CURS 10 ANALIZA PERFORMANŢELOR PE BAZA CONTULUI DE PROFIT ŞI PIERDERE

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "CURS 10 ANALIZA PERFORMANŢELOR PE BAZA CONTULUI DE PROFIT ŞI PIERDERE"

Transcript

1 CURS ANALIZA PERFORMANŢELOR PE BAZA CONTULUI DE PROFIT ŞI PIERDERE Obictiv: însuşira concptului d cont d profit şi pirdr; însuşira concptului d rntabilitat; dtrminara soldurilor intrmdiar d gstiun; stabilira factorilor car influnţază profitul; comnsurara profitului afrnt cifri d afacri; analiza factorială a profitului p produs. Conţinut:. Contul d profit şi pirdr, suport d analiză pntru prformanţa întrprindrii.2 Concptul d rntabilitat.3 Analiza soldurilor intrmdiar d gstiun.4 Analiza factorială a profitului la nivl d întrprindr.4. Analiza factorială a rzultatului brut al xrciţiului.4.2 Analiza factorială a rzultatului xploatării.4.3 Analiza profitului afrnt cifri d afacri.5 Analiza factorială a profitului p produs. Contul d profit şi pirdr, suport d analiză pntru prformanţa întrprindrii Contul d profit şi pirdr st o componntă obligatori a situaţiilor financiar al întrprindrii, alături d bilanţul contabil, situaţia fluxurilor d numrar (trzorri), situaţia modificării capitalului propriu, notl xplicativ la situaţiil financiar. În contul

2 d profit şi pirdr st przntat rzultatul activităţii dsfăşurat d o ntitat p parcursul unui xrciţiu financiar, car poat fi profit sau pirdr. După conţinutul informaţional, contul d profit şi pirdr poat îmbrăca 2 form: cont d profit şi pirdr cu przntara vniturilor şi chltuililor după natura lor; cont d profit şi pirdr cu przntara după dstinaţi a chltuililor d xploatar (p funcţii al întrprindrii. După forma d przntar, contul d profit şi pirdr poat fi: sub formă d listă (vrticală), car przintă formara din traptă în traptă a rzultatului xrciţiului; sub formă d cont (tablou bilatral), und chltuilil şi pirdril sunt trcut în parta stângă, iar vnituril şi profitul sunt przntat în parta draptă. Schma listă a contului d profit şi pirdr, cu przntara vniturilor şi chltuililor după natura lor, conform Dirctivi a IV-a a CEE, st următoara:. Cifra d afacri ntă 2. Variaţia stocurilor d produs finit şi a producţii în curs d xcuţi 3. Producţia ralizată d ntitat pntru scopuril sal proprii şi capitalizată 4. Alt vnituri din xploatar 5. a) Chltuili cu matrii prim şi matrial consumabil b) Alt chltuili xtrn 6. Chltuili cu prsonalul: a) Salarii şi indmnizaţii b) Chltuili cu asigurăril social, cu indicara distinctă a clor rfritoar la pnsii 7. a) Ajustări d valoar privind imobilizăril corporal şi imobilizăril ncorporal b) Ajustări d valoar privind activl circulant, în cazul în car acsta dpăşsc suma ajustărilor d valoar car sunt normal în ntitata în cauză 8. Alt chltuili d xploatar 9. Vnituri din intrs d participar, cu indicara distinctă a clor obţinut d la ntităţil afiliat. Vnituri din alt invstiţii şi împrumuturi car fac part din activl imobilizat, cu indicara distinctă a clor obţinut d la ntităţil afiliat. Alt dobânzi d încasat şi vnituri similar, cu indicara distinctă a clor obţinut d la ntităţil afiliat 2. Ajustări d valoar privind imobilizăril financiar şi invstiţiil dţinut ca activ circulant 3. Dobânzi d plătit şi chltuili similar, cu indicara distinctă a clor obţinut d la ntităţil afiliat 4. Profitul sau pirdra din activitata curntă 5. Vnituri xtraordinar 6. Chltuili xtraordinar 7. Profitul sau pirdra din activitat xtraordinară

3 8. Impozitul p profit 9. Alt impozit nprzntat la lmntl d mai sus 2. Profitul sau pirdra xrciţiului financiar.2 Concptul d rntabilitat Rntabilitata poat fi dfinită ca fiind capacitata uni întrprindri d a obţin profit prin utilizara factorilor d producţi şi a capitalurilor indifrnt d provninţa acstora. Mărima absolută a rntabilităţii st rflctată d profit, iar gradul în car capitalul sau utilizara rsurslor întrprindrii aduc profit, st rflctat în rata rntabilităţii (indicator al mărimii rlativ a rntabilităţii). A. Analiza structurală a profitului urmărşt stabilira contribuţii difritlor tipuri d rzultat la modificara totală, prcum şi punra în vidnţă a schimbărilor intrvnit p lmnt componnt. Analiza structurală a rzultatului brut al xrciţiului, în funcţi d grupara vniturilor şi chltuililor, după natura lor, s fac după următoara schmă: Rzultatul xploatării Marja brută faţă d chltuilil variabil Chltuili fix d xploatar Vnituri din xploatar Chltuili variabil d xploatar Rzultatul brut al xrciţiului Rzultatul financiar Vnituri financiar Chltuili financiar Rzultatul xtraordinar Vnituri xtraordinar Chltuili xtraordinar Fig.. Analiza structurală a rzultatului brut al xrciţiului

4 Ca d-a doua mtodă d analiză structural a rzultatului brut al xrciţiului st cunoscută ca mtoda clasificării după funcţia chltuililor sau a,,costului vânzărilor. Acastă mtodă ofră unori infomaţii mai rlvant pntru utilizatori dcât clasificara după natură. Rlaţia d calcul pntru stabilira profitului brut st: Pb Vt Ct Vt V + Vf + Vx Ct C + Cf + Cx Vt vnituri total Ct chltuili total V vnituri din xploatar Vf vnituri financiar Vx vnituri xtraordinar C chltuili din xploatar Cf chltuili financiar Cx chltuili xtraordinar Profitul brut s mai poat stabili prin însumara rzultatului xploatării cu rzultatul financiar şi xtraordinar al xrciţiului conform rlaţii: Pb R + Rf + Rx R rzultatul xploatării Rf rzultatul financiar (Vf Cf) Rx rzultatul xtraordinar (Vx Cx) În cadrul analizi s poat utiliza şi profitul nt (Pn) car s stabilşt ca difrnţă într profitul impozabil (Pi) şi impozitul p profit (Ip): Pi Pb + Cn Vn Cn chltuili ndductibil Vn vnituri nimpozabil Pn Pb - Ip B. Analiza factorială a profitului s fac stabilind contribuţia financiară a ficărui factor, la mărima profitului brut sau nt al întrprindrii..3 Analiza soldurilor intrmdiar d gstiun Prin solduril intrmdiar d gstiun s înţlg principalii indicatori conomico-financiari stabiliţi p baza datlor din contul d profit şi pirdr, cu ajutorul cărora s caractrizază modul d folosir a rsurslor matrial, financiar şi uman al firmi. Un sold intrmdiar al gstiunii st difrnţa dintr două valori.

