulišućih estrogena. Postnatalni maksimum LH i FSH nekoliko meseci po rođenju. U pubertetu LH se povećava i kod devojčica i kod dečaka. FSH se povećava paralelno ali u manjem %. NORMALAN MENSTRUALNI CIKLUS (animacija). 10

11 Neplodnost i neredovne menstruacije Primarna amenoreja : menstruacija se ne javlja do 16. godine (razvijene sekundarne polne karakteristike). 40% žena sa primarnom amenorejom Turner-ov sindrom (45 X kariotip) ili čistu gonadalnu disgenezu (46 XX ili XZ kariotip). Određivanje gonadotropina : nizak nivo poremećaj hipofize, povećan poremećaj gonada. Sekundarna amenoreja odsustvo periodične menstruacije 3 ili više meseci. Oligomenoreja menstruacija koja se javlja u vremenu dužem od 35 dana, ali češće od 3 meseca. Evaluacija sekundarne amenoreje Ako dođe do krvarenja nakon provokacije progesteronom uraditi dodatne testove : određivanje prolaktina,estradiola, LH i FSH. Isključiti trudnoću ili menopauzu, kao uzroke. 11

12 Estrogeni i rak dojke Dijagnostikuje se kod žena posle puberteta. Faktori rizika : a) Prva trudnoća posle 30. godine. b) Prva trudnoća pre 18.god, - 1/3 manji rizik nego posle 35.godina. c) Estrogenska terapija povećava rizik! Estrogenski i progesteronski receptori kod kancera dojke Estrogenski receptor : specifičan celularni protein sa velikim afinitetom i specifičnošću za estrogen. U ćelijama ciljnih tkiva : uterus, hipofiza, hipotalamus, dojke. Rutinski se određuju u uzorcima tkiva dojke posle uklanjanja tumora. 60% sa kancerom dojke tumori estrogen-receptor pozitivni. 2/3 estrogen receptor- pozitivnih reaguje na endokrinu terapiju, 95% sa receptor-negativnim tumorima ne reaguje. Veći sadržaj estrogenskih receptora veći odgovor na terapiju. 12

13 Lažno-pozitivni rezultati određivanja estrogenskih receptora (estrogen-pozitivan tumor bez odgovora na estrogensku terapiju) mnogo češći od lažno negativnih. Uzrok : neke tumorske ćelije imaju poremećaj u receptorima udaljenim od mesta vezivanja. Određivanje progesteronskih receptora. - Korisno zajedno sa određivanjem estrogenskim, potvrda da su svi stupnjevi dejstva estrogena intaktni. *Kod metastaza kancera dojke : 75% odgovara na estrogensku terapiju. Estrogen-receptor pozitivni i progesteronreceptor negativni 40% ; estrogenreceptor negativni/progesteron-receptorpozitivni - 25% odgovara na terapiju. Estrogen-receptor negativni/progesteronreceptor negativni - < 5%. Procenat pozitivnih uzoraka, veći kod postmenopauzalnih nego kod premenopauzalnih žena. 13

Sindrom policističnih ovarija (PCOS)

Sindrom policističnih ovarija (PCOS) Poremećaji na nivou tube Poremećaji na nivou cerviksa Poremećaji na nivou uterusa Psihosocijalni faktori Uzroci neplodnosti kod žena Ovarijalni ili hormonalni faktori Metabolička oboljenja Tireoideja Jetra

Διαβάστε περισσότερα

II. UZROCI NEPLODNOSTI. Uzroci neplodnosti kod žena prikazani su u Tabeli 2.

II. UZROCI NEPLODNOSTI. Uzroci neplodnosti kod žena prikazani su u Tabeli 2. II. UZROCI NEPLODNOSTI Uzroci neplodnosti kod žena prikazani su u Tabeli 2. Ovarijalni ili hormonalni faktori Metabolička oboljenja Tireoideja Jetra Gojaznost Višak androgena PCOS Hipergonadotropni hipogonadizam

Διαβάστε περισσότερα

Hormoni ženskog reproduktivnog sistema

Hormoni ženskog reproduktivnog sistema Hormoni ženskog reproduktivnog sistema INHIBINI ZREO FOLIKUL ADENOHIPOFIZA MATURACIJA FOLIKULA FSH LH GnRH LH OVARIJUM FSH Regulacija aktivnosti endokrine funkcije gonada ESTROGENI PROGESTERON KORPUS

Διαβάστε περισσότερα

MERNA NESIGURNOST BEO-LAB

MERNA NESIGURNOST BEO-LAB MERNA NESIGURNOST BEO-LAB Ispitivani parametar Jedinica mere 1. Urea 2. Kreatinin µmol/l Merna nesigurnost L1: ± 0.20 7,05 L2: ±0,69 21,78 L1: ± 4,0 L2: ± 26,5 Za Koncentraciju analita do- 108 387 L1:

Διαβάστε περισσότερα

FAKULTET ZA SPECIJALNU EDUKACIJU I REHABILITACIJU Medicinska fiziologija - predavanja. Reproduktivni sistem. Doc. dr Maja Milovanović

FAKULTET ZA SPECIJALNU EDUKACIJU I REHABILITACIJU Medicinska fiziologija - predavanja. Reproduktivni sistem. Doc. dr Maja Milovanović FAKULTET ZA SPECIJALNU EDUKACIJU I REHABILITACIJU Medicinska fiziologija - predavanja Reproduktivni sistem Doc. dr Maja Milovanović Determinacija pola Zigot nosi 22 para autozoma i 1 par polnih hromozoma

Διαβάστε περισσότερα

Implementacija HE4 i ROMA indeksa u Klinici za tumore Centru za maligne bolesti KBCSM

Implementacija HE4 i ROMA indeksa u Klinici za tumore Centru za maligne bolesti KBCSM Implementacija HE4 i ROMA indeksa u Klinici za tumore Centru za maligne bolesti KBCSM Dr.sc. Ljiljana Mayer, spec.med.biokemije Zagreb, 18. ožujka 2017. Klinika za tumore Centar za maligne bolesti, KBCSM

