f(z) 1 + z a lim f (n) (0) n! = 1
|
|
- Παραμονιμος Κωνσταντίνου
- 7 χρόνια πριν
- Προβολές:
Transcript
1 ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ & ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΟΜΕΑΣ ΜΑΘΗΜΑΤΙΚΩΝ 3η Σειρά Ασκήσεων στη Μιγαδική Ανάλυση. Υποθέτουμε ότι η f : C C είναι ακέραια συνάρτηση και ότι το όριο Αποδείξτε ότι η f είναι σταθερή. Υπόδειξη. Γενικευμένο θεώρημα Liouville. Λύση. Αν lim Επομένως lim f( υπάρχει. + /2 ακαδ. έτος 2 2 f( a, για ε > υπάρχει M > τέτοιο ώστε για κάθε > M είναι + /2 f( + a /2 < ε. f( < a + ε + (a + ε /2 για κάθε > M. Τότε, από τη γενίκευση του θεωρήματος Liouville η f είναι πολυώνυμο βαθμού. Άρα, η f είναι σταθερή. 2. Εστω η συνάρτηση f : C C είναι ακέραια, δηλαδή f( a n n n n f (n ( n για κάθε C. n! Υποθέτουμε ότι η υπάρχει M > τέτοιο ώστε f( Me για κάθε C. Αν r >, χρησιμοποιώντας τον ολοκληρωτικό τύπο Cauchy για παραγώγους αποδείξτε ότι Να συμπεράνετε ότι a n M er r n για κάθε n N. a n M en n n για κάθε n N. Λύση. Από τον ολοκληρωτικό τύπο Cauchy για παραγώγους έχουμε a n f (n ( n! f( d, 2πi C + (, r n+ όπου C + (, r κύκλος με κέντρο και ακτίνα r >. Τότε, a n f( 2π C + (, r 2π C + (, r Me r 2π r n+ n+ d f( d n+ C + (, r Me r er 2πr M 2π rn+ r n. d ( f( Me
2 Επομένως Ομως η συνάρτηση r er r n e r a n M inf r> r n. παίρνει την ελάχιστη τιμή της για r n. Άρα, a n M en n n για κάθε n N. 3. Εστω η συνάρτηση f ( 2 ( +. Να βρεθεί το ανάπτυγμα Laurent της f σε όλους τους δυνατούς δακτυλίους με κέντρο το. Λύση. Ως γνωστόν / ( w n wn, w < (γεωμετρική σειρά. Παραγωγίζοντας τη γεωμετρική σειρά έχουμε ( w 2 nw n, w <. n η περίπτωση: { C : < + < }. Τότε, f ( 2 ( + [ ( + ] 2 ( + n ( + n + n n ( + n 2 n n (n + 2 ( + n. 2η περίπτωση: 2 { C : + > }. Τότε / ( + < και επομένως f ( 2 ( + [ / ( + ] 2 ( + 3 ( + 3 n n ( + n n ( + n+2 n 3 n (n + 2 ( + n. 4. Να βρεθεί το ανάπτυγμα Laurent της f( 2 + 4i ( ( 2 + 4i 2
3 με κέντρο το σ ένα δακτύλιο που περιέχει το 2i. Ποιός είναι ο μεγαλύτερος τέτοιος δακτύλιος στον οποίο το ανάπτυγμα Laurent της f ισχύει; Λύση. Είναι f( 2 + 4i ( ( 2 + 4i + 4i 4i ( ( 2 + 4i + 4i 2 + 4i. Τα μεμονωμένα ανώμαλα σημεία της f είναι:, 2( i και 2( + i. Επομένως το ανάπτυγμα κατά Laurent μπορεί να γίνει στους δακτυλίους { C : < } (ανάπτυγμα Taylor, 2 { C : < < 2} και 3 { C : 2 < < }. Επειδή το 2i 3, θα αναπτύξουμε την f στο δακτύλιο 3 : > 2. Ως γνωστόν, / ( w n wn και / ( + w n ( n w n, w < (γεωμετρική σειρά. Είναι f ( + 4i 2 + 4i / + 4i 2 + 4i/ 2 ( n + 4i ( n 4i 2 ( n 2 ( > 2 n n n+ + ( n (4in+ 2n+2. Το παραπάνω ανάπτυγμα ισχύει στο δακτύλιο 3 { C : 2 < < }. n 5. (αʹ Να βρεθεί το είδος του μεμονωμένου ανώμαλου σημείου 2 της συνάρτησης ( f( ( 3 sin + 2 και να υπολογιστεί το Res(f, 2. (βʹ Να βρεθεί το είδος του μεμονωμένου ανώμαλου σημείου της συνάρτησης και να υπολογιστεί το Res(g,. g( n sin cos 4 (γʹ Εστω η συνάρτηση h είναι αναλυτική στο διάτρητο δίσκο : < <. Υποθέτουμε ότι υπάρχει k > τέτοιο ώστε h( k /2 για κάθε. Λύση. Τι είδους μεμονωμένο ανώμαλο σημείο της h είναι το ; (αʹ Αν + 2 w 3 w 5, τότε και επομένως (w 5 sin w (w 5 ( w 3! w 3 + 5! w 5 5 w 3! f( ! ( Το 2 είναι ουσιώδες ανώμαλο σημείο της f με Res(f, 2 5. w 2 + 3
4 (βʹ Αν ϕ ( : sin cos, είναι ϕ ( ϕ ( ϕ ( και ϕ ( 2. Επομένως, το είναι ρίζα τάξης 3 του αριθμητή της g και ρίζα τάξης 4 του παρανομαστή της g. Άρα, το είναι απλός πόλος της g. Επειδή για κάθε > g( [( ] ( 4 3 3! + 5 5! ( 2 2! + 4 4! 2! ( 3! 4! +, 5! είναι Res(g, 2! 3! 3. Σημείωση. Επειδή το είναι απλός πόλος της g, το Res(g, υπολογίζεται και από τον τύπο sin cos Res(g, lim 4 sin cos lim 3 sin lim lim sin 3. (κανόνας L Hôpital (γʹ Είναι h( k /2 για κάθε και κατά συνέπεια lim h(. Άρα, το είναι επουσιώδες (απαλείψιμο ανώμαλο σημείο της h. 6. Να υπολογιστεί το ολοκλήρωμα I C + ( i, 2 [ e π sin + ] d, e 2 όπου C + ( i, 2 είναι ο κύκλος με κέντρο i, ακτίνα 2 και θετική φορά διαγραφής. Λύση. Τα σημεία ±i είναι απλοί πόλοι της συνάρτησης w e π /( 2 +. Μόνο το σημείο i βρίσκεται στο εσωτερικό του κύκλου C + ( i, 2. Είναι ( e π Res 2 +, i e π ( 2 + e πi i 2i 2 i. Επειδή sin 3! 3 + 5! 5, είναι Res(sin,. Άρα, από το θεώρημα ολοκληρωτικών υπολοίπων έχουμε [ ( e π I 2πi Res 2 +, i + Res (sin ], 2πi [ 2 ] i + π + 2πi. Ας σημειωθεί ότι η συνάρτηση w /e 2 είναι αναλυτική στο C και επομένως από το θεώρημα Cauchy d. e 2 C + ( i, 2 4
