Efekt vlečenja koordinatnega sistema (Frame-dragging effect)

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Efekt vlečenja koordinatnega sistema (Frame-dragging effect)"

Transcript

1 Teorija gravitacije Domača naloga Efekt vlečenja koordinatnega sistema (Frame-dragging effect) Nika Oman September 2006

2 Naloga Radi bi raziskali vpliv vrteče se mase na prostor-čas. Računali bomo za vrtečo se črno luknjo z maso M in vrtilno količino L v praznem prostoru (vakuumu). Uvod V splošni teoriji relativnosti gravitacijo obravnavamo kot ukrivljenost prostora-časa in ne kot silo, kot smo vajeni iz Newtonove mehanike. Osnovne enačbe splošne teorije relativnosti, ki povezujejo to ukrivljenost z maso oz. energijo, so Einsteinove enačbe polja, rešitve pa so metrike, s katerimi opišemo prostor-čas. Vrtenje mase povzroči t.i.efekt vlečenja sistema, to je vrtenje prostora-časa samega. Povedali bomo nekaj značilnosti metrike, podrobneje pa se bomo posvetili izračunu geodetk svetlobe v tej metriki, saj nam te grafično najbolje prikažejo lastnosti prostora-časa. Metrični tenzor in metrika prostora Točko v 4-dimenzionalnem prostoru-času imenujemo dogodek, trajektorijo pa svetovnica. Oddaljenost med dvema diferencialno bližnjima dogodkoma Hx 0, x 1, x 2, x 3 L in Hx 0 + dx 0, x 1 + dx 1, x 2 + dx 2, x 3 + dx 3 L zapišemo kot: d s 2 = g µν x µ x ν, kjer upoštevamo Einsteinov sumacijski dogovor. g µν je metrični tenzor, ki opisuje koordinatni sistem in ukrivljenost prostora. Ker je tenzor simetričen (g µν =g νµ ), ima v našem primeru največ 10 različnih komponent. ds imenujemo metrika prostora in je neodvisna od izbire koordinat. Vse metrike, ki opisujejo fizikalne sisteme, morajo zadoščati Einsteinovim enačbam polja. Einsteinove enačbe polja Pri izpeljavi enačb polja je Einstein postavil zahteve, ki jim morajo zadostiti: 1) Enačbe polja morajo biti tenzorske in torej neodvisne od koordinatnih sistemov 2) Enačbe morajo biti parcialne diferencialne enačbe največ 2. reda in linearne v najvišjem redu 3) napetostni tenzor T µν naj bo vzrok gravitacijskega polja 4) V ravnem fizikalnem prostoru naj bo T µν ničelni tenzor Zapišimo enačbe polja v osnovni obliki: G µν = 8 π G c 4 T µν, 2

3 kjer je G µν Einsteinov tenzor, T µν napetostni tenzor, G gravitacijska konstanta, c pa svetlobna hitrost. Od tu naprej bomo pisali v enotah G = c = 1. Ker v našem primeru gledamo polje mase v vakuumu, je T mn ª 0. To je sistem 10 sklopljenih diferencialnih enačb za 10 funkcij elementov metričnega tenzorja. Enačbe lahko zapišemo tudi drugače: G µν = R µν 1 2 g µν R = 0 Tu je R µν Riccijev tenzor ukrivljenosti, g µν metrični tenzor, R pa skalarna ukrivljenost, ki pa je povezana z metričnim in Riccijevim tenzorjem: R =g αβ R αβ. Riccijev tenzor R αβ dobimo iz Riemannovega tenzorja Rα βγδ, ta pa je definiran preko Christoffelovih simbolov Γ α βγ : λ R αβ = R αβλ α R βγδ α = Γ βδ,γ α Γ βγ,δ + Γ µ βδ Γ α µγ Γ µ βγ Γ α µδ. V štirih dimenzijah ima Riemannov tenzor 256 komponent. Z upoštevanjem nekaterih lastnosti tenzorja, se število neodvisnih komponent zmanjša. Najprej upoštevamo: R αβγδ = R αβδγ = R βαγδ, λ HR αβγδ = g αλ R βγδ L kar nam število neodvisnih komponent zreducira na 36. Nato upoštevamo še: R αβγδ = R γδαβ. Sedaj imamo le še 21 neodvisnih komponent. Ko pa zapišemo še: R αβγδ +R αγδβ +R αδβγ = 0, smo dobili končno število neodvisnih komponent 20. Riemannov tenzor zadošča tudi dvema diferencialnima identitetama (Bianchijevi identiteti). Christoffelovi simboli so povezani z odvodi metričnega tenzorja: α = 1 2 gλα Hg βλ,γ +g γλ,β g βγ,λ L Γ βγ Sedaj vidimo, kako so enačbe polja povezane s komponentami metričnega tenzorja in njihovimi odvodi. Enačbe so zapletene in celo Einstein ni verjel, da se bo kdaj našla kakšna analitična rešitev teh enačb. Vendar je prvo rešitev našel Schwarzschild le leto dni po Einsteinovi objavi. Ta rešitev je zunanja metrika za statično sferno simetrično (točkasto) maso. Drugo rešitev, za vrtečo se maso (aksialna simetrija), je šele 47 let kasneje našel Kerr. To je tudi rešitev našega problema in jo bomo zapisali v naslednjem poglavju. Analitična rešitev zaenkrat obstaja še za nabito mirujočo in nabito vrtečo se maso (Kerr-Newmanova) rešitev. 3

4 Kerrova rešitev Einsteinovih enačb Ker imamo vrteč se sistem in aksialno simetrijo, rešitev (metriko) zapišemo v t.i. Boyer-Lindquistovih koordinatah (t, r, q, f). Povezava s kartezičnimi koordinatami je: t =t x = è!!!!!!!!!!!!!!! r 2 +a 2 cosφsinθ y = è!!!!!!!!!!!!!!! r 2 +a 2 sinφsinθ z =rcosθ kjer je a parameter vrtenja ali t.i. specifična vrtilna količina: a = L M Povejmo, kakšne vrednosti lahko zavzame parameter a: 0 a M Rešitev za a=0 ustreza primeru brez vrtenja, torej Schwarzschildovi rešitvi s sferno simetrijo. Največja vrednost a=m je določena z mejo gole singularnosti. V Boyer-Lindquistovih koordinatah se Kerrova metrika glasi: ali v tenzorski obliki: ds 2 = J1 2 M r N dt 2 4 am rsin2 θ dtdφ + Σ Σ Σ dr2 + Σdθ 2 + i jr 2 +a a2 M rsin 2 θ y z sin 2 θdφ 2 k Σ { g µν = i j k 1 + 2M r Σ 0 0 2aM rsin2 ϑ Σ Σ Σ 0 2 am rsin2 ϑ Σ 0 0 sin 2 ϑha 2 +r 2 + 2a2 M rsin 2 ϑ Σ L y z { Σ =r 2 +a 2 cos 2 θ =r 2 2 M r +a 2. 4

5 ü Lastnosti Kerrove metrike Kerrova geometrija opisuje stacionarno zunanjo geometrijo prostora-časa in je asimptotsko ravna, kar pomeni, da je v neskončni razdalji od masivnega objekta enaka geometriji Minkovskega. Geometrija prostora je ob danem času aksialno simetrična. Izvendiagonalna elementa metrike g mó povzročita efekt vlečenja prostora-časa (frame dragging efect), zaradi česar se prostor-čas sam vrti okoli masivnega objekta; bolj ko se bližamo masivnemu objektu, hitrejše je vrtenje. ü Singularnost črne luknje Singularnost črne luknje v Kerrovi metriki ni točkasta kot v Schwarzschildovem primeru, pač pa rotacija povzroči singuarnost po krožnici, ki ga določa pogoj S=0: Σ =r 2 +a 2 cos 2 θ =0 Za razliko od Schwarzschildove točkaste prostorske singularnosti, je Kerrova časovnega značaja; območje znotraj krožnice naj bi ustrezalo negativnemu prostoru-času; interpretacij tega pojava je več, nobena pa si zaenkrat še ni prislužila širšega znanstvenega konsenza. ü Horizont dogodkov Iz same metrike vidimo, da koeficient g 11 pred diferencialom dr 2 divergira, ko je D=0. Ploskvi, ki jo določa ta pogoj, pravimo horizont dogodkov. V primeru Kerrove metrike sta horizonta dva; notranji in zunanji horizont: =r 2 2 M r +a 2 = 0 R H = M è!!!!!!!!!!!!!!!! M 2 a 2 R + H = M + è!!!!!!!!!!!!!!!! M 2 a 2 Horizont dogodkov je meja, ko ubežna hitrost doseže svetlobno hitrost. Razdalja med obema horizontoma se manjša, hitrejše ko je vrtenje. 5