5 Solduril intrmdiar al gstiunii s przintă într-un tablou, car st d fapt o altă modalitat d przntar a contului d rzultat. Sistmul contabil românsc nu prvd obligativitata întrprindrilor d a întocmi acst solduri intrmdiar, însă l sunt util întrucât conţin indicatori (VA, EBE, producţia xrciţiului) car sunt utilizaţi în analiza prformanţi întrprindrii. Marja comrcială ( M c ) st un indicator utilizat d cătr întrprindril car vând bunuril în stara în car au fost cumpărat, fiind spcific activităţii d comrţ. Excdntul brut al xploatării (EBE sau RBE- rzultatul brut al xploatării) rprzintă fluxul potnţial d disponibilităţi dgajat d ciclul d xploatar şi s dtrmină dducând chltuilil montar din xploatar din vnituril montar afrnt acsti activităţi. Rzultatul xploatării ( R ) s circumscri la nivlul activităţii d bază al întrprindrii şi caractrizază în mărim absolută rntabilitata ciclului d xploatar. El s dtrmină ca difrnţă într vnituril din xploatar ( V ) şi chltuilil afrnt acstora ( C ): R V C C V V pr pr V pr - profitul sau pirdra la lu vnituri din xploatar. Rzultatul curnt al xrciţiului rprzintă difrnţa dintr vnituril curnt (vnituri din xploatar şi vnituri financiar) şi chltuilil curnt (chltuili din xploatar şi chltuili financiar). Rzultatul brut al xrciţiului st format din rzultatul curnt al xrciţiului, la car s adaugă rzultatul xtraordinar al xrciţiului. Rzultatul xrciţiului sau profitul nt s calculază prin dducra impozitului p profit din rzultatul brut al xrciţiului. C V.4 Analiza factorială a profitului la nivl d întrprindr.4. Analiza factorială a rzultatului brut al xrciţiului Rzultatul brut al xrciţiului ( R ) s dtrmină ca difrnţă într vnituril total şi chltuilil total conform rlaţii: Ct Rb Vt Vt prb, V t b

6 prb g i xprb i prb - rzultatul (profitul) mdiu brut la un lu vnituri total; c i structura vniturilor total p catgorii d activităţi; prb i profitul brut la lu vnituri p catgorii d activităţi..4.2 Analiza factorială a rzultatului xploatării Rzultatul xploatării caractrizază în mărim absolută rntabilitata ciclului d xploatar şi s dtrmină ca difrnţă într vnituril din xploatar (V) şi chltuilil afrnt acstora (Ch), conform rlaţii: R V Ch Modll cu ajutorul cărora s ralizază analiza factorială a rzultatului xploatării, sunt următoarl: a) R V ( Ch/V) V x p r, Und: p r g xpr i i ci iar pr i - v g i rprzintă structura vniturilor din xploatar p tipuri d activităţi; pr i profitul sau pirdra la lu vnituri din xploatar p tipuri d activitat; v i suma vniturilor din xploatar p tipuri d activităţi; c i - suma chltuililor din xploatar p tipuri d activităţi. V R b) R A x x A V Modificara rzultatului xploatării şi rspctiv, cuantificara influnţlor factorilor potrivit modlului,,a, prsupun: i Δ R V pr V pr din car datorită:.) Influnţi modificării vniturilor din xploatar: Δ V ( V V ) pr din car datorită:. ) Influnţi modificării fondului total d timp d muncă: Δ T ( T T ) wh pr din car datorită:..) Influnţi modificării numărului mdiu d salariaţi:

7 ( N S N S ) t wh pr Δ N S..2) Influnţi modificării timpului mdiu d lucru p un salariat: ( t t ) wh Δ t N S pr.2) Influnţi productivităţii mdii orar: ( wh wh ) Δ wh T pr 2.) Influnţa modificării profitului mdiu la lu vnituri din xploatar: Δ pr V ( pr ) pr din car datorită: 2.) Influnţi structurii vniturilor din xploatar p tipuri d activităţi: ( pr ) Δ g i V pr und pr g i pr, i pr - profitul mdiu rcalculat la lu vnituri din xploatar. 2.2) Influnţi profitului la lu vnituri din xploatar p tipuri d activităţi: Δ ( pr pr ) pr i V Valoara activlor d xploatar ( A ) rflctă valoara activlor imobilizat şi activlor circulant afrnt ciclului d xploatar. V Factorul rflctă vnituril mdii din xploatar la lu activ d xploatar şi A rflctă ficinţa activlor d xploatar..4.3 Analiza profitului afrnt cifri d afacri Acastă analiză poat fi fctuată folosind unul din modll următoar: a) Pr p q v c c b) Pr p CA pr, und p - cantitata vândută; p prţul d vânzar; c costul unitar;

8 pr - profitul mdiu la lu cifră d afacri. c) M Pr T T f CA M f Pr CA Potrivit modlului,,a s fac după următoara mtodologi: Δ P r P P r r din car datorită: ) Influnţi modificării volumului fizic al producţii obţinut ( Δ ): Δ P Δg I P r r 2) Influnţi modificării structurii producţii vândut p produs ( g ): ( p c ) P r I 3) Influnţi modificării costurilor complt unitar (c): I ( p c ) ( p c ) ( c c ) Δc 4) Influnţi modificării prţurilor mdii d vânzar unitar, xclusiv TVA: ( p p ) Δp p p Cuvint şi xprsii chi Rntabilitat Solduri intrmdiar d gstiun EBE şi rzultatul xploatării Rzultant curnt al xrciţiului Profit brut şi profit nt Analiza factorială a profitului Profit afrnt cifri d afacri

Teorema Rezidurilor şi Bucuria Integralelor Reale

Teorema Rezidurilor şi Bucuria Integralelor Reale Torma Ridurilor şi Bucuria Intgrallor Ral Prntar d Alandru Ngrscu Intgral cu funcţii raţional c dpind d sin t şi cos t u notaţia it, avm: cos t ( + sin t ( i dt d i, iar intgrara s va fac d-a lungul crcului

Διαβάστε περισσότερα

Eşantionarea semnalelor

Eşantionarea semnalelor Eşantionara smnallor Eşantionara = prlvara d prob dintr-un smnal la momnt d timp dcalat intr l cu cu frcvnta d şantionar, f =/. xˆ t x k t k k = ( = δ ( Smnalul şantionat idal:. Spctrul Xˆ = X ( k k =

Διαβάστε περισσότερα

2.CARACTERIZAREA GENERALĂ A RADIOACTIVITǍŢII

2.CARACTERIZAREA GENERALĂ A RADIOACTIVITǍŢII 2.CARACTERIZAREA GEERALĂ A RADIOACTIVITǍŢII Radioactivitat -fnomnul d misi d radiaţii d cătr unl substanţ numit substanţ radioactiv. Procsul constă în misia a tri tipuri d radiaţii: α, β şi γ, priml două

Διαβάστε περισσότερα

Curs 3 ANALIZA CIFREI DE AFACERI

Curs 3 ANALIZA CIFREI DE AFACERI Curs 3 ANALIZA CIFREI DE AFACERI Obiective: aprofundarea conceptului cifră de afaceri; stabilirea evoluţiei în timp a cifrei de afaceri; analiza structurii cifrei de afaceri; stabilirea factorilor de influenţă

Διαβάστε περισσότερα

Metode iterative pentru probleme neliniare - contractii

Metode iterative pentru probleme neliniare - contractii Metode iterative pentru probleme neliniare - contractii Problemele neliniare sunt in general rezolvate prin metode iterative si analiza convergentei acestor metode este o problema importanta. 1 Contractii

Διαβάστε περισσότερα

Modele matematice pentru îmbunătăţirea calităţii sistemelor electrice

Modele matematice pentru îmbunătăţirea calităţii sistemelor electrice Modl matmatic pntru îmbunătăţira calităţii sistmlor lctric Lct.univ.dr.ing. Ghorgh RAŢIU. Introducr Ţinând sama d tndinţl modrn al proictării sistmlor lctric (chipamntlor lctric) d înlocuir a uni proictări