Διαβάστε περισσότερα

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET Goran Stančić SIGNALI I SISTEMI Zbirka zadataka NIŠ, 014. Sadržaj 1 Konvolucija Literatura 11 Indeks pojmova 11 3 4 Sadržaj 1 Konvolucija Zadatak 1. Odrediti konvoluciju

Διαβάστε περισσότερα

Dr A. Rašković POLNI HORMONI I ORALNI KONTRACEPTIVI

Dr A. Rašković POLNI HORMONI I ORALNI KONTRACEPTIVI Dr A. Rašković POLNI HORMONI I ORALNI KONTRACEPTIVI Polni hormoni Polni hormoni MD genski aktivni receptori regulacija transkripcije gena potrebnih za sintezu enzima u ćeliji 2 tipa ER α (stimulacija)

Διαβάστε περισσότερα

FAKULTET ZA SPECIJALNU EDUKACIJU I REHABILITACIJU Medicinska fiziologija - predavanja. Endokrini sistem. Doc. dr Maja Milovanović

FAKULTET ZA SPECIJALNU EDUKACIJU I REHABILITACIJU Medicinska fiziologija - predavanja. Endokrini sistem. Doc. dr Maja Milovanović FAKULTET ZA SPECIJALNU EDUKACIJU I REHABILITACIJU Medicinska fiziologija - predavanja Endokrini sistem Doc. dr Maja Milovanović Hormoni Endokrine žlezde luče hemijske supstance koje se zovu hormoni. Endokrine

Διαβάστε περισσότερα

Hormoni štitaste žlezde T 4

Hormoni štitaste žlezde T 4 Hormoni štitaste žlezde T 4 Morfološke odlike štitaste žlezde TSH Rast žlezde camp - preuzimanje jodida, transkripcija Tg, TPO i aktivnost Na + /I - kotransportera PLC efluks i oksidacija jodida, produkcija

Διαβάστε περισσότερα

Hormonski profil normalnog menstrualnog ciklusa

Hormonski profil normalnog menstrualnog ciklusa Ženski reproduktvni hormoni osnova su polne funkcije žene. Uslovljavaju rast i razvoj polnih organa, sekundarnih polnih karakteristka, reprodukciju, oblikovanje koštanog sistema i složenog ponašanja. Hipotalamus

Διαβάστε περισσότερα

HORMONI. Prof. Marina Stojanov

HORMONI. Prof. Marina Stojanov HORMONI Prof. Marina Stojanov UDŽBENIK Podela : Razlika u strukturi, načinu transporta, metabolizmu i mehanizmu dejstva. 1. Steroidi (kortizol, polni hormoni). Hidrofobni, cirkulišu reverzibilno vezani

Διαβάστε περισσότερα

numeričkih deskriptivnih mera.

numeričkih deskriptivnih mera. DESKRIPTIVNA STATISTIKA Numeričku seriju podataka opisujemo pomoću Numeričku seriju podataka opisujemo pomoću numeričkih deskriptivnih mera. Pokazatelji centralne tendencije Aritmetička sredina, Medijana,

Διαβάστε περισσότερα

FTN Novi Sad Katedra za motore i vozila. Teorija kretanja drumskih vozila Vučno-dinamičke performanse vozila: MAKSIMALNA BRZINA

FTN Novi Sad Katedra za motore i vozila. Teorija kretanja drumskih vozila Vučno-dinamičke performanse vozila: MAKSIMALNA BRZINA : MAKSIMALNA BRZINA Maksimalna brzina kretanja F O (N) F OI i m =i I i m =i II F Oid Princip određivanja v MAX : Drugi Njutnov zakon Dokle god je: F O > ΣF otp vozilo ubrzava Kada postane: F O = ΣF otp

Διαβάστε περισσότερα

21. ŠKOLSKO/OPĆINSKO/GRADSKO NATJECANJE IZ GEOGRAFIJE GODINE 8. RAZRED TOČNI ODGOVORI

21. ŠKOLSKO/OPĆINSKO/GRADSKO NATJECANJE IZ GEOGRAFIJE GODINE 8. RAZRED TOČNI ODGOVORI 21. ŠKOLSKO/OPĆINSKO/GRADSKO NATJECANJE IZ GEOGRAFIJE 2014. GODINE 8. RAZRED TOČNI ODGOVORI Bodovanje za sve zadatke: - boduju se samo točni odgovori - dodatne upute navedene su za pojedine skupine zadataka

Διαβάστε περισσότερα

FTN Novi Sad Katedra za motore i vozila. Teorija kretanja drumskih vozila Vučno-dinamičke performanse vozila: MAKSIMALNA BRZINA

FTN Novi Sad Katedra za motore i vozila. Teorija kretanja drumskih vozila Vučno-dinamičke performanse vozila: MAKSIMALNA BRZINA : MAKSIMALNA BRZINA Maksimalna brzina kretanja F O (N) F OI i m =i I i m =i II F Oid Princip određivanja v MAX : Drugi Njutnov zakon Dokle god je: F O > ΣF otp vozilo ubrzava Kada postane: F O = ΣF otp

Διαβάστε περισσότερα

18. listopada listopada / 13

18. listopada listopada / 13 18. listopada 2016. 18. listopada 2016. 1 / 13 Neprekidne funkcije Važnu klasu funkcija tvore neprekidne funkcije. To su funkcije f kod kojih mala promjena u nezavisnoj varijabli x uzrokuje malu promjenu

Διαβάστε περισσότερα

Fiziologija žene prije trudnoće i ženski spolni hormoni

Fiziologija žene prije trudnoće i ženski spolni hormoni Ženski reprodukcijski organi Fiziologija žene prije trudnoće i ženski spolni hormoni organ jajnici jajovodi maternica rodnica funkcija stvaranje jajne stanice, lučenje estrogena i progesterona mjesto oplodnje

Διαβάστε περισσότερα

TEČAJ: NOVOSTI U ENDOKRINOLOŠKOJ LABORATORIJSKOJ DIJAGNOSTICI

TEČAJ: NOVOSTI U ENDOKRINOLOŠKOJ LABORATORIJSKOJ DIJAGNOSTICI TEČAJ: NOVOSTI U ENDOKRINOLOŠKOJ LABORATORIJSKOJ DIJAGNOSTICI TEST PROVJERE ZNANJA Zagreb, 05.12.2015. NAPOMENA: Točni odgovori označeni su crvenim slovima. 1. Na indikaciju liječnika ginekologa u trudnice

Διαβάστε περισσότερα

Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama.

Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. a b Verovatno a da sluqajna promenljiva X uzima vrednost iz intervala

Διαβάστε περισσότερα

MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15

MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 Matrice - osnovni pojmovi (Matrice i determinante) 2 / 15 (Matrice i determinante) 2 / 15 Matrice - osnovni pojmovi Matrica reda

Διαβάστε περισσότερα

Sistemi veštačke inteligencije primer 1

Sistemi veštačke inteligencije primer 1 Sistemi veštačke inteligencije primer 1 1. Na jeziku predikatskog računa formalizovati rečenice: a) Miloš je slikar. b) Sava nije slikar. c) Svi slikari su umetnici. Uz pomoć metode rezolucije dokazati

Διαβάστε περισσότερα

Eliminacijski zadatak iz Matematike 1 za kemičare

Eliminacijski zadatak iz Matematike 1 za kemičare Za mnoge reakcije vrijedi Arrheniusova jednadžba, koja opisuje vezu koeficijenta brzine reakcije i temperature: K = Ae Ea/(RT ). - T termodinamička temperatura (u K), - R = 8, 3145 J K 1 mol 1 opća plinska

Διαβάστε περισσότερα

POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE

POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE **** MLADEN SRAGA **** 011. UNIVERZALNA ZBIRKA POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE SKUP REALNIH BROJEVA α Autor: MLADEN SRAGA Grafički urednik: BESPLATNA - WEB-VARIJANTA Tisak: M.I.M.-SRAGA

Διαβάστε περισσότερα

IZRAČUNAVANJE POKAZATELJA NAČINA RADA NAČINA RADA (ISKORIŠĆENOSTI KAPACITETA, STEPENA OTVORENOSTI RADNIH MESTA I NIVOA ORGANIZOVANOSTI)

IZRAČUNAVANJE POKAZATELJA NAČINA RADA NAČINA RADA (ISKORIŠĆENOSTI KAPACITETA, STEPENA OTVORENOSTI RADNIH MESTA I NIVOA ORGANIZOVANOSTI) IZRAČUNAVANJE POKAZATELJA NAČINA RADA NAČINA RADA (ISKORIŠĆENOSTI KAPACITETA, STEPENA OTVORENOSTI RADNIH MESTA I NIVOA ORGANIZOVANOSTI) Izračunavanje pokazatelja načina rada OTVORENOG RM RASPOLOŽIVO RADNO

Διαβάστε περισσότερα

ELEKTROTEHNIČKI ODJEL

ELEKTROTEHNIČKI ODJEL MATEMATIKA. Neka je S skup svih živućih državljana Republike Hrvatske..04., a f preslikavanje koje svakom elementu skupa S pridružuje njegov horoskopski znak (bez podznaka). a) Pokažite da je f funkcija,

Διαβάστε περισσότερα

H O R M O N I UDŽBENIK. Prof. Marina Stojanov OSTALA LITERATURA

H O R M O N I UDŽBENIK. Prof. Marina Stojanov OSTALA LITERATURA UDŽBENK H O R M O N Prof. Marina Stojanov 1 2 OSTALA LTERATURA 1. ialal, Winter WE, Chan DW. Diagnostic Endocrinology, AACC, Washington DC, 1999. 2. Greespan FS, Gardner DG. Basic & Clinical Endocrinology,

Διαβάστε περισσότερα

3.1 Granična vrednost funkcije u tački

3.1 Granična vrednost funkcije u tački 3 Granična vrednost i neprekidnost funkcija 2 3 Granična vrednost i neprekidnost funkcija 3. Granična vrednost funkcije u tački Neka je funkcija f(x) definisana u tačkama x za koje je 0 < x x 0 < r, ili

Διαβάστε περισσότερα

DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović

DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović Novi Sad April 17, 2018 1 / 22 Teorija grafova April 17, 2018 2 / 22 Definicija Graf je ure dena trojka G = (V, G, ψ), gde je (i) V konačan skup čvorova,

Διαβάστε περισσότερα

ENDOKRINI SISTEM ČOVEKA. Doc. dr Snežana Marković Institut za biologiju i ekologiju Prirodno-matematički fakultet Univerzitet u Kragujevcu

ENDOKRINI SISTEM ČOVEKA. Doc. dr Snežana Marković Institut za biologiju i ekologiju Prirodno-matematički fakultet Univerzitet u Kragujevcu ENDOKRINI SISTEM ČOVEKA Doc. dr Snežana Marković Institut za biologiju i ekologiju Prirodno-matematički fakultet Univerzitet u Kragujevcu ENDOKRINI SISTEM HORMONI Kontrolni sistemi organizma: nervni i

Διαβάστε περισσότερα

Zavrxni ispit iz Matematiqke analize 1

Zavrxni ispit iz Matematiqke analize 1 Građevinski fakultet Univerziteta u Beogradu 3.2.2016. Zavrxni ispit iz Matematiqke analize 1 Prezime i ime: Broj indeksa: 1. Definisati Koxijev niz. Dati primer niza koji nije Koxijev. 2. Dat je red n=1

Διαβάστε περισσότερα

( , 2. kolokvij)

( , 2. kolokvij) A MATEMATIKA (0..20., 2. kolokvij). Zadana je funkcija y = cos 3 () 2e 2. (a) Odredite dy. (b) Koliki je nagib grafa te funkcije za = 0. (a) zadanu implicitno s 3 + 2 y = sin y, (b) zadanu parametarski

Διαβάστε περισσότερα

Mašinsko učenje. Regresija.

