FÜÜSIKALISED SUURUSED, NENDE MÕÕTMINE JA MÕÕTEMÄÄRAMATUS Lühikokkuvõte
|
|
- Λευί Μοσχοβάκης
- 7 χρόνια πριν
- Προβολές:
Transcript
1 0 Taia Tehikaüikoo Füüsikaistituut Marek Viiuu FÜÜSIKLISED SRSED, NENDE MÕÕTMINE J MÕÕTEMÄÄRMTS Lühikokkuvõte Mõõtiseks ietatakse atud füüsikaise suuruse x võrdeist teise saa iiki suurusega, is o võetud õõtühikuks. Mõõtetueus o õõtise tee saadud õõtesuuruse väärtus, is kooseb õõtarvust (arvväärtusest) ja vastavast õõtühikust. Mõõtetueuse täieik esitus eab sisadaa iforatsiooi õõteääraatuse (vt aoo) kohta. Mõõteääraatus tähedab kahtust õõtetueuse kehtivuses, õigsuses. Otsee õõtie o seie õõtie, ie uhu eid huvitava suuruse väärtus saadakse vahetut õõtisvahedi skaaat. Kaude õõtie o õõtie, kus õõtetueus eitakse arvutuste tee (vaei abi) otseõõdetud suurustest. Mõõtühikud Täaäeva ei eviud õõtühikute süstee o SI (Systèe Iteratioa d'ités). Füüsika raktikuis teisedae kõik ühikud eaiset SI süsteei! SI süsteei baasühikuteks o : ikkusühik () eeter () assiühik () kiogra (kg) ajaühik (t) sekud (s) eektrivoou tugevuse ühik (I) aer () teeratuuri ühik (T) Kevi (K) aiehuga ühik (N) oo (o) vagustugevuse ühik (J) kadea (cd) OTSESE MÕÕTMISE TLEMSTE TÖÖTLEMINE J SLDTVSE HINDMINE Üksikõõtise tueus o juhusik suurus. Määratava füüsikaise suuruse iseooustaiseks kasutatakse ariteetiist keskväärtust. xi x + x +... x () i= x= = kus x i o õõtetueused ja katsete arv. Vastava õõtetueuse kõrvaekaet keskväärtusest ietatakse i-da õõtise juhusikuks häbeks i x i x x= () Mõõtetueuste ääraatuse hidaie Lähtudes rahvusvaheisest ja Eesti Vabariigi stadardist, tueb iga õõtetueuse kvaiteeti hiata õõteääraatuse (ucertaity) kotsetsiooi ause. See järgi o õõtise eesärgiks õõdetava objekti tõeäosusjaotust iseooustavate araeetrite
2 0 Taia Tehikaüikoo Füüsikaistituut Marek Viiuu usadatav hidaie. Nede araeetrite a õedakse kõige sagedaii keskväärtust ja stadardhävet (ruutjuur disersiooist). Disersioo o juhusiku suuruse varieeruvuse õõt, is äitab, kui aju uuritav suurus varieerub. Mõõteääraatus kooseb ajudest kooetidest, is jagatakse kahte tüükategooriasse: - tüüi õõteääraatus (vaa ietus: juhusik viga x j ), eitakse aktuaasetest kordusõõtistest statistiiste eetodite abi. - tüüi õõteääraatus (vaa ietus: süsteaatiie viga xs ), hiatakse uu viisi ja eitakse ede kooetide uhu, ie korra aktuaaseid kordusõõtisi ei tehtud. Füüsika raktikuis saadakse seda tüüi ääraatuse eidiseks vajaik ifo kas õõtevahedi assist, stedi aikevast vastavast tabeist, õõterotseduurist, kogeusest või õistikest kaautustest. -tüüi õõteääraatuse hidaie: -tüüi õõteääraatust arvutatakse vaeiga: = t ν, β i= ( x x) i ( ) (3) kus tν, β o Studet i tegur, ie väärtused o toodud ajärgevas tabeis: β ν 0,5 0,68 0,95 0,975 0,9973,0,8,7,7 35,8 0,8,3 4,3 4,3 9, 3 0,77, 3, 3, 9, 4 0,74,,8,8 6,6 5 0,73,,6,6 5,5 6 0,7,,5,4 4,9 7 0,7,,4,4 4,5 8 0,7,.3,3 4,3 9 0,70,.3,3 4, 0 0,70,,, 4,0 0 0,69,0,, 3,4 0,67,0,0,0 3,0 Ideks ν = o sõtuatute hävete (vabadusastete) arv ja ideks β o usadatavus tõeäosus seeks, et õõdetava suuruse tegeik väärtus asuks vaeiga () ette atud vaheikus. Füüsika raktikuis o β tavaiset 95 %.
