STRUCTURA ELECTRONICĂ ŞI SPECTRELE ATOMILOR METALELOR ALCALINE
|
|
- Κρίος Ράγκος
- 7 χρόνια πριν
- Προβολές:
Transcript
1 Anexa 4 STRUCTURA ELECTRONICĂ ŞI SPECTRELE ATOMILOR METALELOR ALCALINE A4.1 STRUCTURA ELECTRONICĂ ŞI NIVELELE ENERGETICE Dinte atomii cu mai mulţi electoni, atomii metalelo alcaline au cea mai simplă stuctuă electonică, astfel încât nivelele enegetice sunt cel mai uşo de calculat, ia spectele lo cel mai simplu de intepetat. Configuaţia electonică a acesto elemente constă din sub-pătui închise plus un electon de valenţă (electon optic) ale căui tanziţii detemină liniile spectale. Electonul de valenţă se află înt-un obital ns în afaa miezului fomat de ceilalţi electoni: Li (s 1 ), Na (3s 1 ), K (4s 1 ), Rb (5s 1 ) şi Cs (6s 1 ). O sub-pătuă închisă având momentul cinetic total nul, momentele cinetice ale atomului alcalin sunt date numai de momentele cinetice obitale l, de spin s şi total j ale electonului peifeic. Din acest punst de vedee atomii metalelo alcaline se aseamănă destul de mult cu atomul de hidogen. Dacă modele semiclasice Boh-Sommefeld a fi valabile, singuul electon de valenţă a tebui să se mişte pe o obită exteioaă miezului fomat din ceilalţi electoni cae împeună cu nucleul a foma o sacină efectivă +e. Deci din acest punct de vedee spectele acesto atomi a tebui să fie pactic identice cu ale atomului de hidogen. Totuşi, în mecanica cuantică, noţiunea de taiectoie ne mai având sens, efectul electonilo din miez asupa spectului va fi indiect foate impotant. Astfel, în apoximaţia uni-electonică (vezi capitolul 11) electonul de valenţă se va mişca în câmpul "efectiv" fomat de ceilalţi Z-1 electoni din miez. Acest câmp "efectiv" este de foma e 0 Ze la distanţe foate mai de nucleu şi 0 + C la distanţe foate mici, unde C este un potenţial constant în oigine datoat electonilo din pătuile închise. Contibuţia la momentul cinetic total al miezului fomat din electonii din pătuile închise este nulă. Cum număul cuantic obital al miezului este zeo, câmpul "efectiv" coespunzăto va fi la oice distanţă, înt-o foate bună apoximaţie un câmp cental: V=V(). Atunci ecuaţia Schödinge unghiulaă va vi aceeşi ca la atomul de hidogen, în timp ce ecuaţia Schödinge adială va deveni [vezi fomula (A3.15) din anexa A3]: ( + ) d R dr μ ll + + ( E V() ) 1 d d h R () = 0 (A4.1) unde e 0 a fost înlocuit cu potenţialul cental V(). Acesta poate fi dezvoltat în pimă apoximaţie în seie sub foma V () e0 u = + + (A4.)
2 76 Anexa 4 Neglijând temenii supeioi ai dezvoltăii în seie, fomal, ecuaţia (A4.1) devine identică cu ecuaţia (A3.15) pentu atomul de hidogen dacă sciem: l ( l + 1) = l( l + 1 ) u (A4.3) unde l' va fi un numă cuantic obital "efectiv", nu neapăat înteg. În continuae putem poceda cu ezolavaea ecuaţiei Schödinge adiale (A4.1) în mod identic cu cazul atomului de hidogen (vezi paagaful A3). Astfel, punând condiţia de etezae a seiei, se înlocuie număul cuantic pincipal cu număul "efectiv": n * = n Δ l (A4.4) unde Δ l = l l (A4.5) se numeşte "defect cuantic" şi cae aşa cum se vede din (A4.3) nu depinde de n, da depinde putenic de l, el fiind cu atât mai mae cu cât l este mai mic. Astfel pentu atomul de sodiu Δ l= 0 = 1,375; Δ l = 1 = 0,887; Δ l = = 0,04; etc. Expesia, înt-o pimă apoximaţie pentu nivele enegetice va fi asemănătoae cu aceea a atomului de hidogen: E nl, Rhc = + * ( n ) (A4.6) Aşa cum am mai pecizat, pincipala difeenţă dinte nivele enegetice unielectonice ale atomui de hidogen şi cele ale atomilo metalelo alcaline este aceea că la acestea din umă este idicată degeneaea după număul cuantic obital l. Astfel, pentu oice câmp cental, cum a fi în paticula acela dat de de expesia (A4.), expesiile pentu nivele enegetice, atâta timp cât se neglinează inteacţiile spin-obită, tebuie să depindă de n şi de l. Zicem că în cazul atomului de hidogen avem de aface cu o degeneae accidentală după l, datoată fomei paticulae a potenţialului pu coulombian de foma -k/. Se obsevă că cu cât n şi l sunt mai mai, cu atât difeenţa dinte număul cuantic pincipal şi cel efectiv este mai mică. Aceasta se explică fizic în felul umăto. Cu cât electonul se găseşte mai depate de nucleu, cu atăt potenţialul (A4.) este mai asemănăto cu cel pu coulombian. Pobabilitatea cea mai mae de a găsi electonul în apopieea nucleului este pentu electonii s (l=0). Pentu aceşti electoni pobabilitatea espectivă este nenulă în oigine, pe când pentu toţi ceilalţi ea este nulă. De asemenea ea scade cu ceşteea lui n (vezi anexa 3). A4. INTERACŢIA SPIN-ORBITĂ ŞI SPECTRELE ATOMILOR METALELOR ALCALINE Teoia inteacţiei fine explică spectele atomului de H (1s 1 ) şi ale metalelo alcaline. În expesia enegiei spin-obită apae podusul l s pe cae îl calculam astfel:
3 STRUCTURA ELECTRONICĂ ŞI SPECTRELE ATOMILOR METALELOR ALCALINE j = l + s ( j) = ( l) + ( s) + l s ( j) ( l) ( s) l s = 77 Utilizând expesiile valoilo popii ale opeatoilo epezentaţi pin pătatul momentelo cinetice (lungimea vectoilo în modelul vectoial), obţinem: l s = j( j + 1) l) l + 1) ss ( + 1) Atunci, enegia cuplajului spin-obită se scie : ΔE a l n j j + = l l + ss + (, ) ( 1) ) 1) ( 1) cu aln (, )= h V mc a(n,l) depinde de numeele cuantice n şi l pin intemediul valoii medii a lui şi a lui V(). Pentu valoi n şi l date ( l 0) avem două valoi pentu j şi deci, două valoi pentu ΔE. Să luăm ca exemplu cazul când l=1 : ( 3/ )( 5/ ) 1 ( 1/ )( 3/ ) 1) l = 1, j = 3/, ΔE = a( 1, n) a(, 1 n) = ( 1/ )( 3/ ) 1 ( 1/ )( 3/ ) ) l = 1, j = 1/, ΔE1 = a( 1, n) = a(, 1 n) şi putem continua pentu alte numee cuantice. Dacă E 0 este enegia unui nivel, deteminată ţinând seama doa de inteacţia coulumbiană, inteacţia fină (spin-obită) despică acest nivel, ezultând două sub-nivele de enegii : E = E + ΔE E = E + ΔE În cazul metalelo alcaline, toate nivelele sunt dedublate de inteacţia fină, cu excepţia nivelului cu l=0 (vezi figua A4.1).
