Lucrarea de laborator nr. 2 VERIFICARILE METROLOGICE ALE MIJLOACELOR DE MASURARE

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Lucrarea de laborator nr. 2 VERIFICARILE METROLOGICE ALE MIJLOACELOR DE MASURARE"

Transcript

1 Lucrara d laborator nr. 2 VERIFICARILE METROLOGICE ALE MIJLOACELOR DE MASRARE 1. SCOPL LCRARII Scopul lucrarii îl rprzinta: cunoastra principallor mtod d vrificar mtrologica a unor mijloac d masurar, analogic si digital: mtoda comparatii; mtoda compnsatii; mtoda asistata d calculator. dtrminara influnti frcvnti, asupra difritlor tipuri constructiv d aparat. 2. PRINCIPII GENERALE Vrificara mtrologica a mijloaclor d masurar st impusa d ncsitata dtrminarii calitatii acstora, în raport cu masurandul (marima d masurat) si cu mdiul ambiant. În gnral, prin vrificara mtrologica a unui mijloc lctric d masurar, s urmarst dtrminara caractristicilor mtrologic al acstuia: intrvalul d masurar; capacitata d suprasarcina; rzolutia; snsibilitata; actitata; putra consumata; timpul d raspuns; stabilitata în timp; Vrificara mtrologica vizaza calitata mijlocului d masurar, ca indic al totalitatii caractristicilor mtrologic, conform standardlor. Eactitata st o caractristica mtrologica dosbit d importanta pntru un mijloc d masurar. Clasa d actitat, simbolizata prin indicl c, prmit stimara rorii limita d masurar. Eroara limita d masurar, l, rprzinta valoara maima posibila pntru roara mijlocului d masurar, garantându-s ca, pntru întrg intrvalul d masurar, roril sunt mai mici sau cl mult gal cu l. Eroara limita d masurar s dtrmina ca: = + (2.1) l i v und: i st roara intrinsca a mijlocului d masurar, dtrminata în conditii d rfrinta, stabilit prin norm; v st roara suplimntara a mijlocului d masurar, considrata ca un cumul al rorilor datorat variatii ficari marimi d influnta, în afara intrvalului d rfrinta, stabilit prin norm mtrologic, dar în intrvalul d utilizar al mijlocului d masurar. Valoril standardizat al indiclui d clasa sunt: 0,0005; 0,001; 0,002; 0,005; 0,01; 0,02; 0,05; 0,1; 0,2; 0,5; 1; 1,5; 2,5; 5. Clasa d actitat s poat stabili: 1) sub forma d tabl (d mplu, în cazul unui transformator d masurar d curnt); 2) în functi d o valoar convntionala (d obici, valoara maima a intrvalului d masurar); 3) în functi d lungima scarii gradat (în cazul ohmmtrlor). Vrificara unui mijloc d masurar prsupun analiza surslor d rori (ANEA 1) VERIFICAREA NI APARAT ANALOGIC PRIN METODA COMPARATIEI Mtoda comparatii s folosst, în principal, pntru vrificara aparatlor d laborator si d panou d clasa d actitat 1,5; 2,5; 5. Principiul acsti mtod consta în comparara indicatiilor aparatului d vrificat cu indicatiil unui aparat talon, ambl aparat masurând, simultan, acasi marim. La algra aparatului talon, s va tin sama d: tipul constructiv al aparatului d vrificat si d natura marimii d masurat; gama d masurar a aparatului d vrificat; 1

2 clasa d actitat a aparatului d vrificat. Dci, aparatul talon trbui sa îndplinasca urmatoarl conditii: sa fi dstinat masurarii aclasi marimi, ca si aparatul d vrificat; sa aiba gama d masurar mai mar sau cl putin gala cu ca a aparatului d vrificat; sa aiba clasa d actitat d cl putin 5 ori mai mica dcât a aparatului d vrificat sau d 2,5 ori mai mica daca s utilizaza aparatul talon cu curba d corcti (daca aparatl au acasi limita maima d masurar), conform rlatiilor: c c c 5 c 2,5 und: c si c sunt clasl d actitat al aparatului talon, si, rspctiv, d vrificat; ma, ma sunt limitl maim al gami d masurar al aparatului talon, si, rspctiv, d vrificat. ma ma ma ma (2.2) Vrificara aparatlor prin mtoda comparatii s fac la rprl cifrat d p scara gradata a aparatului d vrificat. S rglaza marima d masurat la rprul aparatului d vrificat si s citst indicatia aparatului talon. S dtrmina pntru ficar rpr cifrat al aparatului d vrificat: roara absoluta, cu rlatia: roara raportata, cu rlatia: und: st indicatia aparatului d vrificat; st indicatia aparatului talon. = (2.3) ma ε r = (2.4) rlatia: Eroara absoluta, pntru ficar rpr, s compara cu roara limita d masurar a aparatului d vrificat, data d ma = c 100 ma (2.5) iar roara raportata s compara cu roara raportata limita ε rt, corspunzatoar clasi d prcizi a aparatului d vrificat. Indicl clasi d prcizi a aparatului st gal cu roara raportata limita (primata în procnt): [ ] Aparatul s considra încadrat în clasa d actitat, daca: c = ε % (2.6) rt ε r ε rt ma (2.7) 2.2. VERIFICAREA NI APARAT ANALOGIC PRIN METODA DE COMPENSARE În acasta mtoda s folosst un compnsator, car st un mijloc d masurar dstinat dtrminarii, cu actitat ridicata, a tnsiunilor lctromotoar si cadrilor d tnsiun continua sau a oricari alt marimi, lctric sau nlctric, car, în pralabil, a fost convrtita într-o tnsiun continua. Principiul mtodi consta în galara (compnsara) tnsiunii d masurat cu o tnsiun furnizata d compnsator, rglabila în trpt fin si car poat fi citita cu mar actitat. Egalitata tnsiunilor s constata cu ajutorul unui galvanomtru d mar snsibilitat, ca c confra masurarilor o mar actitat. 2

3 2.3. VERIFICAREA NI APARAT ANALOGIC C AJTORL CALCLATORLI Calculatorul comanda un calibrator (gnrator d tnsiun continua d prcizi), d la car s alimntaza voltmtrul d vrificat. Calibratorul, car rprzinta mijlocul d masurar talon, contin un convrtor numric - analogic si o sursa d tnsiun d rfrinta si trbui sa przint o rzoluti, corlata cu clasa d actitat a aparatului d vrificat. Rzolutia calibratorului st dtrminata d pasul minim d tnsiun, cu car poat varia tnsiuna la isir. 3. CHESTINI DE STDIAT 1. Vrificara unui voltmtru prin mtoda comparatii; 2. Vrificara unui ohmmtru prin mtoda comparatii; 3. Studiul influnti frcvnti smnalului asupra indicatii aparatlor d masurar. 4. MODL DE EPERIMENTARE 4.1. VERIFICAREA NI VOLTMETR PRIN METODA COMPARATIEI MONTAJL SI APARATELE TILIZATE Figura 1 Schma d vrificar prin mtoda comparatii a unui voltmtru d panou Aparatl utilizat sunt: V - voltmtru d vrificat d tnsiun altrnativa (fromagntic) d 50V, clasa 1,5 (sau multimtru ) având functia d voltmtru d 50V; V - voltmtru talon d 60V, clasa 0,5; R h1 - rostat principal d rglaj brut a tnsiunii, în montaj potntiomtric; R h2 - rostat auiliar, pntru rglajul fin al tnsiunii; K - întrruptor bipolar MODL DE EPERIMENTARE Pntru rostatul R h1 montat potntiomtric, s va vrifica, prin calcul ca valoara curntului absorbit d rostat nu dpasst valoara curntului nominal al acstuia. La încputul printi, rostatul R h1 s va pun în pozitia d zro a tnsiunii, iar rostatul R h2 auiliar, în poziti maima, algându-s pntru voltmtrul talon intrvalul d masurar corspunzator valorii tnsiunii rprului principal car s vrifica. Manipulara consta în a varia rostatul potntiomtric R h1 pâna când acul indicator al aparatului d vrificat, V, s oprst în drptul rprului d vrificat si apoi, a varia rostatul R h2 pâna când acul indicator s stabilst în drptul rprului d vrificat (d. 40V). În acst momnt s citsc, simultan, indicatiil clor doua voltmtr si ( st indicatia voltmtrului d vrificat si st indicatia voltmtrului talon). Rzulta pntru roara absoluta,, valoara: iar pntru roara raportata, valoara: = (4.8) ε r = ma 100% (4.9) und: ma st limita maima d masurar a voltmtrului d vrificat; ε r st roara raportata pntru rprul rspctiv,, al aparatului d vrificat, primata în procnt. 3