Mašinsko učenje. Regresija. Mašinsko učenje. Regresija. Danijela Petrović May 17, 2016 Uvod Problem predviđanja vrednosti neprekidnog atributa neke instance na osnovu vrednosti njenih drugih atributa. Uvod Problem predviđanja vrednosti

Διαβάστε περισσότερα

Računarska grafika. Rasterizacija linije

Računarska grafika. Rasterizacija linije Računarska grafika Osnovni inkrementalni algoritam Drugi naziv u literaturi digitalni diferencijalni analizator (DDA) Pretpostavke (privremena ograničenja koja se mogu otkloniti jednostavnim uopštavanjem

Διαβάστε περισσότερα

Reprodukcijske i hormonske funkcije u muškarca

Reprodukcijske i hormonske funkcije u muškarca Muški reprodukcijski sustav Reprodukcijske i hormonske funkcije u muškarca prof. dr. sc. Reno Hrašćan organ testisi epididimisi sjemenovodi sjemeni mjehurići prostata uretra bulbouretralne žlijezde penis

Διαβάστε περισσότερα

Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011.

Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011. Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika Monotonost i ekstremi Katica Jurasić Rijeka, 2011. Ishodi učenja - predavanja Na kraju ovog predavanja moći ćete:,

Διαβάστε περισσότερα

Menstruacijski ciklus

Menstruacijski ciklus Menstruacijski ciklus Velimir Šimunić Endokrinološka kontrola menstruacijskog ciklusa, a time i sustava za reprodukciju, vrlo je složena. U posljednja dva desetljeća dobivene su brojne nove informacije

Διαβάστε περισσότερα

S t r a n a 1. 1.Povezati jonsku jačinu rastvora: a) MgCl 2 b) Al 2 (SO 4 ) 3 sa njihovim molalitetima, m. za so tipa: M p X q. pa je jonska jačina:

S t r a n a 1. 1.Povezati jonsku jačinu rastvora: a) MgCl 2 b) Al 2 (SO 4 ) 3 sa njihovim molalitetima, m. za so tipa: M p X q. pa je jonska jačina: S t r a n a 1 1.Povezati jonsku jačinu rastvora: a MgCl b Al (SO 4 3 sa njihovim molalitetima, m za so tipa: M p X q pa je jonska jačina:. Izračunati mase; akno 3 bba(no 3 koje bi trebalo dodati, 0,110

Διαβάστε περισσότερα

SISTEMI NELINEARNIH JEDNAČINA

SISTEMI NELINEARNIH JEDNAČINA SISTEMI NELINEARNIH JEDNAČINA April, 2013 Razni zapisi sistema Skalarni oblik: Vektorski oblik: F = f 1 f n f 1 (x 1,, x n ) = 0 f n (x 1,, x n ) = 0, x = (1) F(x) = 0, (2) x 1 0, 0 = x n 0 Definicije

Διαβάστε περισσότερα

Cauchyjev teorem. Postoji više dokaza ovog teorema, a najjednostvniji je uz pomoć Greenove formule: dxdy. int C i Cauchy Riemannovih uvjeta.

Cauchyjev teorem. Postoji više dokaza ovog teorema, a najjednostvniji je uz pomoć Greenove formule: dxdy. int C i Cauchy Riemannovih uvjeta. auchyjev teorem Neka je f-ja f (z) analitička u jednostruko (prosto) povezanoj oblasti G, i neka je zatvorena kontura koja čitava leži u toj oblasti. Tada je f (z)dz = 0. Postoji više dokaza ovog teorema,

Διαβάστε περισσότερα

41. Jednačine koje se svode na kvadratne

41. Jednačine koje se svode na kvadratne . Jednačine koje se svode na kvadrane Simerične recipročne) jednačine Jednačine oblika a n b n c n... c b a nazivamo simerične jednačine, zbog simeričnosi koeficijenaa koeficijeni uz jednaki). k i n k

Διαβάστε περισσότερα

M086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost

M086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost M086 LA 1 M106 GRP Tema: CSB nejednakost. 19. 10. 2017. predavač: Rudolf Scitovski, Darija Marković asistent: Darija Brajković, Katarina Vincetić P 1 www.fizika.unios.hr/grpua/ 1 Baza vektorskog prostora.

Διαβάστε περισσότερα

Novi Sad god Broj 1 / 06 Veljko Milković Bulevar cara Lazara 56 Novi Sad. Izveštaj o merenju

Novi Sad god Broj 1 / 06 Veljko Milković Bulevar cara Lazara 56 Novi Sad. Izveštaj o merenju Broj 1 / 06 Dana 2.06.2014. godine izmereno je vreme zaustavljanja elektromotora koji je radio u praznom hodu. Iz gradske mreže 230 V, 50 Hz napajan je monofazni asinhroni motor sa dva brusna kamena. Kada

Διαβάστε περισσότερα

Matematika 1 - vježbe. 11. prosinca 2015.

Matematika 1 - vježbe. 11. prosinca 2015. Matematika - vježbe. prosinca 5. Stupnjevi i radijani Ako je kut φ jednak i rad, tada je veza između i 6 = Zadatak.. Izrazite u stupnjevima: a) 5 b) 7 9 c). d) 7. a) 5 9 b) 7 6 6 = = 5 c). 6 8.5 d) 7.

Διαβάστε περισσότερα

Kaskadna kompenzacija SAU

Kaskadna kompenzacija SAU Kaskadna kompenzacija SAU U inženjerskoj praksi, naročito u sistemima regulacije elektromotornih pogona i tehnoloških procesa, veoma često se primenjuje metoda kaskadne kompenzacije, u čijoj osnovi su

Διαβάστε περισσότερα

SAŽETAK OPISA SVOJSTAVA LIJEKA. Svaka filmom obložena tableta sadrži 1 mg estradiola (kao estradiol hemihidrat) i 2 mg drospirenona.

SAŽETAK OPISA SVOJSTAVA LIJEKA. Svaka filmom obložena tableta sadrži 1 mg estradiola (kao estradiol hemihidrat) i 2 mg drospirenona. SAŽETAK OPISA SVOJSTAVA LIJEKA 1. NAZIV LIJEKA Angeliq 1 mg/2 mg filmom obložene tablete 2. KVALITATIVNI I KVANTITATIVNI SASTAV Svaka filmom obložena tableta sadrži 1 mg estradiola (kao estradiol hemihidrat)

Διαβάστε περισσότερα

Jedna napunjena štrcaljka sadrži 150 mikrograma korifolitropina alfa u 0,5 ml otopine za injekciju.

