VEDELIKU SISEHÕÕRDETEGURI MÄÄRAMINE KETTA SUMBUVATEST PÖÖRDVÕNKUMISTEST
|
|
- Δήλια Αποστόλου
- 7 χρόνια πριν
- Προβολές:
Transcript
1 VEDELIKU SISEHÕÕRDETEGURI MÄÄRAMINE KETTA SUMBUVATEST PÖÖRDVÕNKUMISTEST. Tööülesae Uuritava vedeliku sisehõõrdeteguri (viskoossuse) ääraie ketta subuvatest pöördvõkuistest.. Töövahedid Traadi külge riputatud etallketas, va vedeliku jaoks, rigskaala, ajaõõtur, teroeeter, uuritav vedelik, etalovedelik (destilleeritud vesi), puhastusvahedid. 3. Meetodi teooria Raske etallketas ripub traadi otsas ii, et traadi telg (pöörleistelg) läbib ketta asskeset (joo. ). Ketas o varustatud osutiga. Osuti ja rigskaala abil ääratakse pöördvõkuiste urkaplituude. Kui paigutada ketas vedelikku ja viia ta pöördvõkuisse, siis vedeliku sisehõõrdejõudude toiel võkuised subuvad. Subuva pöördvõkuise diferetsiaalvõrrad o sellie: ehk kus ϕ, ϕ ja ϕ Iϕ = Dϕ r ϕ r D ϕ + ϕ + ϕ = I I, () o vastavalt urkhälve, -kiirus ja -kiiredus, I vedelikus võkuva ketta iertsioet, D traadi keerdjäikus, r' hõõrdejõudude oedi tegur, ida õõdetakse ühikulise urkkiirusega pöörlevale kettale õjuva hõõrdejõudude oediga. Joo.. Katseseade.
2 Võrradi () lahed avaldub kujul ( δt) si( ωt+ψ) =( t) si( ωt+ψ) ϕ= exp, () kus o algurkaplituud, D r ω = võkuiste rigsagedus, I 4I Ψ algfaas, r = I δ subuvustegur, () t = exp( δt) aplituud hetkel t. Rigsagedust ω võib avaldada järgiselt: ω = D r I 4I = ω δ, (3) kus ω tähedab võkuiste rigsagedust subuvuse puuduisel. Subuvusteguri pöördväärtust ietatakse relaksatsiooiajaks τ = aeg, ille jooksul võkuiste aplituud o väheeud e =,78 korda.. See o Subuva võkuise ajalie graafik o kujutatud jooisel, kus T o võkeperiood. δ Joo.. Subuva võkuise graafik. Subuvusteguri seostaiseks sisehõõrdeteguriga η o vaja leida teguri r' avaldis. Vastava hüdrodüaaika (Navier-Stokes i) võrradi lahedaisega saab leida
3 vedeliku kiiruse u võkuva ketta läheduses (u o ketta piaga paralleele). Arvutades edasi kiiruse gradiedi du dy ristsuuas ketta piaga vahetult ketta pial, saae ketta piaeleedile (pidala S ) õjuva hõõrdejõu vastavalt Newtoi valeile du F = η S, dy y = kus y o ketta piaga ristsuualie koordiaat. Sueerides kõikidele ketta piaeleetidele õjuvad jõueleedid, saae kogu kettale õjuva hõõrdejõudude oedi r'. Eeldades, et hõõrdejõud o palju väikse ketta iertsijõust, st et subuie o aeglae, ig itte arvestades ketta silidrilist välispida, saae r δ = = I ωρη h, (4) ρ k kus ρ vedeliku tihedus, ρ k ketta tihedus, h ketta paksus. Subuvate võkuiste eksperietaalsel uuriisel kasutatakse sageli subuvuse logaritilise dekreedi õistet, sest see suurus o eksperiedist lihtsalt ääratav ja lihtsalt seotud teiste huvipakkuvate suurustega. Subuvuse logaritilie dekreet o Θ o defieeritud kui kahe järjestikuse saasuualise aplituudi suhte logarit () t ( t + T) Θ= l. Logaritilise dekreedi pöördväärtust ietae võgete relaksatsiooiarvuks N =. Θ See o täisvõgete arv, ille jooksul võkuise aplituud väheeb e korda. Valeite () ja (4) abil leiae πρηt h Θ = δt =. (5) ρ k Vale (5) ogi käesolevas töös põhivaleiks. Arvestades seda, et ka vedeliku puuduisel subuvad ketta võkuised eergiakadude tõttu traadis (õhu hõõrduise õju o tuduvalt väikse), võie vastava paraduse sisse viia, lahutades võrduse (5) vasakust poolest õhus õõdetud dekreedi Θ õ. Vedeliku sisehõõrdetegur avaldub siis valeiga ρ η= k ( Θ Θ ) h πρt õ. (6) 3
4 Valeit (6) võiks kasutada otseselt, kuid et tea tuletaisel o tehtud lihtsustavaid eeldusi (äiteks silidrilise pia ittearvestaie), eelistae võrdluseetodit, et saada täpseaid tuleusi. Selleks äärae Θ ii tutud kui ka tudatu vedeliku jaoks. Tutud (etalo-) vedeliku iselooustussuurused varustae ideksiga e. Tudatu vedeliku sisehõõrdeteguri jaoks saae valei e( Θ Θõ) ( Θ Θ ) ρet η= ηe. (7) ρt e õ Tudatuks vedelikuks võib olla ka saa vedelik erieval teperatuuril. 4. Subuvuse logaritilise dekreedi optiaalsest ääraisest Subuvuse logaritilise dekreedi ääraisel kahe aaberaplituudi abil ei pruugi ääraatus sugugi iiaale olla võrreldes ite aplituudi kasutaisega. Tuletae Θ valei üldisea juhu jaoks, kui pole tegeist aaberaplituudidega. Nuerdae saasuualisi aplituude ideksitega,,,,. Looulikult Ühtlasi Seega = = =... = exp = exp ( Θ) ( Θ) ;...; = exp( Θ) Θ = l.. (8). (9) Algaplituudi võie suvaliselt valida, võie lugeda -iks je. Nüüd püüae äärata optiaalse arvu, et Θ õõteääraatus oleks iiaale. Leiae kõigepealt Θ liitääraatuse u c ( Θ) = u ( ) u ( ) Aplituudi ääraatus ilselt ei sõltu aplituudi väärtusest, ( ) = u( ) u Kasutades valeit (8) avaldae + ( ) = u( ) + c Θ. kaudu ja ( ) u u c ( Θ) = + exp ( Θ) u ja. () Optiaalse leidiseks tuleks lahedada ekstreeuülesae, võrrutades u c (Θ ) esiese tuletise järgi ulliga. Jättes ära kostatsed kordajad, saae ekstreeui tigiuseks 4