3 0 Taia Tehikaüikoo Füüsikaistituut Marek Viiuu -tüüi õõteääraatuse hidaie: Mõõtevahedi ubatud iirhäbest ( e ) tigitud eitav vaeist: -tüüi õõteääraatus o e = t, β, (4) 3 kus t, β o Studet i tegur ja o õatus. Lugei üardaisest tigitud () -tüüi õõteääraatus eitakse vaeist: =β, (5) kus β o usadatavus ja o oo skaaa jaotise see osa väärtusest, ida õõtise hiati. LIITMÄÄRMTSTE LEIDMINE (vaa ietus: koguviga x ) Et esitada õõtetueust, tueb eida iitääraatus (cobied ucertaity) - ja -tüüi õõteääraatuse koosõju: = + Korduvate otseste õõtiste avadub iitääraatus järgevat: = + Kui kordusõõtised uuduvad (-tüüi õõteääraatust ei hiata), siis eitakse iitääraatus järgevat: Kaudse õõtise = + Kui otsitav (väjud) füüsikaie suurus y o ite sõtuatu uutuja (sisedsuuruse) x, x,..., x fuktsioo y = f( x, x,..., x k ), kus x, x,..., x o otseset õõdetud suurused vastavate iitääraatustega, ( x ),..., ( xk ), siis väjudsuuruse y iitääraatus o arvutatav vaeiga: ( y) = + ( x ) ( xk x x xk ), 3
4 0 Taia Tehikaüikoo Füüsikaistituut Marek Viiuu y y kus,,, x x järgi. y o osatuetised fuktsiooist y sisedsuuruste x k x x,..., x, Fuktsiooi tuetis o fuktsiooi väärtuse uudu ja arguedi uudu suhte iirväärtus arguedi uudu äheeise uie. i y dy y = = x 0 x dx Kui arguet x uutub igi väikese suuruse x võrra, siis fuktsiooi y vastav uutus y avadub igikaudset: dy y x= f x dx Vaadedav fuktsioo y ei sõtu itte ühest, vaid itest arguedist ( x, x,..., x ). Iga seise arguedi uut õhjustab ka suuruse y uutuist. Vastava uudu y arvutaise tueb võtta arvesse tea tuetisi kõigi uutujate järgi. Et eed võivad oa erievate ärkidega, siis erievate uutude iitise asee iidetakse ede ruudud. TÖÖKOHL NTD FÜÜSIKLISTE SRSTE MÄÄRMTS Kui igi vajaiku füüsikaise suuruse väärtus o atud töökoha või vastavas tabeis ia ääraatusega, siis tea ääraatuseks võetakse vaikiisi oo viiast küedkohta. Näide. Kaiaartoru aksuseks o atud töökoha d = 0,078, s.t. tuhadikiieetri täsusega. Järeikut võetakse aksuse ääraatuseks oo tuhadikku iieetrit, (d) =0,0005 LÕPPRESLTDI ESITSVIIS Kehtivad ubrid Kehtivateks ubriteks i. kõiki ubreid,, 3,, 9 ja 0, kui see asub ubrite 9 vahe või täisarvu ja küedurru õus. Nue küedurru ubritest vasaku ei oeta kehtivateks ubriteks. Näide: rvus 0,06503 o ei kehtivat ubrit (esieseks kehtivaks ubriks o 6, viiaseks 3; arvus 0,60 o aga kokku viis kehtivat ubrit kõik ubrid o kehtivad. Täisarvus 500 o ei kehtivat ubrit. Kõigi ariteetiiste tehete resutaadid eitakse ühe võrra suurea kehtivate ubrite arvuga, kui o õõtarvude kehtivaid ubreid. Kui kõik õõtarvud ei oe ühesuguse kehtivate ubrite arvuga, siis suurea kehtivate ubrite arvuga aded üardatakse ii, et ubreid jääks ühe võrra rohke kui kõige väiksea kehtivate ubrite arvuga õõtarvu. Mõõtetueuse ääraatus tueb ada üdjuhu kahe kehtiva ubriga. Mõõtetueus üardatakse tea ääraatuse arvuise hiagu viiase kehtiva ubrii. Lõtueusee isatakse ka see usadatavus. 4
5 0 Taia Tehikaüikoo Füüsikaistituut Marek Viiuu MÄÄRMTSE RVTMINE NÄIDLE (ÜHEKORDSEL MÕÕTMISEL) OSTIG MÕÕTEVHENDIL Ogu ei õõtevahediks aaisvoou aereeter, ie õõteiirkoaks o 3 ig jaotiste arv skaaa võrdub 00-ga. Osuti o hetke 6 ea. Täsuskass, ie eiate õõtevahedi skaaa a areas urgas, o,5. Täsuskass äitab itu rotseti õõteiirkoast o aksiaae õõtehäve atud usadatavusega. 3 Seega o vooutugevus hetke 6 =, tud juhu = ±,5% 3= ± 0, 045 usadatavusega 00 % 3 = ± = ± 0, Nig = ± ( I ) + =± 0, ,05 = 0, 0474 usadatavusega 00 % Vastus: I =,860 ± 0,047 Kui o vaja usadatavust uuta siis kasutatakse vaeid (4) ja (5). MÄÄRMTSE RVTMINE NÄIDLE (ÜHEKORDSEL MÕÕTMISEL) DIGITLSEL MÕÕTEVHENDIL Ogu ei õõtevahediks vaheduvvoou voteeter, ie õõteiirkoaks o 00V. tud ige äiduks o 0,00V Voteetri väikseia jaotise väärtus o 0,0V ig tea assis atud vea vae o (sageduse kui 00Hz juures): ± 0,5%+0vkü. või ± 0,5%RDG+0DGT. See tähedab 0,5 rotseti äidust + 0 vähiat küedkohta (RDG readig (äit, uge), DGT digit (väiksei küedkoha ühik)) Määraatuse saae järgiset: = ± ( 0,5% 0V + 0 0,0V ) =± (0,+ 0,0) V = ± 0, 30V usadatavusega 00 % Vastus: = 0,00 ± 0,30 V Kui o vaja usadatavust uuta siis kasutatakse vaeit (4). Kogu ääraatuse oodustab õõtevahedi ubatud iirhäve ( e ) Lugei üardaisest tigitud () -tüüi õõteääraatust digitaase õõtevahedi ei arvestata MÄÄRMTSE RVTMINE NÄIDLE (ÜHEKORDSEL MÕÕTMISEL) MÕÕTESLVEL (MGSINIL) Füüsika raktikuis o kahte tüüi õõtesave ii vee kui ääe äritou. Osade o atud täsuskass ja teiste vea vae. Kogu ääraatuse oodustab õõtevahedi ubatud iirhäve ( e ). Lugei üardaisest tigitud () -tüüi õõteääraatust save äitude ei arvestata Näiteks kui takistusagasii o eae kirjutatud täsuskass 0, siis ugei (äidu) ääraatus o 0, % äidust usadatavusega 00 %. Kui o vaja usadatavust uuta siis kasutatakse vaeit (4). 5
MATEMAATIKA TÄIENDUSÕPE MÕISTED, VALEMID, NÄITED, ÜLESANDED LEA PALLAS VII OSA
MATEMAATIKA TÄIENDUSÕPE MÕISTED, VALEMID, NÄITED, ÜLESANDED LEA PALLAS VII OSA SISUKORD 57 Joone uutuja Näited 8 58 Ülesanded uutuja võrrandi koostamisest 57 Joone uutuja Näited Funktsiooni tuletisel on
Funktsiooni diferentsiaal
Diferentsiaal Funktsiooni diferentsiaal Argumendi muut Δx ja sellele vastav funktsiooni y = f (x) muut kohal x Eeldusel, et f D(x), saame Δy = f (x + Δx) f (x). f (x) = ehk piisavalt väikese Δx korral
Vektorid II. Analüütiline geomeetria 3D Modelleerimise ja visualiseerimise erialale
Vektorid II Analüütiline geomeetria 3D Modelleerimise ja visualiseerimise erialale Vektorid Vektorid on arvude järjestatud hulgad (s.t. iga komponendi väärtus ja positsioon hulgas on tähenduslikud) Vektori
MATEMAATIKA TÄIENDUSÕPE MÕISTED, VALEMID, NÄITED LEA PALLAS XII OSA
MATEMAATIKA TÄIENDUSÕPE MÕISTED, VALEMID, NÄITED LEA PALLAS XII OSA SISUKORD 8 MÄÄRAMATA INTEGRAAL 56 8 Algfunktsioon ja määramata integraal 56 8 Integraalide tabel 57 8 Määramata integraali omadusi 58
Geomeetrilised vektorid
Vektorid Geomeetrilised vektorid Skalaarideks nimetatakse suurusi, mida saab esitada ühe arvuga suuruse arvulise väärtusega. Skalaari iseloomuga suurusi nimetatakse skalaarseteks suurusteks. Skalaarse
Graafiteooria üldmõisteid. Graaf G ( X, A ) Tippude hulk: X={ x 1, x 2,.., x n } Servade (kaarte) hulk: A={ a 1, a 2,.., a m } Orienteeritud graafid
Graafiteooria üldmõisteid Graaf G ( X, A ) Tippude hulk: X={ x 1, x 2,.., x n } Servade (kaarte) hulk: A={ a 1, a 2,.., a m } Orienteeritud graafid Orienteerimata graafid G(x i )={ x k < x i, x k > A}
Planeedi Maa kaardistamine G O R. Planeedi Maa kõige lihtsamaks mudeliks on kera. Joon 1
laneedi Maa kaadistamine laneedi Maa kõige lihtsamaks mudeliks on kea. G Joon 1 Maapinna kaadistamine põhineb kea ümbeingjoontel, millest pikimat nimetatakse suuingjooneks. Need suuingjooned, mis läbivad
1. Õppida tundma kalorimeetriliste mõõtmiste põhimõtteid ja kalorimeetri ehitust.