4 78 Anexa 4 Figua A4.1. Liniile spectale ale metalelo alcaline au fost clasificate de Paschen, Runge şi Rydbeg în umătoaele seii: Seia pincipală (np - 3s) Seia fină (ns - 3p) Seia difuză (nd - 3p) Seia fundamentala (nf - 3d) Mai coect, seiile spectale sunt denumite după nivelele enegetice cae le geneează: S (shap, adică fină), P (pincipală), D (difuză), F (fundamentală). În figua A4. este pezentată schema de nivele enegetice a sodiului. De emacat că pincipala caacteistică a spectului sodiului este dedublaea liniilo spectale (dubleţii sodiului). Aceasta se datoează egulilo de selecţie Δl =±1 şi Δj = 0, ± 1, cât şi faptului că inteacţia spin-obită este cu atât mai mică cu cât l şi n sunt mai mai. Astfel, spectele metalelo alcaline sunt un alt fapt expeimental cae atestă existenţa spinului electonului, pecum şi că număul cuantic ce îl caacteizează este 1/.
5 STRUCTURA ELECTRONICĂ ŞI SPECTRELE ATOMILOR METALELOR ALCALINE 79 Figua A4.. Nivelele enegetice şi seiile spectale ale sodiului. Pe odonată este expimată enegia în ev, ia lungimile de undă ce coespund diveselo tanziţii sunt expimate în Å.
Curs 10 Funcţii reale de mai multe variabile reale. Limite şi continuitate.
Curs 10 Funcţii reale de mai multe variabile reale. Limite şi continuitate. Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Fie p, q N. Fie funcţia f : D R p R q. Avem următoarele
Διαβάστε περισσότεραMetode iterative pentru probleme neliniare - contractii
Metode iterative pentru probleme neliniare - contractii Problemele neliniare sunt in general rezolvate prin metode iterative si analiza convergentei acestor metode este o problema importanta. 1 Contractii
Διαβάστε περισσότεραFIZICĂ. Bazele fizice ale mecanicii cuantice. ş.l. dr. Marius COSTACHE
FIZICĂ Bazele fizice ale mecanicii cuantice ş.l. d. Maius COSTACHE 1 BAZELE FIZICII CUANTICE Mecanica cuantică (Fizica cuantică) studiază legile de mişcae ale micoaticulelo (e -, +,...) şi ale sistemelo
Διαβάστε περισσότεραr d r. r r ( ) Curba închisă Γ din (3.1 ) limitează o suprafaţă de arie S
- 37-3. Ecuaţiile lui Maxwell 3.. Foma integală a ecuaţiilo lui Maxwell Foma cea mai geneală a ii lui Ampèe (.75) sau (.77) epezintă pima ecuaţie a lui Maxwell: d H dl j ds + D ds (3.) S dt S sau: B dl
Διαβάστε περισσότεραa n (ζ z 0 ) n. n=1 se numeste partea principala iar seria a n (z z 0 ) n se numeste partea
Serii Laurent Definitie. Se numeste serie Laurent o serie de forma Seria n= (z z 0 ) n regulata (tayloriana) = (z z n= 0 ) + n se numeste partea principala iar seria se numeste partea Sa presupunem ca,
Διαβάστε περισσότεραV.7. Condiţii necesare de optimalitate cazul funcţiilor diferenţiabile
Metode de Optimizare Curs V.7. Condiţii necesare de optimalitate cazul funcţiilor diferenţiabile Propoziţie 7. (Fritz-John). Fie X o submulţime deschisă a lui R n, f:x R o funcţie de clasă C şi ϕ = (ϕ,ϕ
Διαβάστε περισσότερα(a) se numeşte derivata parţială a funcţiei f în raport cu variabila x i în punctul a.