5 ( Θ) Θ = exp +. Seda võrradit ei ole õestuud aalüütiliselt lahedada. Nubrilie lahedus aab ehk ligikaudseks tuleuseks Θ =,, = =, N. () Θ Optiaalseks väärtuseks tuleks võtta valei () abil leitud arvule lähi täisarv. Otstarbekas o arvatavasti juba võgete registreeriise käigus äärata paras võgete arv, ila et e dekreeti Θ veel teaks. Selleks avaldae valeitest (8) ja () optiaalsele võgete arvule vastava aplituudide suhte = exp( Θ) 3 st optiaale o võgete arv siis kui aplituud o väheeud 3 korda. Täpsuse tõstiseks võtae arvutuse aluseks suureal arvul aplituudide paare (, ), (, + ) je. Sii tuleks leida kaalutud keskväärtus, kua iga järgeva aplituudide paariga läheb Θ ääraatus exp(θ ) korda suureaks. Et see aga tavaliselt oluliselt ei erie harilikust keskväärtusest, piirdue töö põhivariadis viiasega. Kuidas avaldub Θ iiaale ääraatus ühe aplituudide paari korral kui e olee kasutaud? Valeitest (7), (9), () ja ekstreeui tigiusest saae u c ( ) = ( Θ), Θ i exp = 3 =. () 5. Töö käik. Vajaduse korral puhastae traadi otsas rippuva ketta sooladest ja rasvajäätetest piirituse, atsetooi või besiii abil. Hoiae seejuures ketast ettevaatlikult võllist. Tekitae väikese aplituudiga pöördvõkuisi (ubes ) ja äärae võkeperioodi õhus T õ täisvõke aja järgi.. Tekitae eriseade abil pöördvõkuisi aplituudiga kui. Harjutae skaalalt lugeist. Määrae tasakaaluasedi. 3. Paee jällegi ketta võkua õõduka aplituudiga. Registreerie osuti ühepoolsed äärised asedid a, a, a,, a. Õhus võkuisel ei püüa e oodata, kui aplituud väheeb 3 korda, vaid piirdue orieteeruvalt 5 võkega. Seejärel seiskae ettevaatlikult ketta ja äärae uuesti tasakaaluasedi. Aplituudid äärae = a, = a je. Soovitav o teha tabel 5
6 i a i i. k. i k+ i Θõ Θ õ väärtustest leiae ariteetilise keskise; k tuleks valida ii, et Θ õ keskväärtuse ääraatus oleks iiaale. See aalüüs o suhteliselt keerukas; käesoleval juhul o k optiaalseks väärtuseks orieteeruvalt k Täidae aua etalovedelikuga (destilleeritud vesi), õõdae selle teperatuuri. Lasee ketta vedelikku, aua keskele. Viie läbi saasugused õõtised kui puktis 3, kuid üüd lasee kettal võkuda iikaua, kui aplituud (tasakaaluasedi suhtes) o väheeud vähealt korda. Seeria lõpus äärae täpselt tasakaaluasedi. Tabeli päis äeks välja järgiselt i a i i i + i Θe äärae i -de abil, so võke ubriga, ille juures aplituud o väheeud ligikaudu 3 korda. Leiae võialikult palju suhteid, + je, aga itte üle. Leiae jällegi Θ e ariteetilise keskise. 5. Määrae ketta võkeperioodi T e. Selleks õõdae suurea arvu, äiteks täisvõke sooritaiseks kuluud aja. Kotrollie ühe täisvõkega, kas pole ekset. 6. Kordae puktides 4 ja 5 kirjeldatud õõtisi uuritava vedelikuga või saa vedelikuga erieval teperatuuril. 7. Arvutae uuritava vedeliku sisehõõrdeteguri valeist (7). Märgie juurde teperatuuri ja teroeetri põhivea. 8. Arvutae veel subuvustegurid δ e ja δ, relaksatsiooiajad τ e ja τ ig relaksatsiooiarvud N e ja N. 6. Metoodilisi ja etroloogilisi juhiseid B-tüüpi ääraatuse üheks kopoediks o lähtevõrradite () ja (4) ig kokreetse katseseade ittevastavus. O soovitav aalüüsida, illes võiks see ittevastavus kokreetselt seiseda. Ülalkirjeldatud arvutuseetodi puhul o aalüüsitud optiaalse võgete arvu valikut, et saavutada iiaalset subuvusteguri ääraatust. Määraatus tuleb, uide, seda väikse, ida suure o algaplituud. Kuid aplituudi ei või liiga 6
7 suurea võtta, sest siis tekib kõrvalekalduisi Hooke i seadusest traadi deforatsiooil ja õeldav o ka vedeliku iertsi suure õju; seda iertsi võrrad () ei arvesta. Soovitae võtta algaplituudi orieteeruvalt 9. A-tüüpi ääraatust saab ilselt oluliselt vähedada keskväärtuse leidisega. Θ keskväärtuse usalduspiirid (95% ivoo juures) võiks äärata ärgitesti järgi [3, p. 35.4], kuigi sii jääb arvestaata tuleuste ittevõrdtäpsus. Aja õõtisel elektrilise sekudkellaga tuleb kidlasti õõta võrgusagedust, vähealt kahel korral vähealt pooletuise vahega. Määraatuse hidaiseks o soovitav tuletada eelde juhiseid aja ja võkeperioodi õõtiseks koguikust "Mehaaikapraktikui tööjuhedid I" [6]. Et vedeliku viskoossus sõltub tugevasti teperatuurist, tuleb ka teperatuuri õõtisele täit tähelepau osutada. Etalovedeliku sisehõõrdetegur η e tuleks leida graafilise või ubrilise iterpolatsiooiga tabeli adetest. 7. Lisaülesaded 7.. Ee praktikui. Millie o η õõtühik SI-süsteeis?. Selgitada subuva pöördvõkuise diferetsiaalvõrradi kõigi liikete füüsikalist tähedust. 3. Millised o suuruste I, D ja r' diesiooid? 4. Kuidas avaldub kriitilie subuvustegur, ille juures võkuie läheb üle aperioodiliseks? 7.. Pärast praktikui. Arvutada kriitilie δ väärtus atud seade puhul, ille juures võkuie uutub aperioodiliseks liikuiseks, lugedes võkuisi õhus praktiliselt subuatuiks.. Arvutada η valei (6) järgi. 3. Arvutada η täpsea valei järgi, illie arvestab ka kaasahaaratava vedeliku iertsi ρ e( Θ( +Θ π) Θõ) ( Θ ( +Θ π) Θ ) T e η= ηe. ρt e e õ 4. Hiata ketta poolt kaasahaaratava vedelikukihi paksust δ ηt πρ y. 5. Hiata ligikaudselt õõtiseks vajaievat vedeliku ruuala. 7
8 Kirjadus. I. Saveljev. Füüsika üldkursus I. Valgus, Talli, A.K. Kikoi, I.K. Kikoi. Molekulaarfüüsika (vee k.). Moskva, 976, lk. 7 73, H. Taet. Füüsika praktiku. Metroloogia. Talli, J.P. Subbotia. Füüsikaliste kostatide ja paraeetrite koguik (vee k.). Leigrad, Leigradi Riikliku Ülikooli Kirjastus, A.N. Matvejev. Molekulaarfüüsika (vee k.). Moskva, 987, lk Mehhaaikapraktikui tööjuhedid I, Koost. E. Ta, Tartu, 988, lk Mõõteääraatuse väljedaise juhed, Riigi Metroloogiakeskus, Tartu, T. Plak, Füüsikaliste õõtiste alused. Loegukospekt. 3. trükk, Tartu, Koostaud: J. Sal 8
4.2.5 Täiustatud meetod tuletõkestusvõime määramiseks
4.2.5 Täiustatud meetod tuletõkestusvõime määramiseks 4.2.5.1 Ülevaade See täiustatud arvutusmeetod põhineb mahukate katsete tulemustel ja lõplike elementide meetodiga tehtud arvutustel [4.16], [4.17].
