(ΕΥΦ11) ΥΠΟΛΟΓΙΣΤΙΚΕΣ ΜΕΘΟΔΟΙ ΟΙΚΟΝΟΜΙΚΗΣ ΦΥΣΙΚΗΣ
|
|
- Ευφήμιος Βιλαέτης
- 8 χρόνια πριν
- Προβολές:
Transcript
1 (ΕΥΦ) ΥΠΟΛΟΓΙΣΤΙΚΕΣ ΜΕΘΟΔΟΙ ΟΙΚΟΝΟΜΙΚΗΣ ΦΥΣΙΚΗΣ Διδάκοντες: Θεοδώρου Γιώργος Κουγιουμτζής Δημήτρης τηλ Ιτοελίδα μαθήματος:
2
3 ΜΕΡΟΣ ΠΡΩΤΟ (Χρονοειρές υχετίεις). Ειαγωγή: Θέματα μελέτης της οικονομικής φυικής Χρηματιτηριακή αγορά και πολύπλοκα υτήματα. Αγορές και τατιτικά τοιχεία Αποτελεματική αγορά Παρατηρήεις χρηματιτηριακών αγορών Τυχαίος περίπατος Γκαουιανή κατανομή και Κεντρικό Οριακό Θεώρημα Ευταθείς κατανομές και Κεντρικό Οριακό Θεώρημα 3. Συχετίεις ε χρονοειρές Κατανομές και ροπές τοχατικής διαδικαίας Σταιμότητα - Αυτουχέτιη Εκτίμηη του εκθέτη υχέτιης μακράς κλίμακας 4. Μοντέλα χρονοειρών και πρόβλεψη Γραμμικά μοντέλα πρόβλεψης χρονοειρών Ατάθεια χρονοειράς Γραμμικά μοντέλα πρόβλεψης της διαποράς
4 ΜΕΡΟΣ ΔΕΥΤΕΡΟ (Συνεχής χρόνος) 3. Μέθοδοι ανάλυης χαρτοφυλακίου - επιλογή και βελτιτοποίηη Ειαγωγή τις τοχατικές διαδικαίες, Στοχατικές διαφορικές μεταβολές, λήμμα Ito, Κλαική θεωρία τυχαίων μεταβολών, Πιθανότητα κατανομής των αποδόεων, εξίωη διάχυης, Αναχαίτιη κινδύνου, μοντέλο Black-Scholes, Θεωρία κλίμακας, αδυναμίες του κλαικού μοντέλου, Ευταθείς κατανομές, διαδικαίες τύπου Levy, Μη-μηδενικός κίνδυνος ε πραγματικό περιβάλλον, Επιλογή και βελτιτοποίηη χαρτοφυλακίου, Αναγωγή το μοντέλο Black-Scholes.
5 Προτεινόμενα βιβλία. A Itroductio to Ecoophysics Correlatio ad Complexity i Fiace, Matega R.N. ad Staley E.H., Cambridge Uiversity Press,.. Theory of Fiacial Risks From Statistical Physics to Risk Maagemet, Bouchaud J-P. ad Potters, M., Cambridge Uiversity Press,. 3. Fiacial Market Complexity Johso N.F., Jefferies P. ad Hui P. M., Oxford Uiversity Press, The Statistical Mechaics of Fiacial Markets Series: Theoretical ad Mathematical Physics Voit, Johaes, 3rd ed., Spriger, 5 (ηλεκτρονικό βιβλίο) 5. A Itroductio to the Mathematics of Fiacial Derivatives, S.N. Neftci, Academic Press,
6 Εξετάεις (το τέλος) Εξετάεις πάνω τη θεωρία, Προφορικές εξετάεις τα προγράμματα, (Κάθε φοιτητής προκομίζει νωρίτερα το CD του, με λυμένες τις ακήεις που δόθηκαν κατά τη διάρκεια του εξαμήνου).
7 S&P 5, ημερήια καταγραφή Date,Ope,High,Low,Close,Volume,Adj. Close* 8-Sep-4,6.9,.76,.67,.6,68456,.6 7-Sep-4,7.5,.,3.3,3.5,47648,3.5 4-Sep-4,8.65,3.79,8.36,.,5536,. 3-Sep-4,.9,3.7,8.4,8.36, ,8.36 -Sep-4,.34,9.3,.7,3.56, ,3.56 -Sep-4,4.8,3.5,.,9.3,5933,9.3 -Sep-4,3.48,8.55,.3,.,553,. 7-Sep-4,7.,3.44,3.5,8.55, , Sep-4,.8,6.4,.37,3.5,358,3.5 idex ακόμα παλιότερα S&P ακόμα υχνότερα? Kατανομή? - μεγάλες διακυμάνεις? - νόμος δύναμης (power-law)? Συχέτιη? (αυτουχέτιη ή φάμα ιχύος) - μικρής / μεγάλης διάρκειας? - κλιμάκωη (scalig)? Διαδικαία / ύτημα? - τυχαίος περίπατος? - Μαρκοβιανή διαδικαία? - διαδικαία μακρών υχετίεων (Levy) - Σύτημα με μεταβαλλόμενη διακύμανη? - Μη-γραμμικό δυναμικό ύτημα? - Πρόβλεψη? Συχετίεις δεικτών?...?
8 Πολύπλοκα υτήματα Χρηματιτηριακές αγορές S&P5 6 Γεωφυική / Οικολογία Fluctuatios of Globe Temperature Φυιολογία / Βιολογία EEG 4.5 idex 8 6 idex idex year time [sec] Ope systems: may subuits iteract oliearly i the presece of feedback idex ASE Φυική - εμπειρική ανάλυη - τατιτική φυική? Οικονομικά υτήματα
9 Αποδοτική αγορά (efficiet market) A market is said to be efficiet if all the available iformatio is istatly processed whe it reaches the market ad it is immediately reflected i a ew value of prices of the assets traded [ ]... δηλαδή... E Y Y, Y,, Y Y : η τιμή ενός δείκτη t+ t = t... δηλαδή... δεν κερδίζεις απλά γνωρίζοντας τις προηγούμενες μεταβολές του δείκτη... αλλά... μήπως κερδίζεις έχοντας επιπλέον πληροφορία (για τις προηγούμενες μεταβολές άλλων δεικτών) πολυ-μεταβλητή ανάλυη χρονοειρών Y t Η υπόθεη της αποδοτικής αγοράς είναι ιδεατή, αλλά όχι πραγματική... αλλά... μας επιτρέπει να αναπτύξουμε θεωρίες και μοντέλα. τυχαίος περίπατος?
10 idex Δεν υπάρχει φυικός χρόνος... αλλά... χρόνος υναλλαγής (tradig time) Παρατηρήεις χρηματιτηριακών αγορών Date,Ope,High,Low,Close,Volume,Adj. Close* 8-Sep-4,6.9,.76,.67,.6,68456,.6 πληροφορία το «νεκρό χρόνο»? Y t : η τιμή ενός δείκτη { y y y },,, S&P5 χρονοειρά Sep-4,7.5,.,3.3,3.5,47648,3.5 4-Sep-4,8.65,3.79,8.36,.,5536,. 3-Sep-4,.9,3.7,8.4,8.36, ,8.36 -Sep-4,.34,9.3,.7,3.56, ,3.56 -Sep-4,4.8,3.5,.,9.3,5933,9.3 -Sep-4,3.48,8.55,.3,.,553,. 7-Sep-4,7.,3.44,3.5,8.55, , Sep-4,.8,6.4,.37,3.5,358,3.5 Ποια μεταβλητή να μελετήουμε? first differece relative chage differece of logs 5-5 S&P5, first differeces S&P5, relative chages S&P5, differece of logs μεταβολή τιμής xt = yt yt χετική μεταβολή τιμής yt x = t y y t t μεταβολή λογαριθμού τιμής xt = l yt l yt
11 [ ] E Y Y, Y,, Y Y t+ t = t Τυχαίος περίπατος (radom walk) xt = yt yt,,, [ ] E = i ανεξάρτητες τ.μ. με την ίδια κατανομή (iid) E = i = δ E i j ij Y = + + τυχαίος περίπατος S&P5 6 4 idex [ ] E Y = i E Y i = Η διαπορά αυξάνει γραμμικά με το χρόνο! Το υνεχές όριο : t Δt = Δt E ( ) = = Δt Yt t Dt ταθερά διάχυης { Yt ()} διαδικαία Wieer κατανομή των i Y?