Διαβάστε περισσότερα

Curs 4 Serii de numere reale

Curs 4 Serii de numere reale Curs 4 Serii de numere reale Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Criteriul rădăcinii sau Criteriul lui Cauchy Teoremă (Criteriul rădăcinii) Fie x n o serie cu termeni

Διαβάστε περισσότερα

a. 11 % b. 12 % c. 13 % d. 14 %

a. 11 % b. 12 % c. 13 % d. 14 % 1. Un motor termic funcţionează după ciclul termodinamic reprezentat în sistemul de coordonate V-T în figura alăturată. Motorul termic utilizează ca substanţă de lucru un mol de gaz ideal având exponentul

Διαβάστε περισσότερα

Conice. Lect. dr. Constantin-Cosmin Todea. U.T. Cluj-Napoca

Conice. Lect. dr. Constantin-Cosmin Todea. U.T. Cluj-Napoca Conice Lect. dr. Constantin-Cosmin Todea U.T. Cluj-Napoca Definiţie: Se numeşte curbă algebrică plană mulţimea punctelor din plan de ecuaţie implicită de forma (C) : F (x, y) = 0 în care funcţia F este

Διαβάστε περισσότερα

Analiza în curent continuu a schemelor electronice Eugenie Posdărăscu - DCE SEM 1 electronica.geniu.ro

Analiza în curent continuu a schemelor electronice Eugenie Posdărăscu - DCE SEM 1 electronica.geniu.ro Analiza în curent continuu a schemelor electronice Eugenie Posdărăscu - DCE SEM Seminar S ANALA ÎN CUENT CONTNUU A SCHEMELO ELECTONCE S. ntroducere Pentru a analiza în curent continuu o schemă electronică,

Διαβάστε περισσότερα

Aplicaţii ale principiului I al termodinamicii la gazul ideal

Aplicaţii ale principiului I al termodinamicii la gazul ideal Aplicaţii ale principiului I al termodinamicii la gazul ideal Principiul I al termodinamicii exprimă legea conservării şi energiei dintr-o formă în alta şi se exprimă prin relaţia: ΔUQ-L, unde: ΔU-variaţia

Διαβάστε περισσότερα

Integrala nedefinită (primitive)

Integrala nedefinită (primitive) nedefinita nedefinită (primitive) nedefinita 2 nedefinita februarie 20 nedefinita.tabelul primitivelor Definiţia Fie f : J R, J R un interval. Funcţia F : J R se numeşte primitivă sau antiderivată a funcţiei

Διαβάστε περισσότερα

2.CARACTERIZAREA GENERALĂ A RADIOACTIVITǍŢII

2.CARACTERIZAREA GENERALĂ A RADIOACTIVITǍŢII 2.CRCTERIZRE GEERLĂ RDIOCTIVITǍŢII Radioactivitat -fnomnul d misi d radiaţii d cătr unl substanţ numit substanţ radioactiv. Procsul constă în misia a tri tipuri d radiaţii: α, β şi γ, priml două fiind

Διαβάστε περισσότερα

SITUATII FINANCIARE AGREGATE PENTRU CUMULAT 3 LUNI LA 31 MARTIE 2016

SITUATII FINANCIARE AGREGATE PENTRU CUMULAT 3 LUNI LA 31 MARTIE 2016 SITUATII FINANCIARE AGREGATE PENTRU CUMULAT 3 LUNI LA 31 MARTIE ÎNTOCMITE ÎN CONFORMITATE CU STANDARDELE INTERNAŢIONALE DE RAPORTARE FINANCIARĂ ADOPTATE DE UNIUNEA EUROPEANA (IFRS) 1 CUPRINS PAGINA SITUATIA

Διαβάστε περισσότερα

Μπορώ να κάνω ανάληψη στην [χώρα] χωρίς να πληρώσω προμήθεια; Informează dacă există comisioane bancare la retragere numerar într-o anumită țară

Μπορώ να κάνω ανάληψη στην [χώρα] χωρίς να πληρώσω προμήθεια; Informează dacă există comisioane bancare la retragere numerar într-o anumită țară - General Μπορώ να κάνω ανάληψη στην [χώρα] χωρίς να πληρώσω προμήθεια; Μπορώ να κάνω ανάληψη στην [χώρα] χωρίς να πληρώσω προμήθεια; Informează dacă există comisioane bancare la retragere numerar într-o

Διαβάστε περισσότερα

Sistem analogic. Sisteme

Sistem analogic. Sisteme Sistm Smnall pot fi supus prlucrarii in scopul obtinrii unor alt smnal, sau al obtinrii unor paramtri ai acstora. Prlucraril s aplica unui smnal intrar x(t) si s obtin un alt smnal, isir, y(t). Moulara/moulara,

Διαβάστε περισσότερα

Componente şi Circuite Electronice Pasive. Laborator 3. Divizorul de tensiune. Divizorul de curent

Componente şi Circuite Electronice Pasive. Laborator 3. Divizorul de tensiune. Divizorul de curent Laborator 3 Divizorul de tensiune. Divizorul de curent Obiective: o Conexiuni serie şi paralel, o Legea lui Ohm, o Divizorul de tensiune, o Divizorul de curent, o Implementarea experimentală a divizorului

Διαβάστε περισσότερα

Planul determinat de normală şi un punct Ecuaţia generală Plane paralele Unghi diedru Planul determinat de 3 puncte necoliniare

Planul determinat de normală şi un punct Ecuaţia generală Plane paralele Unghi diedru Planul determinat de 3 puncte necoliniare 1 Planul în spaţiu Ecuaţia generală Plane paralele Unghi diedru 2 Ecuaţia generală Plane paralele Unghi diedru Fie reperul R(O, i, j, k ) în spaţiu. Numim normala a unui plan, un vector perpendicular pe

Διαβάστε περισσότερα

Lucrarea de laborator nr. 2 VERIFICARILE METROLOGICE ALE MIJLOACELOR DE MASURARE

Lucrarea de laborator nr. 2 VERIFICARILE METROLOGICE ALE MIJLOACELOR DE MASURARE Lucrara d laborator nr. 2 VERIFICARILE METROLOGICE ALE MIJLOACELOR DE MASRARE 1. SCOPL LCRARII Scopul lucrarii îl rprzinta: cunoastra principallor mtod d vrificar mtrologica a unor mijloac d masurar, analogic

Διαβάστε περισσότερα

Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor X) functia f 1

Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor X) functia f 1 Functii definitie proprietati grafic functii elementare A. Definitii proprietatile functiilor. Fiind date doua multimi X si Y spunem ca am definit o functie (aplicatie) pe X cu valori in Y daca fiecarui

Διαβάστε περισσότερα

Subiecte Clasa a VII-a

Subiecte Clasa a VII-a lasa a VII Lumina Math Intrebari Subiecte lasa a VII-a (40 de intrebari) Puteti folosi spatiile goale ca ciorna. Nu este de ajuns sa alegeti raspunsul corect pe brosura de subiecte, ele trebuie completate

Διαβάστε περισσότερα

Capitolul 2 - HIDROCARBURI 2.4.ALCADIENE

Capitolul 2 - HIDROCARBURI 2.4.ALCADIENE Capitolul 2 - HIDROCARBURI 2.4.ALCADIENE TEST 2.4.1 I. Scrie cuvântul / cuvintele dintre paranteze care completează corect fiecare dintre afirmaţiile următoare. Rezolvare: 1. Alcadienele sunt hidrocarburi

Διαβάστε περισσότερα

5.1. Noţiuni introductive

5.1. Noţiuni introductive ursul 13 aitolul 5. Soluţii 5.1. oţiuni introductive Soluţiile = aestecuri oogene de două sau ai ulte substanţe / coonente, ale căror articule nu se ot seara rin filtrare sau centrifugare. oonente: - Mediul

Διαβάστε περισσότερα

V.7. Condiţii necesare de optimalitate cazul funcţiilor diferenţiabile

V.7. Condiţii necesare de optimalitate cazul funcţiilor diferenţiabile Metode de Optimizare Curs V.7. Condiţii necesare de optimalitate cazul funcţiilor diferenţiabile Propoziţie 7. (Fritz-John). Fie X o submulţime deschisă a lui R n, f:x R o funcţie de clasă C şi ϕ = (ϕ,ϕ

Διαβάστε περισσότερα

Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor

Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor. Fiind date doua multimi si spunem ca am definit o functie (aplicatie) pe cu valori in daca fiecarui element

Διαβάστε περισσότερα

III. Serii absolut convergente. Serii semiconvergente. ii) semiconvergentă dacă este convergentă iar seria modulelor divergentă.