MATEMAATIKA TÄIENDUSÕPE MÕISTED, VALEMID, NÄITED LEA PALLAS XII OSA
MATEMAATIKA TÄIENDUSÕPE MÕISTED, VALEMID, NÄITED LEA PALLAS XII OSA SISUKORD 8 MÄÄRAMATA INTEGRAAL 56 8 Algfunktsioon ja määramata integraal 56 8 Integraalide tabel 57 8 Määramata integraali omadusi 58
Vektorid II. Analüütiline geomeetria 3D Modelleerimise ja visualiseerimise erialale
Vektorid II Analüütiline geomeetria 3D Modelleerimise ja visualiseerimise erialale Vektorid Vektorid on arvude järjestatud hulgad (s.t. iga komponendi väärtus ja positsioon hulgas on tähenduslikud) Vektori
Matemaatiline analüüs I iseseisvad ülesanded
Matemaatiline analüüs I iseseisvad ülesanded Leidke funktsiooni y = log( ) + + 5 määramispiirkond Leidke funktsiooni y = + arcsin 5 määramispiirkond Leidke funktsiooni y = sin + 6 määramispiirkond 4 Leidke
Sissejuhatus mehhatroonikasse MHK0120
Sissejuhatus mehhatroonikasse MHK0120 2. nädala loeng Raavo Josepson raavo.josepson@ttu.ee Loenguslaidid Materjalid D. Halliday,R. Resnick, J. Walker. Füüsika põhikursus : õpik kõrgkoolile I köide. Eesti
Funktsiooni diferentsiaal
Diferentsiaal Funktsiooni diferentsiaal Argumendi muut Δx ja sellele vastav funktsiooni y = f (x) muut kohal x Eeldusel, et f D(x), saame Δy = f (x + Δx) f (x). f (x) = ehk piisavalt väikese Δx korral
Lokaalsed ekstreemumid
Lokaalsed ekstreemumid Öeldakse, et funktsioonil f (x) on punktis x lokaalne maksimum, kui leidub selline positiivne arv δ, et 0 < Δx < δ Δy 0. Öeldakse, et funktsioonil f (x) on punktis x lokaalne miinimum,
2.2.1 Geomeetriline interpretatsioon
2.2. MAATRIKSI P X OMADUSED 19 2.2.1 Geomeetriline interpretatsioon Maatriksi X (dimensioonidega n k) veergude poolt moodustatav vektorruum (inglise k. column space) C(X) on defineeritud järgmiselt: Defineerides
Energiabilanss netoenergiavajadus
Energiabilanss netoenergiajadus 1/26 Eelmisel loengul soojuskadude arvutus (võimsus) φ + + + tot = φ φ φ juht v inf φ sv Energia = tunnivõimsuste summa kwh Netoenergiajadus (ruumis), energiakasutus (tehnosüsteemis)
FÜÜSIKALISED SUURUSED, NENDE MÕÕTMINE JA MÕÕTEMÄÄRAMATUS Lühikokkuvõte
0 Taia Tehikaüikoo Füüsikaistituut Marek Viiuu FÜÜSIKLISED SRSED, NENDE MÕÕTMINE J MÕÕTEMÄÄRMTS Lühikokkuvõte Mõõtiseks ietatakse atud füüsikaise suuruse x võrdeist teise saa iiki suurusega, is o võetud
Ruumilise jõusüsteemi taandamine lihtsaimale kujule
Kodutöö nr.1 uumilise jõusüsteemi taandamine lihtsaimale kujule Ülesanne Taandada antud jõusüsteem lihtsaimale kujule. isttahuka (joonis 1.) mõõdud ning jõudude moodulid ja suunad on antud tabelis 1. D
9. AM ja FM detektorid
1 9. AM ja FM detektorid IRO0070 Kõrgsageduslik signaalitöötlus Demodulaator Eraldab moduleeritud signaalist informatiivse osa. Konkreetne lahendus sõltub modulatsiooniviisist. Eristatakse Amplituuddetektoreid
PLASTSED DEFORMATSIOONID
PLAED DEFORMAIOONID Misese vlavustingimus (pinegte ruumis) () Dimensineerimisega saab kõrvaldada ainsa materjali parameetri. Purunemise (tugevuse) kriteeriumid:. Maksimaalse pinge kirteerium Laminaat puruneb
Graafiteooria üldmõisteid. Graaf G ( X, A ) Tippude hulk: X={ x 1, x 2,.., x n } Servade (kaarte) hulk: A={ a 1, a 2,.., a m } Orienteeritud graafid
Graafiteooria üldmõisteid Graaf G ( X, A ) Tippude hulk: X={ x 1, x 2,.., x n } Servade (kaarte) hulk: A={ a 1, a 2,.., a m } Orienteeritud graafid Orienteerimata graafid G(x i )={ x k < x i, x k > A}
Eesti koolinoorte 43. keemiaolümpiaad
Eesti koolinoorte 4. keeiaolüpiaad Koolivooru ülesannete lahendused 9. klass. Võrdsetes tingiustes on kõikide gaaside ühe ooli ruuala ühesugune. Loetletud gaaside ühe aarruuala ass on järgine: a 2 + 6
Matemaatiline analüüs I iseseisvad ülesanded
Matemaatiline analüüs I iseseisvad ülesanded. Leidke funktsiooni y = log( ) + + 5 määramispiirkond.. Leidke funktsiooni y = + arcsin 5 määramispiirkond.. Leidke funktsiooni y = sin + 6 määramispiirkond.