6 Zanimivo je tudi, da pri prehodu horizonta dogodkov koeficienta g 00 in g 11 pred diferencialoma dt 2 in dr 2 obrneta predznak, kar interpretiramo kot zamenjavo vlog prostora in časa. To se v primeru Kerrove črne luknje zgodi pri prehodu vsakega od horizontov, torej dvakrat. ü Stacionarna limita, ergosfera Zaradi vrtenja prostora-časa dobimo v okolici objekta stacionarno limito: ploskev v prostoru-času, na kateri bi mirovali, če bi se s svetlobno hitrostjo premikali v nasprotni smeri vrtenja objekta. Znotraj te limite nič ne more ostati stacionarno, tudi če se giblje s svetlobno hitrostjo. Stacionarna limita se pojavi tam, kjer je koeficient g 00 pred diferencialom dt 2 enak 0, torej: 1 2 M r stat 2 +a 2 cos 2 θ = 0 r stat r stat =M + è!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! M 2 a 2 cos 2 θ Vidimo, da je r stat večji od r. Območje med stacionarno limito in zunanjim horizontom dogodkov imenujemo ergosfera. Delci, ki padejo v ergosfero se pospešijo (pridobijo energijo) zaradi vrtenja prostora-časa in, ker so še vedno zunaj horizonta dogodkov, lahko še uidejo proč od črne luknje. Možnost, da bi se dalo na ta način črpati energijo črne luknje, je predlagal Roger Penrose leta

7 ü Geodetka svetlobe v Kerrovi metriki Geodetka je svetovnica, po kateri se giblje delec, na katerega ne deluje nobena zunanja sila. V splošni teoriji relativnosti ločimo tri tipe geodetk: časovna geodetka (tangentni vektor ima negativno normo), prostorska geodetka (tangentni vektor ima pozitivno normo) in ničelna geodetka (norma tangentnega vektorja je enaka 0). Geodetka svetlobe je ničelna, torej: ds 2 = 0 g 00 dt 2 +2g 03 dtdφ +g 11 dr 2 +g 22 dθ 2 +g 33 dφ 2 = 0 Upoštevali smo simetrijo g 03 = g 30. Enačbo geodetke lahko zapišemo še drugače, s pomočjo afinega parametra l: 2 x m m ÅÅÅÅÅÅÅÅÅÅÅÅÅÅ + G l 2 Ós x n ÅÅÅÅÅÅÅÅÅÅÅ l x s ÅÅÅÅÅÅÅÅÅÅÅÅ l = 0, m l je afin parameter po krivulji (geodetki). G Ós so Christoffelovi simboli, ki smo jih že definirali. Enačba geodetke predstavlja sistem štirih parcialnih diferencialnih enačb, ki pa ni analitično rešljiv. Geodetke sem zato računala numerično s pomočjo programa Mathematica in funkcijo NDSolve. Računala sem le geodetke v ekvatorialni ravnini, saj te vseskozi ležijo v isti ravnini (J = ÅÅÅÅ p in dj = 0) 2 Grafi prikazujejo geodetke z različnimi vpadnimi koti pri vrednostih parametra ÅÅÅÅÅ a =0, 0.5, 0.9, 1: M 7

8 7.5 a M = y 0 R H T z x 8

9 7.5 a M = y 0 R H T z x 9

10 7.5 a M = y 0 R H T z x 10

11 7.5 a M = y 0 R H T z x Pri vseh grafih sem uporabila iste vhodne parametre smeri žarkov. Na grafih so označeni še horizont dogodkov, začetna točka žarkov in smer vrtenja črne luknje. S sivo barvo je narisana geodetka svetlobe, ki se ujame v fotonsko sfero. V Schwarzschildovem primeru ( ÅÅÅÅÅ a =0) vidimo simetrijo pri vpadnih žarkih svetlobe, ko pa večamo parameter vrtenja, vse bolj M opazimo efekt rotirajočega se prostora-časa. Prav tako vidimo, da je v Schwarzschildovem primeru fotonska sfera le ena, nato pa se pojavita dve. Pri ÅÅÅÅÅ a =1 notranja fotonska sfera ravno sovpada z zunanjim horizontom dogodkov. M Orbite na fotonskih sferah so nestabilne, zato je numerično računanje z njimi zelo težavno - že samo sprememba koraka pri računanju vpliva na to, ali se bo žarek ujel v to orbito. Poglejmo si še njihov izračun. 11

12 ü Fotonski sferi Vrteča se črna luknja ima dve fotonski sferi. Na notranji sferi fotoni krožijo v smeri vrtenja črne luknje, na zunanji pa v obratni smeri. Za fotone, ki krožijo na eni izmed fotonskih sfer veljajo pogoji r = konst. (r'=0, r''=0), ker pa bomo računali orbite le v ekvatorialni ravnini, bo vseskozi tudi J = ÅÅÅÅ p dj. Upoštevamo še dj=konst in označimo ÅÅÅÅÅÅ = W. Ko vse to zapišemo 2 dt v enačbo geodetke svetlobe, lahko izrazimo W: g 33 Ω 2 +2g 03 Ω +g 00 = 0 Ω 1,2 = è!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 2aM ±r a 2 +r Hr 2ML r 3 +a 2 H2M +rl To vstavimo v sistem diferencialnih enačb za geodetko svetlobe, od katerih ob upoštevanju vseh pogojev ostane le ena: HM Ha Ω 1L 2 Ω 2 r 3 L Ha 2 +r Hr 2MLL Ω =0 Od tod izračunamo polmera, kjer se nahajata fotonski sferi. Graf prikazuje polmera fotonskih sfer v ekvatorialni ravnini v odvisnosti od parametra vrtenja a (R f + je radij notranje, R f - pa radij zunanje sfere): 12

13 r R f R f a V Schwarzschildovem primeru imamo le eno fotonsko sfero (R=3M), ko pa se črne luknja začne vrteti, se pojavita dve fotonski sferi, katerih medsebojna razdalja se povečuje, ko večamo parameter vrtenja. V skrajnem primeru za a=1 dobimo R f + =M in R f - =4M. Poglejmo si še nekaj podatkov, ki so pomembni pri gornjih grafih geodetk (R H - je zunanji horizont dogodkov): a M R H R f R+ f 0 2 M 3 M 3 M M M M M M M 1 M 4 M M 13

14 ü Viri -Schwarzschildova rešitev enačb splošne teorije relativnosti ( ): -Enačbe polja v splošni teoriji relativnosti ( ): -Inside a black hole ( ): -Null Geodesics Around a Kerr Black Hole ( ): -Geometry Arond Black Holes ( ): -Einstein field equations ( ): 14

Tretja vaja iz matematike 1

Tretja vaja iz matematike 1 Tretja vaja iz matematike Andrej Perne Ljubljana, 00/07 kompleksna števila Polarni zapis kompleksnega števila z = x + iy): z = rcos ϕ + i sin ϕ) = re iϕ Opomba: Velja Eulerjeva formula: e iϕ = cos ϕ +

Διαβάστε περισσότερα

Diferencialna enačba, v kateri nastopata neznana funkcija in njen odvod v prvi potenci

Diferencialna enačba, v kateri nastopata neznana funkcija in njen odvod v prvi potenci Linearna diferencialna enačba reda Diferencialna enačba v kateri nastopata neznana funkcija in njen odvod v prvi potenci d f + p= se imenuje linearna diferencialna enačba V primeru ko je f 0 se zgornja