5 7. Εστω 2 e 2i n a n n το ανάπτυγμα Laurent της συνάρτησης f( 2 /(e 2i στο δακτύλιο { C : π < < 2π} με κέντρο το. Χρησιμοποιώντας το θεώρημα Laurent καθώς επίσης και το θεώρημα ολοκληρωτικών υπολοίπων να υπολογιστούν οι συντελεστές a n, n. Λύση. Επειδή e 2i e 2i 2i 2kπi kπ, k Z, τα k kπ, k Z \ {}, είναι απλοί πόλοι της συνάρτησης f( 2 /(e i. Επειδή το είναι ρίζα τάξης 2 του αριθμητή και απλή ρίζα του παρανομαστή της f, το είναι επουσιώδης (απαλείψιμη ανωμαλία. Από το θεώρημα Laurent οι συντελεστές a n δίνονται από τον τύπο a n 2πi C + (, r 2 /(e 2i n+ d 2πi C + (, r n+ e 2i d, όπου ο κύκλος C + (, r με κέντρο, ακτίνα r, π < r < 2π και θετική φορά διαγραφής ανήκει στο δακτύλιο. Αν g( : n+ e 2i, τα ανώμαλα σημεία π και π της g βρίσκοντα στο εσωτερικό του κύκλου C + (, r και είναι απλοί πόλοι. (i n : Σ αυτή την περίπτωση τα ανώμαλα σημεία π, και π της g( /(e i βρίσκονται στο εσωτερικό του κύκλου C + (, r και είναι απλοί πόλοι. Από το θεώρημα ολοκληρωτικών υπολοίπων έχουμε a ( ( ( 2πi C + (, r e 2i d Res e 2i, π + Res e 2i, + Res e 2i, π (e 2i + π (e 2i + (e 2i π 2ie 2iπ + 2i + 2ie 2iπ 3 2i 3 2 i. (ii n : Σ αυτή την περίπτωση είναι g( n+ e 2i με n + και επομένως τα ανώμαλα σημεία π και π της g βρίσκοντα στο εσωτερικό του κύκλου C + (, r και είναι απλοί πόλοι. Επειδή το είναι ρίζα τάξης του αριθμητή και απλή ρίζα του παρανομαστή της g( n+ /(e 2i, το είναι επουσιώδης (απαλείψιμη ανωμαλία της g. Άρα, από το θεώρημα ολοκληρωτικών υπολοίπων έχουμε a n 2πi C + (, r n+ ( ( n+ n+ e 2i d Res e 2i, π + Res e 2i, π n+ (e 2i + n+ (e 2i ( π n+ 2ie 2iπ π n+ π + π n+ 2ie 2iπ [ ( n+ + ] π { 2i αν n, 2, 4,..., iπ n+ αν n, 3, 5,.... 5
6 8. Αν a >, αποδείξτε ότι π Λύση. Είναι π π a 2 + cos 2 θ dθ 2π a 2 + cos 2 θ dθ 2 2π 2a cos 2θ dθ Αν e iφ, τότε cos φ eiφ + e iφ 2 2 π a 2 + cos 2 θ dθ 2a a cos φ dφ π a + a 2. 2a 2 dφ. (αντικατάσταση φ 2θ + + cos φ ( + και d ie iφ dφ idφ dφ d ( + d i 2 i i. Επομένως, ( + 2a 2 + d. Επειδή,2 2a 2 ± 2a + a 2 είναι απλές ρίζες της εξίσωσης 2 + 2( + 2a 2 +, τα σημεία 2a 2 ± 2a + a 2 είναι απλοί πόλοι της συνάρτησης g( /( 2 + 2( + 2a 2 +. Το 2a 2 + 2a + a 2 βρίσκεται στο εσωτερικό του κύκλου, ενώ το 2a 2 2a + a 2 βρίσκεται εξωτερικά του κύκλου. Άρα, από το θεώρημα ολοκληρωτικών υπολοίπων έχουμε π a 2 + cos 2 θ dθ 2 i ( + 2a 2 + d 2 ( i 2πi Res 2 + 2( + 2a 2 +, 2a2 + 2a + a 2 4π ( 2 + 2( + 2a 2 + 2a 2 +2a +a 2 4π 2( 2a 2 + 2a + a 2 + 2( + 2a 2 π a + a Εστω γ R με εξίσωση (θ Re iθ, θ π, το ημικύκλιο του άνω ημιεπιπέδου με κέντρο και ακτίνα R > και έστω a, b >, a b. Να αποδειχθεί ότι lim R γ R ( 2 + a 2 ( 2 + b 2 d. Στη συνέχεια χρησιμοποιώντας το θεώρημα των ολοκληρωτικών υπολοίπων να υπολογιστεί το γενικευμένο ολοκλήρωμα (x 2 + a 2 (x 2 + b 2 dx. Λύση. Για κάθε γ R είναι ( 2 + a 2 ( 2 + b 2 ( 2 a 2 ( 2 b 2 (R 2 a 2 (R 2 b 2, R > a, b. Το μήκος του ημικύκλιου γ R είναι πr και επομένως ( 2 + a 2 ( 2 + b 2 d πr (R 2 a 2 (R 2 b 2. R γ R 6
7 Άρα, lim R γ R ( 2 + a 2 ( 2 + b 2 d. Τα ±ai, ±bi είναι απλοί πόλοι της f( /( 2 + a 2 ( 2 + b 2. Ολοκληρώνουμε τη συνάρτηση f πάνω στην τμηματικά λεία καμπύλη που αποτελείται από το ημικύκλιο του άνω ημιεπιπέδου γ R με εξίσωση (θ Re iθ, θ π και το ευθύγραμμο τμήμα [ R, R]. Παίρνουμε το R αρκετά μεγάλο έτσι ώστε το ανώμαλο σημεία ai και bi της f να βρίσκονται στο εσωτερικό του ημικύκλιου γ R. Από το θεώρημα των ολοκληρωτικών υπολοίπων έχουμε Είναι και R R (x 2 + a 2 (x 2 + b 2 dx + γ R ( 2 + a 2 ( 2 + b 2 d 2πi [Res (f, ai + Res (f, bi]. ( Επομένως, από την ( προκύπτει ότι Res (f, ai lim ( ai ai ( ai( + ai( 2 + b 2 2ai(b 2 a 2 Res (f, bi lim ( bi bi (x 2 + a 2 ( bi( + bi 2bi(a 2 b 2. R (x 2 + a 2 (x 2 + b 2 dx lim R R ( 2πi 2i π ab(a + b. (x 2 + a 2 (x 2 + b 2 dx a(b 2 a 2 + b(a 2 b 2 Άρα, (x 2 + a 2 (x 2 + b 2 dx 2 (x 2 + a 2 (x 2 + b 2 dx π 2ab(a + b. Παράδοση των ασκήσεων έως 5/7/22 7
v y = 12x 2 y + 4y v(x, y) = 6x 2 y 2 + y 4 + y + c(x). f(z) = u(z, 0) + iv(z, 0) = z + i(z 4 + c), f(z) = iz 4 + z i.
ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ & ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΟΜΕΑΣ ΜΑΘΗΜΑΤΙΚΩΝ Εξετάσεις στη Μιγαδική Ανάλυση ΟΜΑΔΑ: Α 0 Ιουλίου, 0 Θέμα. (αʹ) Να βρεθεί η τιμή του a R για την οποία η συνάρτηση u(x, y) ax 3 y +4xy
u x = 2uu y u y = 0 ϕ x = x t h (t), ϕ xx = x2 t 3 h (t) και ϕ y = y t h (t), ϕ yy = y2 t 3 h (t). t 2 h (t) + x2
ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ & ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΟΜΕΑΣ ΜΑΘΗΜΑΤΙΚΩΝ Εξετάσεις στη Μιγαδική Ανάλυση ΟΜΑΔΑ: Β 9 Ιουνίου, 07 Θ. αʹ) Αν το G είναι ένας τόπος, δηλαδή ένα ανοικτό και συνεκτικό σύνολο στο
I = 1. cos z. dz = = 1 z 2 cos z + 2z sin z + 2 cos z 2. z(z π) 3 dz. f(re iθ. f(z)
ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ & ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΟΜΕΑΣ ΜΑΘΗΜΑΤΙΚΩΝ η Σειρά Ασκήσεων στη Μιγαδική Ανάλυση. Χρησιμοποιώντας τους ολοκληρωτικούς τύπους Cauchy υπολογίστε το ολοκλήρωμα I = πi z(z π) 3 dz,
w = f(z) = z + i C(0,4) 2πi z 2 (z 2) 3 dz = 1 8. f(z) = (z 2 + 1)(z + i). e z 1 e z 1 = 3 cos 2θ
ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ & ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΟΜΕΑΣ ΜΑΘΗΜΑΤΙΚΩΝ Εξετάσεις στη Μιαδική Ανάλυση ΟΜΑΔΑ: Β Θ. (αʹ) Εστω ο μετασχηματισμός w f() + i i, C, i. 6 Μαρτίου, 25 Δείξτε ότι η w f() απεικονίζει
= 1. z n 1 = z z n = 1. f(z) = x 0. (0, 0) = lim
ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ & ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΟΜΕΑΣ ΜΑΘΗΜΑΤΙΚΩΝ 1η Σειρά Ασκήσεων στη Μιγαδική Ανάλυση 1. Να λυθεί η εξίσωση: 4 1 + 3i. Λύση. Επειδή 1 + 3i e πi/3, οι λύσεις της εξίσωσης 4 1 + 3i
5. Σειρές Taylor και Laurent. Ολοκληρωτικά υπόλοιπα και εφαρµογές.
5 Σειρές Taylor και Lauret Ολοκληρωτικά υπόλοιπα και εφαρµογές Σειρές Taylor και Lauret Θεωρούµε µια δυναµοσειρά ( ) a a µε κέντρο δοθέν σηµείο Υπενθυµίζουµε ότι για µια τέτοια δυναµοσειρά υπάρχει πάντα
7. ΑΝΩΜΑΛΑ ΣΗΜΕΙΑ, ΠΟΛΟΙ ΚΑΙ ΤΟ ΘΕΩΡΗΜΑ ΤΩΝ ΟΛΟΚΛΗΡΩΤΙΚΩΝ ΥΠΟΛΟΙΠΩΝ. και σε κάθε γειτονιά του z
7. ΑΝΩΜΑΛΑ ΣΗΜΕΙΑ, ΠΟΛΟΙ ΚΑΙ ΤΟ ΘΕΩΡΗΜΑ ΤΩΝ ΟΛΟΚΛΗΡΩΤΙΚΩΝ ΥΠΟΛΟΙΠΩΝ Ένα σημείο λέγεται ανώμαλο σημείο της συνάρτησης f( ) αν η f( ) δεν είναι αναλυτική στο και σε κάθε γειτονιά του υπάρχει ένα τουλάχιστον
ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ ΔΕΚΕΜΒΡΙΟΥ 2011 ΛΥΣΕΙΣ ΤΩΝ ΘΕΜΑΤΩΝ
[] ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ ΔΕΚΕΜΒΡΙΟΥ ΛΥΣΕΙΣ ΤΩΝ ΘΕΜΑΤΩΝ ΘΕΜΑ α) Δείτε στις «Σημειώσεις Μιγαδικού Λογισμού» σελ β) Ας είναι ux (, ) = x+ cos( π ) και vx (, ) = cos( π x) το πραγματικό και το φανταστικό μέρος
( y = 2, x R) και ( y = 0, x R ) ή ισοδύναμα πάνω στην ευθεία z = 2
ΜΙΓΑΔΙΚΟΣ ΛΟΓΙΣΜΟΣ ΚΑΙ ΟΛΟΚΛ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ ΘΕΜΑ ΓΡΑΠΤΕΣ ΕΞΕΤΑΣΕΙΣ ΦΕΒΡΟΥΑΡΙΟΥ ΛΥΣΕΙΣ ΤΩΝ ΘΕΜΑΤΩΝ α) Η f ( ) έχει πραγματικό μέρος uxy (, ) = ycosxκαι φανταστικό μέρος vxy (, ) = y sinx, όπου = x+ iy
Μιγαδικός λογισμός και ολοκληρωτικοί Μετασχηματισμοί
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Μιγαδικός λογισμός και ολοκληρωτικοί Μετασχηματισμοί ΑΝΩΜΑΛΑ ΣΗΜΕΙΑ, ΠΟΛΟΙ ΚΑΙ ΤΟ ΘΕΩΡΗΜΑ ΤΩΝ ΟΛΟΚΛΗΡΩΤΙΚΩΝ ΥΠΟΛΟΙΠΩΝ Διδάσκων : Επίκ. Καθ. Κολάσης Χαράλαμπος
ΠΑΡΟΡΑΜΑΤΑ ΕΚΔΟΣΗ 12 ΜΑΡΤΙΟΥ 2018
ΝΙΚΟΛΑΟΣ M. ΣΤΑΥΡΑΚΑΚΗΣ: «Μερικές Διαφορικές Εξισώσεις & Μιγαδικές Συναρτήσεις: Θεωρία και Εφαρμογές» η Έκδοση, Αυτοέκδοση) Αθήνα, ΜΑΡΤΙΟΣ 06, Εξώφυλλο: ΜΑΛΑΚΟ, ΕΥΔΟΞΟΣ: 5084750, ISBN: 978-960-93-7366-
ΜΙΓΑ ΙΚΟΣ ΛΟΓΙΣΜΟΣ ΚΑΙ ΟΛΟΚΛ. ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ ΓΡΑΠΤΕΣ ΕΞΕΤΑΣΕΙΣ ΣΕΠΤΕΜΒΡΙΟΥ 2010 ΛΥΣΕΙΣ ΤΩΝ ΘΕΜΑΤΩΝ
ΜΙΓΑ ΙΚΟΣ ΛΟΓΙΣΜΟΣ ΚΑΙ ΟΛΟΚΛ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ ΘΕΜΑ ΓΡΑΠΤΕΣ ΕΞΕΤΑΣΕΙΣ ΣΕΠΤΕΜΒΡΙΟΥ ΛΥΣΕΙΣ ΤΩΝ ΘΕΜΑΤΩΝ α) Η f ( ) έχει πραγµατικό µέρος φανταστικό µέρος u( x, y) x y = και v( x, y) = ( x + y xy), όπου = x+
~ 1 ~ ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ ΣΕΠΤΕΜΒΡΙΟΥ 2014 ΛΥΣΕΙΣ ΤΩΝ ΘΕΜΑΤΩΝ