Definiţie Spunem că: i) funcţia f are derivată parţială în punctul a în raport cu variabila i dacă funcţia de o variabilă ( ) are derivată în punctul a în sens obişnuit (ca funcţie reală de o variabilă
Διαβάστε περισσότεραDISTANŢA DINTRE DOUĂ DREPTE NECOPLANARE
DISTANŢA DINTRE DOUĂ DREPTE NECOPLANARE ABSTRACT. Materialul prezintă o modalitate de a afla distanţa dintre două drepte necoplanare folosind volumul tetraedrului. Lecţia se adresează clasei a VIII-a Data:
Διαβάστε περισσότεραCurs 4 Serii de numere reale
Curs 4 Serii de numere reale Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Criteriul rădăcinii sau Criteriul lui Cauchy Teoremă (Criteriul rădăcinii) Fie x n o serie cu termeni
Διαβάστε περισσότεραFunctii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor X) functia f 1
Functii definitie proprietati grafic functii elementare A. Definitii proprietatile functiilor. Fiind date doua multimi X si Y spunem ca am definit o functie (aplicatie) pe X cu valori in Y daca fiecarui
Διαβάστε περισσότερα4. CÂTEVA METODE DE CALCUL AL CÂMPULUI ELECTRIC Formule coulombiene
Patea II. Electostatica 91 4. CÂTEVA METOE E CALCUL AL CÂMPULUI ELECTIC i) Cazul 4.1. Fomule coulombiene Fie o sacină electică punctuală, situată înt-un mediu omogen nemăginit, de pemitivitate ε. Aplicăm
Διαβάστε περισσότεραFunctii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor
Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor. Fiind date doua multimi si spunem ca am definit o functie (aplicatie) pe cu valori in daca fiecarui element
Διαβάστε περισσότεραCurs 14 Funcţii implicite. Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi"
Curs 14 Funcţii implicite Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Fie F : D R 2 R o funcţie de două variabile şi fie ecuaţia F (x, y) = 0. (1) Problemă În ce condiţii ecuaţia
Διαβάστε περισσότεραPlanul determinat de normală şi un punct Ecuaţia generală Plane paralele Unghi diedru Planul determinat de 3 puncte necoliniare
1 Planul în spaţiu Ecuaţia generală Plane paralele Unghi diedru 2 Ecuaţia generală Plane paralele Unghi diedru Fie reperul R(O, i, j, k ) în spaţiu. Numim normala a unui plan, un vector perpendicular pe
Διαβάστε περισσότεραCursul 14 ) 1 2 ( fg dµ <. Deci fg L 2 ([ π, π]). Prin urmare,
D.Rs, Teoia măsii şi integala Lebesge 6 SERII FOURIER ÎN L ([, ]) Csl 4 6 Seii Foie în L ([, ]) Consideăm spaţil c măsă ([, ], M [,], µ), nde M este σ-algeba mlţimilo măsabile Lebesge, ia µ este măsa Lebesge.
Διαβάστε περισσότεραCursul 2. ψ h ω şi impulsul hk şi electronul cu energia de repaos m 0 c 2 şi impuls nul. După ciocnire, electronul va r căpăta impulsul p r p
Cusul. EFECTUL COMPTON Descopeit în 93 de căte fizicianul ameican Athu Compton (89-96) în timpul cecetăilo întepinse în legătuă cu difuzia azelo X de căte difeite substanţe, fenomenul Compton se petează
Διαβάστε περισσότεραProbleme. c) valoarea curentului de sarcină prin R L şi a celui de la ieşirea AO dacă U I. Rezolvare:
Pobleme P Pentu cicuitul din fig P, ealizat cu amplificatoae opeaţionale ideale, alimentate cu ±5V, să se detemine: a) elaţia analitică a tensiunii de ieşie valoile tensiunii de ieşie dacă -V 0V +,8V -V
Διαβάστε περισσότερα5. FUNCŢII IMPLICITE. EXTREME CONDIŢIONATE.
5 Eerciţii reolvate 5 UNCŢII IMPLICITE EXTREME CONDIŢIONATE Eerciţiul 5 Să se determine şi dacă () este o funcţie definită implicit de ecuaţia ( + ) ( + ) + Soluţie ie ( ) ( + ) ( + ) + ( )R Evident este
Διαβάστε περισσότεραSeminariile Capitolul X. Integrale Curbilinii: Serii Laurent şi Teorema Reziduurilor
Facultatea de Matematică Calcul Integral şi Elemente de Analiă Complexă, Semestrul I Lector dr. Lucian MATICIUC Seminariile 9 20 Capitolul X. Integrale Curbilinii: Serii Laurent şi Teorema Reiduurilor.
Διαβάστε περισσότερα3.5. Forţe hidrostatice
35 oţe hidostatice 351 Elemente geneale lasificaea foţelo hidostatice: foţe hidostatice e suafeţe lane Duă foma eeţilo vasului: foţe hidostatice e suafeţe cube deschise foţe hidostatice e suafeţe cube
Διαβάστε περισσότεραEcuaţia generală Probleme de tangenţă Sfera prin 4 puncte necoplanare. Elipsoidul Hiperboloizi Paraboloizi Conul Cilindrul. 1 Sfera.
pe ecuaţii generale 1 Sfera Ecuaţia generală Probleme de tangenţă 2 pe ecuaţii generale Sfera pe ecuaţii generale Ecuaţia generală Probleme de tangenţă Numim sferă locul geometric al punctelor din spaţiu
Διαβάστε περισσότεραBARAJ DE JUNIORI,,Euclid Cipru, 28 mai 2012 (barajul 3)
BARAJ DE JUNIORI,,Euclid Cipru, 8 mi 0 (brjul ) Problem Arătţi că dcă, b, c sunt numere rele cre verifică + b + c =, tunci re loc ineglitte xy + yz + zx Problem Fie şi b numere nturle nenule Dcă numărul
Διαβάστε περισσότεραCurs 1 Şiruri de numere reale
Bibliografie G. Chiorescu, Analiză matematică. Teorie şi probleme. Calcul diferenţial, Editura PIM, Iaşi, 2006. R. Luca-Tudorache, Analiză matematică, Editura Tehnopress, Iaşi, 2005. M. Nicolescu, N. Roşculeţ,
Διαβάστε περισσότεραDinamica sistemelor de puncte materiale
Dinamica sistemelo de puncte mateiale Definitie: Pin sistem mateial (notat S) intelegem o multime finita de puncte mateiale (cente de masa ale uno copui) afate in inteactiune (micaea fiecaui punct depinde
Διαβάστε περισσότεραDefiniţia generală Cazul 1. Elipsa şi hiperbola Cercul Cazul 2. Parabola Reprezentari parametrice ale conicelor Tangente la conice
1 Conice pe ecuaţii reduse 2 Conice pe ecuaţii reduse Definiţie Numim conica locul geometric al punctelor din plan pentru care raportul distantelor la un punct fix F şi la o dreaptă fixă (D) este o constantă
Διαβάστε περισσότεραCOLEGIUL NATIONAL CONSTANTIN CARABELLA TARGOVISTE. CONCURSUL JUDETEAN DE MATEMATICA CEZAR IVANESCU Editia a VI-a 26 februarie 2005.