Διαβάστε περισσότερα

Odvod. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 5. december Gregor Dolinar Matematika 1

Odvod. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 5. december Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 5. december 2013 Primer Odvajajmo funkcijo f(x) = x x. Diferencial funkcije Spomnimo se, da je funkcija f odvedljiva v točki

Διαβάστε περισσότερα

Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 21. november Gregor Dolinar Matematika 1

Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 21. november Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 21. november 2013 Hiperbolične funkcije Hiperbolični sinus sinhx = ex e x 2 20 10 3 2 1 1 2 3 10 20 hiperbolični kosinus coshx

Διαβάστε περισσότερα

Zaporedja. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 22. oktober Gregor Dolinar Matematika 1

Zaporedja. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 22. oktober Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 22. oktober 2013 Kdaj je zaporedje {a n } konvergentno, smo definirali s pomočjo limite zaporedja. Večkrat pa je dobro vedeti,

Διαβάστε περισσότερα

Odvod. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 10. december Gregor Dolinar Matematika 1

Odvod. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 10. december Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 10. december 2013 Izrek (Rolleov izrek) Naj bo f : [a,b] R odvedljiva funkcija in naj bo f(a) = f(b). Potem obstaja vsaj ena

Διαβάστε περισσότερα

Funkcijske vrste. Matematika 2. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 2. april Gregor Dolinar Matematika 2

Funkcijske vrste. Matematika 2. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 2. april Gregor Dolinar Matematika 2 Matematika 2 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 2. april 2014 Funkcijske vrste Spomnimo se, kaj je to številska vrsta. Dano imamo neko zaporedje realnih števil a 1, a 2, a

Διαβάστε περισσότερα

Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 14. november Gregor Dolinar Matematika 1

Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 14. november Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 14. november 2013 Kvadratni koren polinoma Funkcijo oblike f(x) = p(x), kjer je p polinom, imenujemo kvadratni koren polinoma

Διαβάστε περισσότερα

matrike A = [a ij ] m,n αa 11 αa 12 αa 1n αa 21 αa 22 αa 2n αa m1 αa m2 αa mn se števanje po komponentah (matriki morata biti enakih dimenzij):

matrike A = [a ij ] m,n αa 11 αa 12 αa 1n αa 21 αa 22 αa 2n αa m1 αa m2 αa mn se števanje po komponentah (matriki morata biti enakih dimenzij): 4 vaja iz Matematike 2 (VSŠ) avtorica: Melita Hajdinjak datum: Ljubljana, 2009 matrike Matrika dimenzije m n je pravokotna tabela m n števil, ki ima m vrstic in n stolpcev: a 11 a 12 a 1n a 21 a 22 a 2n

Διαβάστε περισσότερα

*M * Osnovna in višja raven MATEMATIKA NAVODILA ZA OCENJEVANJE. Sobota, 4. junij 2011 SPOMLADANSKI IZPITNI ROK. Državni izpitni center

*M * Osnovna in višja raven MATEMATIKA NAVODILA ZA OCENJEVANJE. Sobota, 4. junij 2011 SPOMLADANSKI IZPITNI ROK. Državni izpitni center Državni izpitni center *M40* Osnovna in višja raven MATEMATIKA SPOMLADANSKI IZPITNI ROK NAVODILA ZA OCENJEVANJE Sobota, 4. junij 0 SPLOŠNA MATURA RIC 0 M-40-- IZPITNA POLA OSNOVNA IN VIŠJA RAVEN 0. Skupaj:

Διαβάστε περισσότερα

Analiza 2 Rešitve 14. sklopa nalog

Analiza 2 Rešitve 14. sklopa nalog Analiza Rešitve 1 sklopa nalog Navadne diferencialne enačbe višjih redov in sistemi diferencialnih enačb (1) Reši homogene diferencialne enačbe drugega reda s konstantnimi koeficienti: (a) 6 + 8 0, (b)

Διαβάστε περισσότερα

Matematika 2. Diferencialne enačbe drugega reda

Matematika 2. Diferencialne enačbe drugega reda Matematika 2 Diferencialne enačbe drugega reda (1) Reši homogene diferencialne enačbe drugega reda s konstantnimi koeficienti: (a) y 6y + 8y = 0, (b) y 2y + y = 0, (c) y + y = 0, (d) y + 2y + 2y = 0. Rešitev:

Διαβάστε περισσότερα

KODE ZA ODKRIVANJE IN ODPRAVLJANJE NAPAK

KODE ZA ODKRIVANJE IN ODPRAVLJANJE NAPAK 1 / 24 KODE ZA ODKRIVANJE IN ODPRAVLJANJE NAPAK Štefko Miklavič Univerza na Primorskem MARS, Avgust 2008 Phoenix 2 / 24 Phoenix 3 / 24 Phoenix 4 / 24 Črtna koda 5 / 24 Črtna koda - kontrolni bit 6 / 24

Διαβάστε περισσότερα

Enačba, v kateri poleg neznane funkcije neodvisnih spremenljivk ter konstant nastopajo tudi njeni odvodi, se imenuje diferencialna enačba.

Enačba, v kateri poleg neznane funkcije neodvisnih spremenljivk ter konstant nastopajo tudi njeni odvodi, se imenuje diferencialna enačba. 1. Osnovni pojmi Enačba, v kateri poleg neznane funkcije neodvisnih spremenljivk ter konstant nastopajo tudi njeni odvodi, se imenuje diferencialna enačba. Primer 1.1: Diferencialne enačbe so izrazi: y

Διαβάστε περισσότερα

diferencialne enačbe - nadaljevanje

diferencialne enačbe - nadaljevanje 12. vaja iz Matematike 2 (VSŠ) avtorica: Melita Hajdinjak datum: Ljubljana, 2009 diferencialne enačbe - nadaljevanje Ortogonalne trajektorije Dana je 1-parametrična družina krivulj F(x, y, C) = 0. Ortogonalne

Διαβάστε περισσότερα

vezani ekstremi funkcij

vezani ekstremi funkcij 11. vaja iz Matematike 2 (UNI) avtorica: Melita Hajdinjak datum: Ljubljana, 2009 ekstremi funkcij več spremenljivk nadaljevanje vezani ekstremi funkcij Dana je funkcija f(x, y). Zanimajo nas ekstremi nad

Διαβάστε περισσότερα

IZPIT IZ ANALIZE II Maribor,

IZPIT IZ ANALIZE II Maribor, Maribor, 05. 02. 200. (a) Naj bo f : [0, 2] R odvedljiva funkcija z lastnostjo f() = f(2). Dokaži, da obstaja tak c (0, ), da je f (c) = 2f (2c). (b) Naj bo f(x) = 3x 3 4x 2 + 2x +. Poišči tak c (0, ),

Διαβάστε περισσότερα

Funkcije več spremenljivk

Funkcije več spremenljivk DODATEK C Funkcije več spremenljivk C.1. Osnovni pojmi Funkcija n spremenljivk je predpis: f : D f R, (x 1, x 2,..., x n ) u = f (x 1, x 2,..., x n ) kjer D f R n imenujemo definicijsko območje funkcije

Διαβάστε περισσότερα

Zaporedja. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 15. oktober Gregor Dolinar Matematika 1

Zaporedja. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 15. oktober Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 15. oktober 2013 Oglejmo si, kako množimo dve kompleksni števili, dani v polarni obliki. Naj bo z 1 = r 1 (cosϕ 1 +isinϕ 1 )

Διαβάστε περισσότερα

Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 12. november Gregor Dolinar Matematika 1

Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 12. november Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 12. november 2013 Graf funkcije f : D R, D R, je množica Γ(f) = {(x,f(x)) : x D} R R, torej podmnožica ravnine R 2. Grafi funkcij,

Διαβάστε περισσότερα

1. Definicijsko območje, zaloga vrednosti. 2. Naraščanje in padanje, ekstremi. 3. Ukrivljenost. 4. Trend na robu definicijskega območja