III. Serii absolut convergente. Serii semiconvergente. ii) semiconvergentă dacă este convergentă iar seria modulelor divergentă. III. Serii absolut convergente. Serii semiconvergente. Definiţie. O serie a n se numeşte: i) absolut convergentă dacă seria modulelor a n este convergentă; ii) semiconvergentă dacă este convergentă iar

Διαβάστε περισσότερα

4. CIRCUITE LOGICE ELEMENTRE 4.. CIRCUITE LOGICE CU COMPONENTE DISCRETE 4.. PORŢI LOGICE ELEMENTRE CU COMPONENTE PSIVE Componente electronice pasive sunt componente care nu au capacitatea de a amplifica

Διαβάστε περισσότερα

5.5. REZOLVAREA CIRCUITELOR CU TRANZISTOARE BIPOLARE

5.5. REZOLVAREA CIRCUITELOR CU TRANZISTOARE BIPOLARE 5.5. A CIRCUITELOR CU TRANZISTOARE BIPOLARE PROBLEMA 1. În circuitul din figura 5.54 se cunosc valorile: μa a. Valoarea intensității curentului de colector I C. b. Valoarea tensiunii bază-emitor U BE.

Διαβάστε περισσότερα

Complemente teoretice. Limite de funcńii NotaŃii: f :D R, D R, α - punct de acumulare a lui D; DefiniŃii ale limitei DefiniŃia 1.1.

Complemente teoretice. Limite de funcńii NotaŃii: f :D R, D R, α - punct de acumulare a lui D; DefiniŃii ale limitei DefiniŃia 1.1. Analiza matmatică clasa axi-a, problm rzolvat Complmnt tortic Limit d funcńii NotaŃii: f :D R, D R, α - punct d acumular a lui D; DfiniŃii al limiti DfiniŃia lim f = l, l R, dacă pntru oric vcinătat V

Διαβάστε περισσότερα

Curs 14 Funcţii implicite. Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi"

Curs 14 Funcţii implicite. Facultatea de Hidrotehnică Universitatea Tehnică Gh. Asachi Curs 14 Funcţii implicite Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Fie F : D R 2 R o funcţie de două variabile şi fie ecuaţia F (x, y) = 0. (1) Problemă În ce condiţii ecuaţia

Διαβάστε περισσότερα

DISTANŢA DINTRE DOUĂ DREPTE NECOPLANARE

DISTANŢA DINTRE DOUĂ DREPTE NECOPLANARE DISTANŢA DINTRE DOUĂ DREPTE NECOPLANARE ABSTRACT. Materialul prezintă o modalitate de a afla distanţa dintre două drepte necoplanare folosind volumul tetraedrului. Lecţia se adresează clasei a VIII-a Data:

Διαβάστε περισσότερα

a n (ζ z 0 ) n. n=1 se numeste partea principala iar seria a n (z z 0 ) n se numeste partea

a n (ζ z 0 ) n. n=1 se numeste partea principala iar seria a n (z z 0 ) n se numeste partea Serii Laurent Definitie. Se numeste serie Laurent o serie de forma Seria n= (z z 0 ) n regulata (tayloriana) = (z z n= 0 ) + n se numeste partea principala iar seria se numeste partea Sa presupunem ca,

Διαβάστε περισσότερα

Regulile de funcţionare a conturilor D+ Conturi de activ C- D- Conturi de pasiv C+ A = Cp + V Ch + D => A + Ch = Cp + D + V

Regulile de funcţionare a conturilor D+ Conturi de activ C- D- Conturi de pasiv C+ A = Cp + V Ch + D => A + Ch = Cp + D + V ANUL I SERIA 3 Seminar 10 Bazele contabilităţii Săpt 04.05 08.05.2015 Regulile de funcţionare a conturilor D+ Conturi de activ C D Conturi de pasiv C+ S id Intrări ( ) Ieşiri ( ) Ieşiri ( ) Intrări ( )

Διαβάστε περισσότερα

Valori limită privind SO2, NOx şi emisiile de praf rezultate din operarea LPC în funcţie de diferite tipuri de combustibili

Valori limită privind SO2, NOx şi emisiile de praf rezultate din operarea LPC în funcţie de diferite tipuri de combustibili Anexa 2.6.2-1 SO2, NOx şi de praf rezultate din operarea LPC în funcţie de diferite tipuri de combustibili de bioxid de sulf combustibil solid (mg/nm 3 ), conţinut de O 2 de 6% în gazele de ardere, pentru

Διαβάστε περισσότερα

Curs 10 Funcţii reale de mai multe variabile reale. Limite şi continuitate.

Curs 10 Funcţii reale de mai multe variabile reale. Limite şi continuitate. Curs 10 Funcţii reale de mai multe variabile reale. Limite şi continuitate. Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Fie p, q N. Fie funcţia f : D R p R q. Avem următoarele

Διαβάστε περισσότερα

Definiţia generală Cazul 1. Elipsa şi hiperbola Cercul Cazul 2. Parabola Reprezentari parametrice ale conicelor Tangente la conice

Definiţia generală Cazul 1. Elipsa şi hiperbola Cercul Cazul 2. Parabola Reprezentari parametrice ale conicelor Tangente la conice 1 Conice pe ecuaţii reduse 2 Conice pe ecuaţii reduse Definiţie Numim conica locul geometric al punctelor din plan pentru care raportul distantelor la un punct fix F şi la o dreaptă fixă (D) este o constantă

Διαβάστε περισσότερα

5. FUNCŢII IMPLICITE. EXTREME CONDIŢIONATE.

5. FUNCŢII IMPLICITE. EXTREME CONDIŢIONATE. 5 Eerciţii reolvate 5 UNCŢII IMPLICITE EXTREME CONDIŢIONATE Eerciţiul 5 Să se determine şi dacă () este o funcţie definită implicit de ecuaţia ( + ) ( + ) + Soluţie ie ( ) ( + ) ( + ) + ( )R Evident este

Διαβάστε περισσότερα

Examen AG. Student:... Grupa: ianuarie 2016

Examen AG. Student:... Grupa: ianuarie 2016 16-17 ianuarie 2016 Problema 1. Se consideră graful G = pk n (p, n N, p 2, n 3). Unul din vârfurile lui G se uneşte cu câte un vârf din fiecare graf complet care nu-l conţine, obţinându-se un graf conex

Διαβάστε περισσότερα

Metode de interpolare bazate pe diferenţe divizate

Metode de interpolare bazate pe diferenţe divizate Metode de interpolare bazate pe diferenţe divizate Radu Trîmbiţaş 4 octombrie 2005 1 Forma Newton a polinomului de interpolare Lagrange Algoritmul nostru se bazează pe forma Newton a polinomului de interpolare

Διαβάστε περισσότερα

COLEGIUL NATIONAL CONSTANTIN CARABELLA TARGOVISTE. CONCURSUL JUDETEAN DE MATEMATICA CEZAR IVANESCU Editia a VI-a 26 februarie 2005.