12 Γκαουιανή ή κανονική κατανομή (Gaussia or ormal distributio) ~ Ν( μ, ) υνάρτηη πυκνότητας πιθανότητας (ππ) f ( x) = e π ( x μ ) Τυποποιημένη Γκαουιανή κατανομή f (x) μ= = μ= =4 μ= =4 Μεταχηματιμός τυποποίηης i s Z = i =,, Γκαουιανά τυχαία βήματα μ ~ Ν( μ, ) ανεξάρτητες Y Y = + + Γκαουιανός τυχαίος περίπατος -5 5 f s ( x) φ( x) = e π ~ Ν ( μ, ) x / Όταν τα βήματα δεν είναι Γκαουιανά?
13 Κεντρικό Οριακό Θεώρημα (ΚΟΘ) i ανεξάρτητες E i = i < > 3 Y ~ Ν(, Y) Απλούτευη: ππ της = Y [ ] E = i fy ( y) Y = step= step= step= step= step=4 υνέλιξη των ππ f ( y) = f ( x) f ( x) = Y + f ( xf ) ( y x)dx Παράδειγμα i iid από ομοιόμορφη κατανομή ~ U[.5,.5]
14 =,...,5 Γενικά = Y Ειδικά f Y (y).5 = i Y = Y stadardized ( ) s Y = Y / f s Y s(y).4.3. s Y μεγάλο ~ Ν(,). Y s - 4
15 Παράδειγμα iid από εκθετική κατανομή =.4 = f Y (y).4 f Y (y) =3 Y =4 Y f Y3 (y)..5 f Y4 (y) Y 3 Y 4
16 =,...,5 Παράδειγμα iid από εκθετική κατανομή.6 = i Y = f Y (y).4. 5 Y μεγάλο stadardized ( ) s Y = Y / s Y ~ Ν(,) πιο αργή ύγκλιη από ομοιόμορφη ταχύτητα ύγκλιης? όρια ύγκλιης? f Y s(y).6.4 f ( y) φ( y) s Y. 5 Y s 4
17 Χώρος κατανομών υνεχούς τυχαίας μεταβλητής Απεικόνιη το χώρο Y = Y + Y f ( y ) = f ( y ) f ( y ) Y Y Y φ ( y) : ευταθές ημείο f ( Y y ) Πεπεραμένη διαπορά f ( Y y ) f ( Y 3 y ) f Y ( y ) φ ( y ) Λεκάνη έλξης: όλες οι κατανομές με πεπεραμένη διαπορά Η Γκαουιανή κατανομή είναι ευταθής Αν, ~ ευταθή κατανομή Y= + ~ την ίδια ευταθή κατανομή
18 Ευταθή κατανομή Αν, ~ ευταθή κατανομή Χαρακτηριτική υνάρτηη + iqy ϕy( q) = fy( y) e dy Μεταχηματιμός Fourier της ππ Y= + ~ την ίδια ευταθή κατανομή εύχρητο f ( y) = f ( y) f ( y) Y ϕ ( q) = ϕ ( q) ϕ ( q) Y εργαλείο από χαρακτηριτική υνάρτηη ε ππ Y f ( x) = e π Παράδειγμα ~ Ν(, ) x ϕ Y ( q ) e = + iqy fy( y) = ϕy( q) e dq π q Y = +, Γκαουιανές iid q q ϕy ( q ) = e e = e fy ( y) = e π ( ) y q ( ) Y ~ Γκαουιανή Y ~ Ν(, ) Η Γκαουιανή κατανομή είναι ευταθής Άλλες ευταθείς κατανομές? Θα πρέπει να έχουν άπειρη διαπορά
19 6 S&P5 S&P5, first differeces 4 5 idex Y iid? = first differece Y = Y + S&P5, +. N βήματα = 643 N/=64 ιτογράμματα από 64 δεδομένα για κάθε βήμαy sum of first differeces 5-5 f Y (y) S&P5 υγκλίνει ε Γκαουιανή? Y - 5
Μάθημα 1: Εισαγωγή στην ανα λυση χρονοσειρω ν, στασιμο τητα και αυτοσυσχε τιση
«Ποσοτικε ς Με θοδοι στα Οικονομικα : Ανα λυση οικονομικω ν χρονοσειρω ν με γραμμικε ς μεθο δους» - Με ρος Α, Διδάσκων: Κουγιουμτζής Δημήτρης Quaiaive Topics i Ecoomics: Time Series Aalysis wih Liear Mehods
Γιατί; Το παραδοσιακό υπόδειγμα: y t = β 1 + β 2 x 2t β k x kt + u t, ή y = Xβ + u. Υποθέτουμε u t. N(0,σ 2 ).
Υποδείγματα GARCH Γιατί; Κίνητρο: υποδείγματα που υποθέτουν γραμμική δομή δεν μπορούν να εξηγήουν ημαντικά χαρακτηρίτηκα των χρηματοοικονομικών χρονοειρών - λεπτοκύρτοη - volaili clusering Το παραδοιακό
Χρονοσειρές Μάθημα 1
Χρονοσειρές Μάθημα Περιεχόμενα - Στασιμότητα, αυτοσυσχέτιση, μερική αυτοσυσχέτιση, απομάκρυνση στοιχείων μη-στατικότητας, έλεγχος ανεξαρτησίας για χρονικές σειρές - Γραμμικές στοχαστικές διαδικασίες: αυτοπαλινδρομούμενη
Χρονοσειρές Μάθημα 1
Χρονοσειρές Μάθημα Μάθημα του προπτυχιακού προγράμματος σπουδών του Τμήματος Ηλεκτρολόγων Μηχανικών και Μηχανικών Η/Υ (ΤΗΜΜΥ) ΑΠΘ Κουγιουμτζής Δημήτρης Αν. Καθηγητής Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών
Υπολογιστικές Μέθοδοι Οικονομικής Φυσικής Μέρος Α
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ Υπολογιστικές Μέθοδοι Οικονομικής Φυσικής Μέρος Α Κουγιουμτζής Δημήτρης, Επ. Καθηγητής Γενικό Τμήμα, Πολυτεχνική Σχολή ΑΠΘ e-mail: dkugiu@ge.auh.gr, hp://users.auh.gr/~dkugiu/
3. Κατανομές πιθανότητας