SUBIECTUL Editia a VI-a 6 februarie 005 CLASA a V-a Fie A = x N 005 x 007 si B = y N y 003 005 3 3 a) Specificati cel mai mic element al multimii A si cel mai mare element al multimii B. b)stabiliti care
Διαβάστε περισσότεραOLIMPIADA NAłIONALĂ DE FIZICĂ Râmnicu Vâlcea, 1-6 februarie Pagina 1 din 5 Subiect 1 ParŃial Punctaj Total subiect 10 a) S 2.
Rânicu Vâlcea, -6 febuaie 9 Pagina din 5 Subiect PaŃial Punctaj Total subiect a T T S S G G,75 G + S S T ( G+ S S T (,75 T T 5,5 S S G G G + S S T (,75 G + S S T (4,75 Cobinând cele atu elații ezultă:
Διαβάστε περισσότεραProfesor Blaga Mirela-Gabriela DREAPTA
DREAPTA Fie punctele A ( xa, ya ), B ( xb, yb ), C ( xc, yc ) şi D ( xd, yd ) în planul xoy. 1)Distanţa AB = (x x ) + (y y ) Ex. Fie punctele A( 1, -3) şi B( -2, 5). Calculaţi distanţa AB. AB = ( 2 1)
Διαβάστε περισσότεραAplicaţii ale principiului I al termodinamicii la gazul ideal
Aplicaţii ale principiului I al termodinamicii la gazul ideal Principiul I al termodinamicii exprimă legea conservării şi energiei dintr-o formă în alta şi se exprimă prin relaţia: ΔUQ-L, unde: ΔU-variaţia
Διαβάστε περισσότεραSisteme diferenţiale liniare de ordinul 1
1 Metoda eliminării 2 Cazul valorilor proprii reale Cazul valorilor proprii nereale 3 Catedra de Matematică 2011 Forma generală a unui sistem liniar Considerăm sistemul y 1 (x) = a 11y 1 (x) + a 12 y 2
Διαβάστε περισσότεραAnaliza în curent continuu a schemelor electronice Eugenie Posdărăscu - DCE SEM 1 electronica.geniu.ro
Analiza în curent continuu a schemelor electronice Eugenie Posdărăscu - DCE SEM Seminar S ANALA ÎN CUENT CONTNUU A SCHEMELO ELECTONCE S. ntroducere Pentru a analiza în curent continuu o schemă electronică,
Διαβάστε περισσότεραC10. r r r = k u este vectorul de propagare. unde: k
C10. Polaizaea undelo electomagnetice. După cum s-a discutat, lumina este o undă electomagnetică şi constă în popagaea simultană a câmpuilo electic E şi B ; pentu o undă amonică plană legatua dinte câmpui
Διαβάστε περισσότεραSeria Balmer. Determinarea constantei lui Rydberg
Seria Balmer. Determinarea constantei lui Rydberg Obiectivele lucrarii analiza spectrului in vizibil emis de atomii de hidrogen si determinarea lungimii de unda a liniilor serie Balmer; determinarea constantei
Διαβάστε περισσότεραriptografie şi Securitate
riptografie şi Securitate - Prelegerea 12 - Scheme de criptare CCA sigure Adela Georgescu, Ruxandra F. Olimid Facultatea de Matematică şi Informatică Universitatea din Bucureşti Cuprins 1. Schemă de criptare
Διαβάστε περισσότεραSeminar 5 Analiza stabilității sistemelor liniare
Seminar 5 Analiza stabilității sistemelor liniare Noțiuni teoretice Criteriul Hurwitz de analiză a stabilității sistemelor liniare În cazul sistemelor liniare, stabilitatea este o condiție de localizare
Διαβάστε περισσότεραFIZICĂ. Câmpul magnetic. ş.l. dr. Marius COSTACHE 1
FIZICĂ Câmpul magnetic ş.l. d. Maius COSTACHE 1 CÂMPUL MAGNETIC Def Câmpul magnetic: epezentat pin linii de câmp închise caacteizat pin vectoul inducţie magnetică Intensitatea câmpului magnetic H, [ H
Διαβάστε περισσότεραAsupra unei inegalităţi date la barajul OBMJ 2006
Asupra unei inegalităţi date la barajul OBMJ 006 Mircea Lascu şi Cezar Lupu La cel de-al cincilea baraj de Juniori din data de 0 mai 006 a fost dată următoarea inegalitate: Fie x, y, z trei numere reale
Διαβάστε περισσότεραIntegrala nedefinită (primitive)
nedefinita nedefinită (primitive) nedefinita 2 nedefinita februarie 20 nedefinita.tabelul primitivelor Definiţia Fie f : J R, J R un interval. Funcţia F : J R se numeşte primitivă sau antiderivată a funcţiei
Διαβάστε περισσότεραSubiecte Clasa a VII-a
lasa a VII Lumina Math Intrebari Subiecte lasa a VII-a (40 de intrebari) Puteti folosi spatiile goale ca ciorna. Nu este de ajuns sa alegeti raspunsul corect pe brosura de subiecte, ele trebuie completate
Διαβάστε περισσότεραFunctii Breviar teoretic 8 ianuarie ianuarie 2011
Functii Breviar teoretic 8 ianuarie 011 15 ianuarie 011 I Fie I, interval si f : I 1) a) functia f este (strict) crescatoare pe I daca x, y I, x< y ( f( x) < f( y)), f( x) f( y) b) functia f este (strict)
Διαβάστε περισσότεραCurs 2 Şiruri de numere reale
Curs 2 Şiruri de numere reale Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Convergenţă şi mărginire Teoremă Orice şir convergent este mărginit. Demonstraţie Fie (x n ) n 0 un
Διαβάστε περισσότεραLaborator de Fizica STUDIUL EFECTULUI HALL
Laboato de Fizica STUDIUL EFECTULUI ALL I. Scopul Lucaii 1. Puneea in evidenta a Efectului all. Masuaea tensiunii all si deteminaea constantei all. II. Consideatii teoetice Figua 1 Efectul all consta in
Διαβάστε περισσότεραR R, f ( x) = x 7x+ 6. Determinați distanța dintre punctele de. B=, unde x și y sunt numere reale.