HAPE-ALUS TASAKAAL. Teema nr 2
PE-LUS TSL Teema nr Tugevad happed Tugevad happed on lahuses täielikult dissotiseerunud + sisaldus lahuses on võrdne happe analüütilise kontsentratsiooniga Nt NO Cl SO 4 (esimeses astmes) p a väärtused
MATEMAATIKA TÄIENDUSÕPE MÕISTED, VALEMID, NÄITED, ÜLESANDED LEA PALLAS VII OSA
MATEMAATIKA TÄIENDUSÕPE MÕISTED, VALEMID, NÄITED, ÜLESANDED LEA PALLAS VII OSA SISUKORD 57 Joone uutuja Näited 8 58 Ülesanded uutuja võrrandi koostamisest 57 Joone uutuja Näited Funktsiooni tuletisel on
Jätkusuutlikud isolatsioonilahendused. U-arvude koondtabel. VÄLISSEIN - COLUMBIA TÄISVALATUD ÕÕNESPLOKK 190 mm + SOOJUSTUS + KROHV
U-arvude koondtabel lk 1 lk 2 lk 3 lk 4 lk 5 lk 6 lk 7 lk 8 lk 9 lk 10 lk 11 lk 12 lk 13 lk 14 lk 15 lk 16 VÄLISSEIN - FIBO 3 CLASSIC 200 mm + SOOJUSTUS + KROHV VÄLISSEIN - AEROC CLASSIC 200 mm + SOOJUSTUS
Kompleksarvu algebraline kuju
Kompleksarvud p. 1/15 Kompleksarvud Kompleksarvu algebraline kuju Mati Väljas mati.valjas@ttu.ee Tallinna Tehnikaülikool Kompleksarvud p. 2/15 Hulk Hulk on kaasaegse matemaatika algmõiste, mida ei saa
INTERFERENTS. Saateks. 1. Teoreetilised alused
INTERFERENTS Saateks Eeline interferentsialaseid praktikuitöid sisaldav õppevahend Optika praktiku VI on pärit 989. aastast. Möödunud aja jooksul on uutunud oluliselt andetöötluse vahendid ning õningal
Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α
Α Ρ Χ Α Ι Α Ι Σ Τ Ο Ρ Ι Α Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α Σ η µ ε ί ω σ η : σ υ ν ά δ ε λ φ ο ι, ν α µ ο υ σ υ γ χ ω ρ ή σ ε τ ε τ ο γ ρ ή γ ο ρ ο κ α ι α τ η µ έ λ η τ ο ύ
28. Sirgvoolu, solenoidi ja toroidi magnetinduktsiooni arvutamine koguvooluseaduse abil.
8. Sigvoolu, solenoidi j tooidi mgnetinduktsiooni vutmine koguvooluseduse il. See on vem vdtud, kuid mitte juhtme sees. Koguvooluseduse il on sed lihtne teh. Olgu lõpmt pikk juhe ingikujulise istlõikeg,
Geomeetrilised vektorid
Vektorid Geomeetrilised vektorid Skalaarideks nimetatakse suurusi, mida saab esitada ühe arvuga suuruse arvulise väärtusega. Skalaari iseloomuga suurusi nimetatakse skalaarseteks suurusteks. Skalaarse
Kirjeldab kuidas toimub programmide täitmine Tähendus spetsifitseeritakse olekuteisendussüsteemi abil Loomulik semantika
Operatsioonsemantika Kirjeldab kuidas toimub programmide täitmine Tähendus spetsifitseeritakse olekuteisendussüsteemi abil Loomulik semantika kirjeldab kuidas j~outakse l~oppolekusse Struktuurne semantika
2017/2018. õa keemiaolümpiaadi piirkonnavooru lahendused klass
2017/2018. õa keemiaolümpiaadi piirkonnavooru lahendused 11. 12. klass 18 g 1. a) N = 342 g/mol 6,022 1023 molekuli/mol = 3,2 10 22 molekuli b) 12 H 22 O 11 + 12O 2 = 12O 2 + 11H 2 O c) V = nrt p d) ΔH
Koduseid ülesandeid IMO 2017 Eesti võistkonna kandidaatidele vol 4 lahendused
Koduseid ülesandeid IMO 017 Eesti võistkonna kandidaatidele vol 4 lahendused 17. juuni 017 1. Olgu a,, c positiivsed reaalarvud, nii et ac = 1. Tõesta, et a 1 + 1 ) 1 + 1 ) c 1 + 1 ) 1. c a Lahendus. Kuna
Tuletis ja diferentsiaal
Peatükk 3 Tuletis ja diferentsiaal 3.1 Tuletise ja diferentseeruva funktsiooni mõisted. Olgu antud funktsioon f ja kuulugu punkt a selle funktsiooni määramispiirkonda. Tuletis ja diferentseeruv funktsioon.
MOSFET tööpõhimõte. MOS diood. Tsoonipilt. MOS diood Tüüpiline metall-oksiid-pooljuht (MOS) diood omab sellist struktuuri
MOS dood Metall-okd- ooljuht (MOS) o kaaaja kroelektrooka kõge rohke kautatav re ülde! MOSET tööõhõte I Pch-off D 3 S- allka (ource), G- a (gate), D- eel (dra) -kaalga MOSET (NMOS) kautab -tüü alut 1 1
,millest avaldub 21) 23)
II kursus TRIGONOMEETRIA * laia matemaatika teemad TRIGONOMEETRILISTE FUNKTSIOONIDE PÕHISEOSED: sin α s α sin α + s α,millest avaldu s α sin α sα tan α, * t α,millest järeldu * tα s α tα tan α + s α Ülesanne.
Planeedi Maa kaardistamine G O R. Planeedi Maa kõige lihtsamaks mudeliks on kera. Joon 1
laneedi Maa kaadistamine laneedi Maa kõige lihtsamaks mudeliks on kea. G Joon 1 Maapinna kaadistamine põhineb kea ümbeingjoontel, millest pikimat nimetatakse suuingjooneks. Need suuingjooned, mis läbivad
Kehade soojendamisel või jahutamisel võib keha minna ühest agregaatolekust teise. Selliseid üleminekuid nimetatakse faasisiireteks.