3. Κατανομές πιθανότητας Τυχαία Μεταβλητή τυχαία μεταβλητή (τ.μ. ( είναι μια υνάρτηη που ε κάθε απλό ενδεχόμενο (ω ενός δειγματικού χώρου (Ω αντιτοιχεί έναν αριθμό. Ω ω (ω R ιακριτή τ.μ. : παίρνει πεπεραμένο
ΔΕΙΓΜΑΤΙΚΕΣ ΚΑΤΑΝΟΜΕΣ (Sampling Distributions)
ΚΕΦΑΛΑΙΟ 0 ΔΕΙΓΜΑΤΙΚΕΣ ΚΑΤΑΝΟΜΕΣ (amplig Distibutios) Ένα χαρακτηριτικό των επιτημονικών μελετών τις οποίες απαιτείται η χρήη των διαδικαιών της Στατιτικής Συμπεραματολογίας είναι η ύπαρξη τυχαιότητας
Πιθανότητες & Τυχαία Σήματα
Πιθανότητες & Τυχαία Σήματα Συχέτιη Διγαλάκης Βαίλης Η έννοια της υχέτιης Για τυχαίες μεταβλητές ΧΥ: Συχέτιη: ΕΧ Υ Συμμεταβλητότητα: Συντελετής υχέτιης: ρ / Έτω ΧΥ Τ.Μ. με ΥΧb και ΕΧμ Χ ΕΧ-μ Χ Χ Υπολογίτε
Ψηφιακός Έλεγχος. 8 η διάλεξη Σφάλματα. Ψηφιακός Έλεγχος 1
Ψηφιακός Έλεγχος 8 η διάλεξη Σφάλματα Ψηφιακός Έλεγχος Δυαδική αριθμητική και μήκος λέξης Ένας αριθμός μπορεί να αναπαραταθεί απο C+ bits που ονομάζονται λέξη. Το μήκος της λέξης είναι πάντα πεπεραμένο,
5. ΘΕΩΡΙΑ ΕΙΓΜΑΤΟΛΗΨΙΑΣ
5 5. ΘΕΩΡΙΑ ΕΙΓΜΑΤΟΛΗΨΙΑΣ ΠΛΗΘΥΣΜΟΣ ΚΑΙ ΕΙΓΜΑ. ΣΤΑΤΙΣΤΙΚΗ ΣΥΜΠΕΡΑΣΜΑΤΟΛΟΓΙΑ Στην πράξη θέλουµε υχνά να βγάλουµε υµπεράµατα για µια µεγάλη οµάδα ατόµων ή αντικειµένων. Αντί να µελετήουµε ολόκληρη την οµάδα,
ρ. Ευστρατία Μούρτου
ΑΝΩΤΑΤΟ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙ ΕΥΤΙΚΟ Ι ΡΥΜΑ ΠΑΤΡΩΝ ΣΧΟΛΗ ΕΠΑΓΓΕΛΜΑΤΩΝ ΥΓΕΙΑΣ ΚΑΙ ΠΡΟΝΟΙΑΣ ΤΜΗΜΑ ΝΟΣΗΛΕΥΤΙΚΗΣ ΕΞΑΜΗΝΟ : Ε ΑΚΑ ΗΜΑΪΚΟ ΕΤΟΣ : 009-010 ΜΑΘΗΜΑ «ΒΙΟΣΤΑΤΙΣΤΙΚΗ» ΚΕΦ. 4 ΚΑΤΑΝΟΜΕΣ ΠΙΘΑΝΟΤΗΤΩΝ ρ. Ευτρατία
Στοχαστική Προσοµοίωση ισδιάστατων Τυχαίων Πεδίων µε ιατήρηση της Εµµονής
Στοχατική Προοµοίωη ιδιάτατων Τυχαίων Πεδίων µε ιατήρηη της Εµµονής Παρουίαη ιπλωµατικής Εργαίας 22/07/2004 Νίκος Θεοδωράτος Επιβλέπων:. Κουτογιάννης, Αν. Καθηγητής Εθνικό Μετόβιο Πολυτεχνείο Σχολή Πολιτικών
Παρουσίαση 4 η : Στοιχεία στατιστικής αξιολόγησης εκτιμήσεων
Εφαρμογές Ανάλυης Σήματος τη Γεωδαιία Παρουίαη 4 η : Στοιχεία τατιτικής αξιολόγηης εκτιμήεων Βαίλειος Δ. Ανδριτάνος Αναπληρωτής Καθηγητής Γεώργιος Χλούπης Επίκουρος Καθηγητής Τμήμα Μηχανικών Τοπογραφίας
ΒΑΣΙΚΕΣ ΣΥΝΕΧΕΙΣ ΚΑΤΑΝΟΜΕΣ (ΣΥΝΕΧΕΙΑ)
(ΣΥΝΕΧΕΙΑ) Χαράλαµπος Α. Χαραλαµπίδης 9 εκεµβρίου 2009 Η ηµαντικότερη κατανοµή πιθανότητας της Θεωρίας Πιθανοτήτων και της Στατιτικής, µε µεγάλο πεδίο εφαρµογών, είναι η κανονική κατανοµή. Η κατανοµή αυτή
Στατιστικοί Ελεγχοι. t-έλεγχος για την σύγκριση των µέσων δύο πληθυσµών. Έλεγχος 5: Έλεγχος της οµοιογένειας δύο πληθυσµών µε διακυµάνσεις σ 1
Στατιτικοί Ελεγχοι Έλεγχος 1: Ζ-Έλεγχος για τον µέο µ ενός πληθυµού Έλεγχος : t - Έλεγχος για τον µέο µ ενός πληθυµού Έλεγχος 3: I -τετράγωνο Έλεγχος για την διακύµανη Έλεγχος 4: t-έλεγχος για την ύγκριη
4. Ειδικές Διακριτές, Συνεχείς Κατανομές
4. Ειδικές Διακριτές, Συνεχείς Κατανομές 4.. Η ομοιόμορφη διακριτή κατανομή. Εμφανίζεται τις περιπτώεις όπου η υπό εξέταη τ.μ. Χ παίρνει πεπεραμένο πήθος τιμών π.χ. Χ {,,...,} και όες οι πιθανότητες P
2 Αγορές και στατιστικά στοιχεία
Αγορές και στατιστικά στοιχεία Σε αυτό το κεφάλαιο θα περιγράψουμε κάποια στατιστικά χαρακτηριστικά των χρηματιστηριακών αγορών με ιδιαίτερη έμφαση στην κατανομή και στην αυτοσυσχέτιση σε χρονοσειρές δεικτών
1. Η κανονική κατανοµή
. Η κανονική κατανοµή Η κανονική κατανοµή είναι η ηµαντικότερη κατανοµή πιθανοτήτων µε τις περιότερες εφαρµογές. Μελετήθηκε αρχικά από τον De Moire (667-754) και από τον Lple (749-87) οι οποίοι απέδειξαν
ηµοκρίτειο Πανεπιστήµιο, Τµήµα ΜηχανικώνΠαραγωγής& ιοίκησης 1
Στατιτική υµπεραµατολογία για τη διαδικαία της ποιότητας Στο προηγούµενο κεφάλαιο κάναµε την παραδοχή και υποθέαµε ότι οι παράµετροι των κατανοµών των πιθανοτήτων άρα και οι παράµετροι της διαδικαίας ήταν
05_01_Εκτίμηση παραμέτρων και διαστημάτων. Γούργουλης Βασίλειος Καθηγητής Τ.Ε.Φ.Α.Α. Σ.Ε.Φ.Α.Α. Δ.Π.Θ.