1. Definicijsko območje, zaloga vrednosti. 2. Naraščanje in padanje, ekstremi. 3. Ukrivljenost. 4. Trend na robu definicijskega območja ZNAČILNOSTI FUNKCIJ ZNAČILNOSTI FUNKCIJE, KI SO RAZVIDNE IZ GRAFA. Deinicijsko območje, zaloga vrednosti. Naraščanje in padanje, ekstremi 3. Ukrivljenost 4. Trend na robu deinicijskega območja 5. Periodičnost

Διαβάστε περισσότερα

Kotne in krožne funkcije

Kotne in krožne funkcije Kotne in krožne funkcije Kotne funkcije v pravokotnem trikotniku Avtor: Rok Kralj, 4.a Gimnazija Vič, 009/10 β a c γ b α sin = a c cos= b c tan = a b cot = b a Sinus kota je razmerje kotu nasprotne katete

Διαβάστε περισσότερα

8. Diskretni LTI sistemi

8. Diskretni LTI sistemi 8. Diskreti LI sistemi. Naloga Določite odziv diskretega LI sistema s podaim odzivom a eoti impulz, a podai vhodi sigal. h[] x[] - - 5 6 7 - - 5 6 7 LI sistem se a vsak eoti impulz δ[] a vhodu odzove z

Διαβάστε περισσότερα

Booleova algebra. Izjave in Booleove spremenljivke

Booleova algebra. Izjave in Booleove spremenljivke Izjave in Booleove spremenljivke vsako izjavo obravnavamo kot spremenljivko če je izjava resnična (pravilna), ima ta spremenljivka vrednost 1, če je neresnična (nepravilna), pa vrednost 0 pravimo, da gre

Διαβάστε περισσότερα

1. Trikotniki hitrosti

1. Trikotniki hitrosti . Trikotniki hitrosti. Z radialno črpalko želimo črpati vodo pri pogojih okolice z nazivnim pretokom 0 m 3 /h. Notranji premer rotorja je 4 cm, zunanji premer 8 cm, širina rotorja pa je,5 cm. Frekvenca

Διαβάστε περισσότερα

Numerično reševanje. diferencialnih enačb II

Numerično reševanje. diferencialnih enačb II Numerčno reševanje dferencaln enačb I Dferencalne enačbe al ssteme dferencaln enačb rešujemo numerčno z več razlogov:. Ne znamo j rešt analtčno.. Posamezn del dferencalne enačbe podan tabelarčno. 3. Podatke

Διαβάστε περισσότερα

Podobnost matrik. Matematika II (FKKT Kemijsko inženirstvo) Diagonalizacija matrik

Podobnost matrik. Matematika II (FKKT Kemijsko inženirstvo) Diagonalizacija matrik Podobnost matrik Matematika II (FKKT Kemijsko inženirstvo) Matjaž Željko FKKT Kemijsko inženirstvo 14 teden (Zadnja sprememba: 23 maj 213) Matrika A R n n je podobna matriki B R n n, če obstaja obrnljiva

Διαβάστε περισσότερα

Tema 1 Osnove navadnih diferencialnih enačb (NDE)

Tema 1 Osnove navadnih diferencialnih enačb (NDE) Matematične metode v fiziki II 2013/14 Tema 1 Osnove navadnih diferencialnih enačb (NDE Diferencialne enačbe v fiziki Večina osnovnih enačb v fiziki je zapisana v obliki diferencialne enačbe. Za primer

Διαβάστε περισσότερα

Navadne diferencialne enačbe

Navadne diferencialne enačbe Navadne diferencialne enačbe Navadne diferencialne enačbe prvega reda V celotnem poglavju bo y = dy dx. Diferencialne enačbe z ločljivima spremeljivkama Diferencialna enačba z ločljivima spremeljivkama

Διαβάστε περισσότερα

SKUPNE PORAZDELITVE VEČ SLUČAJNIH SPREMENLJIVK

SKUPNE PORAZDELITVE VEČ SLUČAJNIH SPREMENLJIVK SKUPNE PORAZDELITVE SKUPNE PORAZDELITVE VEČ SLUČAJNIH SPREMENLJIVK Kovaec vržemo trikrat. Z ozačimo število grbov ri rvem metu ( ali ), z Y a skuo število grbov (,, ali 3). Kako sta sremelivki i Y odvisi

Διαβάστε περισσότερα

Delovna točka in napajalna vezja bipolarnih tranzistorjev

Delovna točka in napajalna vezja bipolarnih tranzistorjev KOM L: - Komnikacijska elektronika Delovna točka in napajalna vezja bipolarnih tranzistorjev. Določite izraz za kolektorski tok in napetost napajalnega vezja z enim virom in napetostnim delilnikom na vhod.

Διαβάστε περισσότερα

Integralni račun. Nedoločeni integral in integracijske metrode. 1. Izračunaj naslednje nedoločene integrale: (a) dx. (b) x 3 +3+x 2 dx, (c) (d)

Integralni račun. Nedoločeni integral in integracijske metrode. 1. Izračunaj naslednje nedoločene integrale: (a) dx. (b) x 3 +3+x 2 dx, (c) (d) Integralni račun Nedoločeni integral in integracijske metrode. Izračunaj naslednje nedoločene integrale: d 3 +3+ 2 d, (f) (g) (h) (i) (j) (k) (l) + 3 4d, 3 +e +3d, 2 +4+4 d, 3 2 2 + 4 d, d, 6 2 +4 d, 2

Διαβάστε περισσότερα

Na pregledni skici napišite/označite ustrezne točke in paraboli. A) 12 B) 8 C) 4 D) 4 E) 8 F) 12

Na pregledni skici napišite/označite ustrezne točke in paraboli. A) 12 B) 8 C) 4 D) 4 E) 8 F) 12 Predizpit, Proseminar A, 15.10.2015 1. Točki A(1, 2) in B(2, b) ležita na paraboli y = ax 2. Točka H leži na y osi in BH je pravokotna na y os. Točka C H leži na nosilki BH tako, da je HB = BC. Parabola

Διαβάστε περισσότερα

Kvadratne forme. Poglavje XI. 1 Definicija in osnovne lastnosti

Kvadratne forme. Poglavje XI. 1 Definicija in osnovne lastnosti Poglavje XI Kvadratne forme V zadnjem poglavju si bomo ogledali še eno vrsto preslikav, ki jih tudi lahko podamo z matrikami. To so tako imenovane kvadratne forme, ki niso več linearne preslikave. Kvadratne

Διαβάστε περισσότερα

Matematika. Funkcije in enačbe

Matematika. Funkcije in enačbe Matematika Funkcije in enačbe (1) Nariši grafe naslednjih funkcij: (a) f() = 1, (b) f() = 3, (c) f() = 3. Rešitev: (a) Linearna funkcija f() = 1 ima začetno vrednost f(0) = 1 in ničlo = 1/. Definirana

Διαβάστε περισσότερα

Najprej zapišemo 2. Newtonov zakon za cel sistem v vektorski obliki:

Najprej zapišemo 2. Newtonov zakon za cel sistem v vektorski obliki: NALOGA: Po cesi vozi ovornjak z hirosjo 8 km/h. Tovornjak je dolg 8 m, širok 2 m in visok 4 m in ima maso 4 on. S srani začne pihai veer z hirosjo 5 km/h. Ob nekem času voznik zaspi in ne upravlja več

Διαβάστε περισσότερα

Reševanje sistema linearnih

Reševanje sistema linearnih Poglavje III Reševanje sistema linearnih enačb V tem kratkem poglavju bomo obravnavali zelo uporabno in zato pomembno temo linearne algebre eševanje sistemov linearnih enačb. Spoznali bomo Gaussovo (natančneje

Διαβάστε περισσότερα

primer reševanja volumskega mehanskega problema z MKE

primer reševanja volumskega mehanskega problema z MKE Reševanje mehanskih problemov z MKE primer reševanja volumskega mehanskega problema z MKE p p RAK: P-XII//74 Reševanje mehanskih problemov z MKE primer reševanja volumskega mehanskega problema z MKE L

Διαβάστε περισσότερα

Definicija. definiramo skalarni produkt. x i y i. in razdaljo. d(x, y) = x y = < x y, x y > = n (x i y i ) 2. i=1. i=1