4 S vor fctua opratiil prcdnt pntru ficar rpr principal, scazând trptat tnsiuna d la ma la 0. S vor rpta masuratoril pntru ficar rpr principal crscând tnsiuna d la valoara zro la limita maima d masurar. Dci, pntru ficar rpr principal al scarii gradat s vor fac cât doua masuratori. Atnti: Daca, totusi, acul indicator a dpasit rprul gradat, s va rlua masurara dupa rvnira la pozitia initiala a acului indicator. Nu s schimba snsul d dplasar a acului indicator, în dcursul fctuarii masuratorilor. Eroara d indicati pntru un rpr oarcar s va obtin facând mdia aritmtica a clor doua masuratori fctuat asupra acluiasi rpr. und: ε rcrsc, ε rdsc ε r + ε crsc rdsc ε r = (4.10) md 2 sunt roril raportat, dtrminat pntru snsul crscator si dscrscator al variatii marimii d masurat. Datl si rzultatl masuratorilor s vor trc în tablul 1. Tablul 1 crsc dsc crsc dsc ε rcrsc ε r dsc ε r md V V V V V % % % S vor compara valoril rorilor absolut, obtinut în urma masuratorilor, cu roara limita a voltmtrului, concluzionând asupra încadrarii voltmtrului în clasa d actitat pntru car a fost ralizat. Eroara limita corspunzatoar clasi d prcizi a voltmtrului st data d rlatia: ( ) ma c ma = (4.11) 100 În cazul în car roril absolut (masurat) sunt mai mici dcât roara limita d masurar, atunci s va trasa grafic curba d corcti a aparatului. În caz contrar, daca voltmtrul nu s încadraza în clasa d actitat pntru car a fost proictat, s vor analiza cauzl c au dtrminat isira aparatului din clasa d actitat, prcum si modul în car acst problm pot fi rmdiat, dtrminându-s clasa d actitat în car s poat înscri voltmtrul, conform rlatii (4.12) : c = ma 100% (4.12) ma und: ma rprzinta ca mai mar dintr valoril rorii absolut, dintr toat masuratoril fctuat (atât în sns crscator, cât si în sns dscrscator); ma rprzinta limita suprioara a voltmtrului d vrificat. S va alg valoara standardizata a clasi d actitat imdiat suprioara, valoril standardizat al clasi d actitat fiind przntat la încputul lucrarii. O vrificar complta a voltmtrului prsupun luara în considrati a tuturor factorilor, c pot influnta indicatia acstuia, asa cum ris din ANEA 1. 4

5 4.2. VERIFICAREA NI OHMMETR PRIN METODA COMPARATIEI MONTAJL SI APARATELE FOLOSITE În schma au fost folosit: R - st rzistor dcadic folosit ca talon Ω; Ω - st ohmmtru analogic d vrificat (multimtru? 4342). Figura 2 Vrificara prin mtoda comparatii a unui ohmmtru analogic MODL DE EPERIMENTARE Aparatul talon îl rprzinta un rzistor dcadic, a carui clasa d actitat st 0,1, dci mult mai buna dcât a ohmmtrului d vrificat, a carui clasa d actitat st 2,5. Cu aclasi rzultat, s pot utiliza drpt aparat talon si ohmmtrl digital. În acst caz, ohmmtrul considrat talon s va concta în parall cu ohmmtrul d vrificat si cu rzistorul R (car nu mai trbui sa fi unul d actitat ridicata). Vrificara voltmtrului analogic trbui facuta p toat gaml d masurar, la toat rprl gradat al scarii. Pntru simplificar, s va vrifica ohmmtrul numai p o singura gama prin fiara valorii rzistorului dcadic, talon, la ca corspunzatoar rprlor gradat (R ) si masurara valorii indicat d ohmmtrul d vrificat (R ). Valoril dtrminat p cal primntala s trc în tablul 2. R R Ω Ω R Ω ε rr % Tablul 2 în car: R - valoara rzistnti talon; R - valoara indicata d ohmmtrul d vrificat; R - roara absoluta a indicatii ohmmtrul d vrificat: R = R - R (4.13) ε - roara raportata, calculata cu rlatia (4.14): R ε r = R 100% (4.14) R D trasat curba rorilor raportat în functi d valoara rzistnti masurat, acst rzultat s vor compara cu cl dat d catr constructor (pntru ohmmtrul MAVO-35), în ANEA 2. Daca toat valoril rorii raportat sunt mai mici dcât cl dat d constructor în nomograma, atunci ohmmtrul d vrificat s încadraza în clasa d actitat, pntru car a fost proictat STDIL INFLENTEI FRECVENTEI ASPRA MIJLOACELOR ELECTRICE DE MASRA MONTAJL SI APARATELE FOLOSITE Aparatl d masurar, functi d principiul d ralizar, s pot folosi într-un anumit intrval d frcvnt. P cadranul aparatului sau în carta thnica, s inscriptionaza acst intrval, p car-l garantaza fabricantul si în car roril s încadraza în clasa d actitat. tilizara unui anumit aparat d masurar pntru obtinra valorii uni anumit marimi trbui sa tina cont d frcvnta smnalului rspctiv si daca acasta frcvnta s încadraza în intrvalul d frcvnta al aparatului. S va studia comportara aparatlor d masurar uzual la aplicara unor smnal d frcvnta variabila, comparându-s rzultatl primntal cu cl indicat d fabricant. schma d montaj przntata în figura 3: în car: Figura 3 Schma d montaj pntru studiul influnti frcvnti asupra indicatiilor voltmtrlor 5

6 G - gnrator d tnsiun sinusoidala d amplitudin si frcvnta stabila si rglabila, tip?3-112; V - rprzinta voltmtrul fromagntic, considrat ca talon, cu clasa d prcizi 0,5; V 1 - voltmtru magntolctric cu rdrsori, multimtrul tip 43101; V 2 - voltmtru digital, multimtru digital; V 3 - voltmtru lctrodinamic, cu cran magntic; V 4 - voltmtru magntolctric, având o valoara maima d masurar difrita d V 1 ; OSC- osciloscop catodic MODL DE EPERIMENTARE S va studia comportara ficarui aparat d masurar pntru frcvnt cuprins într 20 Hz si 20 khz, tnsiuna d alimntar a gnratorului trbuind sa fi cva mai rdusa dcât ca mai mica gama d masurar dintr toat aparatl conctat în montaj. În acst scop, s va fia valoara tnsiunii d alimntar a gnratorului la 100 V (cu ajutorul indicatii voltmtrului lctrostatic) si s vor fia urmatoarl valori al frcvnti tnsiunii d alimntar: 20 Hz, 45 Hz, 50 Hz, 55 Hz, 100 Hz, 500 Hz, 1000 Hz, 5000 Hz, Hz, Hz. Forma smnalului, obsrvându-s la osciloscop, trbui sa fi sinusoidala. S vor nota, pntru toat aparatl, limitl maim al intrvallor d masurar ma si indicl clasi d actitat c. S citsc indicatiil tuturor aparatlor conctat în circuit, valoril fiind trcut în tablul 3. Tablul 3 f ε 1 ε 2 ε 3 ε 4 V V V V V V V V V S va calcula, pntru ficar punct, roara raportata: i ε (%) = 100 i = 1, 2, 3, 4 (4.15) ma i Pntru ficar aparat d masurar s va trasa graficul rorilor rlativ functi d frcvnta. S vor trasa si roril limita d masurar (gal cu indicl clasi d actitat - în %) si s va dtrmina intrvalul d frcvnt în car roril rlativ dtrminat s încadraza în clasa d actitat a aparatului. S va compara cu valoara inscriptionata p cadranul ficarui aparat. 5. ÎNTREBARI RECAPITLATIVE 1. În c consta trmnul "aparat talon"? 2. Car st influnta factorilor trni în roril mijloaclor d masura si prin c mtod s poat rduc? 3. Daca avm la dispoziti un voltmtru d c.c., domniul 250V, clasa d actitat 0,5, putm sa îl utilizam pntru vrificara unui voltmtru d c.c., domniul 50V, clasa d actitat 1,5? D c? 4. În scopul vrificarii unui ohmmtru analogic, s poat utiliza drpt aparat talon atât un rzistor dcadic cât si un ohmmtru mult mai act. Car dintr cl doua solutii st prfrata? Si d c? 5. În c consta mtoda d compnsar cu substituti si car sunt avantajl si dzavantajl utilizarii uni astfl d mtod? 6