KOOLIFÜÜSIKA: SOOJUS 3 (kaugõppele) 6. FAASISIIRDED Kehade sooendamisel või ahutamisel võib keha minna ühest agregaatolekust teise. Selliseid üleminekuid nimetatakse faasisiireteks. Sooendamisel vaaminev
Ehitusmehaanika harjutus
Ehitusmehaanika harjutus Sõrestik 2. Mõjujooned /25 2 6 8 0 2 6 C 000 3 5 7 9 3 5 "" 00 x C 2 C 3 z Andres Lahe Mehaanikainstituut Tallinna Tehnikaülikool Tallinn 2007 See töö on litsentsi all Creative
Funktsioonide õpetamisest põhikooli matemaatikakursuses
Funktsioonide õpetamisest põhikooli matemaatikakursuses Allar Veelmaa, Loo Keskkool Funktsioon on üldtähenduses eesmärgipärane omadus, ülesanne, otstarve. Mõiste funktsioon ei ole kasutusel ainult matemaatikas,
Kontekstivabad keeled
Kontekstivabad keeled Teema 2.1 Jaan Penjam, email: jaan@cs.ioc.ee Rekursiooni- ja keerukusteooria: KV keeled 1 / 27 Loengu kava 1 Kontekstivabad grammatikad 2 Süntaksipuud 3 Chomsky normaalkuju Jaan Penjam,
TTÜ VIRUMAA KOLLEDŽ. Mõõteriistad ja mõõtevahendid:...
TTÜ VIRUMAA KOLLEDŽ Ehitus ja Tootmistehika lektorat Tehilie füüsika Üliõpilae: Õpperühm: Töö r. ja imetus: Ülmõõtmise Tehtu: Arvestatu: Mõõteriista ja mõõtevahei:...... Joois Kruvik: -ka (пята); -seaekaliiber
Kandvad profiilplekid
Kandvad profiilplekid Koosanud voliaud ehiusinsener, professor Kalju Looris ja ehnikalisensiaa Indrek Tärno C 301 Pärnu 2003 SISUKORD 1. RANNILA KANDVATE PROFIILPLEKKIDE ÜLDANDMED... 3 2. DIMENSIOONIMINE
(Raud)betoonkonstruktsioonide üldkursus 33
(Raud)betoonkonstruktsioonide üldkursus 33 Normaallõike tugevusarvutuse alused. Arvutuslikud pinge-deormatsioonidiagrammid Elemendi normaallõige (ristlõige) on elemendi pikiteljega risti olev lõige (s.o.
Α Ρ Ι Θ Μ Ο Σ : 6.913
Α Ρ Ι Θ Μ Ο Σ : 6.913 ΠΡΑΞΗ ΚΑΤΑΘΕΣΗΣ ΟΡΩΝ ΔΙΑΓΩΝΙΣΜΟΥ Σ τ η ν Π ά τ ρ α σ ή μ ε ρ α σ τ ι ς δ ε κ α τ έ σ σ ε ρ ι ς ( 1 4 ) τ ο υ μ ή ν α Ο κ τ ω β ρ ί ο υ, η μ έ ρ α Τ ε τ ά ρ τ η, τ ο υ έ τ ο υ ς δ
6.6 Ühtlaselt koormatud plaatide lihtsamad
6.6. Ühtlaselt koormatud plaatide lihtsamad paindeülesanded 263 6.6 Ühtlaselt koormatud plaatide lihtsamad paindeülesanded 6.6.1 Silindriline paine Kui ristkülikuline plaat on pika ristküliku kujuline
HSM TT 1578 EST 6720 611 954 EE (04.08) RBLV 4682-00.1/G
HSM TT 1578 EST 682-00.1/G 6720 611 95 EE (0.08) RBLV Sisukord Sisukord Ohutustehnika alased nõuanded 3 Sümbolite selgitused 3 1. Seadme andmed 1. 1. Tarnekomplekt 1. 2. Tehnilised andmed 1. 3. Tarvikud
Eesti koolinoorte 51. täppisteaduste olümpiaad
Eesti koolinoorte 5 täppisteaduste olümpiaad Füüsika lõppvoor 7 märts 2004 a Põhikooli ülesannete lahendused ülesanne (KLAASTORU) Plaat eraldub torust siis, kui petrooleumisamba rõhk saab võrdseks veesamba
Õige vastus annab 1 punkti, kokku 2 punkti (punktikast 1). Kui õpilane märgib rohkem kui ühe vastuse, loetakse kogu vastus valeks.
PÕHIKOOLI FÜÜSIKA LÕPUEKSAMI HINDAMISUHEND 13. UUNI 016 Hinne 5 90 100% 68 75 punki Hinne 4 75 89% 57 67 punki Hinne 3 50 74% 38 56 punki Hinne 0 49% 15 37 punki Hinne 1 0 19% 0 14 punki Arvuuüleannee
Compress 6000 LW Bosch Compress LW C 35 C A ++ A + A B C D E F G. db kw kw /2013
55 C 35 C A A B C D E F G 50 11 12 11 11 10 11 db kw kw db 2015 811/2013 A A B C D E F G 2015 811/2013 Toote energiatarbe kirjeldus Järgmised toote andmed vastavad nõuetele, mis on esitatud direktiivi
Veaarvutus ja määramatus
TARTU ÜLIKOOL Tartu Ülikooli Teaduskool Veaarvutus ja määramatus Urmo Visk Tartu 2005 Sisukord 1 Tähistused 2 2 Sissejuhatus 3 3 Viga 4 3.1 Mõõteriistade vead................................... 4 3.2 Tehted
1. Paisksalvestuse meetod (hash)
1. Paisksalvestuse meetod (hash) Kas on otsimiseks võimalik leida paremat ajalist keerukust kui O(log n)? Parem saaks olla konstantne keerukus O(1), mis tähendaks seda, et on kohe teada, kust õige kirje
Punktide jaotus: kodutööd 15, nädalatestid 5, kontrolltööd 20+20, eksam 40, lisapunktid Kontrolltööd sisaldavad ka testile vastamist
Loeng 2 Punktide jaotus: kodutööd 15, nädalatestid 5, kontrolltööd 20+20, eksam 40, lisapunktid Kontrolltööd sisaldavad ka testile vastamist P2 - tuleb P1 lahendus T P~Q = { x P(x)~Q(x) = t} = = {x P(x)
I. Keemiline termodünaamika. II. Keemiline kineetika ja tasakaal
I. Keemiline termdünaamika I. Keemiline termdünaamika 1. Arvutage etüüni tekke-entalpia ΔH f lähtudes ainete põlemisentalpiatest: ΔH c [C(gr)] = -394 kj/ml; ΔH c [H 2 (g)] = -286 kj/ml; ΔH c [C 2 H 2 (g)]
Arvuteooria. Diskreetse matemaatika elemendid. Sügis 2008
Sügis 2008 Jaguvus Olgu a ja b täisarvud. Kui leidub selline täisarv m, et b = am, siis ütleme, et arv a jagab arvu b ehk arv b jagub arvuga a. Tähistused: a b b. a Näiteks arv a jagab arvu b arv b jagub
7.7 Hii-ruut test 7.7. HII-RUUT TEST 85
7.7. HII-RUUT TEST 85 7.7 Hii-ruut test Üks universaalsemaid ja sagedamini kasutust leidev test on hii-ruut (χ 2 -test, inglise keeles ka chi-square test). Oletame, et sooritataval katsel on k erinevat
2. Α ν ά λ υ σ η Π ε ρ ι ο χ ή ς. 3. Α π α ι τ ή σ ε ι ς Ε ρ γ ο δ ό τ η. 4. Τ υ π ο λ ο γ ί α κ τ ι ρ ί ω ν. 5. Π ρ ό τ α σ η. 6.