5p Determinați primul termen al progresiei geometrice ( b n ) n, știind că b 5 = 48 și b 8 = 84 5p Se consideră funcția f : intersecție a graficului funcției f cu aa O R R, f ( ) = 7+ 6 Determinați distanța
Διαβάστε περισσότεραIII. Serii absolut convergente. Serii semiconvergente. ii) semiconvergentă dacă este convergentă iar seria modulelor divergentă.
III. Serii absolut convergente. Serii semiconvergente. Definiţie. O serie a n se numeşte: i) absolut convergentă dacă seria modulelor a n este convergentă; ii) semiconvergentă dacă este convergentă iar
Διαβάστε περισσότεραConice. Lect. dr. Constantin-Cosmin Todea. U.T. Cluj-Napoca
Conice Lect. dr. Constantin-Cosmin Todea U.T. Cluj-Napoca Definiţie: Se numeşte curbă algebrică plană mulţimea punctelor din plan de ecuaţie implicită de forma (C) : F (x, y) = 0 în care funcţia F este
Διαβάστε περισσότεραSEMINARUL 3. Cap. II Serii de numere reale. asociat seriei. (3n 5)(3n 2) + 1. (3n 2)(3n+1) (3n 2) (3n + 1) = a
Capitolul II: Serii de umere reale. Lect. dr. Lucia Maticiuc Facultatea de Hidrotehică, Geodezie şi Igieria Mediului Matematici Superioare, Semestrul I, Lector dr. Lucia MATICIUC SEMINARUL 3. Cap. II Serii
Διαβάστε περισσότεραSEMINAR 14. Funcţii de mai multe variabile (continuare) ( = 1 z(x,y) x = 0. x = f. x + f. y = f. = x. = 1 y. y = x ( y = = 0
Facultatea de Hidrotehnică, Geodezie şi Ingineria Mediului Matematici Superioare, Semestrul I, Lector dr. Lucian MATICIUC SEMINAR 4 Funcţii de mai multe variabile continuare). Să se arate că funcţia z,
Διαβάστε περισσότερα5.1. Noţiuni introductive
ursul 13 aitolul 5. Soluţii 5.1. oţiuni introductive Soluţiile = aestecuri oogene de două sau ai ulte substanţe / coonente, ale căror articule nu se ot seara rin filtrare sau centrifugare. oonente: - Mediul
Διαβάστε περισσότεραMARCAREA REZISTOARELOR
1.2. MARCAREA REZISTOARELOR 1.2.1 MARCARE DIRECTĂ PRIN COD ALFANUMERIC. Acest cod este format din una sau mai multe cifre şi o literă. Litera poate fi plasată după grupul de cifre (situaţie în care valoarea
Διαβάστε περισσότεραMetode de interpolare bazate pe diferenţe divizate
Metode de interpolare bazate pe diferenţe divizate Radu Trîmbiţaş 4 octombrie 2005 1 Forma Newton a polinomului de interpolare Lagrange Algoritmul nostru se bazează pe forma Newton a polinomului de interpolare
Διαβάστε περισσότερα4. CIRCUITE LOGICE ELEMENTRE 4.. CIRCUITE LOGICE CU COMPONENTE DISCRETE 4.. PORŢI LOGICE ELEMENTRE CU COMPONENTE PSIVE Componente electronice pasive sunt componente care nu au capacitatea de a amplifica
Διαβάστε περισσότεραT R A I A N ( ) Trigonometrie. \ kπ; k. este periodică (perioada principală T * =π ), impară, nemărginită.
Trignmetrie Funcţia sinus sin : [, ] este peridică (periada principală T * = ), impară, mărginită. Funcţia arcsinus arcsin : [, ], este impară, mărginită, bijectivă. Funcţia csinus cs : [, ] este peridică
Διαβάστε περισσότεραOrice izometrie f : (X, d 1 ) (Y, d 2 ) este un homeomorfism. (Y = f(x)).
Teoremă. (Y = f(x)). Orice izometrie f : (X, d 1 ) (Y, d 2 ) este un homeomorfism Demonstraţie. f este continuă pe X: x 0 X, S Y (f(x 0 ), ε), S X (x 0, ε) aşa ca f(s X (x 0, ε)) = S Y (f(x 0 ), ε) : y
Διαβάστε περισσότεραSERII NUMERICE. Definiţia 3.1. Fie (a n ) n n0 (n 0 IN) un şir de numere reale şi (s n ) n n0
SERII NUMERICE Definiţia 3.1. Fie ( ) n n0 (n 0 IN) un şir de numere reale şi (s n ) n n0 şirul definit prin: s n0 = 0, s n0 +1 = 0 + 0 +1, s n0 +2 = 0 + 0 +1 + 0 +2,.......................................
Διαβάστε περισσότερα5.5. REZOLVAREA CIRCUITELOR CU TRANZISTOARE BIPOLARE
5.5. A CIRCUITELOR CU TRANZISTOARE BIPOLARE PROBLEMA 1. În circuitul din figura 5.54 se cunosc valorile: μa a. Valoarea intensității curentului de colector I C. b. Valoarea tensiunii bază-emitor U BE.