Ν161_Στατιτική τη Φυική Αγωγή 05_01_Εκτίμηη παραμέτρων και διατημάτων Γούργουλης Βαίλειος Καθηγητής Τ.Ε.Φ.Α.Α. Σ.Ε.Φ.Α.Α. Δ.Π.Θ. 1 Για την περιγραφή μιας μεταβλητής, που μετριέται ε έναν πληθυμό ή ε ένα
Θεωρία Στοχαστικών Σηµάτων: Εκτίµηση Φάσµατος. Παραµετρικά µοντέλα
ΒΕΣ 6 Προαρµοτικά Συτήµατα τις Τηλεπικοιννίες Θερία Στοχατικών Σηµάτν: Εκτίµηη φάµατος, Παραµετρικά µοντέλα Ειαγγή Μοντέλα Στοχατικών Βιβλιογραφία Ενότητας uto []: Κεφάλαιo Widrow [985]: Chaptr 3 Hayi
ΕΛΕΓΧΟΙ ΥΠΟΘΕΣΕΩΝ ΓΙΑ ΔΙΑΚΥΜΑΝΣΕΙΣ
ΚΕΦΑΛΑΙΟ ΕΛΕΓΧΟΙ ΥΠΟΘΕΣΕΩΝ ΓΙΑ ΔΙΑΚΥΜΑΝΣΕΙΣ ΕΛΕΓΧΟΙ ΥΠΟΘΕΣΕΩΝ ΓΙΑ ΤΗΝ ΔΙΑΚΥΜΑΝΣΗ ΕΝΟΣ ΠΛΗΘΥΣΜΟΥ Έχουμε ήδη δει την εκτιμητική ότι αν ο υπό μελέτη πληθυμός είναι κανονικός, τότε: [ Χi Χ] ( n 1) i= 1 = =
, της Χ που έχουμε διαθέσιμες μετά από μια πραγματοποίηση του τυχαίου δείγματος X, X, 2
Στατιτικές Συναρτήεις και Δειγματοληπτικές Κατανομές Στατιτικές Συναρτήεις και Δειγματοληπτικές Κατανομές Στην ενότητα «Από τις Πιθανότητες τη Στατιτική» εξηγήαμε ότι τη Στατιτική «όλα αρχίζουν από τα
ΕΙΣΑΓΩΓΙΚΕΣ ΔΙΑΛΕΞΕΙΣ ΒΑΣΙΚΟΥ ΕΡΓΑΣΤΗΡΙΟΥ ΦΥΣΙΚΗΣ I
ΕΙΣΑΓΩΓΙΚΕΣ ΔΙΑΛΕΞΕΙΣ ΒΑΣΙΚΟΥ ΕΡΓΑΣΤΗΡΙΟΥ ΦΥΣΙΚΗΣ I Ευτάθιος Στυλιάρης Αναπληρωτής Καθηγητής Συντονιτής Εργατηρίων Φυικής I Με την υνδρομή των: Α. Καραμπαρμπούνη, Κ.Ν. Παπανικόλα, Ν. Μαμαλούγκου ΕΡΓΑΣΤΗΡΙΟ
ΣΤΟΧΑΣΤΙΚΑ ΣΥΣΤΗΜΑΤΑ & ΕΠΙΚΟΙΝΩΝΙΕΣ 1o Τμήμα (Α - Κ): Αμφιθέατρο 4, Νέα Κτίρια ΣΗΜΜΥ Θεωρία Πιθανοτήτων & Στοχαστικές Ανελίξεις - 5
ΣΤΟΧΑΣΤΙΚΑ ΣΥΣΤΗΜΑΤΑ & ΕΠΙΚΟΙΝΩΝΙΕΣ 1o Τμήμα (Α - Κ): Αμφιθέατρο 4, Νέα Κτίρια ΣΗΜΜΥ Θεωρία Πιθανοτήτων & Στοχαστικές Ανελίξεις - 5 5.10 Θόρυβος (Noise) καθ. Βασίλης Μάγκλαρης maglaris@etmode.tua.gr www.etmode.tua.gr
Πανεπιστήμιο Πελοποννήσου
Πανεπιτήμιο Πελοποννήου Εκτιμήεις Διατήματα Εμπιτούνης Έλεγχοι Υποθέεων Stefao G. Giakoumato Εκτιμητική Οι κατανομές των τατιτικών έχουν άγνωτες παραμέτρους, οι οποίες πρέπει να εκτιμηθούν Εκτιμητές ε
Η ΕΝΝΟΙΑ ΤΗΣ ΤΥΧΑΙΑΣ ΜΕΤΑΒΛΗΤΗΣ
Η ΕΝΝΟΙΑ ΤΗΣ ΤΥΧΑΙΑΣ ΜΕΤΑΒΛΗΤΗΣ Η απεικόνιη των εκβάεων ενός πειράµατος τύχης την ευθεία των πραγµατικών αριθµών οδηγεί την τυχαία µεταβλητή. 9 3 6 ( ω ω 9 36 44 Τα αποτελέµατα ενός πειράµατος τύχης ορίζουν
Εκτιµητική. Boutsikas M.V. (2003), Σηµειώσεις Στατιστικής ΙΙΙ, Τµήµα Οικονοµικής Επιστήµης, Πανεπιστήµιο Πειραιώς.
4 Εκτιµητική Σύνδεη θεωρίας πιθανοτήτων - περιγραφικής τατιτικής H περιγραφική τατιτική (ΣΤΑΤΙΣΤΙΚΗ Ι αφορά κυρίως τη µελέτη κάποιων «µεγεθών» (πχ µέη τιµή, διαπορά, διάµεος, κοκ ενός «δείγµατος» υγκεκριµένων
4 e. υ (Γ) υ (Δ) 1 (Ε) 1+ i
. Αν τα 4 6 8 δ, i, d, i και d αντιτοιχούν όλα το ίδιο αποτελεματικό επιτόκιο, τότε i 6 i 6 4 4 d 4 8 d 8 6 4 e δ (Α) 3 υ (Β) υ (Γ) υ (Δ) (Ε) + i . Ένα 0ετές αφαλιτικό προϊόν εγγυάται απόδοη 7% τα πρώτα
σ (t) = (sin t + t cos t) 2 + (cos t t sin t) = t )) 5 = log 1 + r (t) = 2 + e 2t + e 2t = e t + e t
ΛΥΣΕΙΣ. Οι ακήεις από το βιβλίο των Mrsden - Tromb.. 3.)e) Είναι t) sin t + t os t, os t t sin t, 3) οπότε t) sin t + t os t) + os t t sin t) + 3 t + 4 και το μήκος είναι ίο με t t) dt t + 4 dt t + 4 +
Θεωρία Πιθανοτήτων & Στατιστική
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ & Στατιστική Ενότητα 4 η : Χαρακτηριστικά Τυχαίων Μεταβλητών. Γεώργιος Ζιούτας Τμήμα Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών Α.Π.Θ.
ΚΕΦΑΛΑΙΟ 2 Ο ΤΥΧΑΙΕΣ ΜΕΤΑΒΛΗΤΕΣ ΚΑΙ ΚΑΤΑΝΟΜΕΣ ΤΟΥΣ
ΚΕΦΑΛΑΙΟ Ο ΤΥΧΑΙΕΣ ΜΕΤΑΒΛΗΤΕΣ ΚΑΙ ΚΑΤΑΝΟΜΕΣ ΤΟΥΣ. Τυχαίες µεταβητές Ποές φορές ε ένα πείραµα τύχης δεν µας ενδιαφέρει ο δειγµατοχώρος του ο οποίος όπως είδαµε µπορεί να είναι και µη-αριθµητικό ύνοο αά
Υπολογιστική Στατιστική Φυσική και Εφαρμογές. Γ. Θεοδώρου 1
Υπολογιστική Στατιστική Φυσική και Εφαρμογές Γ. Θεοδώρου 1 Περιεχόμενο 1. Γενικά Εισαγωγή στα MATLAB και Octave. 2. Προσομοιώσεις Monte Carlo, Τυχαίες μεταβλητές, κατανομές, πυκνότητα πιθανότητας, Τυχαίοι
( α ). Να δηλωθεί η συνάρτηση με την genter. ( β ). Να εφαρμοστεί τον αντίστροφο μετασχηματισμό Laplace και να αποδειχθεί Θεωρητικά.