COLEGIUL NATIONAL CONSTANTIN CARABELLA TARGOVISTE. CONCURSUL JUDETEAN DE MATEMATICA CEZAR IVANESCU Editia a VI-a 26 februarie 2005. SUBIECTUL Editia a VI-a 6 februarie 005 CLASA a V-a Fie A = x N 005 x 007 si B = y N y 003 005 3 3 a) Specificati cel mai mic element al multimii A si cel mai mare element al multimii B. b)stabiliti care

Διαβάστε περισσότερα

Lucian Maticiuc. Facultatea de Hidrotehnică, Geodezie şi Ingineria Mediului Matematici Superioare, Semestrul I, Lector dr. Lucian MATICIUC SEMINAR 9.

Lucian Maticiuc. Facultatea de Hidrotehnică, Geodezie şi Ingineria Mediului Matematici Superioare, Semestrul I, Lector dr. Lucian MATICIUC SEMINAR 9. Capitolul V: Şiruri şi srii d fucţii. Lct. dr. Lucia Maticiuc Facultata d Hidrothică, Godzi şi Igiria Mdiului Matmatici Suprioar, Smstrul I, Lctor dr. Lucia MATICIUC SEMINAR 9. Cap. V Şiruri şi srii d

Διαβάστε περισσότερα

Seminariile Capitolul X. Integrale Curbilinii: Serii Laurent şi Teorema Reziduurilor

Seminariile Capitolul X. Integrale Curbilinii: Serii Laurent şi Teorema Reziduurilor Facultatea de Matematică Calcul Integral şi Elemente de Analiă Complexă, Semestrul I Lector dr. Lucian MATICIUC Seminariile 9 20 Capitolul X. Integrale Curbilinii: Serii Laurent şi Teorema Reiduurilor.

Διαβάστε περισσότερα

MARCAREA REZISTOARELOR

MARCAREA REZISTOARELOR 1.2. MARCAREA REZISTOARELOR 1.2.1 MARCARE DIRECTĂ PRIN COD ALFANUMERIC. Acest cod este format din una sau mai multe cifre şi o literă. Litera poate fi plasată după grupul de cifre (situaţie în care valoarea

Διαβάστε περισσότερα

Subiecte Clasa a VIII-a

Subiecte Clasa a VIII-a Subiecte lasa a VIII-a (40 de intrebari) Puteti folosi spatiile goale ca ciorna. Nu este de ajuns sa alegeti raspunsul corect pe brosura de subiecte, ele trebuie completate pe foaia de raspuns in dreptul

Διαβάστε περισσότερα

5.4. MULTIPLEXOARE A 0 A 1 A 2

5.4. MULTIPLEXOARE A 0 A 1 A 2 5.4. MULTIPLEXOARE Multiplexoarele (MUX) sunt circuite logice combinaţionale cu m intrări şi o singură ieşire, care permit transferul datelor de la una din intrări spre ieşirea unică. Selecţia intrării

Διαβάστε περισσότερα

Ecuaţia generală Probleme de tangenţă Sfera prin 4 puncte necoplanare. Elipsoidul Hiperboloizi Paraboloizi Conul Cilindrul. 1 Sfera.

Ecuaţia generală Probleme de tangenţă Sfera prin 4 puncte necoplanare. Elipsoidul Hiperboloizi Paraboloizi Conul Cilindrul. 1 Sfera. pe ecuaţii generale 1 Sfera Ecuaţia generală Probleme de tangenţă 2 pe ecuaţii generale Sfera pe ecuaţii generale Ecuaţia generală Probleme de tangenţă Numim sferă locul geometric al punctelor din spaţiu

Διαβάστε περισσότερα

IAS 7 Fluxurile de trezorerie

IAS 7 Fluxurile de trezorerie IAS 7 Fluxurile de trezorerie Deşi contabilitatea de angajamente este conceptul de bază al contabilităţii, totuşi se face simţită nevoia existenţei informaţiilor atât de utile privind contabilitatea de

Διαβάστε περισσότερα

10. STABILIZATOAE DE TENSIUNE 10.1 STABILIZATOAE DE TENSIUNE CU TANZISTOAE BIPOLAE Stabilizatorul de tensiune cu tranzistor compară în permanenţă valoare tensiunii de ieşire (stabilizate) cu tensiunea

Διαβάστε περισσότερα

2.1 Sfera. (EGS) ecuaţie care poartă denumirea de ecuaţia generală asferei. (EGS) reprezintă osferă cu centrul în punctul. 2 + p 2

2.1 Sfera. (EGS) ecuaţie care poartă denumirea de ecuaţia generală asferei. (EGS) reprezintă osferă cu centrul în punctul. 2 + p 2 .1 Sfera Definitia 1.1 Se numeşte sferă mulţimea tuturor punctelor din spaţiu pentru care distanţa la u punct fi numit centrul sferei este egalăcuunnumăr numit raza sferei. Fie centrul sferei C (a, b,

Διαβάστε περισσότερα

Capitolul 2 - HIDROCARBURI 2.4.ALCADIENE

Capitolul 2 - HIDROCARBURI 2.4.ALCADIENE Capitolul 2 - HIDROCARBURI 2.4.ALCADIENE Exerciţii şi probleme E.P.2.4. 1. Scrie formulele de structură ale următoarele hidrocarburi şi precizează care dintre ele sunt izomeri: Rezolvare: a) 1,2-butadiena;

Διαβάστε περισσότερα

Sisteme diferenţiale liniare de ordinul 1

Sisteme diferenţiale liniare de ordinul 1 1 Metoda eliminării 2 Cazul valorilor proprii reale Cazul valorilor proprii nereale 3 Catedra de Matematică 2011 Forma generală a unui sistem liniar Considerăm sistemul y 1 (x) = a 11y 1 (x) + a 12 y 2

Διαβάστε περισσότερα

I 1 I 2 V I [Z] V 1 V 2. Z11 impedanta de intrare cu iesirea in gol 2 I 1 I 21 I

I 1 I 2 V I [Z] V 1 V 2. Z11 impedanta de intrare cu iesirea in gol 2 I 1 I 21 I urs 5 4/5 ar ca scop sparara unui circuit complx in blocuri individual acsta s analiaa sparat (dcuplat d rstul circuitului) si s caractriaa doar prin intrmdiul porturilor (cuti nagra) analia la nivl

Διαβάστε περισσότερα

riptografie şi Securitate

riptografie şi Securitate riptografie şi Securitate - Prelegerea 12 - Scheme de criptare CCA sigure Adela Georgescu, Ruxandra F. Olimid Facultatea de Matematică şi Informatică Universitatea din Bucureşti Cuprins 1. Schemă de criptare

Διαβάστε περισσότερα

5.7 Modulaţia cu diviziune în frecvenţă ortogonală

5.7 Modulaţia cu diviziune în frecvenţă ortogonală 5.7 Modulaţia cu diviziun în frcvnţă ortogonală Transmisiuna datlor cu dbit mar prin modulaţia multinivl a unui purtător, p un canal cu distorsiuni d amplitudin şi d fază, st afctată d intrfrnţa simbolurilor.