Kaorimeetriised mõõtmised LABORATOORNE TÖÖ NR. 3 KALORIMEETRILISED MÕÕTMISED TÖÖ EESMÄRGID 1. Õppida tundma aorimeetriiste mõõtmiste põhimõtteid ja aorimeetri ehitust. 2. Määrata jää suamissoojus aorimeetriise
Virumaa Kolledž. Gennadi Arjassov. L O E N G U K O N S P E K T Varraskonstruktsioonide staatika ja dünaamika. Ehitusmehaanika RAR2030.
Viruaa Koedž Gennadi rjassov L O E N G U K O N S P E K T Varraskonstruktsioonide staatika ja dünaaika Ehitusehaanika RR Õppevahend Kohta-Järve 5/ Eessõna Loengukonspekt Varraskonstruktsioonide staatika
Virumaa Kolledž Reaal ja tehnikateaduste keskus
Viruaa Koedž Reaa ja tehnikateaduste keskus Gennadi rjassov L O E N G U K O N S P E K T Varraskonstruktsioonide staatika ja dünaaika Ehitusehaanika RR Õppevahend Kohta-Järve 7/8 Eessõna Loengukonspekt
VEDELIKU SISEHÕÕRDETEGURI MÄÄRAMINE KETTA SUMBUVATEST PÖÖRDVÕNKUMISTEST
VEDELIKU SISEHÕÕRDETEGURI MÄÄRAMINE KETTA SUMBUVATEST PÖÖRDVÕNKUMISTEST. Tööülesae Uuritava vedeliku sisehõõrdeteguri (viskoossuse) ääraie ketta subuvatest pöördvõkuistest.. Töövahedid Traadi külge riputatud
Ehitusmehaanika harjutus
Ehitusmehaanika harjutus Sõrestik 2. Mõjujooned /25 2 6 8 0 2 6 C 000 3 5 7 9 3 5 "" 00 x C 2 C 3 z Andres Lahe Mehaanikainstituut Tallinna Tehnikaülikool Tallinn 2007 See töö on litsentsi all Creative
8. KEEVISLIITED. Sele 8.1. Kattekeevisliide. Arvutada kahepoolne otsõmblus terasplaatide (S235J2G3) ühendamiseks. F = 40 kn; δ = 5 mm.
TTÜ EHHATROONIKAINSTITUUT HE00 - ASINATEHNIKA -, 5AP/ECTS 5 - -0-- E, S 8. KEEVISLIITED NÄIDE δ > 4δ δ b k See 8.. Kattekeevisiide Arvutada kahepoone otsõmbus teraspaatide (S5JG) ühendamiseks. 40 kn; δ
5. TUGEVUSARVUTUSED PAINDELE
TTÜ EHHTROONKNSTTUUT HE00 - SNTEHNK.5P/ETS 5 - -0-- E, S 5. TUGEVUSRVUTUSE PNELE Staatika üesandes (Toereaktsioonide eidmine) vaadatud näidete ause koostada taade sisejõuepüürid (põikjõud ja paindemoment)
Elastsusteooria tasandülesanne
Peatükk 5 Eastsusteooria tasandüesanne 143 5.1. Tasandüesande mõiste 144 5.1 Tasandüesande mõiste Seeks, et iseoomustada pingust või deformatsiooni eastse keha punktis kasutatakse peapinge ja peadeformatsiooni
Matemaatiline analüüs I iseseisvad ülesanded
Matemaatiline analüüs I iseseisvad ülesanded Leidke funktsiooni y = log( ) + + 5 määramispiirkond Leidke funktsiooni y = + arcsin 5 määramispiirkond Leidke funktsiooni y = sin + 6 määramispiirkond 4 Leidke
Eesti koolinoorte 43. keemiaolümpiaad
Eesti koolinoorte 4. keeiaolüpiaad Koolivooru ülesannete lahendused 9. klass. Võrdsetes tingiustes on kõikide gaaside ühe ooli ruuala ühesugune. Loetletud gaaside ühe aarruuala ass on järgine: a 2 + 6
9. AM ja FM detektorid
1 9. AM ja FM detektorid IRO0070 Kõrgsageduslik signaalitöötlus Demodulaator Eraldab moduleeritud signaalist informatiivse osa. Konkreetne lahendus sõltub modulatsiooniviisist. Eristatakse Amplituuddetektoreid
Veaarvutus ja määramatus
TARTU ÜLIKOOL Tartu Ülikooli Teaduskool Veaarvutus ja määramatus Urmo Visk Tartu 2005 Sisukord 1 Tähistused 2 2 Sissejuhatus 3 3 Viga 4 3.1 Mõõteriistade vead................................... 4 3.2 Tehted
(Raud)betoonkonstruktsioonide üldkursus 33
(Raud)betoonkonstruktsioonide üldkursus 33 Normaallõike tugevusarvutuse alused. Arvutuslikud pinge-deormatsioonidiagrammid Elemendi normaallõige (ristlõige) on elemendi pikiteljega risti olev lõige (s.o.
Matemaatiline analüüs I iseseisvad ülesanded
Matemaatiline analüüs I iseseisvad ülesanded. Leidke funktsiooni y = log( ) + + 5 määramispiirkond.. Leidke funktsiooni y = + arcsin 5 määramispiirkond.. Leidke funktsiooni y = sin + 6 määramispiirkond.