~ ~ ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ ΣΕΠΤΕΜΒΡΙΟΥ 04 ΛΥΣΕΙΣ ΤΩΝ ΘΕΜΑΤΩΝ ΘΕΜΑ α) Δείτε στις «Σημειώσεις Μιγαδικού Λογισμού» β) Η συνάρτηση f ( ) γράφεται f x y + x + y x y + x + y xy ( ) ( ) ( ) ( ) Το πραγματικό και
~ 1 ~ ΜΙΓΑΔΙΚΟΣ ΛΟΓΙΣΜΟΣ & ΟΛΟΚΛΗΡΩΤΙΚΟΙ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ ΙΑΝΟΥΑΡΙΟΥ 2013 ΛΥΣΕΙΣ ΤΩΝ ΘΕΜΑΤΩΝ
~ ~ ΜΙΓΑΔΙΚΟΣ ΛΟΓΙΣΜΟΣ & ΟΛΟΚΛΗΡΩΤΙΚΟΙ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ ΙΑΝΟΥΑΡΙΟΥ ΛΥΣΕΙΣ ΤΩΝ ΘΕΜΑΤΩΝ ΘΕΜΑ α) Μια συνάρτηση f ( ) u( x, y) iv( x, y ) έχει παράγωγο σε ένα σημείο x iy αν ικανοποιούνται
(i) f(x, y) = xy + iy (iii) f(x, y) = e y e ix. f(z) = U(r, θ) + iv (r, θ) ; z = re iθ
ΜΑΘΗΜΑΤΙΚΗ ΦΥΣΙΚΗ (ΜΕΤΑΠΤΥΧΙΑΚΟ) 6 Νοεμβρίου 07 Αναλυτικές συναρτήσεις Άσκηση (i) Δείξτε ότι η συνάρτηση f(z) είναι αναλυτική σε χωρίο D του μιγαδικού επιπέδου εάν και μόνο εάν η if(z) είναι αναλυτική
~ 1 ~ ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ ΦΕΒΡΟΥΑΡΙΟΥ 2012 ΛΥΣΕΙΣ ΤΩΝ ΘΕΜΑΤΩΝ. αν ικανοποιούνται τα ακόλουθα:
~ ~ ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ ΦΕΒΡΟΥΑΡΙΟΥ ΛΥΣΕΙΣ ΤΩΝ ΘΕΜΑΤΩΝ ΘΕΜΑ α) Μια συνάρτηση f () = uy (, ) + vy (, ) έχει παράγωγο σε ένα σημείο = + y αν ικανοποιούνται τα ακόλουθα: ) Οι πρώτες μερικές παράγωγοι u( y,
ΜΑΘΗΜΑΤΙΚΑ ΙΙΙ ΒΑΣΙΚΟΙ ΤΥΠΟΙ ΣΤΗ ΜΙΓΑ ΙΚΗ ΑΝΑΛΥΣΗ. Τύπος de Moivre Έστω ένας µιγαδικός αριθµός: Τότε. Ν-οστή ρίζα µιγαδικού
ΜΑΘΗΜΑΤΙΚΑ ΙΙΙ ΒΑΣΙΚΟΙ ΤΥΠΟΙ ΣΤΗ ΜΙΓΑ ΙΚΗ ΑΝΑΛΥΣΗ Τύπος de Moivre Έστω ένας µιγαδικός αριθµός: z r(cosϑ + isi ϑ) Τότε z r (cos ϑ + isi ϑ ) Ν-οστή ρίζα µιγαδικού / ϑ + π ϑ+ π z r cos + isi όπου 0,,,, Συνθήκες
Μιγαδική ανάλυση Μέρος Β Πρόχειρες σημειώσεις
ΤΕΤΥ Εφαρμοσμένα Μαθηματικά Μιγαδική Ανάλυση Β Μιγαδική ανάλυση Μέρος Β Πρόχειρες σημειώσεις Παράγωγος συνάρτησης μιγαδικής μεταβλητής Πριν ορίσουμε την παράγωγο μιας μιγαδικής συνάρτησης f(z) θα σταθούμε
Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα
Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα Δρ. Δημήτριος Ευσταθίου Επίκουρος Καθηγητής ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ LAPLACE Αντίστροφος Μετασχηματισμός Laplace Στην
G n. n=1. n=1. n=1 G n) = m (E). n=1 G n = k=1
ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ & ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΟΜΕΑΣ ΜΑΘΗΜΑΤΙΚΩΝ Επαναληπτικές Εξετάσεις στη Θεωρία Μέτρου και Ολοκλήρωση Θέμα. Εστω R Lebesgue μετρήσιμο σύνολο. (αʹ) Να αποδειχθεί ότι για κάθε ε
lim y < inf B + ε = x = +. f(x) =
ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ & ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΟΜΕΑΣ ΜΑΘΗΜΑΤΙΚΩΝ Εξετάσεις στη Μαθηματική Ανάλυση Ι ΟΜΑΔΑ: Α 8 Μαρτίου, 0 Θέμα. (αʹ) Εστω A, B μη κενά σύνολα πραγματικών αριθμών τέτοια ώστε x y, για
ΘΕΩΡΙΑ ΣΗΜΑΤΩΝ & ΣΥΣΤΗΜΑΤΩΝ. Μετασχηµατισµός-Z. Εµµανουήλ Ζ. Ψαράκης Πολυτεχνική Σχολή Τµήµα Μηχανικών Η/Υ & Πληροφορικής
ΘΕΩΡΙΑ ΣΗΜΑΤΩΝ & ΣΥΣΤΗΜΑΤΩΝ Μετασχηµατισµός-Z Εµµανουήλ Ζ. Ψαράκης Πολυτεχνική Σχολή Τµήµα Μηχανικών Η/Υ & Πληροφορικής Μετασχηµατισµός - Ιδιότητες Μετασχηµατισµού- Γραµµικότητα Χρονική Ολίσθηση Κλιµάκωση
ΜΙΓΑ ΙΚΟΣ ΛΟΓΙΣΜΟΣ ΚΑΙ ΟΛΟΚΛ. ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ ΓΡΑΠΤΕΣ ΕΞΕΤΑΣΕΙΣ ΙΑΝΟΥΑΡΙΟΥ 2010 ΛΥΣΕΙΣ ΤΩΝ ΘΕΜΑΤΩΝ. =. Οι πρώτες µερικές u x y
ΜΙΓΑ ΙΚΟΣ ΛΟΓΙΣΜΟΣ ΚΑΙ ΟΛΟΚΛ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ ΓΡΑΠΤΕΣ ΕΞΕΤΑΣΕΙΣ ΙΑΝΟΥΑΡΙΟΥ ΛΥΣΕΙΣ ΤΩΝ ΘΕΜΑΤΩΝ ΘΕΜΑ α) Καταρχήν θα µελετήσουµε την συνάρτηση f Η f γράφεται f ( ) = ( x + )( x ) ( x ) ή ακόµα f ( ) = u( x,
Λύσεις Εξετάσεων Φεβρουαρίου Ακ. Έτους
ΜΑΘΗΜΑΤΙΚΑ, 6-7 ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΕΠΙΚ. ΚΑΘ. ΣΤΑΥΡΟΣ ΤΟΥΜΠΗΣ Λύσεις Εξετάσεων Φεβρουαρίου Ακ. Έτους 6-7. Περιοδικές Συναρτήσεις) Έστω συνεχής συνάρτηση f : R R περιοδική
Εφαρμοσμένα Μαθηματικά - Σημειώσεις
Εφαρμοσμένα Μαθηματικά - Σημειώσεις https://github.com/kongr45gpen/ece-notes 06 Περιεχόμενα I Ατρέας 3 Μιγαδικοί Αριθμοί 3 Μιγαδικές συναρτήσεις 5. Όριο & Συνέχεια μιγαδικών συναρτήσεων μιγαδικής μεταβλητής............