Διαβάστε περισσότερα

REACŢII DE ADIŢIE NUCLEOFILĂ (AN-REACŢII) (ALDEHIDE ŞI CETONE)

REACŢII DE ADIŢIE NUCLEOFILĂ (AN-REACŢII) (ALDEHIDE ŞI CETONE) EAŢII DE ADIŢIE NULEFILĂ (AN-EAŢII) (ALDEIDE ŞI ETNE) ompușii organici care conțin grupa carbonil se numesc compuși carbonilici și se clasifică în: Aldehide etone ALDEIDE: Formula generală: 3 Metanal(formaldehida

Διαβάστε περισσότερα

MANAGEMENTUL PERFORMANÞELOR FINANCIARE CONCEPTE. MODELE. INSTRUMENTE.

MANAGEMENTUL PERFORMANÞELOR FINANCIARE CONCEPTE. MODELE. INSTRUMENTE. MANAGEMENTUL PERFORMANÞELOR FINANCIARE CONCEPTE. MODELE. INSTRUMENTE. 2 ROXANA ARABELA DUMITRAªCU VADIM DUMITRAªCU MANAGEMENTUL PERFORMANÞELOR FINANCIARE CONCEPTE. MODELE. INSTRUMENTE. EDITURA UNIVERSITARÃ

Διαβάστε περισσότερα

TERMOSTAT ELECTRONIC DIODA SENZOR

TERMOSTAT ELECTRONIC DIODA SENZOR EPSCOM Rady Prototyping Colccţ ţia Hom Automation EP 0261... Cuprin Przntar Proict Fişa d Aamblar 1. Funcţionar 2 2. Schma 2 3. PCB 3 4. Lita d componnt 3 5. Tutorial dioda miconductoar 4 5 Rgimul trmic

Διαβάστε περισσότερα

Curs 2 DIODE. CIRCUITE DR

Curs 2 DIODE. CIRCUITE DR Curs 2 OE. CRCUTE R E CUPRN tructură. imbol Relația curent-tensiune Regimuri de funcționare Punct static de funcționare Parametrii diodei Modelul cu cădere de tensiune constantă Analiza circuitelor cu

Διαβάστε περισσότερα

Kap. 6. Produktionskosten-theorie. Irina Ban. Kap. 6. Die Produktionskostentheorie

Kap. 6. Produktionskosten-theorie. Irina Ban. Kap. 6. Die Produktionskostentheorie Kap. 6. Produktionskosten-theorie Irina Ban Pearson Studium 2014 2014 Kap. 6. Die Produktionskostentheorie Bibliografie: Cocioc, P. (coord.) (2015), Microeconomie, Ed. Risoprint, Cluj-Napoca, cap. 7. Pindyck,

Διαβάστε περισσότερα

Examen AG. Student:... Grupa:... ianuarie 2011

Examen AG. Student:... Grupa:... ianuarie 2011 Problema 1. Pentru ce valori ale lui n,m N (n,m 1) graful K n,m este eulerian? Problema 2. Să se construiască o funcţie care să recunoască un graf P 3 -free. La intrare aceasta va primi un graf G = ({1,...,n},E)

Διαβάστε περισσότερα

LEGI CLASICE DE PROBABILITATE

LEGI CLASICE DE PROBABILITATE 7. LEGI CLASICE DE PROBABILITATE Fi (Ω, K, P u câmp d probabilitat şi f : Ω R, o variabilă alatoar. Am văzut că varibili f i s poat asocia o fucţi d rpartiţi F, cotiuă la stâga şi o fucţi caractristică

Διαβάστε περισσότερα

Conturile de activitate ale subiectilor economici

Conturile de activitate ale subiectilor economici SCN-Sistemul Conturilor Nationale Conturile de activitate ale subiectilor economici lectia 6 CSIE + Fin. Curs- pag. 78-91 al.isaic-maniu www.amaniu.ase.ro Sistemul European de Conturi - SEC SEC-ul înregistrează

Διαβάστε περισσότερα

Erori si incertitudini de măsurare. Modele matematice Instrument: proiectare, fabricaţie, Interacţiune măsurand instrument:

Erori si incertitudini de măsurare. Modele matematice Instrument: proiectare, fabricaţie, Interacţiune măsurand instrument: Erori i incertitudini de măurare Sure: Modele matematice Intrument: proiectare, fabricaţie, Interacţiune măurandintrument: (tranfer informaţie tranfer energie) Influente externe: temperatura, preiune,

Διαβάστε περισσότερα

1. PROPRIETĂȚILE FLUIDELOR

1. PROPRIETĂȚILE FLUIDELOR 1. PROPRIETĂȚILE FLUIDELOR a) Să se exprime densitatea apei ρ = 1000 kg/m 3 în g/cm 3. g/cm 3. b) tiind că densitatea glicerinei la 20 C este 1258 kg/m 3 să se exprime în c) Să se exprime în kg/m 3 densitatea

Διαβάστε περισσότερα

Εμπορική αλληλογραφία Ηλεκτρονική Αλληλογραφία

Εμπορική αλληλογραφία Ηλεκτρονική Αλληλογραφία - Εισαγωγή Stimate Domnule Preşedinte, Stimate Domnule Preşedinte, Εξαιρετικά επίσημη επιστολή, ο παραλήπτης έχει ένα ειδικό τίτλο ο οποίος πρέπει να χρησιμοποιηθεί αντί του ονόματος του Stimate Domnule,

Διαβάστε περισσότερα

BARAJ DE JUNIORI,,Euclid Cipru, 28 mai 2012 (barajul 3)

BARAJ DE JUNIORI,,Euclid Cipru, 28 mai 2012 (barajul 3) BARAJ DE JUNIORI,,Euclid Cipru, 8 mi 0 (brjul ) Problem Arătţi că dcă, b, c sunt numere rele cre verifică + b + c =, tunci re loc ineglitte xy + yz + zx Problem Fie şi b numere nturle nenule Dcă numărul

Διαβάστε περισσότερα

Laborator 11. Mulţimi Julia. Temă

Laborator 11. Mulţimi Julia. Temă Laborator 11 Mulţimi Julia. Temă 1. Clasa JuliaGreen. Să considerăm clasa JuliaGreen dată de exemplu la curs pentru metoda locului final şi să schimbăm numărul de iteraţii nriter = 100 în nriter = 101.

Διαβάστε περισσότερα

TEMATICA ADMITERE MASTERAT: ADMINISTRAREA AFACERILOR DISCIPLINA: FINANȚE

TEMATICA ADMITERE MASTERAT: ADMINISTRAREA AFACERILOR DISCIPLINA: FINANȚE Ministerul Educaţiei, Cercetării, Tineretului şi Sportului Universitatea Babeş - Bolyai Facultatea de Business Str. Horea nr. 7 400174, Cluj-Napoca Tel: 0264 599170 Fax: 0264 590110 E-mail: tbs@tbs.ubbcluj.ro

Διαβάστε περισσότερα

În spectrul de rotaţie al moleculei HCl s-au identificat linii spectrale consecutive cu următoarele lungimi de undă: λ

În spectrul de rotaţie al moleculei HCl s-au identificat linii spectrale consecutive cu următoarele lungimi de undă: λ PROBLMA 5 În spctrul d rotaţi al molculi HCl s-au idntificat linii spctral conscutiv cu următoarl lungimi d undă: λ 6.4 m; λ 69. m ; λ 8. 4 m ; λ 96. 4 ; λ. 6 m ; 4 5 a Prsupunând molcula un rotator rigid