7 ANEA 1 ANALIZA SRSELOR DE ERORI Sursl d rori pot fi: 1. frcaril în lagar al partii mobil si dformatiil rmannt al rsorturilor spiral, în cazul unui aparat d masurar analogic; acsta prsupun ncsitata d a fctua vrificara aparatului atât în sns crscator, cât si în sns dscrscator al variatii marimii d masurat, dci al dviatii acului indicator; 2. influnta frcvnti marimii d masurat asupra aparatului d vrificat, dci, în intrvalul dat, s va vrifica aparatul d masurar, în întrgul intrval d frcvnt în car s utilizaza (sau în intrvalul dat d firma constructoar); 3. prznta câmpurilor magntic trioar (cl trstru sau cl crat cu conductoar lctric parcurs d curnt) si influnta acstora asupra aparatlor cu un câmp magntic propriu dstul d rdus; s impun vrificara aparatului p mai mult dirctii rlativ la câmpul magntic trior; 4. influnta câmpului d tmpratura, în car st utilizat aparatul, impun vrificara compnsarii trmic a aparatului, în gama d tmpraturi indicata d constructor ca intrval d utilizar; 5. influnta factorului d forma - ca c va impun vrificara aparatului în rgim nsinusoidal (la un factor d distorsiuni k d < 5%, sau k d < 1% în cazul aparatlor d masurar cu rdrsoar). ANEA 2 CRBA ERORILOR RAPORTATE ÎN FNCTIE DE VALOAREA REZISTENTEI MASRATE ÎN CAZL OHMMETRLI ANALOGIC MAVO-35 7

L4. Măsurarea rezistenţelor prin metoda de punte

L4. Măsurarea rezistenţelor prin metoda de punte L4. Măsurara rzistnţlor prin mtoda d punt. Obictul lucrării În prima part a lucrării s utilizază punta simplă (Whatston) ca mtodă d prcizi ridicată, pntru măsurara rzistnţlor cuprins într 0-0 0 Ω, ralizându-s

Διαβάστε περισσότερα

Eşantionarea semnalelor

Eşantionarea semnalelor Eşantionara smnallor Eşantionara = prlvara d prob dintr-un smnal la momnt d timp dcalat intr l cu cu frcvnta d şantionar, f =/. xˆ t x k t k k = ( = δ ( Smnalul şantionat idal:. Spctrul Xˆ = X ( k k =

Διαβάστε περισσότερα

L.2. Verificarea metrologică a aparatelor de măsurare analogice

L.2. Verificarea metrologică a aparatelor de măsurare analogice L.2. Verificarea metrologică a aparatelor de măsurare analogice 1. Obiectul lucrării Prin verificarea metrologică a unui aparat de măsurat se stabileşte: Dacă acesta se încadrează în limitele erorilor

Διαβάστε περισσότερα

Teorema Rezidurilor şi Bucuria Integralelor Reale

Teorema Rezidurilor şi Bucuria Integralelor Reale Torma Ridurilor şi Bucuria Intgrallor Ral Prntar d Alandru Ngrscu Intgral cu funcţii raţional c dpind d sin t şi cos t u notaţia it, avm: cos t ( + sin t ( i dt d i, iar intgrara s va fac d-a lungul crcului

Διαβάστε περισσότερα

Miliohmetru cu scală liniară şi citire analogică şi/sau digitală

Miliohmetru cu scală liniară şi citire analogică şi/sau digitală Miliohmtru cu scală liniară şi citir analogică şi/sau digitală YO7AQM Laurnţiu CODREANU C.S.M. - Pitşti În practica radioamatorilor constructori s impun adsori ncsitata utilizării şi dsori a ralizării

Διαβάστε περισσότερα

I 1 I 2 V I [Z] V 1 V 2. Z11 impedanta de intrare cu iesirea in gol 2 I 1 I 21 I

I 1 I 2 V I [Z] V 1 V 2. Z11 impedanta de intrare cu iesirea in gol 2 I 1 I 21 I urs 5 4/5 ar ca scop sparara unui circuit complx in blocuri individual acsta s analiaa sparat (dcuplat d rstul circuitului) si s caractriaa doar prin intrmdiul porturilor (cuti nagra) analia la nivl

Διαβάστε περισσότερα

Aparate de măsurat. Măsurări electronice Rezumatul cursului 2. MEE - prof. dr. ing. Ioan D. Oltean 1

Aparate de măsurat. Măsurări electronice Rezumatul cursului 2. MEE - prof. dr. ing. Ioan D. Oltean 1 Aparate de măsurat Măsurări electronice Rezumatul cursului 2 MEE - prof. dr. ing. Ioan D. Oltean 1 1. Aparate cu instrument magnetoelectric 2. Ampermetre şi voltmetre 3. Ohmetre cu instrument magnetoelectric

Διαβάστε περισσότερα

Capitolul III CIRCUITE DE MULTIPLEXARE ŞI EŞANTIONARE-MEMORARE

Capitolul III CIRCUITE DE MULTIPLEXARE ŞI EŞANTIONARE-MEMORARE II.4. CIRCUITE DE CALCUL ANALOGIC Capitolul III CIRCUITE DE MULTIPLEXARE ŞI EŞANTIONAREMEMORARE III.1. CIRCUITE DE MULTIPLEXARE III.1.1. GENERALITĂŢI Un multiplxor analogic (MUX) st un bloc funcţional

Διαβάστε περισσότερα

CURS 10 ANALIZA PERFORMANŢELOR PE BAZA CONTULUI DE PROFIT ŞI PIERDERE

CURS 10 ANALIZA PERFORMANŢELOR PE BAZA CONTULUI DE PROFIT ŞI PIERDERE CURS ANALIZA PERFORMANŢELOR PE BAZA CONTULUI DE PROFIT ŞI PIERDERE Obictiv: însuşira concptului d cont d profit şi pirdr; însuşira concptului d rntabilitat; dtrminara soldurilor intrmdiar d gstiun; stabilira

Διαβάστε περισσότερα

2.CARACTERIZAREA GENERALĂ A RADIOACTIVITǍŢII

2.CARACTERIZAREA GENERALĂ A RADIOACTIVITǍŢII 2.CARACTERIZAREA GEERALĂ A RADIOACTIVITǍŢII Radioactivitat -fnomnul d misi d radiaţii d cătr unl substanţ numit substanţ radioactiv. Procsul constă în misia a tri tipuri d radiaţii: α, β şi γ, priml două

Διαβάστε περισσότερα

Modele matematice pentru îmbunătăţirea calităţii sistemelor electrice

Modele matematice pentru îmbunătăţirea calităţii sistemelor electrice Modl matmatic pntru îmbunătăţira calităţii sistmlor lctric Lct.univ.dr.ing. Ghorgh RAŢIU. Introducr Ţinând sama d tndinţl modrn al proictării sistmlor lctric (chipamntlor lctric) d înlocuir a uni proictări

Διαβάστε περισσότερα

Sistem analogic. Sisteme

Sistem analogic. Sisteme Sistm Smnall pot fi supus prlucrarii in scopul obtinrii unor alt smnal, sau al obtinrii unor paramtri ai acstora. Prlucraril s aplica unui smnal intrar x(t) si s obtin un alt smnal, isir, y(t). Moulara/moulara,

Διαβάστε περισσότερα

Metode iterative pentru probleme neliniare - contractii

Metode iterative pentru probleme neliniare - contractii Metode iterative pentru probleme neliniare - contractii Problemele neliniare sunt in general rezolvate prin metode iterative si analiza convergentei acestor metode este o problema importanta. 1 Contractii

Διαβάστε περισσότερα

3. ERORI DE MÃSURARE

3. ERORI DE MÃSURARE 6 Mtrologi, Stadardizar si Masurari 3.. Dfiira rorii d masurar 3. ERORI DE MÃSURARE Î practica, s obsrva ca îtotdaua valoara umrica rala a ui mari fizic masurat st difrita d valoara m idicata d aparatul

Διαβάστε περισσότερα

Curs 4 Serii de numere reale

Curs 4 Serii de numere reale Curs 4 Serii de numere reale Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Criteriul rădăcinii sau Criteriul lui Cauchy Teoremă (Criteriul rădăcinii) Fie x n o serie cu termeni

Διαβάστε περισσότερα

Curs 10 Funcţii reale de mai multe variabile reale. Limite şi continuitate.