Jedna napunjena štrcaljka sadrži 150 mikrograma korifolitropina alfa u 0,5 ml otopine za injekciju. SAŽETAK OPISA SVOJSTAVA LIJEKA 1. NAZIV GOTOVOG LIJEKA Elonva 150 mikrograma otopina za injekciju 2. KVALITATIVNI I KVANTITATIVNI SASTAV Jedna napunjena štrcaljka sadrži 150 mikrograma korifolitropina

Διαβάστε περισσότερα

XI dvoqas veжbi dr Vladimir Balti. 4. Stabla

XI dvoqas veжbi dr Vladimir Balti. 4. Stabla XI dvoqas veжbi dr Vladimir Balti 4. Stabla Teorijski uvod Teorijski uvod Definicija 5.7.1. Stablo je povezan graf bez kontura. Definicija 5.7.1. Stablo je povezan graf bez kontura. Primer 5.7.1. Sva stabla

Διαβάστε περισσότερα

OM2 V3 Ime i prezime: Index br: I SAVIJANJE SILAMA TANKOZIDNIH ŠTAPOVA

OM2 V3 Ime i prezime: Index br: I SAVIJANJE SILAMA TANKOZIDNIH ŠTAPOVA OM V me i preime: nde br: 1.0.01. 0.0.01. SAVJANJE SLAMA TANKOZDNH ŠTAPOVA A. TANKOZDN ŠTAPOV PROZVOLJNOG OTVORENOG POPREČNOG PRESEKA Preposavka: Smičući napon je konsanan po debljini ida (duž pravca upravnog

Διαβάστε περισσότερα

Numerička matematika 2. kolokvij (1. srpnja 2009.)

Numerička matematika 2. kolokvij (1. srpnja 2009.) Numerička matematika 2. kolokvij (1. srpnja 29.) Zadatak 1 (1 bodova.) Teorijsko pitanje. (A) Neka je G R m n, uz m n, pravokutna matrica koja ima puni rang po stupcima, tj. rang(g) = n. (a) Napišite puni

Διαβάστε περισσότερα

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Trigonometrijske jednačine i nejednačine. Zadaci koji se rade bez upotrebe trigonometrijskih formula. 00. FF cos x sin x

Διαβάστε περισσότερα

10. STABILNOST KOSINA

10. STABILNOST KOSINA MEHANIKA TLA: Stabilnot koina 101 10. STABILNOST KOSINA 10.1 Metode proračuna koina Problem analize tabilnoti zemljanih maa vodi e na određivanje odnoa između rapoložive mičuće čvrtoće i proečnog mičućeg

Διαβάστε περισσότερα

IZVODI ZADACI ( IV deo) Rešenje: Najpre ćemo logaritmovati ovu jednakost sa ln ( to beše prirodni logaritam za osnovu e) a zatim ćemo

IZVODI ZADACI ( IV deo) Rešenje: Najpre ćemo logaritmovati ovu jednakost sa ln ( to beše prirodni logaritam za osnovu e) a zatim ćemo IZVODI ZADACI ( IV deo) LOGARITAMSKI IZVOD Logariamskim izvodom funkcije f(), gde je >0 i, nazivamo izvod logarima e funkcije, o jes: (ln ) f ( ) f ( ) Primer. Nadji izvod funkcije Najpre ćemo logarimovai

Διαβάστε περισσότερα

5. Karakteristične funkcije

5. Karakteristične funkcije 5. Karakteristične funkcije Profesor Milan Merkle emerkle@etf.rs milanmerkle.etf.rs Verovatnoća i Statistika-proleće 2018 Milan Merkle Karakteristične funkcije ETF Beograd 1 / 10 Definicija Karakteristična

Διαβάστε περισσότερα

Funkcije dviju varjabli (zadaci za vježbu)

Funkcije dviju varjabli (zadaci za vježbu) Funkcije dviju varjabli (zadaci za vježbu) Vidosava Šimić 22. prosinca 2009. Domena funkcije dvije varijable Ako je zadano pridruživanje (x, y) z = f(x, y), onda se skup D = {(x, y) ; f(x, y) R} R 2 naziva

Διαβάστε περισσότερα

Ispitivanje toka i skiciranje grafika funkcija

Ispitivanje toka i skiciranje grafika funkcija Ispitivanje toka i skiciranje grafika funkcija Za skiciranje grafika funkcije potrebno je ispitati svako od sledećih svojstava: Oblast definisanosti: D f = { R f R}. Parnost, neparnost, periodičnost. 3

Διαβάστε περισσότερα

PARCIJALNI IZVODI I DIFERENCIJALI. Sama definicija parcijalnog izvoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je,

PARCIJALNI IZVODI I DIFERENCIJALI. Sama definicija parcijalnog izvoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je, PARCIJALNI IZVODI I DIFERENCIJALI Sama definicija parcijalnog ivoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je, naravno, naučiti onako kako vaš profesor ahteva. Mi ćemo probati

Διαβάστε περισσότερα

OSNOVI ELEKTRONIKE VEŽBA BROJ 1 OSNOVNA KOLA SA DIODAMA

OSNOVI ELEKTRONIKE VEŽBA BROJ 1 OSNOVNA KOLA SA DIODAMA ELEKTROTEHNIČKI FAKULTET U BEOGRADU KATEDRA ZA ELEKTRONIKU OSNOVI ELEKTRONIKE SVI ODSECI OSIM ODSEKA ZA ELEKTRONIKU LABORATORIJSKE VEŽBE VEŽBA BROJ 1 OSNOVNA KOLA SA DIODAMA Autori: Goran Savić i Milan

Διαβάστε περισσότερα

Sažetak opisa svojstava lijeka

Sažetak opisa svojstava lijeka Sažetak opisa svojstava lijeka 1. NAZIV GOTOVOG LIJEKA Utrogestan 100 mg meke kapsule 2. KVALITATIVNI I KVANTITATIVNI SASTAV Jedna kapsula sadrži 100 mg mikroniziranog progesterona. Za cjeloviti popis