ΜΑΘΗΜΑΤΙΚΑ ΙΙ ιδάσκων : Ε. Στεφανόπουλος 12 ιουνιου 2017
Πανεπιστηµιο Πατρων Πολυτεχνικη Σχολη Τµηµα Μηχανικων Η/Υ & Πληροφορικης ΜΑΘΗΜΑΤΙΚΑ ΙΙ ιδάσκων : Ε. Στεφανόπουλος 12 ιουνιου 217 Θ1. Θεωρούµε την συνάρτηση f(x, y, z) = 1 + x 2 + 2y 2 z. (αʹ) Να ϐρεθεί
6. Αρµονικές συναρτήσεις και συνοριακά προβλήµατα (Dirichlet).
6 Αρµονικές συναρτήσεις και συνοριακά προβλήµατα (Diichlet) Aρµονικές συναρτήσεις Ορισµός 61 Εστω E είναι ανοικτό σύνολο και f : E είναι µια πραγµατική συνάρτηση δύο πραγµατικών µεταβλητών και y Θα λέµε
ΑΠΑΝΤΗΣΕΙΣ. z x y 2xyi. Re z x y. Θα δείξουμε ότι για τους μιγαδικούς αριθμούς z για τους οποίους ισχύει ότι. z z zz. zz zz z z 1 0 z z 1 (1)
Αριθμός Εξέτασης 7 α.α) ος τρόπος: Έστω z i. Τότε ΑΠΑΝΤΗΣΕΙΣ z i και Re z. Θα δείξουμε ότι για τους μιγαδικούς αριθμούς z για τους οποίους ισχύει ότι z z,ισχύει επίσης ότι. Είναι z z z z z z z z z z z
Εφαρμοσμένα Μαθηματικά ΙΙ Εξέταση Σεπτεμβρίου 25/9/2017 Διδάσκων: Ι. Λυχναρόπουλος
Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας Εφαρμοσμένα Μαθηματικά ΙΙ Εξέταση Σεπτεμβρίου 5/9/07 Διδάσκων: Ι. Λυχναρόπουλος Άσκηση (Μονάδες ) Να δειχθεί ότι το πεδίο F( x, y) = y cos x + y,sin x
Μιγαδικός λογισμός και ολοκληρωτικοί Μετασχηματισμοί
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Μιγαδικός λογισμός και ολοκληρωτικοί Μετασχηματισμοί ΑΝΑΠΤΥΓΜΑ ΑΝΑΛΥΤΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ ΣΕ ΣΕΙΡΕΣ Διδάσκων : Επίκ. Καθ. Κολάσης Χαράλαμπος Άδειες Χρήσης
Ask seic kai Jèmata sth JewrÐa Mètrou kai Olokl rwsh
Ask seic kai Jèmata sth JewrÐa Mètrou kai Olokl rwsh Ginnhc K. Sarant pouloc jnik Mets bio Poluteqne o Sqol farmosmłnwn Majhmatik n & Fusik n pisthm n TomŁac Majhmatik n 22 Febrouar ou 28 Perieqìmena Συμβολισμός
Δείκτες Poincaré και Θεώρημα Frommer
Δείκτες Poinaré και Θεώρημα Frommer Ζαφειράκογλου Απόστολος 1 Θεωρητική εισαγωγή Στη διαφορική γεωμετρία, ως απόλυτη καμπυλότητα ορίζουμε το ολοκλήρωμα μια επίπεδης καμπύλης, θεωρώντας απειροστή διαμέριση
Ατρέας. Μέρος I. Σημειώσεις: Ατρέας Κεφ Κεχαγιάς Κεφ Βιβλία: Churchill - Brown (για μηχανικούς)
http://users.auth.gr/natreas Σημειώσεις: Ατρέας Κεφ. 3-4-5 Κεχαγιάς Κεφ. --6 Βιβλία: Churchill - Brown (για μηχανικούς) Marsden (πιο μαθηματικό) Μέρος I Ατρέας Κεφάλαιο Μιγαδικοί Αριθμοί γεωμετρική παράσταση
40 Ασκήσεις στον ΟΛΟΚΛΗΡΩΤΙΚΟ ΛΟΓΙΣΜΟ ( Επεξεργασία του ΜΑΝΩΛΗ ΨΑΡΡΑ)
Άσκηση η 4 Ασκήσεις στον ΟΛΟΚΛΗΡΩΤΙΚΟ ΛΟΓΙΣΜΟ ( Επεξεργασία του ΜΑΝΩΛΗ ΨΑΡΡΑ) Έστω f, g είναι συνεχείς συναρτήσεις στο διάστημα, να δείξετε: Α. (Ανισότητα των Cauchy-Schwarz) Β.( Ανισότητα του Minkowski)
ΜΑΘΗΜΑΤΙΚΩΝ ΔΑΣΟΛΟΓΙΑΣ
Ασκήσεις ΜΑΘΗΜΑΤΙΚΩΝ ΔΑΣΟΛΟΓΙΑΣ για Γενική Επανάληψη Πολυχρόνη Μωυσιάδη, Καθηγητή ΑΠΘ ΟΜΑΔΑ 1. Συναρτήσεις 1. Δείξτε ότι: και υπολογίστε την τιμή 2. 2. Να υπολογισθούν οι τιμές και 3. Υπολογίστε τις τιμές
k ) 2 P = a2 x 2 P = 2a 2 x y 2 Q = b2 y 2 Q = 2b 2 y z 2 R = c2 z 2 R = 2c 2 z P x = 2a 2 Q y = 2b 2 R z = 2c 2 3 (a2 +b 2 +c 2 ) I = 64π
Γενικά Μαθηματικά ΙΙΙ Πέμπτο σετ ασκήσεων, Λύσεις Άσκηση 1 Το θεώρημα Gauss γενικά διατυπώνεται ως: F dv = ( F η)dσ (1) V Για την άσκηση όπου μας δίνεται η σφαίρα x + y + z 4 = Φ, το κάθετο διάνυσμα η,
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ. Ασκήσεις και Θέµατα στη Μαθηµατική Ανάλυση Ι
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ & ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΟΜΕΑΣ ΜΑΘΗΜΑΤΙΚΩΝ Ασκήσεις και Θέµατα στη Μαθηµατική Ανάλυση Ι Γιάννης Σαραντόπουλος Αθήνα 7 Οκτωβρίου 5 Περιεχόµενα Συµβολισµός
Περιεχόµενα I ΜΙΓΑ ΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ 1