2.2.1 Geomeetriline interpretatsioon
2.2. MAATRIKSI P X OMADUSED 19 2.2.1 Geomeetriline interpretatsioon Maatriksi X (dimensioonidega n k) veergude poolt moodustatav vektorruum (inglise k. column space) C(X) on defineeritud järgmiselt: Defineerides
Ruumilise jõusüsteemi taandamine lihtsaimale kujule
Kodutöö nr.1 uumilise jõusüsteemi taandamine lihtsaimale kujule Ülesanne Taandada antud jõusüsteem lihtsaimale kujule. isttahuka (joonis 1.) mõõdud ning jõudude moodulid ja suunad on antud tabelis 1. D
Kompleksarvu algebraline kuju
Kompleksarvud p. 1/15 Kompleksarvud Kompleksarvu algebraline kuju Mati Väljas mati.valjas@ttu.ee Tallinna Tehnikaülikool Kompleksarvud p. 2/15 Hulk Hulk on kaasaegse matemaatika algmõiste, mida ei saa
Jätkusuutlikud isolatsioonilahendused. U-arvude koondtabel. VÄLISSEIN - COLUMBIA TÄISVALATUD ÕÕNESPLOKK 190 mm + SOOJUSTUS + KROHV
U-arvude koondtabel lk 1 lk 2 lk 3 lk 4 lk 5 lk 6 lk 7 lk 8 lk 9 lk 10 lk 11 lk 12 lk 13 lk 14 lk 15 lk 16 VÄLISSEIN - FIBO 3 CLASSIC 200 mm + SOOJUSTUS + KROHV VÄLISSEIN - AEROC CLASSIC 200 mm + SOOJUSTUS
ELEKTRIMÕÕTMISTE TÄIENDKOOLITUS
Meede 1.1 projekt nr 1.0101-0386/IN660 Elektrotehnilise personali täiendkoolitussüsteemi väljaarendamine ELEKTRIMÕÕTMISTE TÄIENDKOOLITUS Täiendkoolituse õppematerjal Koostanud Raivo Teemets Tallinn 2007
Lokaalsed ekstreemumid
Lokaalsed ekstreemumid Öeldakse, et funktsioonil f (x) on punktis x lokaalne maksimum, kui leidub selline positiivne arv δ, et 0 < Δx < δ Δy 0. Öeldakse, et funktsioonil f (x) on punktis x lokaalne miinimum,
TTÜ VIRUMAA KOLLEDŽ. Mõõteriistad ja mõõtevahendid:...
TTÜ VIRUMAA KOLLEDŽ Ehitus ja Tootmistehika lektorat Tehilie füüsika Üliõpilae: Õpperühm: Töö r. ja imetus: Ülmõõtmise Tehtu: Arvestatu: Mõõteriista ja mõõtevahei:...... Joois Kruvik: -ka (пята); -seaekaliiber
HAPE-ALUS TASAKAAL. Teema nr 2
PE-LUS TSL Teema nr Tugevad happed Tugevad happed on lahuses täielikult dissotiseerunud + sisaldus lahuses on võrdne happe analüütilise kontsentratsiooniga Nt NO Cl SO 4 (esimeses astmes) p a väärtused
Eesti koolinoorte XLVIII täppisteaduste olümpiaadi
Eesti koolinoorte XLVIII täppisteaduste olümpiaadi lõppvoor MATEMAATIKAS Tartus, 9. märtsil 001. a. Lahendused ja vastused IX klass 1. Vastus: x = 171. Teisendame võrrandi kujule 111(4 + x) = 14 45 ning
ΑΓΓΕΛΗΣ ΧΡΗΣΤΟΣ ΠΑΝΑΓΙΩΤΗΣ 6 OO ΑΓΓΕΛΙΔΗΣ ΧΑΡΙΛΑΟΣ ΧΡΗΣΤΟΣ 4 OO ΑΓΓΟΥ ΑΝΑΣΤΑΣΙΑ ΔΗΜΗΤΡΙΟΣ 6 OO ΑΔΑΜΙΔΟΥ ΕΥΑΓΓΕΛΙΑ ΑΒΡΑΑΜ 3 OO ΑΛΕΒΙΖΟΥ ΠΑΝΑΓΙΩΤΑ
ΕΠΩΝΥΜΙΑ ΠΕΡΙΟΔΟΣ ΜΕΣΟ ΑΓΓΕΛΗΣ ΧΡΗΣΤΟΣ ΠΑΝΑΓΙΩΤΗΣ 6 OO ΑΓΓΕΛΙΔΗΣ ΧΑΡΙΛΑΟΣ ΧΡΗΣΤΟΣ 4 OO ΑΓΓΟΥ ΑΝΑΣΤΑΣΙΑ ΔΗΜΗΤΡΙΟΣ 6 OO ΑΔΑΜΙΔΟΥ ΕΥΑΓΓΕΛΙΑ ΑΒΡΑΑΜ 3 OO ΑΛΕΒΙΖΟΥ ΠΑΝΑΓΙΩΤΑ ΔΗΜΗΤΡΙΟΣ 7 OO ΑΝΑΓΝΩΣΤΟΠΟΥΛΟΥ ΖΩΙΤΣΑ
4.2.5 Täiustatud meetod tuletõkestusvõime määramiseks
4.2.5 Täiustatud meetod tuletõkestusvõime määramiseks 4.2.5.1 Ülevaade See täiustatud arvutusmeetod põhineb mahukate katsete tulemustel ja lõplike elementide meetodiga tehtud arvutustel [4.16], [4.17].