Διαβάστε περισσότεραCapitolul 2 - HIDROCARBURI 2.3.ALCHINE
Capitolul 2 - HIDROCARBURI 2.3.ALCHINE TEST 2.3.3 I. Scrie cuvântul / cuvintele dintre paranteze care completează corect fiecare dintre afirmaţiile următoare. 1. Acetilena poate participa la reacţii de
Διαβάστε περισσότερα6 n=1. cos 2n. 6 n=1. n=1. este CONV (fiind seria armonică pentru α = 6 > 1), rezultă
Semiar 5 Serii cu termei oarecare Probleme rezolvate Problema 5 Să se determie atura seriei cos 5 cos Soluţie 5 Şirul a 5 este cu termei oarecare Studiem absolut covergeţa seriei Petru că cos a 5 5 5 şi
Διαβάστε περισσότερα2.1 Sfera. (EGS) ecuaţie care poartă denumirea de ecuaţia generală asferei. (EGS) reprezintă osferă cu centrul în punctul. 2 + p 2
.1 Sfera Definitia 1.1 Se numeşte sferă mulţimea tuturor punctelor din spaţiu pentru care distanţa la u punct fi numit centrul sferei este egalăcuunnumăr numit raza sferei. Fie centrul sferei C (a, b,
Διαβάστε περισσότεραComponente şi Circuite Electronice Pasive. Laborator 3. Divizorul de tensiune. Divizorul de curent
Laborator 3 Divizorul de tensiune. Divizorul de curent Obiective: o Conexiuni serie şi paralel, o Legea lui Ohm, o Divizorul de tensiune, o Divizorul de curent, o Implementarea experimentală a divizorului
Διαβάστε περισσότεραCapitolul 4 PROPRIETĂŢI TOPOLOGICE ŞI DE NUMĂRARE ALE LUI R. 4.1 Proprietăţi topologice ale lui R Puncte de acumulare
Capitolul 4 PROPRIETĂŢI TOPOLOGICE ŞI DE NUMĂRARE ALE LUI R În cele ce urmează, vom studia unele proprietăţi ale mulţimilor din R. Astfel, vom caracteriza locul" unui punct în cadrul unei mulţimi (în limba
Διαβάστε περισσότερα2 Transformări liniare între spaţii finit dimensionale
Transformări 1 Noţiunea de transformare liniară Proprietăţi. Operaţii Nucleul şi imagine Rangul şi defectul unei transformări 2 Matricea unei transformări Relaţia dintre rang şi defect Schimbarea matricei
Διαβάστε περισσότεραCapitolul 4. Integrale improprii Integrale cu limite de integrare infinite
Capitolul 4 Integrale improprii 7-8 În cadrul studiului integrabilităţii iemann a unei funcţii s-au evidenţiat douăcondiţii esenţiale:. funcţia :[ ] este definită peintervalînchis şi mărginit (interval
Διαβάστε περισσότεραSubiecte Clasa a VIII-a
Subiecte lasa a VIII-a (40 de intrebari) Puteti folosi spatiile goale ca ciorna. Nu este de ajuns sa alegeti raspunsul corect pe brosura de subiecte, ele trebuie completate pe foaia de raspuns in dreptul
Διαβάστε περισσότεραz a + c 0 + c 1 (z a)
1 Serii Laurent (continuare) Teorema 1.1 Fie D C un domeniu, a D şi f : D \ {a} C o funcţie olomorfă. Punctul a este pol multiplu de ordin p al lui f dacă şi numai dacă dezvoltarea în serie Laurent a funcţiei
Διαβάστε περισσότεραMinisterul EducaŃiei, Cercetării, Tineretului şi Sportului Centrul NaŃional de Evaluare şi Examinare
Eamenul de bacalaueat 0 Poba E. d) Poba scisă la FIZICĂ BAREM DE EVALUARE ŞI DE NOTARE Vaianta 9 Se punctează oicae alte modalităńi de ezolvae coectă a ceinńelo. Nu se acodă facńiuni de punct. Se acodă
Διαβάστε περισσότεραLaborator 11. Mulţimi Julia. Temă
Laborator 11 Mulţimi Julia. Temă 1. Clasa JuliaGreen. Să considerăm clasa JuliaGreen dată de exemplu la curs pentru metoda locului final şi să schimbăm numărul de iteraţii nriter = 100 în nriter = 101.
Διαβάστε περισσότεραCurs 10 UNDE ELECTROMAGNETICE
Cus 1 UNDE ELECTROMAGNETICE 1.1 Unde electomagnetice Inteacţiunile dinte copuile electizate a căo stae de electizae este stabilă în timp poată numele de inteacţiuni electice. În cazul în cae se ealizează
Διαβάστε περισσότεραREACŢII DE ADIŢIE NUCLEOFILĂ (AN-REACŢII) (ALDEHIDE ŞI CETONE)
EAŢII DE ADIŢIE NULEFILĂ (AN-EAŢII) (ALDEIDE ŞI ETNE) ompușii organici care conțin grupa carbonil se numesc compuși carbonilici și se clasifică în: Aldehide etone ALDEIDE: Formula generală: 3 Metanal(formaldehida
Διαβάστε περισσότεραsin d = 8 2π 2 = 32 π
.. Eerciţii reolvte. INTEGRALA E UPRAFAŢĂ E AL OILEA TIP. ÂMPURI OLENOIALE. Eerciţiul... ă se clculee dd dd dd, () fiind fţ eterioră sferei + + 4. oluţie. Avem: sin θ cos φ, sin θ sin φ, cos θ, θ[, π],
Διαβάστε περισσότεραLucrare. Varianta aprilie I 1 Definiţi noţiunile de număr prim şi număr ireductibil. Soluţie. Vezi Curs 6 Definiţiile 1 şi 2. sau p b.