Περιεχόµενα I ΜΙΓΑ ΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ 1 1 ΜΙΓΑ ΙΚΟΙ ΑΡΙΘΜΟΙ 3 1.1 Στοιχειώδεις παρατηρήσεις.................... 3 1.2 + Ορισµός και άλγεβρα των µιγαδικών αριθµών........ 6 1.3 Γεωµετρική παράσταση των µιγαδικών
4. Μιγαδική Ολοκλήρωση. Το Θεώρηµα Cauchy και εφαρµογές. ( ) ( ) ( )
4 Μιαδική Ολοκλήρωση Το Θεώρηµα Cauchy και εφαρµοές Καµπύλες στο Μιαδικό επίπεδο Oρισµός 4 Αν, :[, ] xy a είναι συνεχείς πραµατικές συναρτήσεις τότε κάθε απεικόνιση :[ a, ] : t = x t + iy t, καλείται (προσανατολισµένη)
Εφαρμοσμένα Μαθηματικά ΙΙ Πρόοδος 18/4/2018 Διδάσκων: Ι. Λυχναρόπουλος
Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας Εφαρμοσμένα Μαθηματικά ΙΙ Πρόοδος 8/4/8 Διδάσκων: Ι. Λυχναρόπουλος Άσκηση (Μονάδες ) Να εξετάσετε ως προς τα τοπικά ακρότατα τη συνάρτηση: f x x x (,
ΠΕΡΙΛΗΨΗ ΤΗΣ ΔΙΑΔΑΧΘΕΙΣΑΣ ΥΛΗΣ ΤΟΥ ΜΙΓΑΔΙΚΟΥ ΛΟΓΙΣΜΟΥ
ΠΕΡΙΛΗΨΗ ΤΗΣ ΔΙΑΔΑΧΘΕΙΣΑΣ ΥΛΗΣ ΤΟΥ ΜΙΓΑΔΙΚΟΥ ΛΟΓΙΣΜΟΥ ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΑΠΟ ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΟΥ ΛΥΚΕΙΟΥ Το μιγαδικό επίπεδο Στο μιγαδικό αριθμό = x + iy αντιστοιχούμε το σημείο ( xy, ) ενός καρτεσιανού επιπέδου
[1] ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ ΣΕΠΤΕΜΒΡΙΟΥ 2012 ΛΥΣΕΙΣ ΤΩΝ ΘΕΜΑΤΩΝ. z : Παρατηρούμε ότι sin
[] ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ ΣΕΠΤΕΜΒΡΙΟΥ ΛΥΣΕΙΣ ΤΩΝ ΘΕΜΑΤΩΝ ΘΕΜΑ. Τμήμα Α (α) Για τη συνάρτηση f () : Παρατηρούμε ότι si u= y x και v x u = ycos x, u = si x, v =, v =. x y x y = οότε Οι ανωτέρω ρώτες μερικές
Δηλαδή η ρητή συνάρτηση είναι πηλίκο δύο ακέραιων πολυωνύμων. Επομένως, το ζητούμενο ολοκλήρωμα είναι της μορφής
D ολοκλήρωση ρητών συναρτήσεων Το θέμα μας στην ενότητα αυτή είναι η ολοκλήρωση ρητών συναρτήσεων. Ας θυμηθούμε πρώτα ποιες συναρτήσεις ονομάζονται ρητές. Ορισμός: Μία συνάρτηση ονομάζεται ρητή όταν μπορεί
5, 5 = 1. ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΜΙΑ ΣΥΛΛΟΓΗ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ 30 ΑΣΚΗΣΕΩΝ ΚΑΤΕΥΘΥΝΣΗΣ ΜΟΝΟ ΜΙΓΑΔΙΚΟΙ + 10 ΑΣΚΗΣΕΩΝ ΜΙΓΑΔΙΚΟΙ ΜΕ ΑΝΑΛΥΣΗ
ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΜΙΑ ΣΥΛΛΟΓΗ ΑΣΚΗΣΕΩΝ ΜΟΝΟ ΜΙΓΑΔΙΚΟΙ + ΑΣΚΗΣΕΩΝ ΜΙΓΑΔΙΚΟΙ ΜΕ ΑΝΑΛΥΣΗ 4 α Να βρείτε τον γεωμετρικό τόπο των εικόνων του Έστω οι μιγαδικοί για τους οποίους
Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα
Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα Δρ. Δημήτριος Ευσταθίου Επίκουρος Καθηγητής ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ LAPLACE Αντίστροφος Μετασχηματισμός Laplace Στην
Μεταπτυχιακή Μιγαδική Ανάλυση. Έβδομο φυλλάδιο ασκήσεων, Παραδώστε λυμένες τις 4, 9, 15, 19, 24 και 28 μέχρι
Μεταπτυχιακή Μιαδική Ανάλυση Έβδομο φυλλάδιο ασκήσεων, 5--20. Παραδώστε λυμένες τις 4, 9, 5, 9, 24 και 28 μέχρι 22--20.. Θεωρούμε τις καμπύλες (t) = t + it sin t και 2 (t) = t + it 2 sin t ια t (0, ] και
Μετασχηµατισµός Ζ (z-tranform)
Μετασχηµατισµός Ζ (-traform) Εργαλείο ανάλυσης σηµάτων και συστηµάτων διακριτού χρόνου ιεργασία ανάλογη του Μετ/σµού Laplace Απόκριση συχνότητας Εφαρµογές επίλυση γραµµικών εξισώσεων διαφορών µε σταθερούς
Περιεχόμενα. Κεφάλαιο 1 ΣΥΣΤΗΜΑΤΑ ΣΥΝΤΕΤΑΓΜΕΝΩΝ ΣΕ ΜΙΑ ΕΥΘΕΙΑ... 13 1.1 Οι συντεταγμένες ενός σημείου...13 1.2 Απόλυτη τιμή...14
Περιεχόμενα Κεφάλαιο 1 ΣΥΣΤΗΜΑΤΑ ΣΥΝΤΕΤΑΓΜΕΝΩΝ ΣΕ ΜΙΑ ΕΥΘΕΙΑ... 13 1.1 Οι συντεταγμένες ενός σημείου...13 1.2 Απόλυτη τιμή...14 Κεφάλαιο 2 ΣΥΣΤΗΜΑΤΑ ΣΥΝΤΕΤΑΓΜΕΝΩΝ ΣΕ ΕΝΑ ΕΠΙΠΕΔΟ 20 2.1 Οι συντεταγμένες
Μερικές Διαφορικές Εξισώσεις
Πανεπιστήμιο Πατρών, Τμήμα Μαθηματικών Μερικές Διαφορικές Εξισώσεις Χειμερινό εξάμηνο ακαδημαϊκού έτους 24-25, Διδάσκων: Α.Τόγκας ο φύλλο προβλημάτων Ονοματεπώνυμο - ΑΜ: ΜΔΕ ο φύλλο προβλημάτων Α. Τόγκας
Παράρτημα Αʹ. Ασκησεις. Αʹ.1 Ασκήσεις Κεϕαλαίου 1: Εισαγωγή στη κβαντική ϕύση του ϕωτός.