MATEMAATIKA TÄIENDUSÕPE
MATEMAATIKA TÄIENDUSÕPE MÕISTED, VALEMID, NÄITED, ÜLESANDED LEA PALLAS I OSA SISUKORD ARVUHULGAD ARITMEETIKA Mõigte rvude kõrgemd stmed Hriliku murru põhiomdus Tehetevhelised seosed Tehted hrilike murdudeg
Arvuteooria. Diskreetse matemaatika elemendid. Sügis 2008
Sügis 2008 Jaguvus Olgu a ja b täisarvud. Kui leidub selline täisarv m, et b = am, siis ütleme, et arv a jagab arvu b ehk arv b jagub arvuga a. Tähistused: a b b. a Näiteks arv a jagab arvu b arv b jagub
ITI 0041 Loogika arvutiteaduses Sügis 2005 / Tarmo Uustalu Loeng 4 PREDIKAATLOOGIKA
PREDIKAATLOOGIKA Predikaatloogika on lauseloogika tugev laiendus. Predikaatloogikas saab nimetada asju ning rääkida nende omadustest. Väljendusvõimsuselt on predikaatloogika seega oluliselt peenekoelisem
Lõppvoor. 7. märts a. Gümnaasiumi ülesannete lahendused
Eesti kooinoorte 56 füüsikaoümpiaad Lõppvoor 7 märts 009 a Gümnaasiumi üesannete ahendused (NÜRINENUD KÄÄRID) α N F h α Hõõrdejõud peab tasakaaustama toereaktsiooni kääride teje sihiise komponendi (joonis)
MATEMAATIKA TÄIENDUSÕPE
MATEMAATIKA TÄIENDUSÕPE MÕISTED, VALEMID, NÄITED, ÜLESANDED LEA PALLAS I OSA SISUKORD ARVUHULGAD ARITMEETIKA Mõigte rvude kõrgemd stmed Hriliku murru põhiomdus Tehetevhelised seosed Tehted hrilike murdudeg
Sissejuhatus mehhatroonikasse MHK0120
Sissejuhatus mehhatroonikasse MHK0120 2. nädala loeng Raavo Josepson raavo.josepson@ttu.ee Loenguslaidid Materjalid D. Halliday,R. Resnick, J. Walker. Füüsika põhikursus : õpik kõrgkoolile I köide. Eesti
Lisa 2 ÜLEVAADE HALJALA VALLA METSADEST Koostanud veebruar 2008 Margarete Merenäkk ja Mati Valgepea, Metsakaitse- ja Metsauuenduskeskus
Lisa 2 ÜLEVAADE HALJALA VALLA METSADEST Koostanud veebruar 2008 Margarete Merenäkk ja Mati Valgepea, Metsakaitse- ja Metsauuenduskeskus 1. Haljala valla metsa pindala Haljala valla üldpindala oli Maa-Ameti
,millest avaldub 21) 23)
II kursus TRIGONOMEETRIA * laia matemaatika teemad TRIGONOMEETRILISTE FUNKTSIOONIDE PÕHISEOSED: sin α s α sin α + s α,millest avaldu s α sin α sα tan α, * t α,millest järeldu * tα s α tα tan α + s α Ülesanne.
ΔΗΜΟΤΙΚΕΣ ΕΚΛΟΓΕΣ 18/5/2014 ΑΚΥΡΑ
ΔΗΜΟΤΙΚΕΣ ΕΚΛΟΓΕΣ 18/5/2014 ΑΚΥΡΑ ΑΔΑΜΗΣ Δ.Κ. / Τ.Κ. E.T. ΕΓΓ/ΝΟΙ ΨΗΦΙΣΑΝ ΕΓΚΥΡΑ ΓΙΟΒΑΣ ΙΩΑΝΝΗΣ ΛΕΥΚΑ ΠΑΝΑΓΙΩΤΗΣ ΜΑΝΤΑΣ ΠΑΝΑΓΙΩΤΗΣ ΔΑΛΙΑΝΗΣ ΓΕΩΡΓΙΟΣ ΑΣΤΡΟΣ 5 2.728 1.860 36 1.825 69 3,8% 152 8,3% 739 40,5%
1.1. NATURAAL-, TÄIS- JA RATSIONAALARVUD
1. Reaalarvud 1.1. NATURAAL-, TÄIS- JA RATSIONAALARVUD Arvu mõiste hakkas kujunema aastatuhandeid tagasi, täiustudes ja üldistudes koos inimkonna arenguga. Juba ürgühiskonnas tekkis vajadus teatavaid hulki
1 Entroopia ja informatsioon
Kirjadus: T.M. Cover, J.A. Thomas "Elemets of iformatio theory", Wiley, 99 ja 2006. Yeug, Raymod W. "A first course of iformatio theory", Kluwer, 2002. Mackay, D. "Iformatio theory, iferece ad learig algorithms",
Excel Statistilised funktsioonid
Excel2016 - Statistilised funktsioonid Statistilised funktsioonid aitavad meil kiiresti leida kõige väiksemat arvu, keskmist, koguarvu, tühjaks jäänud lahtreid jne jne. Alla on lisatud sellesse gruppi
ΖΕΡΔΑΛΗΣ ΣΩΤΗΡΙΟΣ ΤΟ ΟΥΤΙ ΣΤΗ ΒΕΡΟΙΑ (1922-ΣΗΜΕΡΑ) ΘΕΣΣΑΛΟΝΙΚΗ 2005 1
(1922- ) 2005 1 2 .1.2 1.1.2-3 1.2.3-4 1.3.4-5 1.4.5-6 1.5.6-10.11 2.1 2.2 2.3 2.4.11-12.12-13.13.14 2.5 (CD).15-20.21.22 3 4 20.,,.,,.,.,,.,.. 1922., (= )., (25/10/2004), (16/5/2005), (26/1/2005) (7/2/2005),,,,.,..
Kirjeldab kuidas toimub programmide täitmine Tähendus spetsifitseeritakse olekuteisendussüsteemi abil Loomulik semantika
Operatsioonsemantika Kirjeldab kuidas toimub programmide täitmine Tähendus spetsifitseeritakse olekuteisendussüsteemi abil Loomulik semantika kirjeldab kuidas j~outakse l~oppolekusse Struktuurne semantika
Matemaatiline statistika ja modelleerimine
Matemaatiline statistika ja modelleerimine Kirjeldav statistika EMÜ doktorikool DK.7 Tanel Kaart Sagedused ja osakaalud diskreetne tunnus Mittearvuliste või diskreetsete tunnuste (erinevate väärtuste arv
MOSFET tööpõhimõte. MOS diood. Tsoonipilt. MOS diood Tüüpiline metall-oksiid-pooljuht (MOS) diood omab sellist struktuuri
MOS dood Metall-okd- ooljuht (MOS) o kaaaja kroelektrooka kõge rohke kautatav re ülde! MOSET tööõhõte I Pch-off D 3 S- allka (ource), G- a (gate), D- eel (dra) -kaalga MOSET (NMOS) kautab -tüü alut 1 1
Tuletis ja diferentsiaal
Peatükk 3 Tuletis ja diferentsiaal 3.1 Tuletise ja diferentseeruva funktsiooni mõisted. Olgu antud funktsioon f ja kuulugu punkt a selle funktsiooni määramispiirkonda. Tuletis ja diferentseeruv funktsioon.
PLASTSED DEFORMATSIOONID
PLAED DEFORMAIOONID Misese vlavustingimus (pinegte ruumis) () Dimensineerimisega saab kõrvaldada ainsa materjali parameetri. Purunemise (tugevuse) kriteeriumid:. Maksimaalse pinge kirteerium Laminaat puruneb
I tund: Füüsika kui loodusteadus. (Sissejuhatav osa) Eesmärk jõuda füüsikasse läbi isiklike kogemuste. Kuidas kujunes sinu maailmapilt?