Διαβάστε περισσότερα

Obrada signala

Obrada signala Obrada signala 1 18.1.17. Greška kvantizacije Pretpostavka je da greška kvantizacije ima uniformnu raspodelu 7 6 5 4 -X m p x 1,, za x druge vrednosti x 3 x X m 1 X m = 3 x Greška kvantizacije x x x p

Διαβάστε περισσότερα

Računarska grafika. Rasterizacija linije

Računarska grafika. Rasterizacija linije Računarska grafika Osnovni inkrementalni algoritam Drugi naziv u literaturi digitalni diferencijalni analizator (DDA) Pretpostavke (privremena ograničenja koja se mogu otkloniti jednostavnim uopštavanjem

Διαβάστε περισσότερα

Aleksandar Rašković LEČENJE POREMEĆAJA ŠTITNE ŽLEZDE

Aleksandar Rašković LEČENJE POREMEĆAJA ŠTITNE ŽLEZDE Aleksandar Rašković LEČENJE POREMEĆAJA ŠTITNE ŽLEZDE Hormoni štitne žlezde folikularne ćelije 1. preuzimanje jodida iz cirkulacije Na J simporter (TSH funkciju, litijum ) 2. oksidacija i jodinacija oksidacija

Διαβάστε περισσότερα

IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f

IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f 2. Nule i znak funkcije; presek sa y-osom IspitivaƬe

Διαβάστε περισσότερα

Betonske konstrukcije 1 - vežbe 3 - Veliki ekscentricitet -Dodatni primeri

Betonske konstrukcije 1 - vežbe 3 - Veliki ekscentricitet -Dodatni primeri Betonske konstrukcije 1 - vežbe 3 - Veliki ekscentricitet -Dodatni primeri 1 1 Zadatak 1b Čisto savijanje - vezano dimenzionisanje Odrediti potrebnu površinu armature za presek poznatih dimenzija, pravougaonog

Διαβάστε περισσότερα

Pismeni ispit iz matematike Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: ( ) + 1.

Pismeni ispit iz matematike Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: ( ) + 1. Pismeni ispit iz matematike 0 008 GRUPA A Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: λ + z = Ispitati funkciju i nacrtati njen grafik: + ( λ ) + z = e Izračunati

Διαβάστε περισσότερα

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju RAČUN OSTATAKA 1 1 Prsten celih brojeva Z := N + {} N + = {, 3, 2, 1,, 1, 2, 3,...} Osnovni primer. (Z, +,,,, 1) je komutativan prsten sa jedinicom: sabiranje (S1) asocijativnost x + (y + z) = (x + y)

Διαβάστε περισσότερα

Elementi spektralne teorije matrica

Elementi spektralne teorije matrica Elementi spektralne teorije matrica Neka je X konačno dimenzionalan vektorski prostor nad poljem K i neka je A : X X linearni operator. Definicija. Skalar λ K i nenula vektor u X se nazivaju sopstvena

Διαβάστε περισσότερα

INŽENJERSTVO NAFTE I GASA. 2. vežbe. 2. vežbe Tehnologija bušenja II Slide 1 of 50

INŽENJERSTVO NAFTE I GASA. 2. vežbe. 2. vežbe Tehnologija bušenja II Slide 1 of 50 INŽENJERSTVO NAFTE I GASA Tehnologija bušenja II 2. vežbe 2. vežbe Tehnologija bušenja II Slide 1 of 50 Proračuni trajektorija koso-usmerenih bušotina 2. vežbe Tehnologija bušenja II Slide 2 of 50 Proračun

Διαβάστε περισσότερα

(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k.

(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k. 1 3 Skupovi brojeva 3.1 Skup prirodnih brojeva - N N = {1, 2, 3,...} Aksiom matematičke indukcije Neka je N skup prirodnih brojeva i M podskup od N. Ako za M vrijede svojstva: 1) 1 M 2) n M (n + 1) M,

Διαβάστε περισσότερα

ZBIRKA POTPUNO RIJEŠENIH ZADATAKA

ZBIRKA POTPUNO RIJEŠENIH ZADATAKA **** IVANA SRAGA **** 1992.-2011. ZBIRKA POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE POTPUNO RIJEŠENI ZADACI PO ŽUTOJ ZBIRCI INTERNA SKRIPTA CENTRA ZA PODUKU α M.I.M.-Sraga - 1992.-2011.

Διαβάστε περισσότερα

Uvod u neparametarske testove

Uvod u neparametarske testove Str. 148 Uvod u neparametarske testove Predavač: Dr Mirko Savić savicmirko@ef.uns.ac.rs www.ef.uns.ac.rs Hi-kvadrat testovi c Str. 149 Koristi se za upoređivanje dve serije frekvencija. Vrste c testa:

Διαβάστε περισσότερα

2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x

2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x Zadatak (Darjan, medicinska škola) Izračunaj vrijednosti trigonometrijskih funkcija broja ako je 6 sin =,,. 6 Rješenje Ponovimo trigonometrijske funkcije dvostrukog kuta! Za argument vrijede sljedeće formule:

Διαβάστε περισσότερα

Izbor statističkih testova Ana-Maria Šimundić

Izbor statističkih testova Ana-Maria Šimundić Izbor statističkih testova Ana-Maria Šimundić Klinički zavod za kemiju Klinička jedinica za medicinsku biokemiju s analitičkom toksikologijom KBC Sestre milosrdnice Izbor statističkog testa Tajna dobrog

Διαβάστε περισσότερα

3. OSNOVNI POKAZATELJI TLA

3. OSNOVNI POKAZATELJI TLA MEHANIKA TLA: Onovni paraetri tla 4. OSNONI POKAZATELJI TLA Tlo e atoji od tri faze: od čvrtih zrna, vode i vazduha i njihovo relativno učešće e opiuje odgovarajući pokazateljia.. Specifična težina (G)

Διαβάστε περισσότερα

Algoritmi zadaci za kontrolni

Algoritmi zadaci za kontrolni Algoritmi zadaci za kontrolni 1. Nacrtati algoritam za sabiranje ulaznih brojeva a i b Strana 1 . Nacrtati algoritam za izračunavanje sledeće funkcije: x y x 1 1 x x ako ako je : je : x x 1 x x 1 Strana

Διαβάστε περισσότερα

SEMINAR IZ KOLEGIJA ANALITIČKA KEMIJA I. Studij Primijenjena kemija

SEMINAR IZ KOLEGIJA ANALITIČKA KEMIJA I. Studij Primijenjena kemija SEMINAR IZ OLEGIJA ANALITIČA EMIJA I Studij Primijenjena kemija 1. 0,1 mola NaOH je dodano 1 litri čiste vode. Izračunajte ph tako nastale otopine. NaOH 0,1 M NaOH Na OH Jak elektrolit!!! Disoira potpuno!!!