Lucrare Soluţii 28 aprilie 2015 Varianta 1 I 1 Definiţi noţiunile de număr prim şi număr ireductibil. Soluţie. Vezi Curs 6 Definiţiile 1 şi 2 Definiţie. Numărul întreg p se numeşte număr prim dacă p 0,
Διαβάστε περισσότερα页面
订单 - 配售 Εξετάζουμε την αγορά...luăm în considerare posibi 正式, 试探性 Είμαστε στην ευχάριστη Suntem θέση να încântați δώσουμε την să plasăm παραγγελία μας στην εταιρεία comandă σας pentru... για... Θα θέλαμε
Διαβάστε περισσότεραTeoria mecanic-cuantică a legăturii chimice - continuare. Hibridizarea orbitalilor
Cursul 10 Teoria mecanic-cuantică a legăturii chimice - continuare Hibridizarea orbitalilor Orbital atomic = regiunea din jurul nucleului în care poate fi localizat 1 e - izolat, aflat într-o anumită stare
Διαβάστε περισσότεραCONCURS DE ADMITERE, 17 iulie 2017 Proba scrisă la MATEMATICĂ
UNIVERSITATEA BABEŞ-BOLYAI CLUJ-NAPOCA FACULTATEA DE MATEMATICĂ ŞI INFORMATICĂ CONCURS DE ADMITERE, 7 iulie 207 Proba scrisă la MATEMATICĂ SUBIECTUL I (30 puncte) ) (0 puncte) Să se arate că oricare ar
Διαβάστε περισσότεραCINEMATICA. Cursul nr.2
Cusul n. CINEMATICA Cinematica este capitolul mecanicii clasice cae studiaza miscaea copuilo faa a tine cont de cauzele cae stau la baza miscaii. Temenului cinematica vine de la cuvantul gecesc kinematmiscae.
Διαβάστε περισσότεραPrincipiul Inductiei Matematice.
Principiul Inductiei Matematice. Principiul inductiei matematice constituie un mijloc important de demonstratie in matematica a propozitiilor (afirmatiilor) ce depind de argument natural. Metoda inductiei
Διαβάστε περισσότεραRĂSPUNS Modulul de rezistenţă este o caracteristică geometrică a secţiunii transversale, scrisă faţă de una dintre axele de inerţie principale:,
REZISTENTA MATERIALELOR 1. Ce este modulul de rezistenţă? Exemplificaţi pentru o secţiune dreptunghiulară, respectiv dublu T. RĂSPUNS Modulul de rezistenţă este o caracteristică geometrică a secţiunii
Διαβάστε περισσότεραGEOMETRIE PLANĂ TEOREME IMPORTANTE ARII. bh lh 2. abc. abc. formula înălţimii
GEOMETRIE PLNĂ TEOREME IMPORTNTE suma unghiurilor unui triunghi este 8º suma unghiurilor unui patrulater este 6º unghiurile de la baza unui triunghi isoscel sunt congruente într-un triunghi isoscel liniile
Διαβάστε περισσότεραFig Impedanţa condensatoarelor electrolitice SMD cu Al cu electrolit semiuscat în funcţie de frecvenţă [36].
Componente şi circuite pasive Fig.3.85. Impedanţa condensatoarelor electrolitice SMD cu Al cu electrolit semiuscat în funcţie de frecvenţă [36]. Fig.3.86. Rezistenţa serie echivalentă pierderilor în funcţie
Διαβάστε περισσότερα5.4. MULTIPLEXOARE A 0 A 1 A 2
5.4. MULTIPLEXOARE Multiplexoarele (MUX) sunt circuite logice combinaţionale cu m intrări şi o singură ieşire, care permit transferul datelor de la una din intrări spre ieşirea unică. Selecţia intrării
Διαβάστε περισσότεραSpatii liniare. Exemple Subspaţiu liniar Acoperire (înfăşurătoare) liniară. Mulţime infinită liniar independentă
Noţiunea de spaţiu liniar 1 Noţiunea de spaţiu liniar Exemple Subspaţiu liniar Acoperire (înfăşurătoare) liniară 2 Mulţime infinită liniar independentă 3 Schimbarea coordonatelor unui vector la o schimbare
Διαβάστε περισσότεραa) (3p) Sa se calculeze XY A. b) (4p) Sa se calculeze determinantul si rangul matricei A. c) (3p) Sa se calculeze A.
Bac Variata Proil: mate-izica, iormatica, metrologie Subiectul I (3 p) Se cosidera matricele: X =, Y = ( ) si A= a) (3p) Sa se calculeze XY A b) (4p) Sa se calculeze determiatul si ragul matricei A c)
Διαβάστε περισσότερα3. Momentul forţei în raport cu un punct...1 Cuprins...1 Introducere Aspecte teoretice Aplicaţii rezolvate...4
SEMINAR 3 MMENTUL FRŢEI ÎN RAPRT CU UN PUNCT CUPRINS 3. Momentul forţei în raport cu un punct...1 Cuprins...1 Introducere...1 3.1. Aspecte teoretice...2 3.2. Aplicaţii rezolvate...4 3. Momentul forţei
Διαβάστε περισσότερα10. STABILIZATOAE DE TENSIUNE 10.1 STABILIZATOAE DE TENSIUNE CU TANZISTOAE BIPOLAE Stabilizatorul de tensiune cu tranzistor compară în permanenţă valoare tensiunii de ieşire (stabilizate) cu tensiunea
Διαβάστε περισσότεραOvidiu Gabriel Avădănei, Florin Mihai Tufescu,
vidiu Gabriel Avădănei, Florin Mihai Tufescu, Capitolul 6 Amplificatoare operaţionale 58. Să se calculeze coeficientul de amplificare în tensiune pentru amplficatorul inversor din fig.58, pentru care se
Διαβάστε περισσότεραMULTIMEA NUMERELOR REALE
www.webmteinfo.com cu noi totul pre mi usor MULTIMEA NUMERELOR REALE office@ webmteinfo.com 1.1 Rdcin ptrt unui numr nturl ptrt perfect Ptrtul unui numr rtionl este totdeun pozitiv su zero (dic nenegtiv).