I tund: Füüsika kui loodusteadus. (Sissejuhatav osa) Eesmärk jõuda füüsikasse läbi isiklike kogemuste. Kuidas kujunes sinu maailmapilt? (Sündmused tekitavad signaale, mida me oma meeleorganitega aistingutena
Vektorid. A=( A x, A y, A z ) Vektor analüütilises geomeetrias
ektorid Matemaatikas tähistab vektor vektorruumi elementi. ektorruum ja vektor on defineeritud väga laialt, kuid praktikas võime vektorit ette kujutada kui kindla arvu liikmetega järjestatud arvuhulka.
Õige vastus annab 1 punkti, kokku 2 punkti (punktikast 1). Kui õpilane märgib rohkem kui ühe vastuse, loetakse kogu vastus valeks.
PÕHIKOOLI FÜÜSIKA LÕPUEKSAMI HINDAMISUHEND 13. UUNI 016 Hinne 5 90 100% 68 75 punki Hinne 4 75 89% 57 67 punki Hinne 3 50 74% 38 56 punki Hinne 0 49% 15 37 punki Hinne 1 0 19% 0 14 punki Arvuuüleannee
Funktsioonide õpetamisest põhikooli matemaatikakursuses
Funktsioonide õpetamisest põhikooli matemaatikakursuses Allar Veelmaa, Loo Keskkool Funktsioon on üldtähenduses eesmärgipärane omadus, ülesanne, otstarve. Mõiste funktsioon ei ole kasutusel ainult matemaatikas,
T~oestatavalt korrektne transleerimine
T~oestatavalt korrektne transleerimine Transleerimisel koostatakse lähtekeelsele programmile vastav sihtkeelne programm. Transleerimine on korrektne, kui transleerimisel programmi tähendus säilib. Formaalsemalt:
(a b) c = a (b c) e a e = e a = a. a a 1 = a 1 a = e. m+n
Z 6 D 3 G = {a, b, c,... } G a, b G a b = c c (a b) c = a (b c) e a e = e a = a a a 1 = a 1 a = e Q = {0, ±1, ±2,..., ±n,... } m, n m+n m + 0 = m m + ( m) = 0 Z N = {a n }, n = 1, 2... N N Z N = {1, ω,
Joonis 1. Teist järku aperioodilise lüli ülekandefunktsiooni saab teisendada võnkelüli ülekandefunktsiooni kujul, kui
Ülesnded j lhendused utomtjuhtimisest Ülesnne. Süsteem oosneb hest jdmisi ühendtud erioodilisest lülist, mille jonstndid on 0,08 j 0,5 ning õimendustegurid stlt 0 j 50. Leid süsteemi summrne ülendefuntsioon.
RF võimendite parameetrid
RF võimendite parameetrid Raadiosageduslike võimendite võimendavaks elemendiks kasutatakse põhiliselt bipolaarvõi väljatransistori. Paraku on transistori võimendus sagedusest sõltuv, transistor on mittelineaarne
Compress 6000 LW Bosch Compress LW C 35 C A ++ A + A B C D E F G. db kw kw /2013
55 C 35 C A A B C D E F G 50 11 12 11 11 10 11 db kw kw db 2015 811/2013 A A B C D E F G 2015 811/2013 Toote energiatarbe kirjeldus Järgmised toote andmed vastavad nõuetele, mis on esitatud direktiivi
sin 2 α + cos 2 sin cos cos 2α = cos² - sin² tan 2α =
KORDAMINE RIIGIEKSAMIKS III TRIGONOMEETRIA ) põhiseosed sin α + cos sin cos α =, tanα =, cotα =, cos sin + tan =, tanα cotα = cos ) trigonomeetriliste funktsioonide täpsed väärtused α 5 6 9 sin α cos α
Eesti koolinoorte XLIX täppisteaduste olümpiaad
Eesti koolinoorte XLIX täppisteaduste olümpiaad MATEMAATIKA PIIRKONDLIK VOOR 26. jaanuaril 2002. a. Juhised lahenduste hindamiseks Lp. hindaja! 1. Juhime Teie tähelepanu sellele, et alljärgnevas on 7.
Peatükk 1 SISSEJUHATUS
Peatükk SISSEJUHATUS Sidesüsteemides ja -seadmetes tehtavad mõõtmised on klassikalise mõõtetehnika rakendamine uues ja kiiresti arenevas valdkonnas, milleks on telekommunikatsioonitehnika. On terve rida
MATEMAATILISEST LOOGIKAST (Lausearvutus)
TARTU ÜLIKOOL Teaduskool MATEMAATILISEST LOOGIKAST (Lausearvutus) Õppematerjal TÜ Teaduskooli õpilastele Koostanud E. Mitt TARTU 2003 1. LAUSE MÕISTE Matemaatilise loogika ühe osa - lausearvutuse - põhiliseks
I KURSUS - FLA I OSA - FÜÜSIKA UURIMISMEETOD ENN KIRSMAN
I KURSUS - FLA I OSA - FÜÜSIKA UURIMISMEETOD ENN KIRSMAN 2014 Sisukord Sisukord... 1 1.1. Sissejuhatus füüsikasse... 2 1.1.1. Maailm. Loodus... 2 1.1.2. Loodusteadused... 2 1.1.3. Vaatleja... 2 1.1.4.
KEEMIAÜLESANNETE LAHENDAMISE LAHTINE VÕISTLUS
KEEMIAÜLESANNETE LAHENDAMISE LAHTINE VÕISTLUS Nooem aste (9. ja 10. klass) Tallinn, Tatu, Kuessaae, Nava, Pänu, Kohtla-Jäve 11. novembe 2006 Ülesannete lahendused 1. a) M (E) = 40,08 / 0,876 = 10,2 letades,
Prisma. Lõik, mis ühendab kahte mitte kuuluvat tippu on prisma diagonaal d. Tasand, mis. prisma diagonaal d ja diagonaaltasand (roheline).