Curs 10 Funcţii reale de mai multe variabile reale. Limite şi continuitate. Curs 10 Funcţii reale de mai multe variabile reale. Limite şi continuitate. Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Fie p, q N. Fie funcţia f : D R p R q. Avem următoarele

Διαβάστε περισσότερα

LEGI CLASICE DE PROBABILITATE

LEGI CLASICE DE PROBABILITATE 7. LEGI CLASICE DE PROBABILITATE Fi (Ω, K, P u câmp d probabilitat şi f : Ω R, o variabilă alatoar. Am văzut că varibili f i s poat asocia o fucţi d rpartiţi F, cotiuă la stâga şi o fucţi caractristică

Διαβάστε περισσότερα

5.7 Modulaţia cu diviziune în frecvenţă ortogonală

5.7 Modulaţia cu diviziune în frecvenţă ortogonală 5.7 Modulaţia cu diviziun în frcvnţă ortogonală Transmisiuna datlor cu dbit mar prin modulaţia multinivl a unui purtător, p un canal cu distorsiuni d amplitudin şi d fază, st afctată d intrfrnţa simbolurilor.

Διαβάστε περισσότερα

5. FUNCŢII IMPLICITE. EXTREME CONDIŢIONATE.

5. FUNCŢII IMPLICITE. EXTREME CONDIŢIONATE. 5 Eerciţii reolvate 5 UNCŢII IMPLICITE EXTREME CONDIŢIONATE Eerciţiul 5 Să se determine şi dacă () este o funcţie definită implicit de ecuaţia ( + ) ( + ) + Soluţie ie ( ) ( + ) ( + ) + ( )R Evident este

Διαβάστε περισσότερα

METODE DE DIAGNOSTICARE A PLASMEI

METODE DE DIAGNOSTICARE A PLASMEI S.D.Anghl Fizica lasmi şi alicaţii Caitolul VIII METODE DE DIAGNOSTICARE A PLASMEI Duă cum ris chiar din dfiniţia stării d lasmă, a st un mdiu foart comlx, cu mult grad d librtat ntru comonntl i şi cu

Διαβάστε περισσότερα

Analiza în curent continuu a schemelor electronice Eugenie Posdărăscu - DCE SEM 1 electronica.geniu.ro

Analiza în curent continuu a schemelor electronice Eugenie Posdărăscu - DCE SEM 1 electronica.geniu.ro Analiza în curent continuu a schemelor electronice Eugenie Posdărăscu - DCE SEM Seminar S ANALA ÎN CUENT CONTNUU A SCHEMELO ELECTONCE S. ntroducere Pentru a analiza în curent continuu o schemă electronică,

Διαβάστε περισσότερα

4. Măsurarea tensiunilor şi a curenţilor electrici. Voltmetre electronice analogice

4. Măsurarea tensiunilor şi a curenţilor electrici. Voltmetre electronice analogice 4. Măsurarea tensiunilor şi a curenţilor electrici oltmetre electronice analogice oltmetre de curent continuu Ampl.c.c. x FTJ Protectie Atenuator calibrat Atenuatorul calibrat divizor rezistiv R in const.

Διαβάστε περισσότερα

2.CARACTERIZAREA GENERALĂ A RADIOACTIVITǍŢII

2.CARACTERIZAREA GENERALĂ A RADIOACTIVITǍŢII 2.CRCTERIZRE GEERLĂ RDIOCTIVITǍŢII Radioactivitat -fnomnul d misi d radiaţii d cătr unl substanţ numit substanţ radioactiv. Procsul constă în misia a tri tipuri d radiaţii: α, β şi γ, priml două fiind

Διαβάστε περισσότερα

Măsurări în Electronică şi Telecomunicaţii 4. Măsurarea impedanţelor

Măsurări în Electronică şi Telecomunicaţii 4. Măsurarea impedanţelor 4. Măsurarea impedanţelor 4.2. Măsurarea rezistenţelor în curent continuu Metoda comparaţiei ceastă metodă: se utilizează pentru măsurarea rezistenţelor ~ 0 montaj serie sau paralel. Montajul serie (metoda

Διαβάστε περισσότερα

Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor X) functia f 1

Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor X) functia f 1 Functii definitie proprietati grafic functii elementare A. Definitii proprietatile functiilor. Fiind date doua multimi X si Y spunem ca am definit o functie (aplicatie) pe X cu valori in Y daca fiecarui

Διαβάστε περισσότερα

4.6. Caracteristicile motoarelor de curent continuu

4.6. Caracteristicile motoarelor de curent continuu Maşia lctrică d curt cotiuu 8D 017 4.6. Caractristicil motoarlor d curt cotiuu Pricipall caractristici al motoarlor d curt cotiuu sut: caractristica mcaică = ( M ) caractristica curtului = ( I i ) caractristica

Διαβάστε περισσότερα

(a) se numeşte derivata parţială a funcţiei f în raport cu variabila x i în punctul a.

(a) se numeşte derivata parţială a funcţiei f în raport cu variabila x i în punctul a. Definiţie Spunem că: i) funcţia f are derivată parţială în punctul a în raport cu variabila i dacă funcţia de o variabilă ( ) are derivată în punctul a în sens obişnuit (ca funcţie reală de o variabilă

Διαβάστε περισσότερα

Complemente teoretice. Limite de funcńii NotaŃii: f :D R, D R, α - punct de acumulare a lui D; DefiniŃii ale limitei DefiniŃia 1.1.

Complemente teoretice. Limite de funcńii NotaŃii: f :D R, D R, α - punct de acumulare a lui D; DefiniŃii ale limitei DefiniŃia 1.1. Analiza matmatică clasa axi-a, problm rzolvat Complmnt tortic Limit d funcńii NotaŃii: f :D R, D R, α - punct d acumular a lui D; DfiniŃii al limiti DfiniŃia lim f = l, l R, dacă pntru oric vcinătat V

Διαβάστε περισσότερα

Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor

Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor. Fiind date doua multimi si spunem ca am definit o functie (aplicatie) pe cu valori in daca fiecarui element

Διαβάστε περισσότερα

Lucian Maticiuc. Facultatea de Hidrotehnică, Geodezie şi Ingineria Mediului Matematici Superioare, Semestrul I, Lector dr. Lucian MATICIUC SEMINAR 9.