Definicija. definiramo skalarni produkt. x i y i. in razdaljo. d(x, y) = x y = < x y, x y > = n (x i y i ) 2. i=1. i=1 Funkcije več realnih spremenljivk Osnovne definicije Limita in zveznost funkcije več spremenljivk Parcialni odvodi funkcije več spremenljivk Gradient in odvod funkcije več spremenljivk v dani smeri Parcialni

Διαβάστε περισσότερα

13. Jacobijeva metoda za računanje singularnega razcepa

13. Jacobijeva metoda za računanje singularnega razcepa 13. Jacobijeva metoda za računanje singularnega razcepa Bor Plestenjak NLA 25. maj 2010 Bor Plestenjak (NLA) 13. Jacobijeva metoda za računanje singularnega razcepa 25. maj 2010 1 / 12 Enostranska Jacobijeva

Διαβάστε περισσότερα

Kvantni delec na potencialnem skoku

Kvantni delec na potencialnem skoku Kvantni delec na potencialnem skoku Delec, ki se giblje premo enakomerno, pride na mejo, kjer potencial naraste s potenciala 0 na potencial. Takšno potencialno funkcijo zapišemo kot 0, 0 0,0. Slika 1:

Διαβάστε περισσότερα

Gimnazija Krˇsko. vektorji - naloge

Gimnazija Krˇsko. vektorji - naloge Vektorji Naloge 1. V koordinatnem sistemu so podane točke A(3, 4), B(0, 2), C( 3, 2). a) Izračunaj dolžino krajevnega vektorja točke A. (2) b) Izračunaj kot med vektorjema r A in r C. (4) c) Izrazi vektor

Διαβάστε περισσότερα

DISKRETNA FOURIERJEVA TRANSFORMACIJA

DISKRETNA FOURIERJEVA TRANSFORMACIJA 29.03.2004 Definicija DFT Outline DFT je linearna transformacija nekega vektorskega prostora dimenzije n nad obsegom K, ki ga označujemo z V K, pri čemer ima slednji lastnost, da vsebuje nek poseben element,

Διαβάστε περισσότερα

Osnove matematične analize 2016/17

Osnove matematične analize 2016/17 Osnove matematične analize 216/17 Neža Mramor Kosta Fakulteta za računalništvo in informatiko Univerza v Ljubljani Kaj je funkcija? Funkcija je predpis, ki vsakemu elementu x iz definicijskega območja

Διαβάστε περισσότερα

Kotni funkciji sinus in kosinus

Kotni funkciji sinus in kosinus Kotni funkciji sinus in kosinus Oznake: sinus kota x označujemo z oznako sin x, kosinus kota x označujemo z oznako cos x, DEFINICIJA V PRAVOKOTNEM TRIKOTNIKU: Kotna funkcija sinus je definirana kot razmerje

Διαβάστε περισσότερα

UNIVERZA V MARIBORU FAKULTETA ZA KEMIJO IN KEMIJSKO TEHNOLOGIJO MATEMATIKA III

UNIVERZA V MARIBORU FAKULTETA ZA KEMIJO IN KEMIJSKO TEHNOLOGIJO MATEMATIKA III UNIVERZA V MARIBORU FAKULTETA ZA KEMIJO IN KEMIJSKO TEHNOLOGIJO Petra Žigert Pleteršek MATEMATIKA III Maribor, september 215 ii Kazalo Diferencialni račun vektorskih funkcij 1 1.1 Skalarne funkcije...........................

Διαβάστε περισσότερα

Vaje iz MATEMATIKE 8. Odvod funkcije., pravimo, da je funkcija f odvedljiva v točki x 0 z odvodom. f (x f(x 0 + h) f(x 0 ) 0 ) := lim

Vaje iz MATEMATIKE 8. Odvod funkcije., pravimo, da je funkcija f odvedljiva v točki x 0 z odvodom. f (x f(x 0 + h) f(x 0 ) 0 ) := lim Študij AHITEKTURE IN URBANIZMA, šol l 06/7 Vaje iz MATEMATIKE 8 Odvod funkcije f( Definicija: Naj bo f definirana na neki okolici točke 0 Če obstaja lim 0 +h f( 0 h 0 h, pravimo, da je funkcija f odvedljiva

Διαβάστε περισσότερα

Fazni diagram binarne tekočine

Fazni diagram binarne tekočine Fazni diagram binarne tekočine Žiga Kos 5. junij 203 Binarno tekočino predstavljajo delci A in B. Ti se med seboj lahko mešajo v različnih razmerjih. V nalogi želimo izračunati fazni diagram take tekočine,

Διαβάστε περισσότερα

Poglavje 7. Poglavje 7. Poglavje 7. Regulacijski sistemi. Regulacijski sistemi. Slika 7. 1: Normirana blokovna shema regulacije EM

Poglavje 7. Poglavje 7. Poglavje 7. Regulacijski sistemi. Regulacijski sistemi. Slika 7. 1: Normirana blokovna shema regulacije EM Slika 7. 1: Normirana blokovna shema regulacije EM Fakulteta za elektrotehniko 1 Slika 7. 2: Principielna shema regulacije AM v KSP Fakulteta za elektrotehniko 2 Slika 7. 3: Merjenje komponent fluksa s

Διαβάστε περισσότερα

7. VAJA IZ MEHANIKE TRDNIH TELES. (tenzor deformacij II) (tenzor majhnih deformacij in rotacij, kompatibilitetni pogoji)

7. VAJA IZ MEHANIKE TRDNIH TELES. (tenzor deformacij II) (tenzor majhnih deformacij in rotacij, kompatibilitetni pogoji) 7. VAJA IZ MEHANIKE TRDNIH TELES (tenzor deformacij II) (tenzor majhnih deformacij in rotacij, kompatibilitetni pogoji) NALOGA 1: Pomik deformabilnega telesa je glede na kartezijski koordinatni sistem

Διαβάστε περισσότερα

Iterativno reševanje sistemov linearnih enačb. Numerične metode, sistemi linearnih enačb. Numerične metode FE, 2. december 2013

Iterativno reševanje sistemov linearnih enačb. Numerične metode, sistemi linearnih enačb. Numerične metode FE, 2. december 2013 Numerične metode, sistemi linearnih enačb B. Jurčič Zlobec Numerične metode FE, 2. december 2013 1 Vsebina 1 z n neznankami. a i1 x 1 + a i2 x 2 + + a in = b i i = 1,..., n V matrični obliki zapišemo:

Διαβάστε περισσότερα

Kontrolne karte uporabljamo za sprotno spremljanje kakovosti izdelka, ki ga izdelujemo v proizvodnem procesu.

Kontrolne karte uporabljamo za sprotno spremljanje kakovosti izdelka, ki ga izdelujemo v proizvodnem procesu. Kontrolne karte KONTROLNE KARTE Kontrolne karte uporablamo za sprotno spremlane kakovosti izdelka, ki ga izdeluemo v proizvodnem procesu. Izvaamo stalno vzorčene izdelkov, npr. vsako uro, vsake 4 ure.

Διαβάστε περισσότερα

Afina in projektivna geometrija

Afina in projektivna geometrija fina in projektivna geometrija tožnice () kiciraj stožnico v evklidski ravnini R, ki je določena z enačbo 6 3 8 + 6 =. Rešitev: tožnica v evklidski ravnini je krivulja, ki jo določa enačba a + b + c +

Διαβάστε περισσότερα

1. VAJA IZ TRDNOSTI. (linearna algebra - ponovitev, Kroneckerjev δ i j, permutacijski simbol e i jk )

1. VAJA IZ TRDNOSTI. (linearna algebra - ponovitev, Kroneckerjev δ i j, permutacijski simbol e i jk ) VAJA IZ TRDNOSTI (lnearna algebra - ponovtev, Kroneckerev δ, permutacsk smbol e k ) NALOGA : Zapš vektor a = [, 2,5,] kot lnearno kombnaco vektorev e = [,,,], e 2 = [,2,3,], e 3 = [2,,, ] n e 4 = [,,,]

Διαβάστε περισσότερα

Če je električni tok konstanten (se ne spreminja s časom), poenostavimo enačbo (1) in dobimo enačbo (2):

Če je električni tok konstanten (se ne spreminja s časom), poenostavimo enačbo (1) in dobimo enačbo (2): ELEKTRIČNI TOK TEOR IJA 1. Definicija enote električnega toka Električni tok je gibanje električno nabitih delcev v trdnih snoveh (kovine, polprevodniki), tekočinah ali plinih. V kovinah se gibljejo prosti

Διαβάστε περισσότερα

Osnove elektrotehnike uvod

Osnove elektrotehnike uvod Osnove elektrotehnike uvod Uvod V nadaljevanju navedena vprašanja so prevod testnih vprašanj, ki sem jih našel na omenjeni spletni strani. Vprašanja zajemajo temeljna znanja opredeljenega strokovnega področja.