Prism Prisms nimese ulu, mille s u on vsvl rlleelsee j võrdsee ülgedeg ulnurgd, ning ülejäänud ud on rööüliud, millel on ummgi ulnurgg üine ülg. Prlleelseid ulnuri nimese rism õjdes j nende ulnurde ülgi
KOMBINATSIOONID, PERMUTATSIOOND JA BINOOMKORDAJAD
KOMBINATSIOONID, PERMUTATSIOOND JA BINOOMKORDAJAD Teema 3.1 (Õpiku peatükid 1 ja 3) Jaan Penjam, email: jaan@cs.ioc.ee Diskreetne Matemaatika II: Kombinatoorika 1 / 31 Loengu kava 1 Tähistusi 2 Kombinatoorsed
Andmeanalüüs molekulaarbioloogias
Andmeanalüüs molekulaarbioloogias Praktikum 3 Kahe grupi keskväärtuste võrdlemine Studenti t-test 1 Hüpoteeside testimise peamised etapid 1. Püstitame ENNE UURINGU ALGUST uurimishüpoteesi ja nullhüpoteesi.
JAOTUSFUNKTSIOONID JA MÕÕTEMÄÄRAMATUSED
Tartu Üliool Kesoafüüsia istituut JAOTUSFUNKTSIOONID JA MÕÕTEMÄÄRAMATUSED I VIHIK LOENGUKONSPEKT Rei Rõõm TARTU 5 Käesolev loeguospet JAOTUSFUNKTSIOONID JA MÕÕTEMÄÄRAMATUSED o mõeldud asutamises eesätt
6 Vahelduvvool. 6.1 Vahelduvvoolu mõiste. Vahelduvvooluks nimetatakse voolu, mille suund ja tugevus ajas perioodiliselt muutub.
6 Vahelduvvool 6 Vahelduvvoolu õiste Vahelduvvooluks nietatakse voolu, ille suund ja tugevus ajas perioodiliselt uutub Tänapäeva elektrijaotusvõrkudes on kasutusel vahelduvvool Alalisvoolu kasutatakse
y(t) S x(t) S dy dx E, E E T1 T2 T1 T2 1 T 1 T 2 2 T 2 1 T 2 2 3 T 3 1 T 3 2... V o R R R T V CC P F A P g h V ext V sin 2 S f S t V 1 V 2 V out sin 2 f S t x 1 F k q K x q K k F d F x d V
Suhteline salajasus. Peeter Laud. Tartu Ülikool. peeter TTÜ, p.1/27
Suhteline salajasus Peeter Laud peeter l@ut.ee Tartu Ülikool TTÜ, 11.12.2003 p.1/27 Probleemi olemus salajased sisendid avalikud väljundid Program muud väljundid muud sisendid mittesalajased väljundid
PEATÜKK 5 LUMEKOORMUS KATUSEL. 5.1 Koormuse iseloom. 5.2 Koormuse paiknemine
PEATÜKK 5 LUMEKOORMUS KATUSEL 5.1 Koormuse iseloom (1) P Projekt peab arvestama asjaolu, et lumi võib katustele sadestuda paljude erinevate mudelite kohaselt. (2) Erinevate mudelite rakendumise põhjuseks
ÜHIKANALÜÜS I Õppevahend TÜ teaduskooli õpilastele Tartu 2017
ÜHIKANALÜÜS I Õppevahend TÜ teaduskooli õpilastele Tartu 2017 Koostanud Vladislav Ivaništšev KEEMIA ÜLESANNETE LAHENDAMINE II Me oleme juba kokku puutunud ülesannetea, kus aine valem leiti ideaalaasi võrrandi
Eesti LIV matemaatikaolümpiaad
Eesti LIV matemaatikaolümpiaad 31. märts 007 Lõppvoor 9. klass Lahendused 1. Vastus: 43. Ilmselt ei saa see arv sisaldada numbrit 0. Iga vähemalt kahekohaline nõutud omadusega arv sisaldab paarisnumbrit
ÜLESANDEID MEHAANIKAST
ÜLESANDEID EHAANIKAST JAAN KALDA SISSEJUHATUS Antud ihik on jätkuks kineaatika üesannete kogue. Nii nagu kineaatikagi puhu on püütud tuua äja põhiised ahendusideed, ie abi peaks oea õiaik ahendada enaik
Teaduskool. Alalisvooluringid. Koostanud Kaljo Schults
TARTU ÜLIKOOL Teaduskool Alalisvooluringid Koostanud Kaljo Schults Tartu 2008 Eessõna Käesoleva õppevahendi kasutajana on mõeldud eelkõige täppisteaduste vastu huvi tundvaid gümnaasiumi õpilasi, kes on
Tehnikatõlge Lk 1/ Ühikud (AV)
Tehnikatõlge Lk 1/10 25.2.2018 Ühikud Number, arv, suurus, väärtus Number ja arv Numbri ja arvu suhe on samasugune kui tähe ja sõna suhe. Kümnendsüsteemi numbrid on 0, 1, 2, 3, 4, 5, 6, 7, 8, 9. Araabia
Eesti koolinoorte 51. täppisteaduste olümpiaad
Eesti koolinoorte 5 täppisteaduste olümpiaad Füüsika lõppvoor 7 märts 2004 a Põhikooli ülesannete lahendused ülesanne (KLAASTORU) Plaat eraldub torust siis, kui petrooleumisamba rõhk saab võrdseks veesamba
!"!# ""$ %%"" %$" &" %" "!'! " #$!
" "" %%"" %" &" %" " " " % ((((( ((( ((((( " %%%% & ) * ((( "* ( + ) (((( (, (() (((((* ( - )((((( )((((((& + )(((((((((( +. ) ) /(((( +( ),(, ((((((( +, 0 )/ (((((+ ++, ((((() & "( %%%%%%%%%%%%%%%%%%%(
7.7 Hii-ruut test 7.7. HII-RUUT TEST 85
7.7. HII-RUUT TEST 85 7.7 Hii-ruut test Üks universaalsemaid ja sagedamini kasutust leidev test on hii-ruut (χ 2 -test, inglise keeles ka chi-square test). Oletame, et sooritataval katsel on k erinevat
28. Sirgvoolu, solenoidi ja toroidi magnetinduktsiooni arvutamine koguvooluseaduse abil.
8. Sigvoolu, solenoidi j tooidi mgnetinduktsiooni vutmine koguvooluseduse il. See on vem vdtud, kuid mitte juhtme sees. Koguvooluseduse il on sed lihtne teh. Olgu lõpmt pikk juhe ingikujulise istlõikeg,
Rein Teinberg: "Põllumajandusloomade geneetika", 7. POPULATSIOONIGENEETIKA. toimetanud M. Viikmaa, "Valgus", Tallinn, 1978.