Διαβάστε περισσότερα

SAŽETAK OPISA SVOJSTVA LIJEKA

SAŽETAK OPISA SVOJSTVA LIJEKA SAŽETAK OPISA SVOJSTVA LIJEKA 1. NAZIV GOTOVOG LIJEKA Estradot 25 mikrograma/24 sata, transdermalni flaster Estradot 50 mikrograma/24 sata, transdermalni flaster Estradot 100 mikrograma/24 sata, transdermalni

Διαβάστε περισσότερα

Trigonometrijske nejednačine

Trigonometrijske nejednačine Trignmetrijske nejednačine T su nejednačine kd kjih se nepznata javlja ka argument trignmetrijske funkcije. Rešiti trignmetrijsku nejednačinu znači naći sve uglve kji je zadvljavaju. Prilikm traženja rešenja

Διαβάστε περισσότερα

5. PARCIJALNE DERIVACIJE

5. PARCIJALNE DERIVACIJE 5. PARCIJALNE DERIVACIJE 5.1. Izračunajte parcijalne derivacije sljedećih funkcija: (a) f (x y) = x 2 + y (b) f (x y) = xy + xy 2 (c) f (x y) = x 2 y + y 3 x x + y 2 (d) f (x y) = x cos x cos y (e) f (x

Διαβάστε περισσότερα

I.13. Koliki je napon između neke tačke A čiji je potencijal 5 V i referentne tačke u odnosu na koju se taj potencijal računa?

I.13. Koliki je napon između neke tačke A čiji je potencijal 5 V i referentne tačke u odnosu na koju se taj potencijal računa? TET I.1. Šta je Kulonova sila? elektrostatička sila magnetna sila c) gravitaciona sila I.. Šta je elektrostatička sila? sila kojom međusobno eluju naelektrisanja u mirovanju sila kojom eluju naelektrisanja

Διαβάστε περισσότερα

Pismeni ispit iz matematike GRUPA A 1. Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj, zatim naći 4 z.

Pismeni ispit iz matematike GRUPA A 1. Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj, zatim naći 4 z. Pismeni ispit iz matematike 06 007 Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj z = + i, zatim naći z Ispitati funkciju i nacrtati grafik : = ( ) y e + 6 Izračunati integral:

Διαβάστε περισσότερα

SEKUNDARNE VEZE međumolekulske veze

SEKUNDARNE VEZE međumolekulske veze PRIMARNE VEZE hemijske veze među atomima SEKUNDARNE VEZE međumolekulske veze - Slabije od primarnih - Elektrostatičkog karaktera - Imaju veliki uticaj na svojstva supstanci: - agregatno stanje - temperatura

Διαβάστε περισσότερα

ploda tokom gravidnosti i mogućnosti gravidnosti domaćih životinja Klinika za porodništvo i reprodukciju Veterinarski fakultet Sveučilišta u Zagrebu

ploda tokom gravidnosti i mogućnosti gravidnosti domaćih životinja Klinika za porodništvo i reprodukciju Veterinarski fakultet Sveučilišta u Zagrebu Klinički aspekti interakcija majke i ploda tokom gravidnosti i mogućnosti njihove upotrebe u dijagnostici gravidnosti domaćih životinja Doc. dr. sc.nikica Prvanović, dr.vet.med. Klinika za porodništvo

Διαβάστε περισσότερα

Trigonometrija 2. Adicijske formule. Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto

Trigonometrija 2. Adicijske formule. Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto Trigonometrija Adicijske formule Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto Razumijevanje postupka izrade složenijeg matematičkog problema iz osnova trigonometrije

Διαβάστε περισσότερα

π π ELEKTROTEHNIČKI ODJEL i) f (x) = x 3 x 2 x + 1, a = 1, b = 1;

π π ELEKTROTEHNIČKI ODJEL i) f (x) = x 3 x 2 x + 1, a = 1, b = 1; 1. Provjerite da funkcija f definirana na segmentu [a, b] zadovoljava uvjete Rolleova poučka, pa odredite barem jedan c a, b takav da je f '(c) = 0 ako je: a) f () = 1, a = 1, b = 1; b) f () = 4, a =,

Διαβάστε περισσότερα

2. Homeostaza je a) održavanje ravnotežnog stanja unutrašnje sredine organizma b) održavanje dinamičke stabilnosti unutrašnje sredine organizma

2. Homeostaza je a) održavanje ravnotežnog stanja unutrašnje sredine organizma b) održavanje dinamičke stabilnosti unutrašnje sredine organizma 1. Endokrine žlezde svoje produkte sekretuju u a) unutrašnju sredinu organizma b) spoljašnju sredinu organizma 2. Homeostaza je a) održavanje ravnotežnog stanja unutrašnje sredine organizma b) održavanje

Διαβάστε περισσότερα

1. Pojam fazi skupa. 2. Pojam fazi skupa. 3. Funkcija pripadnosti, osobine i oblici. 4. Funkcija pripadnosti, osobine i oblici

1. Pojam fazi skupa. 2. Pojam fazi skupa. 3. Funkcija pripadnosti, osobine i oblici. 4. Funkcija pripadnosti, osobine i oblici Meko računarstvo Student: Indeks:. Poja fazi skupa. Vrednost fazi funkcije pripadnosti je iz skupa/opsega: a) {0, b) R c) N d) N 0 e) [0, ] f) [-, ] 2. Poja fazi skupa 2. Na slici je prikazan grafik: a)