Δίνεται η υνάρτηη μεταφοράς ενός αυτόματου υτήματος πλοήγηης υπερηχητικού αεροπλάνου, το οποίο επικουρεί την αεροδυναμική ευτάθεια του, κάνοντας την πτήη ποιο ταθερή και ποιο άνετη. Ζητείται να μελετηθεί
Επεξεργασία. Μέθοδοι Monte Carlo Εφαρμογές στην Επίλυση Προβλημάτων
Υπολογιτικές Εφαρμογές την Στατιτική Επεξεργαία Δεδομένων Στα πλαίια του μαθήματος ΠΙΘΑΝΟΤΗΤΕΣ, ΣΤΑΤΙΣΤΙΚΗ & ΣΤΟΙΧΕΙΑ ΑΡΙΘΜΗΤΙΚΗΣ ΑΝΑΛΥΣΗΣ Δ. Φαουλιώτης, Ε. Στυλιάρης ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ, 3 3 Μέθοδοι Monte
1 Το Μεθοδολογικό Πλαίσιο Μέσου- ιακύμανσης... 11
Περιεχόμενα Πρόλογος... 7 Ειαγωγικό ημείωμα... 9 Το Μεθοδολογικό Πλαίιο Μέου- ιακύμανης.... Ειαγωγή.... Απόδοη και Κίνδυνος....3 Διαφοροποίηη Χαρτοφυλακίων... 5.4 Το Αποτελεματικό Μέτωπο... 7.5 Τεχνικές
ο εκτιμητής LS είναι n 1 x y 2 t Οι βασικές ιδιότητες του εκτιμητή είναι: ( ) = β, αμεροληψία, . Αν έχουμε n x C, τότε Var Τότε, θα έχουμε Var (
Στο γραμμικό υπόδειγμα y = β + u, =,,, ο εκτιμητής LS είναι = β = = y Οι βαικές ιδιότητες του εκτιμητή είναι: E ( β ) = β, αμεροληψία, Var ( β ) = = Αν έχουμε =, τότε y = β =, ο δειγματικός μέος του y
ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ 12) ΤΕΛΙΚΗ ΕΞΕΤΑΣΗ 13 Ιουνίου 2010
ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) ΤΕΛΙΚΗ ΕΞΕΤΑΣΗ Ιουνίου Θέμα ( μονάδες) Έτω αβγδ,,, και V = αβγδ,,,, όπου α= (,,), β= (,,), γ= (,5,), δ= (5,,). i)
ΕΟ31 ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗ ΙΟΙΚΗΣΗ. Τόμος : Θεωρία Χαρτοφυλακίου
ΕΟ3 ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗ ΙΟΙΚΗΣΗ Τόμος : Θεωρία Χαρτοφυλακίου Μάθημα 0: Απόδοη και κίνδυνος Σε αυτή την ενότητα θα μάθουμε να υπολογίζουμε την απόδοη και τον κίνδυνο κάθε αξιόγραφου. Ειδικότερα θα διαχωρίουμε
ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ
ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΚΗΣ ΕΠΙΣΤΗΜΗΣ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΚΑΤΕΥΘΥΝΣΗ ΕΦΑΡΜΟΣΜΕΝΗ ΟΙΚΟΝΟΜΙΚΗ ΚΑΙ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗ ΤΙΜΟΛΟΓΗΣΗ ΠΑΡΑΓΩΓΩΝ ΥΠΟ ΣΥΝΘΗΚΕΣ ΕΤΕΡΟΣΚΕΔΑΣΤΙΚΟΤΗΤΑΣ
Παρουσίαση 3 η : Αρχές εκτίμησης παραμέτρων Μέρος 2 ο
Εφαρμογές Ανάλυης Σήματος τη Γεωδαιία Παρουίαη 3 η : Αρχές εκτίμηης παραμέτρων Μέρος ο Βαίλειος Δ. Ανδριτάνος Αναπληρωτής Καθηγητής Γεώργιος Χλούπης Επίκουρος Καθηγητής Τμήμα Μηχανικών Τοπογραφίας και
Υπόδειγμα αποτίμησης κεφαλαιακών Περιουσιακών Στοιχείων (CAPM)
άθημα 2 Υπόδειγμα αποτίμηης κεφαλαιακών Περιουιακών Στοιχείων (CAP) Ο υνολικός κίνδυνος μιας μετοχής διαχωρίζεται το υτηματικό κίνδυνο και το μη υτηματικό κίνδυνο Συτηματικός κίνδυνος : o κίνδυνος που
Θεωρία Πιθανοτήτων & Στατιστική
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ & Στατιστική Ενότητα 6 η : Θεωρητικές Κατανομές Πιθανότητας για Συνεχή Τυχαία Μεταβλητή. Γεώργιος Ζιούτας Τμήμα Ηλεκτρολόγων Μηχανικών
ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems
ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Ανάλυση Ουράς Αναμονής M/G/1 Αρχές Ανάλυσης Ουράς M/G/1 Ενσωματωμένη Αλυσίδα Markov (Embedded Markov Chain) Τύποι Pollaczeck - Khinchin (P-K) για Ουρές M/G/1 Μέσες Τιμές
ΔΙΑΣΤΗΜΑΤΑ ΕΜΠΙΣΤΟΣΥΝΗΣ ΓΙΑ ΤΗΝ ΔΙΑΦΟΡΑ ΜΕΣΩΝ ΤΙΜΩΝ ΚΑΝΟΝΙΚΩΝ ΠΛΗΘΥΣΜΩΝ
ΚΕΦΑΛΑΙΟ 14 ΔΙΑΣΤΗΜΑΤΑ ΕΜΠΙΣΤΟΣΥΝΗΣ ΓΙΑ ΤΗΝ ΔΙΑΦΟΡΑ ΜΕΣΩΝ ΤΙΜΩΝ ΚΑΝΟΝΙΚΩΝ ΠΛΗΘΥΣΜΩΝ Έτω Χ 1, Χ,..., Χ και Υ 1, Υ,..., Υ m δύο τυχαία δείγματα μεγέθους και m αντίτοιχα από δύο ανεξάρτητους κανονικούς πληθυμούς
όπου Z 1,Z 2,,Z n ανεξ. τ.μ. που ακολουθούν N(0,1), δηλαδή μ Δt + σ Δt Zi σ 2 Δt) για κάποιες σταθερές μ, σ 2. Οι τ.μ. Δ t Z1, Δt
5.3. Προομοίωη τιμών χρηματοοικονομικών προϊόντων Σε αυτή την παράγραφο θα εξετάουμε ένα μοντέλο που μπορεί να χρηιμοποιηθεί για την μελέτη της εξέλιξης των τιμών χρηματοοικονομικών προϊόντων (π.χ. μετοχές,
MAJ. MONTELOPOIHSH II
MAJ MONTELOPOIHSH II ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΕΑΡΙΝΟ ΕΞΑΜΗΝΟ 009 ΦΥΛΛΑΔΙΟ ΑΣΚΗΣΕΩΝ ΙV Οι ασκήσεις είναι από το βιβλίο του Simon Haykin Θα ακολουθήσει ακόμη ένα φυλλάδιο τις επόμενες μέρες Άσκηση
Μεθοδολογία των Επιστημών του Ανθρώπου: Στατιστική
Μεθοδολογία των Επιτημών του Ανθρώπου: Στατιτική Ενότητα 2: Βαίλης Γιαλαμάς Σχολή Επιτημών της Αγωγής Τμήμα Εκπαίδευης και Αγωγής την Προχολική Ηλικία Περιεχόμενα ενότητας Παρουιάζονται οι βαικές έννοιες
5. ιαστήµατα Εµπιστοσύνης
5 ιατήµατα Εµπιτούνης Στο προηγούµενο κεφάλαιο αχοληθήκαµε εκτενώς µε την εκτίµηη των παραµέτρων διαφόρων κατανοµών Για παράδειγµα είδαµε ότι η καλύτερη εκτιµήτρια για την εκτίµηη της µέης τιµής ενός κανονικού
και ονομάζεται μηδενική υπόθεση (null hypothesis), και η άλλη με H
Στατιτικός Έλεγχος Υποθέεων Ένας νέος τύπος τιγάρων βρίκεται το τάδιο ποιοτικού ελέγχου. Αν το τμήμα ποιοτικού ελέγχου της καπνοβιομηχανίας παραγωγής, ενδιαφέρεται να γνωρίζει τη μέη ποότητα νικοτίνης
Είδη σφαλµάτων. Σφάλµατα στις παρατηρήσεις. Θεωρία Σφαλµάτων ΑΚΡΙΒΕΙΕΣ ΙΕΙΚΟΝΙΚΩΝ ΑΠΟ ΟΣΕΩΝ
Είδη φαλµάτων Σφάλµα µετρηµένη αληθής τιµή Τυχαία - Εµφανίζονται χεδόν ε όλες τις παρατηρήεις και ακολουθούν υνήθως κανονική κατανοµή. Συτηµατικά - Εµφανίζονται ε όλες τις παρατηρήεις και µπορεί να µοντελοποιηθούν
Κεφάλαιο 1: Εισαγωγή... 11
Περιεχόμενα Πρόλογος... 7 Ειαγωγικό ημείωμα... 9 Κεφάλαιο : Ειαγωγή.... Η Παγκόμια Χρηματοπιτωτική Κρίη.... Το Αντικείμενο και ο Στόχος του Βιβλίου... 9.3 Η Δομή του Βιβλίου... 0 Κεφάλαιο : Η ιαχείριη
ΔΙΑΧΕΙΡΙΣΗ ΕΠΕΝΔΥΣΕΩΝ
Ακαδηµαϊκό έτος 015-016 Εαρινό Εξάµηνο ΔΙΑΧΕΙΡΙΣΗ ΕΠΕΝΔΥΣΕΩΝ Α.Α.Δράκος Διάλεξη 5 η 6 η. Υποδειγµα Ιορροπίας τις Κεφαλαιαγορές Υπόδειγµα Αποτίµηης Περιουιακών Στοιχείων Γραµµή Αξιογράφων Συντελετής βήτα