Rein Teinberg: "Põllumajandusloomade geneetika", toimetanud M. Viikmaa, "Valgus", Tallinn, 1978 7. POPULATSIOONIGENEETIKA lk 202-215 Põllumajandusloomade geneetika üheks iseärasuseks, võrreldes üldgeneetikaga
ALGEBRA I. Kevad Lektor: Valdis Laan
ALGEBRA I Kevad 2013 Lektor: Valdis Laan Sisukord 1 Maatriksid 5 1.1 Sissejuhatus....................................... 5 1.2 Maatriksi mõiste.................................... 6 1.3 Reaalarvudest ja
TÄIENDAVAID TEEMASID KOOLIKEEMIALE I
TARTU ÜLIKOOL TEADUSKOOL TÄIENDAVAID TEEMASID KOOLIKEEMIALE I LAHUSED Natalia Nekrassova Õppevahend TK õpilastele Tartu 008 LAHUSED Looduses ja tehnikas lahused omavad suurt tähtsust. Taimed omandavad
I. Keemiline termodünaamika. II. Keemiline kineetika ja tasakaal
I. Keemiline termdünaamika I. Keemiline termdünaamika 1. Arvutage etüüni tekke-entalpia ΔH f lähtudes ainete põlemisentalpiatest: ΔH c [C(gr)] = -394 kj/ml; ΔH c [H 2 (g)] = -286 kj/ml; ΔH c [C 2 H 2 (g)]
STM A ++ A + A B C D E F G A B C D E F G. kw kw /2013
Ι 47 d 11 11 10 kw kw kw d 2015 811/2013 Ι 2015 811/2013 Toote energiatarbe kirjeldus Järgmised toote andmed vastavad nõuetele, mis on esitatud direktiivi 2010/30/ täiendavates määrustes () nr 811/2013,
KORDAMINE RIIGIEKSAMIKS VII teema Vektor. Joone võrrandid.
KORDMINE RIIGIEKSMIKS VII teema Vektor Joone võrrandid Vektoriaalseid suuruseid iseloomustavad a) siht b) suund c) pikkus Vektoriks nimetatakse suunatud sirglõiku Vektori alguspunktiks on ja lõpp-punktiks
Semantiline analüüs. Süntaksipuu dekoreeritakse tüübi- ja muu kontekstist sõltuva
Semantiline analüüs Semantiline analüüs Semantiline analüüs kontrollib programmi kontekstuaalsete sõltuvuste korrektsust: leiab vastavuse defineerivate ja kasutusesinemiste vahel, leiab esinemiste tüübid
; y ) vektori lõpppunkt, siis
III kusus VEKTOR TASANDIL. JOONE VÕRRAND *laia matemaatika teemad. Vektoi mõiste, -koodinaadid ja pikkus: http://www.allaveelmaa.com/ematejalid/vekto-koodinaadid-pikkus.pdf Vektoite lahutamine: http://allaveelmaa.com/ematejalid/lahutaminenull.pdf
Ülesanne 4.1. Õhukese raudbetoonist gravitatsioontugiseina arvutus
Ülesanne 4.1. Õhukese raudbetoonist gravitatsioontugiseina arvutus Antud: Õhuke raudbetoonist gravitatsioontugisein maapinna kõrguste vahega h = 4,5 m ja taldmiku sügavusega d = 1,5 m. Maapinnal tugiseina
Kontekstivabad keeled
Kontekstivabad keeled Teema 2.1 Jaan Penjam, email: jaan@cs.ioc.ee Rekursiooni- ja keerukusteooria: KV keeled 1 / 27 Loengu kava 1 Kontekstivabad grammatikad 2 Süntaksipuud 3 Chomsky normaalkuju Jaan Penjam,
tel , version 1-7 Feb 2013
!"## $ %&' (") *+ '#),! )%)%' *, -#)&,-'" &. % /%%"&.0. )%# "#",1 2" "'' % /%%"&30 "'' "#", /%%%" 4"," % /%%5" 4"," "#",%" 67 Y% !"!"# $ %& & # &$ ' '#( ''# ))'%&##& *'#$ ##''' "#$ %% +, %'# %+)% $
ISS0050 MÕÕTMINE. Teine loeng
ISS0050 MÕÕTMINE Teine loeng Sügis 2016 Martin Jaanus U02-308 martin.jaanus@ttu.ee 620 2110, 56 91 31 93 http://iscx.dcc.ttu.ee/martin Õppetöö : http://iscx.dcc.ttu.ee Teemad Ühikud Kordajad Etalonid Mis
PÕHIKOOLI KORDAMISE TÖÖ I
PÕHIKOOLI KORDAMISE TÖÖ I 0. Arvut vldise,6 4 täpe väärtus. 4 4. Lihtsust vldis. 4 4. Lhed võrrdisüsteem = 4. 4= 4. Mtel mksis 400 krooi. Mtli hid tõusis lgul 0% j seejärel veel %. Kui suur oli lõpuks
KORDAMINE RIIGIEKSAMIKS V teema Vektor. Joone võrrandid.
KORDMINE RIIGIEKSMIKS V teema Vektor Joone võrrandid Vektoriaalseid suuruseid iseloomustavad a) siht b) suund c) pikkus Vektoriks nimetatakse suunatud sirglõiku Vektori alguspunktiks on ja lõpp-punktiks
I S L A M I N O M I C J U R N A L J u r n a l E k o n o m i d a n P e r b a n k a n S y a r i a h
A n a l i s a M a n a j e m e n B P I H d i B a n k S y a r i a h I S S N : 2 0 8 7-9 2 0 2 I S L A M I N O M I C P e n e r b i t S T E S I S L A M I C V I L L A G E P e n a n g g u n g J a w a b H. M
ΓΕΝΝΗΤΡΙΕΣ ΒΕΝΖΙΝΗΣ. ΣΥΝΤΕΛΕΣΤΗΣ ΙΣΧΥΟΣ (cosφ) 1,0 1,0 1,0 1,0 ΣΥΝΕΧΕΣ ΡΕΥΜΑ DC (Volt) 12 12 12 12 ΡΥΘΜΙΣΗ ΤΑΣΗΣ AVR AVR AVR AVR
ΓΕΝΝΗΤΡΙΕΣ ΒΕΝΖΙΝΗΣ Οι πλέον αξιόπιστες γεννήτριες στην κατηγορία τους, µε προσεγµένα υλικά κατασκευής, φινίρισµα και εξοπλισµό. Επίσης, έχουν µεγάλη δεξαµενή καυσίµου για µεγαλύτερη αυτονοµία - διάρκεια
1 Reaalarvud ja kompleksarvud Reaalarvud Kompleksarvud Kompleksarvu algebraline kuju... 5
1. Marek Kolk, Kõrgem matemaatika, Tartu Ülikool, 2013-14. 1 Reaalarvud ja kompleksarvud Sisukord 1 Reaalarvud ja kompleksarvud 1 1.1 Reaalarvud................................... 2 1.2 Kompleksarvud.................................