Lucian Maticiuc. Facultatea de Hidrotehnică, Geodezie şi Ingineria Mediului Matematici Superioare, Semestrul I, Lector dr. Lucian MATICIUC SEMINAR 9. Capitolul V: Şiruri şi srii d fucţii. Lct. dr. Lucia Maticiuc Facultata d Hidrothică, Godzi şi Igiria Mdiului Matmatici Suprioar, Smstrul I, Lctor dr. Lucia MATICIUC SEMINAR 9. Cap. V Şiruri şi srii d

Διαβάστε περισσότερα

FIZICA CAPITOLUL: ELECTRICITATE CURENT CONTINUU. Soluţii, indicaţii, schiţe de rezolvare

FIZICA CAPITOLUL: ELECTRICITATE CURENT CONTINUU. Soluţii, indicaţii, schiţe de rezolvare FZCA CAPTOLL: LCTCTAT CNT CONTN Souţii, indicţii, schiţ d rzovr. răspuns corct c;. răspuns corct d; 3. răspuns corct b; 4. răspuns corct ; 5. răspuns corct c ( t nrgi ctrică) ; 6. răspuns corct ( putr

Διαβάστε περισσότερα

10. STABILIZATOAE DE TENSIUNE 10.1 STABILIZATOAE DE TENSIUNE CU TANZISTOAE BIPOLAE Stabilizatorul de tensiune cu tranzistor compară în permanenţă valoare tensiunii de ieşire (stabilizate) cu tensiunea

Διαβάστε περισσότερα

4. CIRCUITE LOGICE ELEMENTRE 4.. CIRCUITE LOGICE CU COMPONENTE DISCRETE 4.. PORŢI LOGICE ELEMENTRE CU COMPONENTE PSIVE Componente electronice pasive sunt componente care nu au capacitatea de a amplifica

Διαβάστε περισσότερα

VIII Subiectul 1:Fascinația apei

VIII Subiectul 1:Fascinația apei Olimpiada Națională d Fizică Timișoara 6 Proba tortică Pagina din V Subictul :Fascinația api A. La o fabrică d îmbutlir a api minral plat, apa cu dnsitata dpozitată în rzroar mtalic cu diamtru mar, prăzut

Διαβάστε περισσότερα

În spectrul de rotaţie al moleculei HCl s-au identificat linii spectrale consecutive cu următoarele lungimi de undă: λ

În spectrul de rotaţie al moleculei HCl s-au identificat linii spectrale consecutive cu următoarele lungimi de undă: λ PROBLMA 5 În spctrul d rotaţi al molculi HCl s-au idntificat linii spctral conscutiv cu următoarl lungimi d undă: λ 6.4 m; λ 69. m ; λ 8. 4 m ; λ 96. 4 ; λ. 6 m ; 4 5 a Prsupunând molcula un rotator rigid

Διαβάστε περισσότερα

Laborator 11. Mulţimi Julia. Temă

Laborator 11. Mulţimi Julia. Temă Laborator 11 Mulţimi Julia. Temă 1. Clasa JuliaGreen. Să considerăm clasa JuliaGreen dată de exemplu la curs pentru metoda locului final şi să schimbăm numărul de iteraţii nriter = 100 în nriter = 101.

Διαβάστε περισσότερα

1.7. AMPLIFICATOARE DE PUTERE ÎN CLASA A ŞI AB

1.7. AMPLIFICATOARE DE PUTERE ÎN CLASA A ŞI AB 1.7. AMLFCATOARE DE UTERE ÎN CLASA A Ş AB 1.7.1 Amplificatoare în clasa A La amplificatoarele din clasa A, forma de undă a tensiunii de ieşire este aceeaşi ca a tensiunii de intrare, deci întreg semnalul

Διαβάστε περισσότερα

SEMINAR 14. Funcţii de mai multe variabile (continuare) ( = 1 z(x,y) x = 0. x = f. x + f. y = f. = x. = 1 y. y = x ( y = = 0

SEMINAR 14. Funcţii de mai multe variabile (continuare) ( = 1 z(x,y) x = 0. x = f. x + f. y = f. = x. = 1 y. y = x ( y = = 0 Facultatea de Hidrotehnică, Geodezie şi Ingineria Mediului Matematici Superioare, Semestrul I, Lector dr. Lucian MATICIUC SEMINAR 4 Funcţii de mai multe variabile continuare). Să se arate că funcţia z,

Διαβάστε περισσότερα

a. 11 % b. 12 % c. 13 % d. 14 %

a. 11 % b. 12 % c. 13 % d. 14 % 1. Un motor termic funcţionează după ciclul termodinamic reprezentat în sistemul de coordonate V-T în figura alăturată. Motorul termic utilizează ca substanţă de lucru un mol de gaz ideal având exponentul

Διαβάστε περισσότερα

Test de evaluare Măsurarea tensiunii şi intensităţii curentului electric

Test de evaluare Măsurarea tensiunii şi intensităţii curentului electric Test de evaluare Măsurarea tensiunii şi intensităţii curentului electric Subiectul I Pentru fiecare dintre cerinţele de mai jos scrieţi pe foaia de examen, litera corespunzătoare răspunsului corect. 1.

Διαβάστε περισσότερα

Aplicaţii ale principiului I al termodinamicii la gazul ideal

Aplicaţii ale principiului I al termodinamicii la gazul ideal Aplicaţii ale principiului I al termodinamicii la gazul ideal Principiul I al termodinamicii exprimă legea conservării şi energiei dintr-o formă în alta şi se exprimă prin relaţia: ΔUQ-L, unde: ΔU-variaţia

Διαβάστε περισσότερα

Fig Impedanţa condensatoarelor electrolitice SMD cu Al cu electrolit semiuscat în funcţie de frecvenţă [36].

Fig Impedanţa condensatoarelor electrolitice SMD cu Al cu electrolit semiuscat în funcţie de frecvenţă [36]. Componente şi circuite pasive Fig.3.85. Impedanţa condensatoarelor electrolitice SMD cu Al cu electrolit semiuscat în funcţie de frecvenţă [36]. Fig.3.86. Rezistenţa serie echivalentă pierderilor în funcţie

Διαβάστε περισσότερα

Fizica Plasmei şi Aplicaţii Probleme

Fizica Plasmei şi Aplicaţii Probleme Fizica Plasmi şi Aplicaţii Problm. Exprimaţi valoara prsiunii atmosfric în difrit unităţi d măsură (N/m, Torr, mm Hg, atm) şi stabiliţi rlaţiil dintr l?. Calculaţi dnsitata unui gaz idal (în m - ) în următoarl

Διαβάστε περισσότερα

V O. = v I v stabilizator

V O. = v I v stabilizator Stabilizatoare de tensiune continuă Un stabilizator de tensiune este un circuit electronic care păstrează (aproape) constantă tensiunea de ieșire la variaţia între anumite limite a tensiunii de intrare,

Διαβάστε περισσότερα

Valori limită privind SO2, NOx şi emisiile de praf rezultate din operarea LPC în funcţie de diferite tipuri de combustibili

Valori limită privind SO2, NOx şi emisiile de praf rezultate din operarea LPC în funcţie de diferite tipuri de combustibili Anexa 2.6.2-1 SO2, NOx şi de praf rezultate din operarea LPC în funcţie de diferite tipuri de combustibili de bioxid de sulf combustibil solid (mg/nm 3 ), conţinut de O 2 de 6% în gazele de ardere, pentru

Διαβάστε περισσότερα

DISTANŢA DINTRE DOUĂ DREPTE NECOPLANARE

DISTANŢA DINTRE DOUĂ DREPTE NECOPLANARE DISTANŢA DINTRE DOUĂ DREPTE NECOPLANARE ABSTRACT. Materialul prezintă o modalitate de a afla distanţa dintre două drepte necoplanare folosind volumul tetraedrului. Lecţia se adresează clasei a VIII-a Data:

Διαβάστε περισσότερα

5.4. MULTIPLEXOARE A 0 A 1 A 2

5.4. MULTIPLEXOARE A 0 A 1 A 2 5.4. MULTIPLEXOARE Multiplexoarele (MUX) sunt circuite logice combinaţionale cu m intrări şi o singură ieşire, care permit transferul datelor de la una din intrări spre ieşirea unică. Selecţia intrării

Διαβάστε περισσότερα

Stabilizator cu diodă Zener

Stabilizator cu diodă Zener LABAT 3 Stabilizator cu diodă Zener Se studiază stabilizatorul parametric cu diodă Zener si apoi cel cu diodă Zener şi tranzistor. Se determină întâi tensiunea Zener a diodei şi se calculează apoi un stabilizator

Διαβάστε περισσότερα

Curs 14 Funcţii implicite. Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi"

Curs 14 Funcţii implicite. Facultatea de Hidrotehnică Universitatea Tehnică Gh. Asachi Curs 14 Funcţii implicite Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Fie F : D R 2 R o funcţie de două variabile şi fie ecuaţia F (x, y) = 0. (1) Problemă În ce condiţii ecuaţia

Διαβάστε περισσότερα

5.5. REZOLVAREA CIRCUITELOR CU TRANZISTOARE BIPOLARE

5.5. REZOLVAREA CIRCUITELOR CU TRANZISTOARE BIPOLARE 5.5. A CIRCUITELOR CU TRANZISTOARE BIPOLARE PROBLEMA 1. În circuitul din figura 5.54 se cunosc valorile: μa a. Valoarea intensității curentului de colector I C. b. Valoarea tensiunii bază-emitor U BE.