Introduction of Numerical Analysis #03 TAGAMI, Daisuke (IMI, Kyushu University)
Itroductio of Numerical Aalysis #03 TAGAMI, Daisuke (IMI, Kyushu Uiversity) web page of the lecture: http://www2.imi.kyushu-u.ac.jp/~tagami/lec/ Strategy of Numerical Simulatios Pheomea Error modelize
Δυναμική Μηχανών I. Επίλυση Προβλημάτων Αρχικών Συνθηκών σε Συνήθεις. Διαφορικές Εξισώσεις με Σταθερούς Συντελεστές
Δυναμική Μηχανών I Επίλυση Προβλημάτων Αρχικών Συνθηκών σε Συνήθεις 5 3 Διαφορικές Εξισώσεις με Σταθερούς Συντελεστές 2015 Δημήτριος Τζεράνης, Ph.D Τμήμα Μηχανολόγων Μηχανικών Ε.Μ.Π. tzeranis@gmail.com
και ονομάζεται μηδενική υπόθεση (null hypothesis), και η άλλη με H
Στατιτικός Έλεγχος Υποθέεων Ένας νέος τύπος τιγάρων βρίκεται το τάδιο ποιοτικού ελέγχου. Αν το τμήμα ποιοτικού ελέγχου της καπνοβιομηχανίας παραγωγής, ενδιαφέρεται να γνωρίζει τη μέη ποότητα νικοτίνης
ΙΑΧΕΙΡΙΣΗ ΚΑΙ ΑΝΑΛΥΣΗ ΠΕΡΙΒΑΛΛΟΝΤΙΚΩΝ Ε ΟΜΕΝΩΝ
ΙΑΧΕΙΡΙΣΗ ΚΑΙ ΑΝΑΛΥΣΗ ΠΕΡΙΒΑΛΛΟΝΤΙΚΩΝ Ε ΟΜΕΝΩΝ Μάριος Βαφειάδης Αν. Καθηγητής ΤΥΤΠ-ΑΠΘ Θεαλονίκη 0 ΕΙΣΑΓΩΓΗ...4 I. ΜΕΤΡΗΣΕΙΣ...5. ΓΕΝΙΚΑ...5. ΧΑΡΑΚΤΗΡΙΣΤΙΚΑ ΤΩΝ ΟΡΓΑΝΩΝ ΜΕΤΡΗΣΕΩΝ...6 3. ΚΑΝΟΝΕΣ ΓΙΑ ΕΠΙΤΥΧΕΙΣ
ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ ΣΤΑΤΙΣΤΙΚΗ Ι ΜΕΡΟΣ Α (Σ. ΧΑΤΖΗΣΠΥΡΟΣ) . Δείξτε ότι η στατιστική συνάρτηση T = X( n)
ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ ΣΤΑΤΙΣΤΙΚΗ Ι ΜΕΡΟΣ Α (Σ. ΧΑΤΖΗΣΠΥΡΟΣ) Θέμα ο (Παρ..3.4, Παρ..4.3, Παρ..4.8.) Εάν = ( ) τυχαίο δείγμα από την ομοιόμορφη ( 0, ) X X,, X. Δείξτε ότι η στατιστική συνάρτηση T = X = το δειγματικό
ΚΕΦΑΛΑΙΟ 6. Τιμολόγηση Δικαιωμάτων σε συνεχή χρόνο Το μοντέλο των Black and Scholes
ΚΕΑΛΑΙΟ 6 Τιμολόγηη Δικαιμάτν ε υνεχή χρόνο Το μοντέλο τν Blk nd hol 6.. Το Μοντέλο τν Blk hol ή Blk hol Mon Έτ μια χρηματοοικονομική αγορά εξεταζόμενη το χρονικό διάτημα [0 ] για κάποιο δεδομένο Τ. Συμβολίζουμε
, x > a F X (x) = x 3 0, αλλιώς.
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-17: Πιθανότητες - Χειµερινό Εξάµηνο 015 ιδάσκων : Π. Τσακαλίδης 11ο Φροντιστήριο - Θέµατα Εξετάσεων από προηγούµενα έτη Επιµέλεια : Κωνσταντίνα Φωτιάδου
12.1 Σχεδιασμός αξόνων
1.1 Σχεδιαμός αξόνων Επιδιώκοντας τον χεδιαμό αξόνων αναζητούμε τις διαμέτρους τα διάφορα ημεία αλλαγής διατομών ή επιβολής φορτίων και τα μήκη του άξονα που αντιτοιχούν τις διαμέτρους, την ακτίνα καμπυλότητας
Γραπτή Εξέταση Περιόδου Φεβρουαρίου 2012
Εργατήριο Μαθηματικών & Στατιτικής Μάθημα: Στατιτική Γραπτή Εξέταη Περιόδου Φεβρουαρίου για τα Τμήματα Ε.Τ.Τ. και Γ.Β. 6// ο Θέμα [] Η ποότητα, έτω Χ, φυτικών ινών που περιέχεται ε ψωμί ολικής άλεης με
ΕΠΙΠΕ Ο ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΟ ΚΥΜΑ
XΙ ΕΠΙΠΕ Ο ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΟ ΚΥΜΑ ΙΑ ΟΣΗ ΕΠΙΠΕ ΟΥ ΚΥΜΑΤΟΣ ΣΕ ΜΗ ΑΓΩΓΙΜΑ ΜΕΣΑ ΧΙ. ΧΙ. ΧΙ.3 ΧΙ.4 Φαική ταθερά ιάοης κύµατος β Μονοιάτατη εξίωη Helmholt για τις υνιτώες των ιανυµάτων H και ( H ) επιπέου κύµατος
ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Εκθετική Κατανομή, Στοχαστικές Ανελίξεις Διαδικασίες Απαρίθμησης, Κατανομή Poisson
ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Εκθετική Κατανομή, Στοχαστικές Ανελίξεις Διαδικασίες Απαρίθμησης, Κατανομή Poisson Βασίλης Μάγκλαρης maglaris@netmode.ntua.gr 9/3/2016 Άδεια Χρήσης Το παρόν εκπαιδευτικό
S συµβολίζονται ως. Είδη φορτίων: (α) επιφανειακά (π.χ. λόγω επαφής του θεωρούµενου σώµατος µε άλλα σώµατα),
ΑΝΑΛΥΣΗ ΤΩΝ ΤΑΣΕΩΝ Η έννοια του ελκυτή (tracto): M(υνιταµένη ροπή) F (υνιταµένη δύναµη) Θεωρείται παραµορφώιµο τερεό ε ιορροπία υπό εξωτερική φόρτιη (αποκλείονται ταχέως µεταβαλλόµενες φορτίεις και εποµένως
ΗΜΟΚΡΙΤΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΡΑΚΗΣ ΤΜΗΜΑ ΑΓΡΟΤΙΚΗΣ ΑΝΑΠΤΥΞΗΣ ΚΟΥΤΡΟΥΜΑΝΙ ΗΣ Θ. ΖΑΦΕΙΡΙΟΥ Ε.
ΗΜΟΚΡΙΤΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΡΑΚΗΣ ΤΜΗΜΑ ΑΓΡΟΤΙΚΗΣ ΑΝΑΠΤΥΞΗΣ Γ Ε Ω Ρ Γ Ι Κ Ο Σ Π Ε Ι Ρ Α Μ Α Τ Ι Σ Μ Ο Σ ΚΟΥΤΡΟΥΜΑΝΙ ΗΣ Θ. ΖΑΦΕΙΡΙΟΥ Ε. Αν. Καθηγητής.Π.Θ. Υπ. ιδάκτορας Ορετιάδα 007 ΠΕΡΙΕΧΟΜΕΝΑ Κεφάλαιο ο
Γ D µε αρχικό σηµείο το ( a, ( ) ( ) είναι µια άλλη και καταλήγει στο ( x, τότε (1) Γ ξεκινούν από το σηµείο (, ) και ( x,
69 Θα αποδείξουµε την υνέχεια- ως εφαρµογή του θεωρήµατος του Greenτην κατεύθυνη (ιι (ι του θεωρήµατος που χαρακτηρίζει τα υντηρητικά πεδία F : R R, όπου απλά υνεκτικός τόπος του R ( Θεώρηµα Αν R είναι
Πιθανότητες & Τυχαία Σήματα. Διγαλάκης Βασίλης
Πιθανότητες & Τυχαία Σήματα Διγαλάκης Βασίλης Τυχαία Σήματα Γενίκευση τυχαίων διανυσμάτων Άπειρο σύνολο πιθανά αριθμήσιμο από τυχαίες μεταβλητές Παραδείγματα τυχαίων σημάτων: Τηλεπικοινωνίες: Σήμα πληροφορίας
και ονομάζεται μηδενική υπόθεση (null hypothesis), και η άλλη με H
Στατιτικός Έλεγχος Υποθέεων Ένας νέος τύπος τιγάρων βρίκεται το τάδιο ποιοτικού ελέγχου Αν το τμήμα ποιοτικού ελέγχου της καπνοβιομηχανίας παραγωγής, ενδιαφέρεται να γνωρίζει τη μέη ποότητα νικοτίνης που
ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Επισκόπηση Αναλυτικών Τεχνικών Θεωρίας Πιθανοτήτων για Εφαρμογή σε Ουρές Αναμονής M/G/1
ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Επισκόπηση Αναλυτικών Τεχνικών Θεωρίας Πιθανοτήτων για Εφαρμογή σε Ουρές Αναμονής M/G/1 Απόδειξη Τύπου Little Ιδιότητα PASTA (Poisson Arrivals See Time Averages) Βασικοί
Πιθανότητες & Τυχαία Σήματα. Διγαλάκης Βασίλης
Πιθανότητες & Τυχαία Σήματα Διγαλάκης Βασίλης Στατικές (Στάσιμες) Διαδικασίες Στατική (Stationary) ορίζεται η διαδικασία της οποίας οι στατιστικές ιδιότητες δεν μεταβάλλονται με την πάροδο του χρόνου.