Διαβάστε περισσότερα

UPOR NA PADANJE SONDE V ZRAKU

UPOR NA PADANJE SONDE V ZRAKU UPOR NA PADANJE SONDE V ZRAKU 1. Hitrost in opravljena pot sonde pri padanju v zraku Za padanje v zraku je odgovorna sila teže. Poleg sile teže na padajoče telo deluje tudi sila vzgona, ki je enaka teži

Διαβάστε περισσότερα

17. Električni dipol

17. Električni dipol 17 Električni dipol Vsebina poglavja: polarizacija prevodnika (snovi) v električnem polju, električni dipolni moment, polarne in nepolarne snovi, dipol v homogenem in nehomogenem polju, potencial in polje

Διαβάστε περισσότερα

Domače naloge za 2. kolokvij iz ANALIZE 2b VEKTORSKA ANALIZA

Domače naloge za 2. kolokvij iz ANALIZE 2b VEKTORSKA ANALIZA Domače naloge za 2. kolokvij iz ANALIZE 2b VEKTORSKA ANALIZA. Naj bo vektorsko polje R : R 3 R 3 dano s predpisom R(x, y, z) = (2x 2 + z 2, xy + 2yz, z). Izračunaj pretok polja R skozi površino torusa

Διαβάστε περισσότερα

Mehanika. L. D. Landau in E. M. Lifšic Inštitut za fizikalne naloge, Akademija za znanost ZSSR, Moskva Prevod: Rok Žitko, IJS

Mehanika. L. D. Landau in E. M. Lifšic Inštitut za fizikalne naloge, Akademija za znanost ZSSR, Moskva Prevod: Rok Žitko, IJS Mehanika L. D. Landau in E. M. Lifšic Inštitut za fizikalne naloge, Akademija za znanost ZSSR, Moskva Prevod: Rok Žitko, IJS 2. januar 2004 Kazalo 1 Gibalne enačbe 4 1 Posplošene koordinate...............................

Διαβάστε περισσότερα

p 1 ENTROPIJSKI ZAKON

p 1 ENTROPIJSKI ZAKON ENROPIJSKI ZAKON REERZIBILNA srememba: moža je obrjea srememba reko eakih vmesih staj kot rvota srememba. Po obeh sremembah e sme biti obeih trajih srememb v bližji i dalji okolici. IREERZIBILNA srememba:

Διαβάστε περισσότερα

PONOVITEV SNOVI ZA 4. TEST

PONOVITEV SNOVI ZA 4. TEST PONOVITEV SNOVI ZA 4. TEST 1. * 2. *Galvanski člen z napetostjo 1,5 V požene naboj 40 As. Koliko električnega dela opravi? 3. ** Na uporniku je padec napetosti 25 V. Upornik prejme 750 J dela v 5 minutah.

Διαβάστε περισσότερα

NEPARAMETRIČNI TESTI. pregledovanje tabel hi-kvadrat test. as. dr. Nino RODE

NEPARAMETRIČNI TESTI. pregledovanje tabel hi-kvadrat test. as. dr. Nino RODE NEPARAMETRIČNI TESTI pregledovanje tabel hi-kvadrat test as. dr. Nino RODE Parametrični in neparametrični testi S pomočjo z-testa in t-testa preizkušamo domneve o parametrih na vzorcih izračunamo statistike,

Διαβάστε περισσότερα

SEMINARSKA NALOGA Funkciji sin(x) in cos(x)

SEMINARSKA NALOGA Funkciji sin(x) in cos(x) FAKULTETA ZA MATEMATIKO IN FIZIKO Praktična Matematika-VSŠ(BO) Komuniciranje v matematiki SEMINARSKA NALOGA Funkciji sin(x) in cos(x) Avtorica: Špela Marinčič Ljubljana, maj 2011 KAZALO: 1.Uvod...1 2.

Διαβάστε περισσότερα

Državni izpitni center SPOMLADANSKI IZPITNI ROK *M * FIZIKA NAVODILA ZA OCENJEVANJE. Petek, 10. junij 2016 SPLOŠNA MATURA

Državni izpitni center SPOMLADANSKI IZPITNI ROK *M * FIZIKA NAVODILA ZA OCENJEVANJE. Petek, 10. junij 2016 SPLOŠNA MATURA Državni izpitni center *M16141113* SPOMLADANSKI IZPITNI ROK FIZIKA NAVODILA ZA OCENJEVANJE Petek, 1. junij 16 SPLOŠNA MATURA RIC 16 M161-411-3 M161-411-3 3 IZPITNA POLA 1 Naloga Odgovor Naloga Odgovor

Διαβάστε περισσότερα

Funkcije dveh in več spremenljivk

Funkcije dveh in več spremenljivk Poglavje 3 Funkcije dveh in več spremenljivk 3.1 Osnovni pojmi Definicija 3.1.1. Funkcija dveh spremenljivk je preslikava, ki vsaki točki (x, y) ravninske množice D priredi realno število z = f(x, y),

Διαβάστε περισσότερα

REˇSITVE. Naloga a. b. c. d Skupaj. FAKULTETA ZA MATEMATIKO IN FIZIKO Oddelek za matematiko Verjetnost 2. kolokvij 23.

REˇSITVE. Naloga a. b. c. d Skupaj. FAKULTETA ZA MATEMATIKO IN FIZIKO Oddelek za matematiko Verjetnost 2. kolokvij 23. Ime in priimek: Vpisna št: FAKULTETA ZA MATEMATIKO IN FIZIKO Oddelek za matematiko Verjetnost. kolokvij 3. januar 08 Navodila Pazljivo preberite besedilo naloge, preden se lotite reševanja. Nalog je 6,

Διαβάστε περισσότερα

3. VAJA IZ TRDNOSTI. Rešitev: Pomik v referenčnem opisu: u = e y 2 e Pomik v prostorskem opisu: u = ey e. e y,e z = e z.

3. VAJA IZ TRDNOSTI. Rešitev: Pomik v referenčnem opisu: u = e y 2 e Pomik v prostorskem opisu: u = ey e. e y,e z = e z. 3. VAJA IZ TRDNOSTI (tenzor deformacij) (pomiki togega telesa, Lagrangev in Eulerjev opis, tenzor velikih deformacij, tenzor majhnih deformacij in rotacij, kompatibilitetni pogoji) NALOGA 1: Gumijasti

Διαβάστε περισσότερα

Transformator. Delovanje transformatorja I. Delovanje transformatorja II

Transformator. Delovanje transformatorja I. Delovanje transformatorja II Transformator Transformator je naprava, ki v osnovi pretvarja napetost iz enega nivoja v drugega. Poznamo vrsto različnih izvedb transformatorjev, glede na njihovo specifičnost uporabe:. Energetski transformator.