Π Ε Ρ Ι Ε Χ Ο Μ Ε Ν Α 1. Ε ι σ α γ ω γ ή 2. Α ν ά λ υ σ η Π ε ρ ι ο χ ή ς 3. Α π α ι τ ή σ ε ι ς Ε ρ γ ο δ ό τ η 4. Τ υ π ο λ ο γ ί α κ τ ι ρ ί ω ν 5. Π ρ ό τ α σ η 6. Τ ο γ ρ α φ ε ί ο 1. Ε ι σ α γ ω
Andmeanalüüs molekulaarbioloogias
Andmeanalüüs molekulaarbioloogias Praktikum 3 Kahe grupi keskväärtuste võrdlemine Studenti t-test 1 Hüpoteeside testimise peamised etapid 1. Püstitame ENNE UURINGU ALGUST uurimishüpoteesi ja nullhüpoteesi.
ITI 0041 Loogika arvutiteaduses Sügis 2005 / Tarmo Uustalu Loeng 4 PREDIKAATLOOGIKA
PREDIKAATLOOGIKA Predikaatloogika on lauseloogika tugev laiendus. Predikaatloogikas saab nimetada asju ning rääkida nende omadustest. Väljendusvõimsuselt on predikaatloogika seega oluliselt peenekoelisem
20. SIRGE VÕRRANDID. Joonis 20.1
κ ËÁÊ Â Ì Ë Æ Á 20. SIRGE VÕRRANDID Sirget me võime vaadelda kas tasandil E 2 või ruumis E 3. Sirget vaadelda sirgel E 1 ei oma mõtet, sest tegemist on ühe ja sama sirgega. Esialgu on meie käsitlus nii
1 Entroopia ja informatsioon
Kirjadus: T.M. Cover, J.A. Thomas "Elemets of iformatio theory", Wiley, 99 ja 2006. Yeug, Raymod W. "A first course of iformatio theory", Kluwer, 2002. Mackay, D. "Iformatio theory, iferece ad learig algorithms",
Virumaa Kolledž. Gennadi Arjassov. L O E N G U K O N S P E K T Varraskonstruktsioonide staatika ja dünaamika. Ehitusmehaanika RAR2030.
Viruaa Koedž Gennadi rjassov L O E N G U K O N S P E K T Varraskonstruktsioonide staatika ja dünaaika Ehitusehaanika RR Õppevahend Kohta-Järve 5/ Eessõna Loengukonspekt Varraskonstruktsioonide staatika
Virumaa Kolledž Reaal ja tehnikateaduste keskus
Viruaa Koedž Reaa ja tehnikateaduste keskus Gennadi rjassov L O E N G U K O N S P E K T Varraskonstruktsioonide staatika ja dünaaika Ehitusehaanika RR Õppevahend Kohta-Järve 7/8 Eessõna Loengukonspekt
Wilcoxoni astakmärgitest (Wilcoxon Signed-Rank Test)
Peatükk 2 Wilcoxoni astakmärgitest (Wilcoxon Signed-Rank Test) 2.1 Motivatsioon ja teststatistik Wilcoxoni astakmärgitesti kasutatakse kahe s~oltuva valimi v~ordlemiseks. Oletame näiteks, et soovime v~orrelda,
Smith i diagramm. Peegeldustegur
Smith i diagramm Smith i diagrammiks nimetatakse graafilist abivahendit/meetodit põhiliselt sobitusküsimuste lahendamiseks. Selle võttis 1939. aastal kasutusele Philip H. Smith, kes töötas tol ajal ettevõttes
STM A ++ A + A B C D E F G A B C D E F G. kw kw /2013
Ι 47 d 11 11 10 kw kw kw d 2015 811/2013 Ι 2015 811/2013 Toote energiatarbe kirjeldus Järgmised toote andmed vastavad nõuetele, mis on esitatud direktiivi 2010/30/ täiendavates määrustes () nr 811/2013,
Sirgete varraste vääne
1 Peatükk 8 Sirgete varraste vääne 8.1. Sissejuhatus ja lahendusmeetod 8-8.1 Sissejuhatus ja lahendusmeetod Käesoleva loengukonspekti alajaotuses.10. käsitleti väändepingete leidmist ümarvarrastes ja alajaotuses.10.3
Algebraliste võrrandite lahenduvus radikaalides. Raido Paas Juhendaja: Mart Abel
Algebraliste võrrandite lahenduvus radikaalides Magistritöö Raido Paas Juhendaja: Mart Abel Tartu 2013 Sisukord Sissejuhatus Ajalooline sissejuhatus iii v 1 Rühmateooria elemente 1 1.1 Substitutsioonide
6 Vahelduvvool. 6.1 Vahelduvvoolu mõiste. Vahelduvvooluks nimetatakse voolu, mille suund ja tugevus ajas perioodiliselt muutub.
6 Vahelduvvool 6 Vahelduvvoolu õiste Vahelduvvooluks nietatakse voolu, ille suund ja tugevus ajas perioodiliselt uutub Tänapäeva elektrijaotusvõrkudes on kasutusel vahelduvvool Alalisvoolu kasutatakse
1 Reaalarvud ja kompleksarvud Reaalarvud Kompleksarvud Kompleksarvu algebraline kuju... 5
1. Marek Kolk, Kõrgem matemaatika, Tartu Ülikool, 2013-14. 1 Reaalarvud ja kompleksarvud Sisukord 1 Reaalarvud ja kompleksarvud 1 1.1 Reaalarvud................................... 2 1.2 Kompleksarvud.................................