ΔΙΑΣΤΗΜΑΤΑ ΕΜΠΙΣΤΟΣΥΝΗΣ ΓΙΑ ΔΙΑΚΥΜΑΝΣΕΙΣ
ΚΕΦΑΛΑΙΟ 16 ΔΙΑΣΤΗΜΑΤΑ ΕΜΠΙΣΤΟΣΥΝΗΣ ΓΙΑ ΔΙΑΚΥΜΑΝΣΕΙΣ Α. Περίπτωη Ενός Πληθυμού Αν μας ενδιαφέρει να κατακευάουμε ένα διάτημα εμπιτούνης για την διακύμανη ενός πληθυμού, χρηιμοποιούμε το γεγονός ότι αν
ΤΥΠΟΛΟΓΙΟ ΣΤΑΤΙΣΤΙΚΗΣ
- - ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Πρόγραμμα Σπουδών: ΔΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ και ΟΡΓΑΝΙΣΜΩΝ Θεματική Ενότητα: ΔΕΟ3 Ποσοτικές Μέθοδοι Ακαδημαϊκό Έτος: 009-0 ΤΥΠΟΛΟΓΙΟ ΣΤΑΤΙΣΤΙΚΗΣ - - ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟΔΟΙ ΣΥΝΟΨΗΣ
Δυναμική Μηχανών I. Διάλεξη 10. Χειμερινό Εξάμηνο 2013 Τμήμα Μηχανολόγων Μηχ., ΕΜΠ
Δυναμική Μηχανών I Διάλεξη 10 Χειμερινό Εξάμηνο 2013 Τμήμα Μηχανολόγων Μηχ., ΕΜΠ 1 Περιεχόμενα Προσομοίωση απόκρισης συστήματος στο MATLAB μέσω της συνάρτησης ode45 (Runge-Kutta) Προσομοίωση απόκρισης
ΜΗΧΑΝΙΚΗ ΣΥΜΠΕΡΙΦΟΡΑ ΥΛΙΚΩΝ
ΜΗΧΑΝΙΚΗ ΣΥΜΠΕΡΙΦΟΡΑ ΥΛΙΚΩΝ IΙ. ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ ΤΑΣΕΩΝ ΚΥΡΙΕΣ ΤΑΣΕΙΣ 1. Τάεις γύρω από ένα Σηµείο Όπως αναφέρθηκε ε προηγούµενη ενότητα, υχνά είναι πιο εύχρητο να αναλύονται οι τάεις γύρω από ένα ηµείο
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών. HY-217: Πιθανότητες - Χειµερινό Εξάµηνο 2015 ιδάσκων : Π. Τσακαλίδης
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-27: Πιθανότητες - Χειµερινό Εξάµηνο 205 ιδάσκων : Π. Τσακαλίδης Φροντιστήριο 8 Επιµέλεια : Κατερίνα Καραγιαννάκη Ασκηση. Η τυχαία µεταβλητή X έχει αθροιστική
οι ενήλικες στην περιοχή Β, ο φοιτητής γνωρίζει ότι X ~ N(
Σημειακή Εκτίμηη & Εκτίμηη με Διάτημα Εμπιτούνης Σημειακή Εκτίμηη & Εκτίμηη με Διάτημα Εμπιτούνης Αρκετά τρόφιμα περιέχουν το ιχνοτοιχείο ελήνιο το οποίο, όταν προλαμβάνεται ε μικρές ποότητες ημερηίως,
ΘΕΩΡΗΤΙΚΗ ΜΗΧΑΝΙΚΗ Ι Σεπτέµβριος β) Υλικό σηµείο µάζας m κινείται στον άξονα Οx υπό την επίδραση του δυναµικού
ΘΕΩΡΗΤΙΚΗ ΜΗΧΑΝΙΚΗ Ι Σεπτέµβριος 1 ΘΕΜΑ 1 α) Υλικό ηµείο µάζας κινείται τον άξονα x Οx υπό την επίδραη του δυναµικού V=V(x) Αν για t=t βρίκεται τη θέη x=x µε ενέργεια Ε δείξτε ότι η κίνηή του δίνεται από
3 ο Μέρος Χαρακτηριστικά τυχαίων μεταβλητών
3 ο Μέρος Χαρακτηριστικά τυχαίων μεταβλητών Βασικά χαρακτηριστικά τυχαίας μεταβλητής: Μέση Τιμή (Me Vlue) Διακύμανση (Vrice) Γενικά χαρακτηριστικά: Ροπές μεταβλητών / Ροπογεννήτριες Χαρακτηριστικές συναρτήσεις
( ) ( ) ( ( )) (( ) ) ( t) ( t) ( ) ( ) Επικαµπύλια ολοκληρώµατα. σ = και την σ, δηλαδή την. συνεχής πραγµατική συνάρτηση. Έστω U R ανοικτό σύνολο και
9 Έτω U R ανοικτό ύνολο και Επικαµπύλια ολοκληρώµατα f : U R R C καµπύλη :[, ] U υνεχής πραγµατική υνάρτηη. Θεωρούµε µια ώτε ( t) x( t), y( t), z( t) ύνθετη υνάρτηη fo :[, ] R t [, ] f x( t), y( t), z(
LAD Estimation for Time Series Models With Finite and Infinite Variance
LAD Estimatio for Time Series Moels With Fiite a Ifiite Variace Richar A. Davis Colorao State Uiversity William Dusmuir Uiversity of New South Wales 1 LAD Estimatio for ARMA Moels fiite variace ifiite
S AB = m. S A = m. Υ = m
χολή αγρονόµων και τοπογράφων µηχανικών ο εξάµηνο Άκηη Απλοί γεωµετρικοί υπολογιµοί ίνεται το τετράπλευρο ΑΒΓ που φαίνεται το χήµα. Στο ύπαιθρο µετρήθηκαν οι οριζόντιες πλευρές (µήκη) ΑΒ και Α. Επίης είναι
ΠΙΘΑΝΟΤΗΤΕΣ. Στατιστική Συµπερασµατολογία Ι, Κ. Πετρόπουλος. Τµήµα Μαθηµατικών, Πανεπιστήµιο Πατρών
Τµήµα Μαθηµατικών, Πανεπιστήµιο Πατρών Στοιχεία Θεωρίας Συνόλων Θεωρούµε Ω το σύνολο αναφοράς. σ-άλγεβρα Εστω A είναι µια κλάση υποσυνόλων του Ω. τ.ω. A είναι µη κενή. 2 A A A c A. 3 A, A 2,... A A A 2...