Διαβάστε περισσότερα

INŽENIRSKA MATEMATIKA I

INŽENIRSKA MATEMATIKA I INŽENIRSKA MATEMATIKA I REŠENE NALOGE za izredne študente VSŠ Tehnično upravljanje nepremičnin Marjeta Škapin Rugelj Fakulteta za gradbeništvo in geodezijo Kazalo Števila in preslikave 5 Vektorji 6 Analitična

Διαβάστε περισσότερα

Frekvenčna analiza neperiodičnih signalov. Analiza signalov prof. France Mihelič

Frekvenčna analiza neperiodičnih signalov. Analiza signalov prof. France Mihelič Frekvenčna analiza neperiodičnih signalov Analiza signalov prof. France Mihelič Vpliv postopka daljšanja periode na spekter periodičnega signala Opazujmo družino sodih periodičnih pravokotnih impulzov

Διαβάστε περισσότερα

MATEMATIKA 1 UNIVERZITETNI ŠTUDIJSKI PROGRAM BIOKEMIJA 1. LETNIK

MATEMATIKA 1 UNIVERZITETNI ŠTUDIJSKI PROGRAM BIOKEMIJA 1. LETNIK abc MATEMATIKA 1 UNIVERZITETNI ŠTUDIJSKI PROGRAM BIOKEMIJA 1. LETNIK ŠTEVILA PRIBLIŽNO RAČUNANJE PRIBLIŽNO RAČUNANJE Ta fosil dinozavra je star 7 milijonov in šest let, pravi paznik v muzeju.??? Ko sem

Διαβάστε περισσότερα

Matematika I (VS) Univerza v Ljubljani, FE. Melita Hajdinjak 2013/14. Pregled elementarnih funkcij. Potenčna funkcija. Korenska funkcija.

Matematika I (VS) Univerza v Ljubljani, FE. Melita Hajdinjak 2013/14. Pregled elementarnih funkcij. Potenčna funkcija. Korenska funkcija. 1 / 46 Univerza v Ljubljani, FE Potenčna Korenska Melita Hajdinjak Matematika I (VS) Kotne 013/14 / 46 Potenčna Potenčna Funkcijo oblike f() = n, kjer je n Z, imenujemo potenčna. Število n imenujemo eksponent.

Διαβάστε περισσότερα

ZBIRKA REŠENIH NALOG IZ MATEMATIKE I

ZBIRKA REŠENIH NALOG IZ MATEMATIKE I Univerza v Ljubljani Fakulteta za elektrotehniko Andrej Perne ZBIRKA REŠENIH NALOG IZ MATEMATIKE I Skripta za vaje iz Matematike I (UNI + VSP) Ljubljana, množice Osnovne definicije: Množica A je podmnožica

Διαβάστε περισσότερα

Inverzni problem lastnih vrednosti evklidsko razdaljnih matrik

Inverzni problem lastnih vrednosti evklidsko razdaljnih matrik Univerza v Ljubljani Fakulteta za računalništvo in informatiko Fakulteta za matematiko in fiziko Peter Škvorc Inverzni problem lastnih vrednosti evklidsko razdaljnih matrik DIPLOMSKO DELO UNIVERZITETNI

Διαβάστε περισσότερα

Klasifikacija blizu Kelerovih mnogostrukosti. konstantne holomorfne sekcione krivine. Kelerove. mnogostrukosti. blizu Kelerove.

Klasifikacija blizu Kelerovih mnogostrukosti. konstantne holomorfne sekcione krivine. Kelerove. mnogostrukosti. blizu Kelerove. Klasifikacija blizu Teorema Neka je M Kelerova mnogostrukost. Operator krivine R ima sledeća svojstva: R(X, Y, Z, W ) = R(Y, X, Z, W ) = R(X, Y, W, Z) R(X, Y, Z, W ) + R(Y, Z, X, W ) + R(Z, X, Y, W ) =

Διαβάστε περισσότερα

Splošno o interpolaciji

Splošno o interpolaciji Splošno o interpolaciji J.Kozak Numerične metode II (FM) 2011-2012 1 / 18 O funkciji f poznamo ali hočemo uporabiti le posamezne podatke, na primer vrednosti r i = f (x i ) v danih točkah x i Izberemo

Διαβάστε περισσότερα

Naloge iz vaj: Sistem togih teles C 2 C 1 F A 1 B 1. Slika 1: Sile na levi in desni lok.

Naloge iz vaj: Sistem togih teles C 2 C 1 F A 1 B 1. Slika 1: Sile na levi in desni lok. 1 Rešene naloge Naloge iz vaj: Sistem togih teles 1. Tročleni lok s polmerom R sestavljen iz lokov in je obremenjen tako kot kaže skica. Določi sile podpor. Rešitev: Lok razdelimo na dva loka, glej skico.

Διαβάστε περισσότερα

Navadne diferencialne enačbe

Navadne diferencialne enačbe Poglavje 6 Navadne diferencialne enačbe 6.1 Uvod Splošna rešitev navadne diferencialne enačbe n-tega reda F(x, y, y, y,..., y (n) ) = 0 je n-parametrična družina funkcij. Kadar želimo iz splošne rešitve

Διαβάστε περισσότερα

Libracija Lune. Alexander Jerman, Domen Mlakar, Milan Grkovski, Gabriela Hladnik

Libracija Lune. Alexander Jerman, Domen Mlakar, Milan Grkovski, Gabriela Hladnik Libracija Lune Alexander Jerman, Domen Mlakar, Milan Grkovski, Gabriela Hladnik 8. september 006 Gibanje Lune 1. Libracija Pojem libracija prihaja iz latinskega glagola libro -are "uravnotežiti, nihati"(tudi

Διαβάστε περισσότερα

cot x ni def. 3 1 KOTNE FUNKCIJE POLJUBNO VELIKEGA KOTA (A) Merske enote stopinja [ ] radian [rad] 1. Izrazi kot v radianih.

cot x ni def. 3 1 KOTNE FUNKCIJE POLJUBNO VELIKEGA KOTA (A) Merske enote stopinja [ ] radian [rad] 1. Izrazi kot v radianih. TRIGONOMETRIJA (A) Merske enote KOTNE FUNKCIJE POLJUBNO VELIKEGA KOTA stopinja [ ] radian [rad] 80 80 0. Izrazi kot v radianih. 0 90 5 0 0 70. Izrazi kot v stopinjah. 5 8 5 (B) Definicija kotnih funkcij

Διαβάστε περισσότερα

Snov v električnem polju. Električno polje dipola (prvi način) Prvi način: r + d 2

Snov v električnem polju. Električno polje dipola (prvi način) Prvi način: r + d 2 Snov v lktričnm polju lktrično polj ipola (prvi način) P P - Prvi način: z r = r Δr r = r Δr Δr Δ r - r r r r r r Δr rδr =, = 4πε r r 4πε r r r r = r cos, r r r = r cos. r Vlja: = cos, r r r r r = cos,

Διαβάστε περισσότερα

INTEGRALI RACIONALNIH FUNKCIJ

INTEGRALI RACIONALNIH FUNKCIJ UNIVERZA V LJUBLJANI PEDAGOŠKA FAKULTETA NIKA HREN INTEGRALI RACIONALNIH FUNKCIJ DIPLOMSKO DELO LJUBLJANA, 203 UNIVERZA V LJUBLJANI PEDAGOŠKA FAKULTETA MATEMATIKA - RAČUNALNIŠTVO NIKA HREN Mentor: izr.