Διαβάστε περισσότερα1.3 Baza a unui spaţiu vectorial. Dimensiune
.3 Baza a unui spaţiu vectorial. Dimensiune Definiţia.3. Se numeşte bază a spaţiului vectorial V o familie de vectori B care îndeplineşte condiţiile de mai jos: a) B este liniar independentă; b) B este
Διαβάστε περισσότεραLectia VI Structura de spatiu an E 3. Dreapta si planul ca subspatii ane
Subspatii ane Lectia VI Structura de spatiu an E 3. Dreapta si planul ca subspatii ane Oana Constantinescu Oana Constantinescu Lectia VI Subspatii ane Table of Contents 1 Structura de spatiu an E 3 2 Subspatii
Διαβάστε περισσότεραCursul Măsuri reale. D.Rusu, Teoria măsurii şi integrala Lebesgue 15
MĂSURI RELE Cursul 13 15 Măsuri reale Fie (,, µ) un spaţiu cu măsură completă şi f : R o funcţie -măsurabilă. Cum am văzut în Teorema 11.29, dacă f are integrală pe, atunci funcţia de mulţime ν : R, ν()
Διαβάστε περισσότεραf(x) = l 0. Atunci f are local semnul lui l, adică, U 0 V(x 0 ) astfel încât sgnf(x) = sgnl, x U 0 D\{x 0 }. < f(x) < l +
Semnul local al unei funcţii care are limită. Propoziţie. Fie f : D (, d) R, x 0 D. Presupunem că lim x x 0 f(x) = l 0. Atunci f are local semnul lui l, adică, U 0 V(x 0 ) astfel încât sgnf(x) = sgnl,
Διαβάστε περισσότεραMinisterul Educaţiei Naționale Centrul Naţional de Evaluare şi Examinare
Miisterul Educaţiei Națioale Cetrul Naţioal de Evaluare şi Eamiare Eameul de bacalaureat aţioal 08 Proba E c) Matematică M_mate-ifo Clasa a XI-a Toate subiectele sut obligatorii Se acordă 0 pucte di oficiu
Διαβάστε περισσότεραMarin Chirciu INEGALITĂŢI TRIGONOMETRICE DE LA INIŢIERE LA PERFORMANŢĂ EDITURA PARALELA 45
Main Chiiu INEGLITĂŢI TIGONOMETICE DE L INIŢIEE L PEFOMNŢĂ Cuins Consideații eliminae... 7 Soluţii Caitolul Inegalități u unghiui. Inegalitatea lui Jensen... 4 4 Caitolul Funții tigonometie ale jumătății
Διαβάστε περισσότεραTEMA 9: FUNCȚII DE MAI MULTE VARIABILE. Obiective:
TEMA 9: FUNCȚII DE MAI MULTE VARIABILE 77 TEMA 9: FUNCȚII DE MAI MULTE VARIABILE Obiective: Deiirea pricipalelor proprietăţi matematice ale ucţiilor de mai multe variabile Aalia ucţiilor de utilitate şi
Διαβάστε περισσότεραCriptosisteme cu cheie publică III
Criptosisteme cu cheie publică III Anul II Aprilie 2017 Problema rucsacului ( knapsack problem ) Considerăm un număr natural V > 0 şi o mulţime finită de numere naturale pozitive {v 0, v 1,..., v k 1 }.
Διαβάστε περισσότεραΕμπορική αλληλογραφία Ηλεκτρονική Αλληλογραφία
- Εισαγωγή Stimate Domnule Preşedinte, Stimate Domnule Preşedinte, Εξαιρετικά επίσημη επιστολή, ο παραλήπτης έχει ένα ειδικό τίτλο ο οποίος πρέπει να χρησιμοποιηθεί αντί του ονόματος του Stimate Domnule,
Διαβάστε περισσότεραa. 11 % b. 12 % c. 13 % d. 14 %
1. Un motor termic funcţionează după ciclul termodinamic reprezentat în sistemul de coordonate V-T în figura alăturată. Motorul termic utilizează ca substanţă de lucru un mol de gaz ideal având exponentul
Διαβάστε περισσότερα- reprezinta termenul câmpului cristalin - este termenul interacţiunii spin-otrbita
CALCULAREA FACTORULUI LANDÉ (g) PENTRU Fe Diana Almaşi * Universitatea din Oradea, Facultatea de Ştiinţe ABSTRACT Lucrarea de faţă îşi propune să calculeze valoarea factorului g pentru Fe,determinarea
Διαβάστε περισσότεραΑκαδημαϊκός Λόγος Κύριο Μέρος
- Επίδειξη Συμφωνίας În linii mari sunt de acord cu...deoarece... Επίδειξη γενικής συμφωνίας με άποψη άλλου Cineva este de acord cu...deoarece... Επίδειξη γενικής συμφωνίας με άποψη άλλου D'une façon générale,
Διαβάστε περισσότεραExamen AG. Student:... Grupa: ianuarie 2016
16-17 ianuarie 2016 Problema 1. Se consideră graful G = pk n (p, n N, p 2, n 3). Unul din vârfurile lui G se uneşte cu câte un vârf din fiecare graf complet care nu-l conţine, obţinându-se un graf conex
Διαβάστε περισσότεραMetrologie, Standardizare si Masurari
7 Metologie, Standadizae si Masuai 7. PÞI DE MÃSAE Puntile sunt mijloace de masuae a cao functionae se bazeaza pe metoda de zeo (compensatie) si se utilizeaza, cu pecadee, la masuaea ezistentelo da nu
Διαβάστε περισσότεραIntegrale cu parametru
1 Integrle proprii cu prmetru 2 3 Integrle proprii cu prmetru Definiţi 1.1 Dcă f : [, b ] E R, E R este o funcţie cu propriette că pentru orice y E, funcţi de vribilă x x f (x, y) este integrbilă pe intervlul
Διαβάστε περισσότερα