Κεφάλαιο 2. Αξιοπιστία μονάδων - συστημάτων στο χρόνο. Κατανομές χρόνων ζωής
Κεφάαιο Αξιοπιτία μονάδων - υτημάτων το χρόνο Κατανομές χρόνων ζωής Στο προηγούμενο κεφάαιο εξετάαμε την αξιοπιτία μονάδων ή υτημάτων τατικά δηαδή υποθέταμε ότι η μεέτη γίνονταν πάντα ε κάποια υγκεκριμένη
Κεφ. Ιο ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΘΕΩΡΙΑΣ ΠΙΘΑΝΟΤΗΤΩΝ
ΠΕΡΙΕΧΟΜΕΝΑ Πρόλογος 75 Κεφ. Ιο ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΘΕΩΡΙΑΣ ΠΙΘΑΝΟΤΗΤΩΝ 1.1. Τυχαία γεγονότα ή ενδεχόμενα 17 1.2. Πειράματα τύχης - Δειγματικός χώρος 18 1.3. Πράξεις με ενδεχόμενα 20 1.3.1. Ενδεχόμενα ασυμβίβαστα
y(t) S x(t) S dy dx E, E E T1 T2 T1 T2 1 T 1 T 2 2 T 2 1 T 2 2 3 T 3 1 T 3 2... V o R R R T V CC P F A P g h V ext V sin 2 S f S t V 1 V 2 V out sin 2 f S t x 1 F k q K x q K k F d F x d V
Σχ. 1 Eναλλασσόμενες καταπονήσεις
Πανεπιτήμιο Θεαλίας Διδάκων: Αλ. Κερμανίδης Σχεδιαμός Στοιχείων Μηχανών ε μεταβαλλόμενα φορτία Μεταβαλλόμενα με τον χρόνο φορτία χαρακτηρίζονται τα φορτία που μεταβάλλουν το μέγεθος ή την διεύθυνη τους
HMY 799 1: Αναγνώριση Συστημάτων
HMY 799 : Αναγνώριση Συστημάτων Διάλεξη Στοχαστικές Τυχαίες Μεταβλητές/ Στοχαστικά Σήματα Πειραματικά δεδομένα >Επιλογή τύπου μοντέλου >Επιλογή κριτηρίου >Υπολογισμός >Επικύρωση Προσαρμογή καμπύλης (Curve
Απόκλιση και στροβιλισµός ενός διανυσµατικού πεδίου. R και ( ) y z z x x y
5 Απόκλιη και τροβιλιµός ενός διανυµατικού πεδίου Έτω F ένα C διανυµατικό πεδίο του R, δηλαδή υνάρτηη µε D ανοικτό το F = F, F, F. R και F : D R R Στο διανυµατικό πεδίο F αντιτοιχούµε ένα άλλο διανυµατικό
ΣΤΟΧΑΣΤΙΚΑ ΣΥΣΤΗΜΑΤΑ & ΕΠΙΚΟΙΝΩΝΙΕΣ 1o Τμήμα (Α - Κ): Αμφιθέατρο 4, Νέα Κτίρια ΣΗΜΜΥ Θεωρία Πιθανοτήτων & Στοχαστικές Ανελίξεις
ΣΤΟΧΑΣΤΙΚΑ ΣΥΣΤΗΜΑΤΑ & ΕΠΙΚΟΙΝΩΝΙΕΣ 1o Τμήμα (Α - Κ): Αμφιθέατρο 4, Νέα Κτίρια ΣΗΜΜΥ Θεωρία Πιθανοτήτων & Στοχαστικές Ανελίξεις Άσκηση σε Στοχαστική Ανέλιξη Poisso Ασκήσεις 5.9, 5.1, 5.19 Άσκηση σε Στοχαστική
[ ] = ( ) ( ) ( ) = { }
Πρόταη: Δίνεται η θετική τμ, δηλαδή 1 [ ] ανιότητα Mrkov: P{ } P > = Εάν >, έχουμε την Εάν υποθέουμε ότι η ~ f είναι υνεχής, τότε για κάθε > ιχύει ότι x f x dx x f x dx f x dx P [ ] = = { } Παρατηρείτε
ΣΥΝΑΡΤΗΣΗ ΚΑΤΑΝΟΜΗΣ - ΜΕΣΗ ΤΙΜΗ
Τµ. Επιστήµης των Υλικών Συνάρτηση Κατανοµής Ορισµός F(x) = P(X x) = f(t) x t x f(t)dt, X διακριτή τ.µ., X συνεχής τ.µ. Ιδιότητες 0 F(x). 2 F είναι αύξουσα συνάρτηση. 3 F είναι συνεχής εκ δεξιών. 4 lim
MANAGEMENT OF FINANCIAL INSTITUTIONS
MAAGEMET OF FIACIAL ISTITUTIOS ΔΙΑΛΕΞΗ: «ΚΙΝΔΥΝΟΣ ΑΓΟΡΑΣ» (MARKET RISK) Πανεπιστήμιο Πειραιώς Τμήμα Χρηματοοικονομικής Καθηγητής Γκίκας Χαρδούβελης ΠΕΡΙΕΧΟΜΕΝΑ Κίνδυνος Αγοράς και Επενδυτικό Χαρτοφυλάκιο
ΣΤΟΧΑΣΤΙΚΑ ΣΥΣΤΗΜΑΤΑ & ΕΠΙΚΟΙΝΩΝΙΕΣ 1o Τμήμα (Α - Κ): Αμφιθέατρο 4, Νέα Κτίρια ΣΗΜΜΥ Θεωρία Πιθανοτήτων & Στοχαστικές Ανελίξεις - 2
ΣΤΟΧΑΣΤΙΚΑ ΣΥΣΤΗΜΑΤΑ & ΕΠΙΚΟΙΝΩΝΙΕΣ 1o Τμήμα (Α - Κ): Αμφιθέατρο 4, Νέα Κτίρια ΣΗΜΜΥ Θεωρία Πιθανοτήτων & Στοχαστικές Ανελίξεις - 5.4: Στατιστικοί Μέσοι Όροι 5.5 Στοχαστικές Ανελίξεις (Stochastic Processes)
Τυχαία Διανύσματα και Ανεξαρτησία
Τυχαία Διανύσματα και Ανεξαρτησία Θα γενικεύσουμε την έννοια της τυχαίας μεταβλητής από συνάρτηση στο R σε συνάρτηση στο R n. Ακολούθως, θα επεκτείνουμε τις έννοιες με τις οποίες ασχοληθήκαμε μέχρι τώρα
ΤΥΧΑΙΕΣ ΜΕΤΑΒΛΗΤΕΣ ΚΑΙ ΚΑΤΑΝΟΜΕΣ ΠΙΘΑΝΟΤΗΤΩΝ - ΑΣΚΗΣΕΙΣ. αλλού
ΤΥΧΑΙΕΣ ΜΕΤΑΒΛΗΤΕΣ ΚΑΙ ΚΑΤΑΝΟΜΕΣ ΠΙΘΑΝΟΤΗΤΩΝ - ΑΣΚΗΣΕΙΣ. Η τυχαία μεταβλητή Χ έχει συνάρτηση πιθανότητας που δίνεται από τον πίνακα: x f(x) / / / / / Να βρεθεί η μέση τιμή και η διασπορά.. Η τυχαία μεταβλητή
ΚΕΦΑΛΑΙΟ 7. Ροπή και Στροφορµή Μέρος πρώτο
ΚΕΦΑΛΑΙΟ 7 Ροπή και Στροφορµή Μέρος πρώτο Μέχρι εδώ εξετάαµε την κίνηη ενός υλικού ηµείου υπό την επίδραη µιας δύναµης. Τα πράγµατα αλλάζουν δραµατικά αν αντί υλικού ηµείου έχοµε ένα τερεό ώµα. Η µελέτη
INTEGRATION OF THE NORMAL DISTRIBUTION CURVE
INTEGRATION OF THE NORMAL DISTRIBUTION CURVE By Tom Irvie Email: tomirvie@aol.com March 3, 999 Itroductio May processes have a ormal probability distributio. Broadbad radom vibratio is a example. The purpose
σ.π.π. της 0.05 c 0.1
6 Έλεγχοι Υποθέεων Σε αρκετές εφαρµογές παρουιάζεται η ανάγκη λήψης αποφάεων χετικών µε την κατανοµή ενός πληθυµού Πιο υγκεκριµένα, ε πολλές περιπτώεις πρέπει, βάει ενός τδ Χ, Χ,, Χ από έναν πληθυµό µε