Διαβάστε περισσότερα

NOMENKLATURA ORGANSKIH SPOJEVA. Imenovanje aromatskih ugljikovodika

NOMENKLATURA ORGANSKIH SPOJEVA. Imenovanje aromatskih ugljikovodika NOMENKLATURA ORGANSKIH SPOJEVA Imenovanje aromatskih ugljikovodika benzen metilbenzen (toluen) 1,2-dimetilbenzen (o-ksilen) 1,3-dimetilbenzen (m-ksilen) 1,4-dimetilbenzen (p-ksilen) fenilna grupa 2-fenilheptan

Διαβάστε περισσότερα

Strukture podataka i algoritmi 1. kolokvij 16. studenog Zadatak 1

Strukture podataka i algoritmi 1. kolokvij 16. studenog Zadatak 1 Strukture podataka i algoritmi 1. kolokvij Na kolokviju je dozvoljeno koristiti samo pribor za pisanje i službeni šalabahter. Predajete samo papire koje ste dobili. Rezultati i uvid u kolokvije: ponedjeljak,

Διαβάστε περισσότερα

Riješeni zadaci: Nizovi realnih brojeva

Riješeni zadaci: Nizovi realnih brojeva Riješei zadaci: Nizovi realih brojeva Nizovi, aritmetički iz, geometrijski iz Fukciju a : N R azivamo beskoači) iz realih brojeva i ozačavamo s a 1, a,..., a,... ili a ), pri čemu je a = a). Aritmetički

Διαβάστε περισσότερα

Verovatnoća i Statistika I deo Teorija verovatnoće (zadaci) Beleške dr Bobana Marinkovića

Verovatnoća i Statistika I deo Teorija verovatnoće (zadaci) Beleške dr Bobana Marinkovića Verovatnoća i Statistika I deo Teorija verovatnoće zadaci Beleške dr Bobana Marinkovića Iz skupa, 2,, 00} bira se na slučajan način 5 brojeva Odrediti skup elementarnih dogadjaja ako se brojevi biraju

Διαβάστε περισσότερα

IZVODI ZADACI (I deo)

IZVODI ZADACI (I deo) IZVODI ZADACI (I deo) Najpre da se podsetimo tablice i osnovnih pravila:. C`=0. `=. ( )`= 4. ( n )`=n n-. (a )`=a lna 6. (e )`=e 7. (log a )`= 8. (ln)`= ` ln a (>0) 9. = ( 0) 0. `= (>0) (ovde je >0 i a

Διαβάστε περισσότερα

TRIGONOMETRIJSKE FUNKCIJE I I.1.

TRIGONOMETRIJSKE FUNKCIJE I I.1. TRIGONOMETRIJSKE FUNKCIJE I I Odredi na brojevnoj trigonometrijskoj kružnici točku Et, za koju je sin t =,cost < 0 Za koje realne brojeve a postoji realan broj takav da je sin = a? Izračunaj: sin π tg

Διαβάστε περισσότερα

INTEGRALNI RAČUN. Teorije, metodike i povijest infinitezimalnih računa. Lucija Mijić 17. veljače 2011.

INTEGRALNI RAČUN. Teorije, metodike i povijest infinitezimalnih računa. Lucija Mijić 17. veljače 2011. INTEGRALNI RAČUN Teorije, metodike i povijest infinitezimalnih računa Lucija Mijić lucija@ktf-split.hr 17. veljače 2011. Pogledajmo Predstavimo gornju sumu sa Dodamo još jedan Dobivamo pravokutnik sa Odnosno

Διαβάστε περισσότερα

GLAZBENA UMJETNOST. Rezultati državne mature 2010.

GLAZBENA UMJETNOST. Rezultati državne mature 2010. GLAZBENA UJETNOST Rezultati državne mature 2010. Deskriptivna statistika ukupnog rezultata PARAETAR VRIJEDNOST N 112 k 61 72,5 St. pogreška mjerenja 5,06 edijan 76,0 od 86 St. devijacija 15,99 Raspon 66

Διαβάστε περισσότερα

MATEMATIKA 2. Grupa 1 Rexea zadataka. Prvi pismeni kolokvijum, Dragan ori

MATEMATIKA 2. Grupa 1 Rexea zadataka. Prvi pismeni kolokvijum, Dragan ori MATEMATIKA 2 Prvi pismeni kolokvijum, 14.4.2016 Grupa 1 Rexea zadataka Dragan ori Zadaci i rexea 1. unkcija f : R 2 R definisana je sa xy 2 f(x, y) = x2 + y sin 3 2 x 2, (x, y) (0, 0) + y2 0, (x, y) =

Διαβάστε περισσότερα

Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A

Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A Ime i prezime: 1. Prikazane su tačke A, B i C i prave a,b i c. Upiši simbole Î, Ï, Ì ili Ë tako da dobijeni iskazi

Διαβάστε περισσότερα

KATALOG IVD PROIZVODA

KATALOG IVD PROIZVODA KATALOG IVD PROIZVODA 2011-2012 INSTITUT ZA PRIMENU NUKLEARNE ENERGIJE - INEP Banatska 31b 11080 Beograd - Zemun Srbija Tel: (+381 11) 2619 252, 2618 696, 2199 949 Fax: (+381 11) 2618 724 www.inep.co.rs

Διαβάστε περισσότερα

Klasifikacija blizu Kelerovih mnogostrukosti. konstantne holomorfne sekcione krivine. Kelerove. mnogostrukosti. blizu Kelerove.

Klasifikacija blizu Kelerovih mnogostrukosti. konstantne holomorfne sekcione krivine. Kelerove. mnogostrukosti. blizu Kelerove. Klasifikacija blizu Teorema Neka je M Kelerova mnogostrukost. Operator krivine R ima sledeća svojstva: R(X, Y, Z, W ) = R(Y, X, Z, W ) = R(X, Y, W, Z) R(X, Y, Z, W ) + R(Y, Z, X, W ) + R(Z, X, Y, W ) =

Διαβάστε περισσότερα

Program testirati pomoću podataka iz sledeće tabele:

Program testirati pomoću podataka iz sledeće tabele: Deo 2: Rešeni zadaci 135 Vrednost integrala je I = 2.40407 42. Napisati program za izračunavanje koeficijenta proste linearne korelacije (Pearsonovog koeficijenta) slučajnih veličina X = (x 1,..., x n

Διαβάστε περισσότερα