Παράρτημα Αʹ Ασκησεις Αʹ.1 Ασκήσεις Κεϕαλαίου 1: Εισαγωγή στη κβαντική ϕύση του ϕωτός. Άσκηση 1. Συμβατικά στην περιοχή του ηλεκτρομαγνητικού ϕάσματος μακρινό υπέρυθρο (far infrared, FIR) έχουμε μήκος
z k z + n N f(z n ) + K z n = z n 1 2N
Πανεπιστήμιο Θεσσαλίας Εφαρμοσμένα Μαθηματικά 6..5 Λύσεις Σειράς Ασκήσεων Άσκηση (α) Έστω z το όριο της ακολουθίας z n, δηλ. για κάθε ɛ > υπάρχει N(ɛ) ώστε z n z < ɛ για n > N. Για n > N(ɛ), είναι z n
). Πράγματι, στο διάστημα [ x, x 1 2 ικανοποιεί τις προϋποθέσεις του Θ.Μ.Τ. Επομένως, υπάρχει ξ x 1,
ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΔΕΥΤΕΡΑ 8 MAΪΟΥ 0 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α A Αποδεικνύουμε το θεώρημα στην περίπτωση που
Εφαρμοσμένα Μαθηματικά ΙΙ 5ο Σετ Ασκήσεων (Λύσεις) Διανυσματικά Πεδία Επικαμπύλια Ολοκληρώματα Επιμέλεια: Ι. Λυχναρόπουλος
Εφαρμοσμένα Μαθηματικά ΙΙ 5ο Σετ Ασκήσεων (Λύσεις) Διανυσματικά Πεδία Επικαμπύλια Ολοκληρώματα Επιμέλεια: Ι. Λυχναρόπουλος. Να υπολογιστεί το ολοκλήρωμα I = x ds, όπου c το δεξιό ημικύκλιο x + = 6 α) κινούνοι
ΜΙΓΑΔΙΚΟΣ ΛΟΓΙΣΜΟΣ ΚΑΙ ΟΛΟΚΛ. ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ ΓΡΑΠΤΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 2010 ΛΥΣΕΙΣ ΤΩΝ ΘΕΜΑΤΩΝ
ΜΙΓΑΔΙΚΟΣ ΛΟΓΙΣΜΟΣ ΚΑΙ ΟΛΟΚΛ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ ΘΕΜΑ ΓΡΑΠΤΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ ΛΥΣΕΙΣ ΤΩΝ ΘΕΜΑΤΩΝ α) Η f ( ) έχει ραγματικό μέρος φανταστικό μέρος u( x, y) xcos y και v( x, y) xsi y Αό την θεωρία γνωρίζουμε
. Σήματα και Συστήματα
Σήματα και Συστήματα Βασίλειος Δαλάκας & Παναγιώτης Ριζομυλιώτης Τμήμα Πληροφορικής & Τηλεματικής Χαροκόπειο Πανεπιστήμιο Σήματα και Συστήματα 1/16 Πρόβλημα 1 (βιβλίο σελίδα 146) Να υπολογιστεί ο ML της
Μιγαδικός λογισμός και ολοκληρωτικοί Μετασχηματισμοί
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Μιγαδικός λογισμός και ολοκληρωτικοί Μετασχηματισμοί ΣΤΟΙΧΕΙΩΔΕΙΣ ΣΥΝΑΡΤΗΣΕΙΣ Διδάσκων : Επίκ. Καθ. Κολάσης Χαράλαμπος Άδειες Χρήσης Το παρόν εκπαιδευτικό
ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ
ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ «ΠΛΗΡΟΦΟΡΙΚΗ» ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) TEΛΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 8 Ιουνίου 005 Από τα κάτωι Θέµατα καλείσε να λύσετε το ο που περιλαµβάνει ερωτήµατα από όλη την ύλη
Σήματα και Συστήματα. Διάλεξη 11: Μετασχηματισμός Laplace. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής
Σήματα και Συστήματα Διάλεξη : Μετασχηματισμός Laplace Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής Μετασχηματισμός Laplace. Μαθηματικός ορισμός μετασχηματισμού Laplace 2. Η περιοχή σύγκλισης του μετασχηματισμού
() 1 = 17 ΣΥΝΑΡΤΗΣΕΙΣ LEGENDRE Ορισµοί
SECTION 7 ΣΥΝΑΡΤΗΣΕΙΣ LEGENDRE 7. Ορισµοί Οι συναρτήσεις που ικανοποιούν τη διαφορική εξίσωση Legere ( )y'' y' + ( + )y καλούνται συναρτήσεις Legere τάξης. Η γενική λύση της διαφορικής εξίσωσης του Legere
Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα
Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα Δρ. Δημήτριος Ευσταθίου Επίκουρος Καθηγητής ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ LAPLACE Μετασχηματισμός Laplace 1. Ο μετασχηματισμός
< F ( σ(h(t))), σ (h(t)) > h (t)dt.
ΛΥΣΕΙΣ ΤΩΝ ΘΕΜΑΤΩΝ, ΑΠΕΙΡΟΣΤΙΚΟΣ ΛΟΓΙΣΜΟΣ IV, /6/9 Θέμα 1. Εστω : a 1, β 1 ] R μια C 1 καμπύλη. Μια C 1 καμπύλη ρ : a, β] R λέγεται αναπαραμετρικοποίηση της αν υπάρχει h : a, β] a 1, β 1 ], 1 1 επί και
> ln 1 + ln ln n = ln(1 2 3 n) = ln(n!).
η Διάλεξη: Άρρητοι αριθμοί Το σύνολο Q των ρητών αριθμών είναι το Q = { m n : m Z, n N}. αριθμός που δεν είναι ρητός λέγεται άρρητος. Ενας πραγματικός Ασκηση: Αποδείξτε ότι το άθροισμα και το γινόμενο
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ. Μια Εισαγωγή στη Μιγαδική Ανάλυση µε Παραδείγµατα και Ασκήσεις
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ & ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΟΜΕΑΣ ΜΑΘΗΜΑΤΙΚΩΝ Μια Εισαγωγή στη Μιγαδική Ανάλυση µε Παραδείγµατα και Ασκήσεις Γιάννης Σαραντόπουλος Αθήνα Μαρτίου 27 Περιεχόµενα
13 Μονοτονία Ακρότατα συνάρτησης
3 Μονοτονία Ακρότατα συνάρτησης Α. ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ Θεώρημα Αν μια συνάρτηση f είναι συνεχής σ ένα διάστημα Δ, τότε: Αν f ( ) > 0για κάθε εσωτερικό του Δ, η f είναι γνησίως αύξουσα στο Δ. Αν
sup(a + B) = sup A + sup B inf(a + B) = inf A + inf B.