Διαβάστε περισσότερα

Componente şi Circuite Electronice Pasive. Laborator 3. Divizorul de tensiune. Divizorul de curent

Componente şi Circuite Electronice Pasive. Laborator 3. Divizorul de tensiune. Divizorul de curent Laborator 3 Divizorul de tensiune. Divizorul de curent Obiective: o Conexiuni serie şi paralel, o Legea lui Ohm, o Divizorul de tensiune, o Divizorul de curent, o Implementarea experimentală a divizorului

Διαβάστε περισσότερα

V.7. Condiţii necesare de optimalitate cazul funcţiilor diferenţiabile

V.7. Condiţii necesare de optimalitate cazul funcţiilor diferenţiabile Metode de Optimizare Curs V.7. Condiţii necesare de optimalitate cazul funcţiilor diferenţiabile Propoziţie 7. (Fritz-John). Fie X o submulţime deschisă a lui R n, f:x R o funcţie de clasă C şi ϕ = (ϕ,ϕ

Διαβάστε περισσότερα

Senzorul Hall (1) m e (2) Astfel viteza de mişcare a unui electron este datorat forţei

Senzorul Hall (1) m e (2) Astfel viteza de mişcare a unui electron este datorat forţei Snorul all Snorul all Constructi, snorul all st o lăcuţă aralliiică foart subţir in matrial smiconuctor, urtător sarcini oiti şi ngati (lctroni şi goluri). Efctul all în lăcuţă in nu numai concntraţia

Διαβάστε περισσότερα

Conice. Lect. dr. Constantin-Cosmin Todea. U.T. Cluj-Napoca

Conice. Lect. dr. Constantin-Cosmin Todea. U.T. Cluj-Napoca Conice Lect. dr. Constantin-Cosmin Todea U.T. Cluj-Napoca Definiţie: Se numeşte curbă algebrică plană mulţimea punctelor din plan de ecuaţie implicită de forma (C) : F (x, y) = 0 în care funcţia F este

Διαβάστε περισσότερα

Subiecte Clasa a VIII-a

Subiecte Clasa a VIII-a Subiecte lasa a VIII-a (40 de intrebari) Puteti folosi spatiile goale ca ciorna. Nu este de ajuns sa alegeti raspunsul corect pe brosura de subiecte, ele trebuie completate pe foaia de raspuns in dreptul

Διαβάστε περισσότερα

RĂSPUNS Modulul de rezistenţă este o caracteristică geometrică a secţiunii transversale, scrisă faţă de una dintre axele de inerţie principale:,

RĂSPUNS Modulul de rezistenţă este o caracteristică geometrică a secţiunii transversale, scrisă faţă de una dintre axele de inerţie principale:, REZISTENTA MATERIALELOR 1. Ce este modulul de rezistenţă? Exemplificaţi pentru o secţiune dreptunghiulară, respectiv dublu T. RĂSPUNS Modulul de rezistenţă este o caracteristică geometrică a secţiunii

Διαβάστε περισσότερα

DETERMINAREA CONSTANTEI PLANCK DIN STUDIUL EFECTULUI FOTOELECTRIC EXTERN

DETERMINAREA CONSTANTEI PLANCK DIN STUDIUL EFECTULUI FOTOELECTRIC EXTERN UNIVERSITATEA "POLITEHNICA" BUCUREŞTI DEPARTAMENTUL DE FIZICĂ LABORATORUL DE FIZICĂ ATOMICĂ ŞI FIZICĂ NUCLEARĂ BN-031A DETERMINAREA CONSTANTEI PLANCK DIN STUDIUL EFECTULUI FOTOELECTRIC EXTERN DETERMINAREA

Διαβάστε περισσότερα

Capitolul ASAMBLAREA LAGĂRELOR LECŢIA 25

Capitolul ASAMBLAREA LAGĂRELOR LECŢIA 25 Capitolul ASAMBLAREA LAGĂRELOR LECŢIA 25 LAGĂRELE CU ALUNECARE!" 25.1.Caracteristici.Părţi componente.materiale.!" 25.2.Funcţionarea lagărelor cu alunecare.! 25.1.Caracteristici.Părţi componente.materiale.

Διαβάστε περισσότερα

III. Serii absolut convergente. Serii semiconvergente. ii) semiconvergentă dacă este convergentă iar seria modulelor divergentă.

III. Serii absolut convergente. Serii semiconvergente. ii) semiconvergentă dacă este convergentă iar seria modulelor divergentă. III. Serii absolut convergente. Serii semiconvergente. Definiţie. O serie a n se numeşte: i) absolut convergentă dacă seria modulelor a n este convergentă; ii) semiconvergentă dacă este convergentă iar

Διαβάστε περισσότερα

Planul determinat de normală şi un punct Ecuaţia generală Plane paralele Unghi diedru Planul determinat de 3 puncte necoliniare

Planul determinat de normală şi un punct Ecuaţia generală Plane paralele Unghi diedru Planul determinat de 3 puncte necoliniare 1 Planul în spaţiu Ecuaţia generală Plane paralele Unghi diedru 2 Ecuaţia generală Plane paralele Unghi diedru Fie reperul R(O, i, j, k ) în spaţiu. Numim normala a unui plan, un vector perpendicular pe

Διαβάστε περισσότερα

Capitolul 4. Integrale improprii Integrale cu limite de integrare infinite

Capitolul 4. Integrale improprii Integrale cu limite de integrare infinite Capitolul 4 Integrale improprii 7-8 În cadrul studiului integrabilităţii iemann a unei funcţii s-au evidenţiat douăcondiţii esenţiale:. funcţia :[ ] este definită peintervalînchis şi mărginit (interval

Διαβάστε περισσότερα

Metode de interpolare bazate pe diferenţe divizate

Metode de interpolare bazate pe diferenţe divizate Metode de interpolare bazate pe diferenţe divizate Radu Trîmbiţaş 4 octombrie 2005 1 Forma Newton a polinomului de interpolare Lagrange Algoritmul nostru se bazează pe forma Newton a polinomului de interpolare

Διαβάστε περισσότερα

5.1. Noţiuni introductive

5.1. Noţiuni introductive ursul 13 aitolul 5. Soluţii 5.1. oţiuni introductive Soluţiile = aestecuri oogene de două sau ai ulte substanţe / coonente, ale căror articule nu se ot seara rin filtrare sau centrifugare. oonente: - Mediul

Διαβάστε περισσότερα

a n (ζ z 0 ) n. n=1 se numeste partea principala iar seria a n (z z 0 ) n se numeste partea

a n (ζ z 0 ) n. n=1 se numeste partea principala iar seria a n (z z 0 ) n se numeste partea Serii Laurent Definitie. Se numeste serie Laurent o serie de forma Seria n= (z z 0 ) n regulata (tayloriana) = (z z n= 0 ) + n se numeste partea principala iar seria se numeste partea Sa presupunem ca,

Διαβάστε περισσότερα

Curs 2 DIODE. CIRCUITE DR

Curs 2 DIODE. CIRCUITE DR Curs 2 OE. CRCUTE R E CUPRN tructură. imbol Relația curent-tensiune Regimuri de funcționare Punct static de funcționare Parametrii diodei Modelul cu cădere de tensiune constantă Analiza circuitelor cu

Διαβάστε περισσότερα

Lucrarea Nr. 5 Circuite simple cu diode (Aplicaţii)

Lucrarea Nr. 5 Circuite simple cu diode (Aplicaţii) ucrarea Nr. 5 Circuite simple cu diode (Aplicaţii) A.Scopul lucrării - Verificarea experimentală a rezultatelor obţinute prin analiza circuitelor cu diode modelate liniar pe porţiuni ;.Scurt breviar teoretic

Διαβάστε περισσότερα

Capitolul 2 - HIDROCARBURI 2.5.ARENE

Capitolul 2 - HIDROCARBURI 2.5.ARENE Capitolul 2 - HIDROCARBURI 2.5.ARENE TEST 2.5.2 I. Scrie cuvântul / cuvintele dintre paranteze care completează corect fiecare dintre afirmaţiile următoare. 1. Radicalul C 6 H 5 - se numeşte fenil. ( fenil/

Διαβάστε περισσότερα

COLEGIUL NATIONAL CONSTANTIN CARABELLA TARGOVISTE. CONCURSUL JUDETEAN DE MATEMATICA CEZAR IVANESCU Editia a VI-a 26 februarie 2005.