Διαβάστε περισσότερα

ANUL III ZI&FR. Lect.univ.drd. Carmen Judith GRIGORESCU

ANUL III ZI&FR. Lect.univ.drd. Carmen Judith GRIGORESCU ANUL III ZI&FR Lect.uni.drd. Carmen Judith GRIGORESCU CUPRINS CAPITOLUL I. OBIECTUL ŞI METODA ANALIZEI ECONOMICO- FINANCIARE...5 1.1. Obiectul analizei economico-financiare...5 1.2. Tipologia analizei

Διαβάστε περισσότερα

04. PRODUCĂTORUL, PRODUCŢIA ŞI SISTEMUL FACTORILOR DE PRODUCŢIE

04. PRODUCĂTORUL, PRODUCŢIA ŞI SISTEMUL FACTORILOR DE PRODUCŢIE 4. PRODUCĂTORUL, PRODUCŢIA ŞI SISTEMUL FAORILOR DE PRODUCŢIE PRODUCĂTORUL este persoana care utilizează resurse (naturale, de muncă şi capital) pentru a produce bunuri şi servicii. Satisfacerea nevoilor

Διαβάστε περισσότερα

(a) se numeşte derivata parţială a funcţiei f în raport cu variabila x i în punctul a.

(a) se numeşte derivata parţială a funcţiei f în raport cu variabila x i în punctul a. Definiţie Spunem că: i) funcţia f are derivată parţială în punctul a în raport cu variabila i dacă funcţia de o variabilă ( ) are derivată în punctul a în sens obişnuit (ca funcţie reală de o variabilă

Διαβάστε περισσότερα

RĂSPUNS Modulul de rezistenţă este o caracteristică geometrică a secţiunii transversale, scrisă faţă de una dintre axele de inerţie principale:,

RĂSPUNS Modulul de rezistenţă este o caracteristică geometrică a secţiunii transversale, scrisă faţă de una dintre axele de inerţie principale:, REZISTENTA MATERIALELOR 1. Ce este modulul de rezistenţă? Exemplificaţi pentru o secţiune dreptunghiulară, respectiv dublu T. RĂSPUNS Modulul de rezistenţă este o caracteristică geometrică a secţiunii

Διαβάστε περισσότερα

6.4.Convecţia. unde T s -temperatura termodinamică a suprafeţei corpului solid, -temperatura termodinamică medie a fluidului, 6.

6.4.Convecţia. unde T s -temperatura termodinamică a suprafeţei corpului solid, -temperatura termodinamică medie a fluidului, 6. Trmothnică 77 6..Convcţia Convcţia căldurii st fnomnul lmntar d transfr trmic car s manifstă în mdii fluid şi la supafaţa d sparaţi a fazlor. Est caractristică mdiilor în mişcar, căldura fiind transportată

Διαβάστε περισσότερα

7. CONVOLUŢIA SEMNALELOR ANALOGICE

7. CONVOLUŢIA SEMNALELOR ANALOGICE 7. CONVOLUŢIA SEMNALELOR ANALOGICE S numş funcţi (prous) convoluţi în imp smnllor şi ingrl: f ( ) Noţi conscră prousului convoluţi în imp s urmăor: no Convoluţi unui smnl cu (7.) (7.) δ su u conuc l rzul

Διαβάστε περισσότερα

Analiza bivariata a datelor

Analiza bivariata a datelor Aaliza bivariata a datelor Aaliza bivariata a datelor! Presupue masurarea gradului de asoiere a doua variabile sub aspetul: Diretiei (aturii) Itesitatii Semifiatiei statistie Variabilele omiale Tabele

Διαβάστε περισσότερα

Asupra unei metode pentru calculul unor integrale definite din functii trigonometrice

Asupra unei metode pentru calculul unor integrale definite din functii trigonometrice Educţi Mtemtică Vol. 1, Nr. (5), 59 68 Asupr unei metode pentru clculul unor integrle definite din functii trigonometrice Ion Alemn Astrct In this pper is presented one method of clcultion for the trigonometricl

Διαβάστε περισσότερα

Capitolul 2 - HIDROCARBURI 2.5.ARENE

Capitolul 2 - HIDROCARBURI 2.5.ARENE Capitolul 2 - HIDROCARBURI 2.5.ARENE TEST 2.5.2 I. Scrie cuvântul / cuvintele dintre paranteze care completează corect fiecare dintre afirmaţiile următoare. 1. Radicalul C 6 H 5 - se numeşte fenil. ( fenil/

Διαβάστε περισσότερα

Tema 4 ANALIZA RISCURILOR FIRMEI

Tema 4 ANALIZA RISCURILOR FIRMEI Tma 4 ANALIZA ISUILO FIMEI Actiitata întrindrii st supusă în oric momnt riscului. În linii gnral, riscul constitui obabilitata ca un nimnt ndorit să s oducă. În uncţi d poziţia sa p piaţă, d situaţia conomică

Διαβάστε περισσότερα

Componente şi Circuite Electronice Pasive. Laborator 4. Măsurarea parametrilor mărimilor electrice

Componente şi Circuite Electronice Pasive. Laborator 4. Măsurarea parametrilor mărimilor electrice Laborator 4 Măsurarea parametrilor mărimilor electrice Obiective: o Semnalul sinusoidal, o Semnalul dreptunghiular, o Semnalul triunghiular, o Generarea diferitelor semnale folosind placa multifuncţională

Διαβάστε περισσότερα

CUPRINS CAPITOLUL 1. CAPITALURILE FIRMELOR

CUPRINS CAPITOLUL 1. CAPITALURILE FIRMELOR CUPRINS CAPITOLUL 1. CAPITALURILE FIRMELOR 1.1 Capitalurile firmelor pe surse de provenienţă şi modalităţi de folosinţă. Bilanţul. 1.2. Problematica Fondului de Rulment Net 1.3. Indicatorii financiari

Διαβάστε περισσότερα

Curs 1 Şiruri de numere reale

Curs 1 Şiruri de numere reale Bibliografie G. Chiorescu, Analiză matematică. Teorie şi probleme. Calcul diferenţial, Editura PIM, Iaşi, 2006. R. Luca-Tudorache, Analiză matematică, Editura Tehnopress, Iaşi, 2005. M. Nicolescu, N. Roşculeţ,

Διαβάστε περισσότερα

Capitolul 2 - HIDROCARBURI 2.5.ARENE

Capitolul 2 - HIDROCARBURI 2.5.ARENE Capitolul 2 - HIDROCARBURI 2.5.ARENE TEST 2.5.3 I. Scrie cuvântul / cuvintele dintre paranteze care completează corect fiecare dintre afirmaţiile următoare. 1. Sulfonarea benzenului este o reacţie ireversibilă.

Διαβάστε περισσότερα

1.7. AMPLIFICATOARE DE PUTERE ÎN CLASA A ŞI AB

1.7. AMPLIFICATOARE DE PUTERE ÎN CLASA A ŞI AB 1.7. AMLFCATOARE DE UTERE ÎN CLASA A Ş AB 1.7.1 Amplificatoare în clasa A La amplificatoarele din clasa A, forma de undă a tensiunii de ieşire este aceeaşi ca a tensiunii de intrare, deci întreg semnalul

Διαβάστε περισσότερα

Capitolul 4. Integrale improprii Integrale cu limite de integrare infinite

Capitolul 4. Integrale improprii Integrale cu limite de integrare infinite Capitolul 4 Integrale improprii 7-8 În cadrul studiului integrabilităţii iemann a unei funcţii s-au evidenţiat douăcondiţii esenţiale:. funcţia :[ ] este definită peintervalînchis şi mărginit (interval

Διαβάστε περισσότερα

Disciplină: Finanțele firmei

Disciplină: Finanțele firmei Investeşte în oameni! Proiect cofinanţat din Fondul Social European prin Programul Operaţional Sectorial Dezvoltarea Resurselor Umane 2007 2013 Axa prioritară 1 Educaţia şi formarea profesională în sprijinul

Διαβάστε περισσότερα

3. ERORI DE MÃSURARE

3. ERORI DE MÃSURARE 6 Mtrologi, Stadardizar si Masurari 3.. Dfiira rorii d masurar 3. ERORI DE MÃSURARE Î practica, s obsrva ca îtotdaua valoara umrica rala a ui mari fizic masurat st difrita d valoara m idicata d aparatul

Διαβάστε περισσότερα

Muchia îndoită: se află în vârful muchiei verticale pentru ranforsare şi pentru protecţia cablurilor.