Διαβάστε περισσότερα

Odvode odvisnih spremenljivk po neodvisni spremenljivki bomo označevali s piko: Sistem navadnih diferencialnih enačb prvega reda ima obliko:

Odvode odvisnih spremenljivk po neodvisni spremenljivki bomo označevali s piko: Sistem navadnih diferencialnih enačb prvega reda ima obliko: 4 Sisemi diferencialnih enačb V prakičnih primerih večkra naleimo na več diferencialnih enačb, ki opisujejo določen pojav in so medsebojno povezane edaj govorimo o sisemih diferencialnih enačb V eh enačbah

Διαβάστε περισσότερα

Matematika 1. Gabrijel Tomšič Bojan Orel Neža Mramor Kosta

Matematika 1. Gabrijel Tomšič Bojan Orel Neža Mramor Kosta Matematika Gabrijel Tomšič Bojan Orel Neža Mramor Kosta 6. november 200 Poglavje 2 Zaporedja in številske vrste 2. Zaporedja 2.. Uvod Definicija 2... Zaporedje (a n ) = a, a 2,..., a n,... je predpis,

Διαβάστε περισσότερα

Linearna algebra. Bojan Orel Fakulteta za računalništvo in informatiko

Linearna algebra. Bojan Orel Fakulteta za računalništvo in informatiko Linearna algebra Bojan Orel Fakulteta za računalništvo in informatiko 23. februar 205 CIP - Kataložni zapis o publikaciji Narodna in univerzitetna knjižnica, Ljubljana 52.64(075.8)(0.034.2) OREL, Bojan

Διαβάστε περισσότερα

Matematika 1. Gregor Dolinar. 2. januar Fakulteta za elektrotehniko Univerza v Ljubljani. Gregor Dolinar Matematika 1

Matematika 1. Gregor Dolinar. 2. januar Fakulteta za elektrotehniko Univerza v Ljubljani. Gregor Dolinar Matematika 1 Mtemtik 1 Gregor Dolinr Fkultet z elektrotehniko Univerz v Ljubljni 2. jnur 2014 Gregor Dolinr Mtemtik 1 Izrek (Izrek o povprečni vrednosti) Nj bo m ntnčn spodnj mej in M ntnčn zgornj mej integrbilne funkcije

Διαβάστε περισσότερα

6.1.2 Togostna matrika linijskega elementa z ravno osjo po teoriji II. reda

6.1.2 Togostna matrika linijskega elementa z ravno osjo po teoriji II. reda 596 6 Geometrijska nelinearnost nosilcev varnost V E pa z enačbo V E = F E F dej 6.92) Z A x je označena ploščina prečnega prereza nosilca, količina i min je najmanjši vztrajnostni polmer, F dej pa je

Διαβάστε περισσότερα

Jasna Prezelj DIFERENCIALNE ENAČBE. za finančno matematiko

Jasna Prezelj DIFERENCIALNE ENAČBE. za finančno matematiko Jasna Prezelj DIFERENCIALNE ENAČBE za finančno matematiko Ljubljana 211 naslov: DIFERENCIALNE ENAČBE ZA FINANČNO MATEMATIKO avtorske pravice: Jasna Prezelj izdaja: prva izdaja založnik: samozaložba Jasna

Διαβάστε περισσότερα

3.1 Reševanje nelinearnih sistemov

3.1 Reševanje nelinearnih sistemov 3.1 Reševanje nelinearnih sistemov Rešujemo sistem nelinearnih enačb f 1 (x 1, x 2,..., x n ) = 0 f 2 (x 1, x 2,..., x n ) = 0. f n (x 1, x 2,..., x n ) = 0. Pišemo F (x) = 0, kjer je x R n in F : R n

Διαβάστε περισσότερα

UNIVERZA V LJUBLJANI PEDAGOŠKA FAKULTETA SANDRA BOLTA LASTNE VREDNOSTI GRAFA DIPLOMSKO DELO

UNIVERZA V LJUBLJANI PEDAGOŠKA FAKULTETA SANDRA BOLTA LASTNE VREDNOSTI GRAFA DIPLOMSKO DELO UNIVERZA V LJUBLJANI PEDAGOŠKA FAKULTETA SANDRA BOLTA LASTNE VREDNOSTI GRAFA DIPLOMSKO DELO LJUBLJANA, 2014 2 UNIVERZA V LJUBLJANI PEDAGOŠKA FAKULTETA Študijska smer: Fizika in matematika SANDRA BOLTA

Διαβάστε περισσότερα

Matematika 1. Gabrijel Tomšič Bojan Orel Neža Mramor Kosta

Matematika 1. Gabrijel Tomšič Bojan Orel Neža Mramor Kosta Matematika 1 Gabrijel Tomšič Bojan Orel Neža Mramor Kosta 21. april 2008 102 Poglavje 4 Odvod 4.1 Definicija odvoda Naj bo funkcija f definirana na intervalu (a, b) in x 0 točka s tega intervala. Vzemimo

Διαβάστε περισσότερα

V tem poglavju bomo vpeljali pojem determinante matrike, spoznali bomo njene lastnosti in nekaj metod za računanje determinant.

V tem poglavju bomo vpeljali pojem determinante matrike, spoznali bomo njene lastnosti in nekaj metod za računanje determinant. Poglavje IV Determinanta matrike V tem poglavju bomo vpeljali pojem determinante matrike, spoznali bomo njene lastnosti in nekaj metod za računanje determinant 1 Definicija Preden definiramo determinanto,

Διαβάστε περισσότερα

ZBIRKA REŠENIH NALOG IZ MATEMATIKE II

ZBIRKA REŠENIH NALOG IZ MATEMATIKE II Univerza v Ljubljani Fakulteta za elektrotehniko Andrej Perne ZBIRKA REŠENIH NALOG IZ MATEMATIKE II Skripta za vaje iz Matematike II (UNI + VSP) Ljubljana, determinante Determinanta det A je število, prirejeno

Διαβάστε περισσότερα

1. UREJENE OBLIKE KVADRATNE FUNKCIJE

1. UREJENE OBLIKE KVADRATNE FUNKCIJE 1. UREJENE OBLIKE KVADRATNE FUNKCIJE A) Splošna oblika Definicija 1 : Naj bodo a, b in c realna števila in a 0. Realno funkcijo: f : x ax + bx + c imenujemo kvadratna funkcija spremenljivke x v splošni

Διαβάστε περισσότερα

1 Fibonaccijeva stevila

1 Fibonaccijeva stevila 1 Fibonaccijeva stevila Fibonaccijevo število F n, kjer je n N, lahko definiramo kot število načinov zapisa števila n kot vsoto sumandov, enakih 1 ali Na primer, število 4 lahko zapišemo v obliki naslednjih

Διαβάστε περισσότερα

3. AMPEROV ZAKON. SLIKA: Zanka v magnetnem polju. Integral komponente magnetnega polja v smeri zanke je sorazmeren toku, ki ga zanka oklepa.

3. AMPEROV ZAKON. SLIKA: Zanka v magnetnem polju. Integral komponente magnetnega polja v smeri zanke je sorazmeren toku, ki ga zanka oklepa. 3. AMPEROV ZAKON Equation Section 3 Vsebina poglavja: Integral polja po zaključeni zanki je sorazmeren toku, ki ga zanka objame. Izračuni polja s pomočjo Amperovega zakona za: tokovno premico, solenoid,

Διαβάστε περισσότερα

UNIVERZA V MARIBORU FAKULTETA ZA KEMIJO IN KEMIJSKO TEHNOLOGIJO MATEMATIKA II

UNIVERZA V MARIBORU FAKULTETA ZA KEMIJO IN KEMIJSKO TEHNOLOGIJO MATEMATIKA II UNIVERZA V MARIBORU FAKULTETA ZA KEMIJO IN KEMIJSKO TEHNOLOGIJO Petra Žigert Pleteršek MATEMATIKA II Maribor, 2016 Kazalo Uvod v linearno algebro 1 1.1 Matrike................................ 1 1.2 Računanje

Διαβάστε περισσότερα

VEKTORJI. Operacije z vektorji

VEKTORJI. Operacije z vektorji VEKTORJI Vektorji so matematični objekti, s katerimi opisujemo določene fizikalne količine. V tisku jih označujemo s krepko natisnjenimi črkami (npr. a), pri pisanju pa s puščico ( a). Fizikalne količine,

Διαβάστε περισσότερα

SEMINAR - 4. LETNIK. Veliki pok. Avtor: Daša Rozmus. Mentor: dr. Anže Slosar in prof. dr. Tomaž Zwitter. Ljubljana, Marec 2011

SEMINAR - 4. LETNIK. Veliki pok. Avtor: Daša Rozmus. Mentor: dr. Anže Slosar in prof. dr. Tomaž Zwitter. Ljubljana, Marec 2011 SEMINAR - 4. LETNIK Veliki pok Avtor: Daša Rozmus Mentor: dr. Anže Slosar in prof. dr. Tomaž Zwitter Ljubljana, Marec 2011 Povzetek Že stoletja pred našim štetjem so se ljudje spraševali kaj nas obdaja,

Διαβάστε περισσότερα