COLEGIUL NATIONAL CONSTANTIN CARABELLA TARGOVISTE. CONCURSUL JUDETEAN DE MATEMATICA CEZAR IVANESCU Editia a VI-a 26 februarie 2005. SUBIECTUL Editia a VI-a 6 februarie 005 CLASA a V-a Fie A = x N 005 x 007 si B = y N y 003 005 3 3 a) Specificati cel mai mic element al multimii A si cel mai mare element al multimii B. b)stabiliti care

Διαβάστε περισσότερα

Transformări de frecvenţă

Transformări de frecvenţă Lucrarea 22 Tranformări de frecvenţă Scopul lucrării: prezentarea metodei de inteză bazate pe utilizarea tranformărilor de frecvenţă şi exemplificarea aceteia cu ajutorul unui filtru trece-jo de tip Sallen-Key.

Διαβάστε περισσότερα

6.4.Convecţia. unde T s -temperatura termodinamică a suprafeţei corpului solid, -temperatura termodinamică medie a fluidului, 6.

6.4.Convecţia. unde T s -temperatura termodinamică a suprafeţei corpului solid, -temperatura termodinamică medie a fluidului, 6. Trmothnică 77 6..Convcţia Convcţia căldurii st fnomnul lmntar d transfr trmic car s manifstă în mdii fluid şi la supafaţa d sparaţi a fazlor. Est caractristică mdiilor în mişcar, căldura fiind transportată

Διαβάστε περισσότερα

Capitolul I ECUAŢII DIFERENŢIALE. 1 Matematici speciale. Probleme. 1. Să de integreze ecuaţia diferenţială de ordinul întâi liniară

Capitolul I ECUAŢII DIFERENŢIALE. 1 Matematici speciale. Probleme. 1. Să de integreze ecuaţia diferenţială de ordinul întâi liniară Mamaici spcial Problm c solţia apioll I EUAŢII DIFERENŢIALE Să d ingrz caţia difrnţială d ordinl înâi liniară g cos d Solţi: Ecaţia omognă aaşaă s: - g sa g d ln - ln cos ln sa Pnr rzolvara caţii cos nomogn

Διαβάστε περισσότερα

CONCURSUL DE MATEMATICĂ APLICATĂ ADOLF HAIMOVICI, 2017 ETAPA LOCALĂ, HUNEDOARA Clasa a IX-a profil științe ale naturii, tehnologic, servicii

CONCURSUL DE MATEMATICĂ APLICATĂ ADOLF HAIMOVICI, 2017 ETAPA LOCALĂ, HUNEDOARA Clasa a IX-a profil științe ale naturii, tehnologic, servicii Clasa a IX-a 1 x 1 a) Demonstrați inegalitatea 1, x (0, 1) x x b) Demonstrați că, dacă a 1, a,, a n (0, 1) astfel încât a 1 +a + +a n = 1, atunci: a +a 3 + +a n a1 +a 3 + +a n a1 +a + +a n 1 + + + < 1

Διαβάστε περισσότερα

Curs 1 Şiruri de numere reale

Curs 1 Şiruri de numere reale Bibliografie G. Chiorescu, Analiză matematică. Teorie şi probleme. Calcul diferenţial, Editura PIM, Iaşi, 2006. R. Luca-Tudorache, Analiză matematică, Editura Tehnopress, Iaşi, 2005. M. Nicolescu, N. Roşculeţ,

Διαβάστε περισσότερα

Erori si incertitudini de măsurare. Modele matematice Instrument: proiectare, fabricaţie, Interacţiune măsurand instrument:

Erori si incertitudini de măsurare. Modele matematice Instrument: proiectare, fabricaţie, Interacţiune măsurand instrument: Erori i incertitudini de măurare Sure: Modele matematice Intrument: proiectare, fabricaţie, Interacţiune măurandintrument: (tranfer informaţie tranfer energie) Influente externe: temperatura, preiune,

Διαβάστε περισσότερα

Subiecte Clasa a VII-a

Subiecte Clasa a VII-a lasa a VII Lumina Math Intrebari Subiecte lasa a VII-a (40 de intrebari) Puteti folosi spatiile goale ca ciorna. Nu este de ajuns sa alegeti raspunsul corect pe brosura de subiecte, ele trebuie completate

Διαβάστε περισσότερα

Examen AG. Student:... Grupa:... ianuarie 2011

Examen AG. Student:... Grupa:... ianuarie 2011 Problema 1. Pentru ce valori ale lui n,m N (n,m 1) graful K n,m este eulerian? Problema 2. Să se construiască o funcţie care să recunoască un graf P 3 -free. La intrare aceasta va primi un graf G = ({1,...,n},E)

Διαβάστε περισσότερα

11.3 CIRCUITE PENTRU GENERAREA IMPULSURILOR CIRCUITE BASCULANTE Circuitele basculante sunt circuite electronice prevăzute cu o buclă de reacţie pozitivă, folosite la generarea impulsurilor. Aceste circuite

Διαβάστε περισσότερα

Capitolul 2 - HIDROCARBURI 2.3.ALCHINE

Capitolul 2 - HIDROCARBURI 2.3.ALCHINE Capitolul 2 - HIDROCARBURI 2.3.ALCHINE TEST 2.3.3 I. Scrie cuvântul / cuvintele dintre paranteze care completează corect fiecare dintre afirmaţiile următoare. 1. Acetilena poate participa la reacţii de

Διαβάστε περισσότερα

Integrala nedefinită (primitive)

Integrala nedefinită (primitive) nedefinita nedefinită (primitive) nedefinita 2 nedefinita februarie 20 nedefinita.tabelul primitivelor Definiţia Fie f : J R, J R un interval. Funcţia F : J R se numeşte primitivă sau antiderivată a funcţiei

Διαβάστε περισσότερα

Capitolul 2 - HIDROCARBURI 2.4.ALCADIENE

Capitolul 2 - HIDROCARBURI 2.4.ALCADIENE Capitolul 2 - HIDROCARBURI 2.4.ALCADIENE TEST 2.4.1 I. Scrie cuvântul / cuvintele dintre paranteze care completează corect fiecare dintre afirmaţiile următoare. Rezolvare: 1. Alcadienele sunt hidrocarburi

Διαβάστε περισσότερα

Proiectarea filtrelor prin metoda pierderilor de inserţie

Proiectarea filtrelor prin metoda pierderilor de inserţie FITRE DE MIROUNDE Proiectarea filtrelor prin metoda pierderilor de inserţie P R Puterea disponibila de la sursa Puterea livrata sarcinii P inc P Γ ( ) Γ I lo P R ( ) ( ) M ( ) ( ) M N P R M N ( ) ( ) Tipuri

Διαβάστε περισσότερα

riptografie şi Securitate

riptografie şi Securitate riptografie şi Securitate - Prelegerea 12 - Scheme de criptare CCA sigure Adela Georgescu, Ruxandra F. Olimid Facultatea de Matematică şi Informatică Universitatea din Bucureşti Cuprins 1. Schemă de criptare

Διαβάστε περισσότερα

TERMOSTAT ELECTRONIC DIODA SENZOR

TERMOSTAT ELECTRONIC DIODA SENZOR EPSCOM Rady Prototyping Colccţ ţia Hom Automation EP 0261... Cuprin Przntar Proict Fişa d Aamblar 1. Funcţionar 2 2. Schma 2 3. PCB 3 4. Lita d componnt 3 5. Tutorial dioda miconductoar 4 5 Rgimul trmic

Διαβάστε περισσότερα

Sisteme diferenţiale liniare de ordinul 1

Sisteme diferenţiale liniare de ordinul 1 1 Metoda eliminării 2 Cazul valorilor proprii reale Cazul valorilor proprii nereale 3 Catedra de Matematică 2011 Forma generală a unui sistem liniar Considerăm sistemul y 1 (x) = a 11y 1 (x) + a 12 y 2

Διαβάστε περισσότερα

Seminariile Capitolul X. Integrale Curbilinii: Serii Laurent şi Teorema Reziduurilor

Seminariile Capitolul X. Integrale Curbilinii: Serii Laurent şi Teorema Reziduurilor Facultatea de Matematică Calcul Integral şi Elemente de Analiă Complexă, Semestrul I Lector dr. Lucian MATICIUC Seminariile 9 20 Capitolul X. Integrale Curbilinii: Serii Laurent şi Teorema Reiduurilor.