Muchia îndoită: se află în vârful muchiei verticale pentru ranforsare şi pentru protecţia cablurilor. TRASEU DE CABLURI METALIC Tip H60 Lungimea unitară livrată: 3000 mm Perforaţia: pentru a uşura montarea şi ventilarea cablurilor, găuri de 7 30 mm în platbandă, iar distanţa dintre centrele găurilor consecutive

Διαβάστε περισσότερα

CUNOŞTINŢE DE SPECIALITATE PENTRU EXAMENUL DE LICENŢĂ PROGRAMUL DE STUDIU: MANAGEMENT SOLUŢII STUDII DE CAZ

CUNOŞTINŢE DE SPECIALITATE PENTRU EXAMENUL DE LICENŢĂ PROGRAMUL DE STUDIU: MANAGEMENT SOLUŢII STUDII DE CAZ UNIVERSITATEA DIN CRAIOVA FACULTATEA DE ECONOMIE ŞI ADMINISTRAREA AFACERILOR CUNOŞTINŢE DE SPECIALITATE PENTRU EXAMENUL DE LICENŢĂ PROGRAMUL DE STUDIU: MANAGEMENT SOLUŢII STUDII DE CAZ CRAIOVA 26 Volumul

Διαβάστε περισσότερα

METODE DE DIAGNOSTICARE A PLASMEI

METODE DE DIAGNOSTICARE A PLASMEI S.D.Anghl Fizica lasmi şi alicaţii Caitolul VIII METODE DE DIAGNOSTICARE A PLASMEI Duă cum ris chiar din dfiniţia stării d lasmă, a st un mdiu foart comlx, cu mult grad d librtat ntru comonntl i şi cu

Διαβάστε περισσότερα

CURS 1. BAZELE TEORETICO - METODOLOGICE ALE ANALIZEI ACTIVITĂŢII ECONOMICO - FINANCIARE ALE ÎNTREPRINDERILOR

CURS 1. BAZELE TEORETICO - METODOLOGICE ALE ANALIZEI ACTIVITĂŢII ECONOMICO - FINANCIARE ALE ÎNTREPRINDERILOR CURS 1. BAZELE TEORETICO - METODOLOGICE ALE ANALIZEI ACTIVITĂŢII ECONOMICO - FINANCIARE ALE ÎNTREPRINDERILOR 1.1.Obiectul analizei activităţii economice-financiare Ca disciplină ştiinţifică ANALIZA ACTIVITĂŢII

Διαβάστε περισσότερα

Capitolul ASAMBLAREA LAGĂRELOR LECŢIA 25

Capitolul ASAMBLAREA LAGĂRELOR LECŢIA 25 Capitolul ASAMBLAREA LAGĂRELOR LECŢIA 25 LAGĂRELE CU ALUNECARE!" 25.1.Caracteristici.Părţi componente.materiale.!" 25.2.Funcţionarea lagărelor cu alunecare.! 25.1.Caracteristici.Părţi componente.materiale.

Διαβάστε περισσότερα

Foarte formal, destinatarul ocupă o funcţie care trebuie folosită în locul numelui

Foarte formal, destinatarul ocupă o funcţie care trebuie folosită în locul numelui - Introducere Αξιότιμε κύριε Πρόεδρε, Αξιότιμε κύριε Πρόεδρε, Foarte formal, destinatarul ocupă o funcţie care trebuie folosită în locul numelui Αγαπητέ κύριε, Αγαπητέ κύριε, Formal, destinatar de sex

Διαβάστε περισσότερα

Componentele fundamentale ale evaluării

Componentele fundamentale ale evaluării omponentele fundamentale ale evaluării Punctul de plecare în evaluare: Bilanț contabil Transformare Bilanț financiar Trecerea de la bilanțul contabil la bilanțul economic se realizează în momentul determinării:

Διαβάστε περισσότερα

L4. Măsurarea rezistenţelor prin metoda de punte

L4. Măsurarea rezistenţelor prin metoda de punte L4. Măsurara rzistnţlor prin mtoda d punt. Obictul lucrării În prima part a lucrării s utilizază punta simplă (Whatston) ca mtodă d prcizi ridicată, pntru măsurara rzistnţlor cuprins într 0-0 0 Ω, ralizându-s

Διαβάστε περισσότερα

Capitolul 2 - HIDROCARBURI 2.3.ALCHINE

Capitolul 2 - HIDROCARBURI 2.3.ALCHINE Capitolul 2 - HIDROCARBURI 2.3.ALCHINE TEST 2.3.3 I. Scrie cuvântul / cuvintele dintre paranteze care completează corect fiecare dintre afirmaţiile următoare. 1. Acetilena poate participa la reacţii de

Διαβάστε περισσότερα

FIZICA CAPITOLUL: ELECTRICITATE CURENT CONTINUU. Soluţii, indicaţii, schiţe de rezolvare

FIZICA CAPITOLUL: ELECTRICITATE CURENT CONTINUU. Soluţii, indicaţii, schiţe de rezolvare FZCA CAPTOLL: LCTCTAT CNT CONTN Souţii, indicţii, schiţ d rzovr. răspuns corct c;. răspuns corct d; 3. răspuns corct b; 4. răspuns corct ; 5. răspuns corct c ( t nrgi ctrică) ; 6. răspuns corct ( putr

Διαβάστε περισσότερα

R R, f ( x) = x 7x+ 6. Determinați distanța dintre punctele de. B=, unde x și y sunt numere reale.

R R, f ( x) = x 7x+ 6. Determinați distanța dintre punctele de. B=, unde x și y sunt numere reale. 5p Determinați primul termen al progresiei geometrice ( b n ) n, știind că b 5 = 48 și b 8 = 84 5p Se consideră funcția f : intersecție a graficului funcției f cu aa O R R, f ( ) = 7+ 6 Determinați distanța

Διαβάστε περισσότερα

Ακαδημαϊκός Λόγος Κύριο Μέρος

Ακαδημαϊκός Λόγος Κύριο Μέρος - Επίδειξη Συμφωνίας În linii mari sunt de acord cu...deoarece... Επίδειξη γενικής συμφωνίας με άποψη άλλου Cineva este de acord cu...deoarece... Επίδειξη γενικής συμφωνίας με άποψη άλλου D'une façon générale,

Διαβάστε περισσότερα

PVC. D oor Panels. + accessories. &aluminium

PVC. D oor Panels. + accessories. &aluminium PVC &aluminium D oor Panels + accessories 1 index panels dimensions accessories page page page page 4-11 12-46 48-50 51 2 Η εταιρία Dorland με έδρα τη Ρουμανία, από το 2002 ειδικεύεται στην έρευνα - εξέλιξη

Διαβάστε περισσότερα