HULGATEOORIA ELEMENTE
HULGATEOORIA ELEMENTE Teema 2.2. Hulga elementide loendamine Jaan Penjam, email: jaan@cs.ioc.ee Diskreetne Matemaatika II: Hulgateooria 1 / 31 Loengu kava 2 Hulga elementide loendamine Hulga võimsus Loenduvad
5. OPTIMEERIMISÜLESANDED MAJANDUSES
5. OPTIMEERIMISÜLESNDED MJNDUSES nts asma Sissejuhatus Majanduses, aga ka mitmete igapäevaste probleemide lahendamisel on piiratud võimalusi arvestades vaja leida võimalikult kasulik toimimisviis. Ettevõtete,
Ecophon Line LED. Süsteemi info. Mõõdud, mm 1200x x x600 T24 Paksus (t) M329, M330, M331. Paigaldusjoonis M397 M397
Ecophon Line LED Ecophon Line on täisintegreeritud süvistatud valgusti. Kokkusobiv erinevate Focus-laesüsteemidega. Valgusti, mida sobib kasutada erinevates ruumides: avatud planeeringuga kontorites; vahekäigus
1 Kompleksarvud Imaginaararvud Praktiline väärtus Kõige ilusam valem? Kompleksarvu erinevad kujud...
Marek Kolk, Tartu Ülikool, 2012 1 Kompleksarvud Tegemist on failiga, kuhu ma olen kogunud enda arvates huvitavat ja esiletõstmist vajavat materjali ning on mõeldud lugeja teadmiste täiendamiseks. Seega
T~oestatavalt korrektne transleerimine
T~oestatavalt korrektne transleerimine Transleerimisel koostatakse lähtekeelsele programmile vastav sihtkeelne programm. Transleerimine on korrektne, kui transleerimisel programmi tähendus säilib. Formaalsemalt:
Eesti koolinoorte XLIX täppisteaduste olümpiaad
Eesti koolinoorte XLIX täppisteaduste olümpiaad MATEMAATIKA PIIRKONDLIK VOOR 26. jaanuaril 2002. a. Juhised lahenduste hindamiseks Lp. hindaja! 1. Juhime Teie tähelepanu sellele, et alljärgnevas on 7.
Formaalsete keelte teooria. Mati Pentus
Formaalsete keelte teooria Mati Pentus http://lpcs.math.msu.su/~pentus/ftp/fkt/ 2009 13. november 2009. a. Formaalsete keelte teooria 2 Peatükk 1. Keeled ja grammatikad Definitsioon 1.1. Naturaalarvudeks
Eesti elektrienergia hinna analüüs ja ühesammuline prognoosimine ARIMA tüüpi mudelitega
TARTU ÜLIKOOL MATEMAATIKA INFORMAATIKATEADUSKOND Matemaatilise statistika instituut Finants- ja kindlustusmatemaatika eriala Kärt Päll Eesti elektrienergia hinna analüüs ja ühesammuline prognoosimine ARIMA
PEATÜKK 5 LUMEKOORMUS KATUSEL. 5.1 Koormuse iseloom. 5.2 Koormuse paiknemine
PEATÜKK 5 LUMEKOORMUS KATUSEL 5.1 Koormuse iseloom (1) P Projekt peab arvestama asjaolu, et lumi võib katustele sadestuda paljude erinevate mudelite kohaselt. (2) Erinevate mudelite rakendumise põhjuseks
Eesti koolinoorte XLVIII täppisteaduste olümpiaadi
Eesti koolinoorte XLVIII täppisteaduste olümpiaadi lõppvoor MATEMAATIKAS Tartus, 9. märtsil 001. a. Lahendused ja vastused IX klass 1. Vastus: x = 171. Teisendame võrrandi kujule 111(4 + x) = 14 45 ning
1.1. NATURAAL-, TÄIS- JA RATSIONAALARVUD
1. Reaalarvud 1.1. NATURAAL-, TÄIS- JA RATSIONAALARVUD Arvu mõiste hakkas kujunema aastatuhandeid tagasi, täiustudes ja üldistudes koos inimkonna arenguga. Juba ürgühiskonnas tekkis vajadus teatavaid hulki
Kui ühtlase liikumise kiirus on teada, saab aja t jooksul läbitud teepikkuse arvutada valemist
KOOLIFÜÜSIKA: MEHAANIKA (kaugõppele). KINEMAATIKA. Ühtlane liikumine Punktmass Punktmassiks me nimetame keha, mille mõõtmeid me antud liikumise juures ei pruugi arestada. Sel juhul loemegi keha tema asukoha
Aritmeetilised ja loogilised operaatorid. Vektor- ja maatriksoperaatorid
Marek Kolk, Tartu Ülikool Viimati muudetud : 6.. Aritmeetilised ja loogilised operaatorid. Vektor- ja maatriksoperaatorid Aritmeetilised operaatorid Need leiab paletilt "Calculator" ja ei vaja eraldi kommenteerimist.
Krüptoräsid (Hash- funktsioonid) ja autentimine. Kasutatavaimad algoritmid. MD5, SHA-1, SHA-2. Erika Matsak, PhD
Krüptoräsid (Hash- funktsioonid) ja autentimine. Kasutatavaimad algoritmid. MD5, SHA-1, SHA-2. Erika Matsak, PhD 1 Nõudmised krüptoräsidele (Hash-funktsionidele) Krüptoräsiks nimetatakse ühesuunaline funktsioon
1. Soojuskiirguse uurimine infrapunakiirguse sensori abil. 2. Stefan-Boltzmanni seaduse katseline kontroll hõõglambi abil.
LABORATOORNE TÖÖ NR. 1 STEFAN-BOLTZMANNI SEADUS I TÖÖ EESMÄRGID 1. Soojuskiirguse uurimine infrapunakiirguse sensori abil. 2. Stefan-Boltzmanni seaduse katseline kontroll hõõglambi abil. TÖÖVAHENDID Infrapunase
Segmenteerimine peidetud Markovi mudelite segude korral
Tartu Ülkool Loodus- ja täppsteaduste valdkond Matemaatka ja statstka nsttuut Matemaatlse statstka erala Segmenteermne pedetud Markov mudelte segude korral Magstrtöö 30 EAP) Autor katsmsjärgsete parandustega
p A...p D - gaasiliste ainete A...D osarõhud, atm K p ja K c vahel kehtib seos
LABO RATOO RNE TÖÖ 3 Keemiline tasakaal ja reaktsioonikiirus Keemilised rotsessid võib jagada öörduvateks ja öördumatuteks. Pöördumatud rotsessid kulgevad ühes suunas raktiliselt lõuni. Selliste rotsesside
Ecophon Square 43 LED
Ecophon Square 43 LED Ecophon Square 43 on täisintegreeritud süvistatud valgusti, saadaval Dg, Ds, E ja Ez servaga toodetele. Loodud kokkusobima Akutex FT pinnakattega Ecophoni laeplaatidega. Valgusti,
KEEMIAÜLESANNETE LAHENDAMISE LAHTINE VÕISTLUS
KEEMIAÜLESANNETE LAHENDAMISE LAHTINE VÕISTLUS Nooem aste (9. ja 10. klass) Tallinn, Tatu, Kuessaae, Nava, Pänu, Kohtla-Jäve 11. novembe 2006 Ülesannete lahendused 1. a) M (E) = 40,08 / 0,876 = 10,2 letades,
HAPNIKUTARBE INHIBEERIMISE TEST
HAPNIKUTABE INHIBEEIMISE TEST 1. LAHUSED JA KEMIKAALID 1.1 Üldised põhimõtted Lahuste valmistamiseks kasutada analüütiliselt puhtaid kemikaale. Kasutatav vesi peab olema destilleeritud või deioniseeritud
Sissejuhatus erialasse Loengukonspekt 2010 I osa. Tõnu Laas
Sissejuhatus erialasse Loegukospekt 2010 I osa Tõu Laas Sisukord 1. Sissejuhatus. Füüsika kui teadus...3 1.1 Mida uurib füüsika?...3 1.2. Mõigaid (loodus)teaduses ja füüsikas olulisemaid südmusi....4 1.3.