Διαβάστε περισσότερα

Componente şi Circuite Electronice Pasive. Laborator 4. Măsurarea parametrilor mărimilor electrice

Componente şi Circuite Electronice Pasive. Laborator 4. Măsurarea parametrilor mărimilor electrice Laborator 4 Măsurarea parametrilor mărimilor electrice Obiective: o Semnalul sinusoidal, o Semnalul dreptunghiular, o Semnalul triunghiular, o Generarea diferitelor semnale folosind placa multifuncţională

Διαβάστε περισσότερα

2. METODE ªI MIJLOACE ELECTRICE DE MÃSURARE

2. METODE ªI MIJLOACE ELECTRICE DE MÃSURARE 14 Metrologie, Standardizare si Masurari 2. METODE ªI MIJLOACE ELECTICE DE MÃSUAE 2.1. Proces de masurare Procesul de masurare reprezinta ansamblul de operatii necesare privind solicitarea, obtinerea,

Διαβάστε περισσότερα

BARDAJE - Panouri sandwich

BARDAJE - Panouri sandwich Panourile sunt montate vertical: De jos în sus, îmbinarea este de tip nut-feder. Sensul de montaj al panourilor trebuie să fie contrar sensului dominant al vântului. Montaj panouri GAMA ALLIANCE Montaj

Διαβάστε περισσότερα

2.1 Sfera. (EGS) ecuaţie care poartă denumirea de ecuaţia generală asferei. (EGS) reprezintă osferă cu centrul în punctul. 2 + p 2

2.1 Sfera. (EGS) ecuaţie care poartă denumirea de ecuaţia generală asferei. (EGS) reprezintă osferă cu centrul în punctul. 2 + p 2 .1 Sfera Definitia 1.1 Se numeşte sferă mulţimea tuturor punctelor din spaţiu pentru care distanţa la u punct fi numit centrul sferei este egalăcuunnumăr numit raza sferei. Fie centrul sferei C (a, b,

Διαβάστε περισσότερα

MARCAREA REZISTOARELOR

MARCAREA REZISTOARELOR 1.2. MARCAREA REZISTOARELOR 1.2.1 MARCARE DIRECTĂ PRIN COD ALFANUMERIC. Acest cod este format din una sau mai multe cifre şi o literă. Litera poate fi plasată după grupul de cifre (situaţie în care valoarea

Διαβάστε περισσότερα

Control confort. Variator de tensiune cu impuls Reglarea sarcinilor prin ap sare, W/VA

Control confort. Variator de tensiune cu impuls Reglarea sarcinilor prin ap sare, W/VA Control confort Variatoare rotative electronice Variator rotativ / cap scar 40-400 W/VA Variatoare rotative 60-400W/VA MGU3.511.18 MGU3.559.18 Culoare 2 module 1 modul alb MGU3.511.18 MGU3.559.18 fi ldeş

Διαβάστε περισσότερα

Problema a II - a (10 puncte) Diferite circuite electrice

Problema a II - a (10 puncte) Diferite circuite electrice Olimpiada de Fizică - Etapa pe judeţ 15 ianuarie 211 XI Problema a II - a (1 puncte) Diferite circuite electrice A. Un elev utilizează o sursă de tensiune (1), o cutie cu rezistenţe (2), un întrerupător

Διαβάστε περισσότερα

R R, f ( x) = x 7x+ 6. Determinați distanța dintre punctele de. B=, unde x și y sunt numere reale.

R R, f ( x) = x 7x+ 6. Determinați distanța dintre punctele de. B=, unde x și y sunt numere reale. 5p Determinați primul termen al progresiei geometrice ( b n ) n, știind că b 5 = 48 și b 8 = 84 5p Se consideră funcția f : intersecție a graficului funcției f cu aa O R R, f ( ) = 7+ 6 Determinați distanța

Διαβάστε περισσότερα

TEMA 9: FUNCȚII DE MAI MULTE VARIABILE. Obiective:

TEMA 9: FUNCȚII DE MAI MULTE VARIABILE. Obiective: TEMA 9: FUNCȚII DE MAI MULTE VARIABILE 77 TEMA 9: FUNCȚII DE MAI MULTE VARIABILE Obiective: Deiirea pricipalelor proprietăţi matematice ale ucţiilor de mai multe variabile Aalia ucţiilor de utilitate şi

Διαβάστε περισσότερα

10 Determinarea coeficientului de convecție termică la un fascicul de țevi

10 Determinarea coeficientului de convecție termică la un fascicul de țevi rmothnică Sintză lucrări d laborator 10 Dtrara coficintului d convcți trmică la un d țvi Lucrara d laborator rzintă modul în car s dtră coficintul d convcți trmică la un d țvi. Scoul lucrării st însuşira

Διαβάστε περισσότερα

Ecuaţia generală Probleme de tangenţă Sfera prin 4 puncte necoplanare. Elipsoidul Hiperboloizi Paraboloizi Conul Cilindrul. 1 Sfera.

Ecuaţia generală Probleme de tangenţă Sfera prin 4 puncte necoplanare. Elipsoidul Hiperboloizi Paraboloizi Conul Cilindrul. 1 Sfera. pe ecuaţii generale 1 Sfera Ecuaţia generală Probleme de tangenţă 2 pe ecuaţii generale Sfera pe ecuaţii generale Ecuaţia generală Probleme de tangenţă Numim sferă locul geometric al punctelor din spaţiu

Διαβάστε περισσότερα

( ) () t = intrarea, uout. Seminar 5: Sisteme Analogice Liniare şi Invariante (SALI)

( ) () t = intrarea, uout. Seminar 5: Sisteme Analogice Liniare şi Invariante (SALI) Seminar 5: Sieme Analogice iniare şi Invariane (SAI) SAI po fi caracerizae prin: - ecuaţia diferenţială - funcţia de iem (fd) H() - funcţia pondere h - răpunul indicial a - răpunul la frecvenţă H(j) ăpunul

Διαβάστε περισσότερα

Εμπορική αλληλογραφία Ηλεκτρονική Αλληλογραφία

Εμπορική αλληλογραφία Ηλεκτρονική Αλληλογραφία - Εισαγωγή Stimate Domnule Preşedinte, Stimate Domnule Preşedinte, Εξαιρετικά επίσημη επιστολή, ο παραλήπτης έχει ένα ειδικό τίτλο ο οποίος πρέπει να χρησιμοποιηθεί αντί του ονόματος του Stimate Domnule,

Διαβάστε περισσότερα

SIGURANŢE CILINDRICE

SIGURANŢE CILINDRICE SIGURANŢE CILINDRICE SIGURANŢE CILINDRICE CH Curent nominal Caracteristici de declanşare 1-100A gg, am Aplicaţie: Siguranţele cilindrice reprezintă cea mai sigură protecţie a circuitelor electrice de control

Διαβάστε περισσότερα

W-metru. R unde: I.C.Boghitoiu, Electronica peste tot, Editura Albatros, 1985

W-metru. R unde: I.C.Boghitoiu, Electronica peste tot, Editura Albatros, 1985 W-metru I.C.Boghitoiu, Electronica peste tot, Editura Albatros, 95 n amplificator de audiofrecventa de putere poate fi considerat drept un generator de energie electrica, deoarece la bornele sale de iesire,

Διαβάστε περισσότερα