5. TUGEVUSARVUTUSED PAINDELE
TTÜ EHHTROONKNSTTUUT HE00 - SNTEHNK.5P/ETS 5 - -0-- E, S 5. TUGEVUSRVUTUSE PNELE Staatika üesandes (Toereaktsioonide eidmine) vaadatud näidete ause koostada taade sisejõuepüürid (põikjõud ja paindemoment)
Pesumasin Πλυντήριο ρούχων Mosógép Veļas mašīna
ET Kasutusjuhend 2 EL Οδηγίες Χρήσης 17 HU Használati útmutató 34 LV Lietošanas instrukcija 50 Pesumasin Πλυντήριο ρούχων Mosógép Veļas mašīna ZWG 6120K Sisukord Ohutusinfo _ 2 Ohutusjuhised _ 3 Jäätmekäitlus
LOFY Füüsika looduslikus ja tehiskeskkonnas I (3 EAP)
LOFY.01.087 Füüsika looduslikus ja tehiskeskkonnas I (3 EAP) Sissejuhatus... 1 1. Füüsika kui loodusteadus... 2 1.1. Loodus... 2 1.2. Füüsika... 3 1.3. Teaduse meetod... 4 2. Universumiõpetus... 7 3. Liikumine
Eesti koolinoorte 50. täppisteaduste olümpiaad Füüsika lõppvoor. 30. märts a. Keskkooli ülesannete lahendused
Eesti koolinoorte 50. täppisteaduste olümpiaad 1. ülesanne Füüsika lõppvoor. 30. märts 2003. a. Keskkooli ülesannete lahendused Läheme kiirusega v/2 liikuvasse süsteemi. Seal on olukord sümmeetriline,
Vektoralgebra seisukohalt võib ka selle võrduse kirja panna skalaarkorrutise
Jõu töö Konstanse jõu tööks lõigul (nihkel) A A nimetatakse jõu mooduli korrutist teepikkusega s = A A ning jõu siirde vahelise nurga koosinusega Fscos ektoralgebra seisukohalt võib ka selle võrduse kirja
Eesti koolinoorte XLI täppisteaduste olümpiaad
Eesti koolinoorte XLI täppisteaduste olümpiaad MATEMAATIKA III VOOR 6. märts 994. a. Lahendused ja vastused IX klass.. Vastus: a) neljapäev; b) teisipäev, kolmapäev, reede või laupäev. a) Et poiste luiskamise
sin 2 α + cos 2 sin cos cos 2α = cos² - sin² tan 2α =
KORDAMINE RIIGIEKSAMIKS III TRIGONOMEETRIA ) põhiseosed sin α + cos sin cos α =, tanα =, cotα =, cos sin + tan =, tanα cotα = cos ) trigonomeetriliste funktsioonide täpsed väärtused α 5 6 9 sin α cos α
8. Faasid ja agregaatolekud.
Soojusõpetus 8a 1 8. Faasid ja agregaatolekud. 8.1. Faasi ja agregaatoleku mõisted. Faas = süsteemi homogeenne ja mehaaniliselt eraldatav osa. Keemiliselt heterogeense süsteemi näide: õli + vesi. Keemiliselt
ESF5511LOX ESF5511LOW ET NÕUDEPESUMASIN KASUTUSJUHEND 2 EL ΠΛΥΝΤΉΡΙΟ ΠΙΆΤΩΝ ΟΔΗΓΊΕΣ ΧΡΉΣΗΣ 21 HU MOSOGATÓGÉP HASZNÁLATI ÚTMUTATÓ 41
ESF5511LOX ESF5511LOW ET NÕUDEPESUMASIN KASUTUSJUHEND 2 EL ΠΛΥΝΤΉΡΙΟ ΠΙΆΤΩΝ ΟΔΗΓΊΕΣ ΧΡΉΣΗΣ 21 HU MOSOGATÓGÉP HASZNÁLATI ÚTMUTATÓ 41 2 www.electrolux.com SISUKORD 1. OHUTUSINFO... 3 2. OHUTUSJUHISED...
3. IMPULSS, TÖÖ, ENERGIA
KOOLIFÜÜSIKA: MEHAANIKA3 (kaugõppele) 3. IMPULSS, TÖÖ, ENERGIA 3. Impulss Impulss, impulsi jääus Impulss on ektor, mis on õrdne keha massi ja tema kiiruse korrutisega p r r = m. Mehaanikas nimetatakse
Põhivara aines Füüsika ja tehnika
Põhivara aines Füüsika ja tehnika Maailmapilt on maailmavaateliste teadmiste süsteem, mille abil inimene tunnetab ümbritsevat maailma ja suhestab end sellega. Kui inimindiviid kasutab iseenda kohta mõistet
Ülesannete lahendamise metoodika
Ülesannete lahendamise metoodika Füüsika ülesannete lahendamisel pole eesmärgiks vastuse leidmine, vaid lahendamise õppimine ja harjutamine. Ülesannete lahendamine ei ole "sobivate tähtedega" valemite
3. LOENDAMISE JA KOMBINATOORIKA ELEMENTE
3. LOENDAMISE JA KOMBINATOORIKA ELEMENTE 3.1. Loendamise põhireeglid Kombinatoorika on diskreetse matemaatika osa, mis uurib probleeme, kus on tegemist kas diskreetse hulga mingis mõttes eristatavate osahulkadega
Vedelikkromatograafilise meetodi optimeerimine. Näited ajakirja LC&GC Europe erinevatest numbritest
Vedelikkromatograafilise meetodi optimeerimine Näited ajakirja LC&GC Europe erinevatest numbritest 1 Eesmärgid? Arenda meetodit kuni see on piisav sinu vajadustele, siis lõpeta Iga meetodit saab teha paremaks
Eesti koolinoorte 26. füüsika lahtine võistlus
Eesti koolinoorte 26. füüsika lahtine võistlus 28. november 2015. a. Noorema rühma ülesannete lahendused 1. (KLAAS VEEGA) Võtame klaasi põhja pindalaks S = π ( d tiheduseks ρ. Klaasile mõjuvad jõud: raskusjõud