Ασκήσεις, Φυλλάδιο. Βρειτε το συνολο Φ A ολων των ανω ϕραγματων του A, και το συνολο φ A ολων των κατω ϕραγματων του A, οταν: a) A = m :, m N}, b) A = + m 2. Βρειτε το if και sup οποτε υπαρχουν) των συνολων
E = 1 2 k. V (x) = Kx e αx, dv dx = K (1 αx) e αx, dv dx = 0 (1 αx) = 0 x = 1 α,
Μαθηματική Μοντελοποίηση Ι 1. Φυλλάδιο ασκήσεων Ι - Λύσεις ορισμένων ασκήσεων 1.1. Άσκηση. Ενα σωμάτιο μάζας m βρίσκεται σε παραβολικό δυναμικό V (x) = 1/2x 2. Γράψτε την θέση του σαν συνάρτηση του χρόνου,
Ελληνική Μαθηματική Εταιρεία Παράρτημα Νομού Εύβοιας ΕΞΕΤΑΣΕΙΣ 2008 ΜΑΘΗΜΑ : ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ
Ελληνική Μαθηματική Εταιρεία Παράρτημα Νομού Εύβοιας ΕΞΕΤΑΣΕΙΣ 8 ΜΑΘΗΜΑ : ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ ΑΠΑΝΤΗΣΕΙΣ: ΘΕΜΑ ο : Α. Θεωρία, σχολικό βιβλίο σελίδα 5 Α. Θεωρία, σχολικό βιβλίο σελίδα 9 Β. α) Σ, β) Σ,
website:
Αλεξάνδρειο Τεχνολογικό Εκπαιδευτικό Ιδρυμα Θεσσαλονίκης Τμήμα Μηχανικών Αυτοματισμού Μαθηματική Μοντελοποίηση Αναγνώριση Συστημάτων Μαάιτα Τζαμάλ-Οδυσσέας 6 Μαρτίου 2017 1 Εισαγωγή Κάθε φυσικό σύστημα
4. ΣΤΟΙΧΕΙΩΔΕΙΣ ΣΥΝΑΡΤΗΣΕΙΣ. (0.1) όπου z = x + iy. Όταν z = iy τότε ο ανωτέρω τύπος παίρνει την μορφή. e dz = (0.3)
4. ΣΤΟΙΧΕΙΩΔΕΙΣ ΣΥΝΑΡΤΗΣΕΙΣ Η εκθετική συνάρτηση Η εκθετική συνάρτηση την σχέση e, ή exp( ) όπως εναλλακτικά συμβολίζεται, ορίζεται από x e = e (os y+ isin y) (0.) όπου = x + iy. Όταν = iy τότε ο ανωτέρω
ΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Γ ΚΑΤ/ΝΣΗΣ. Π.Π. ΓΕΛ Βαρβακείου Σχολής. 27 Ἀπριλίου Τµήµατα Τεχνολογικής : Ζ4. ιάρκεια : 3 ώρες
Π.Π. ΓΕΛ Βαρβακείου Σχολής ΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Γ ΚΑΤ/ΝΣΗΣ 7 Ἀπριλίου 5 Τµήµατα Τεχνολογικής : Ζ4 ιάρκεια : 3 ώρες Λυγάτσικας Ζήνων - 7 Ἀπριλίου 5 . α ) Εστω µια συνάρτηση f, η οποία είναι συνεχής
ΤΥΠΟΣ ΤΟΥ TAYLOR. ,. Το πολυώνυμο αυτό ονομάζεται πολυώνυμο του Taylor και έχει τύπο ( n) Αποδεικνύεται ότι υπάρχει μοναδικό πολυώνυμο p n. 1! 2! n!
ΤΥΠΟΣ ΤΟΥ TAYLOR Δίδεται μια συνάρτηση f, ένα εσωτερικό σημείο του πεδίου ορισμού της f και ένας φυσικός αριθμός Στην παράγραφο αυτή μελετάται το πρόβλημα προσέγγισης των τιμών της συνάρτησης f ) για «κοντά
ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΑΘΗΜΑΤΙΚΑ Ι ΕΡΓΑΣΙΑ 6 ΛΥΣΕΙΣ
ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ 00- ΜΑΘΗΜΑΤΙΚΑ Ι ΕΡΓΑΣΙΑ 6 ΛΥΣΕΙΣ. (5 µον.) ίνεται ο πίνακας 0 0 A. 0 (α) (α) Να βρεθούν όλες οι ιδιοτιµές και τα ιδιοδιανύσµατα του πίνακα Α. (β) Είναι δυνατή η διαγωνιοποίηση
ΣΕΙΡΕΣ TAYLOR. Στην Ενότητα αυτή θα ασχοληθούµε µε την προσέγγιση συναρτήσεων µέσω πολυωνύµων. Πολυώνυµο είναι κάθε συνάρτηση της µορφής:
ΣΕΙΡΕΣ TAYLOR Στην Ενότητα αυτή θα ασχοληθούµε µε την προσέγγιση συναρτήσεων µέσω πολυωνύµων Πολυώνυµο είναι κάθε συνάρτηση της µορφής: p( ) = a + a + a + a + + a, όπου οι συντελεστές α i θα θεωρούνται
Ασκήσεις Μαθηµατικών Μεθόδων Φυσικής Ι
.. ΑΣΚΗΣΕΙΣ ΚΕΦΑΛΑΙΟΥ. Ασκήσεις Κεφαλαίου Ασκήσεις Μαθηµατικών Μεθόδων Φυσικής Ι Κατά τη λύση των ασκήσεων επάνω στους µιγαδικούς αριθµούς είναι χρήσιµο να έχουµε υπόψη ότι ένας µιγαδικός αριθµός µπορεί
Σήματα και Συστήματα
Σήματα και Συστήματα Διάλεξη 12: Ιδιότητες του Μετασχηματισμού aplace Ο αντίστροφος Μετασχηματισμός aplace Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Ιδιότητες του Μετασχηματισμού aplace 1. Ιδιότητες
Αριθµητική Ολοκλήρωση
Κεφάλαιο 5 Αριθµητική Ολοκλήρωση 5. Εισαγωγή Για τη συντριπτική πλειοψηφία των συναρτήσεων f (x) δεν υπάρχουν ή είναι πολύ δύσχρηστοι οι τύποι της αντιπαραγώγου της f (x), δηλαδή της F(x) η οποία ικανοποιεί
ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ ΙΑΝΟΥΑΡΙΟΥ 2014 ΛΥΣΕΙΣ ΤΩΝ ΘΕΜΑΤΩΝ. β) Το πραγματικό και το φανταστικό μέρος της f1( z ) γράφονται. Οι πρώτες μερικές παράγωγοι
ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ ΙΑΝΟΥΑΡΙΟΥ 4 ΛΥΣΕΙΣ ΤΩΝ ΘΕΜΑΤΩΝ ΘΕΜΑ α) Δείτε στο e-course στις «Περιλητικές Σημειώσεις» σελ7 και σελ5 β) Το ραγματικό και το φανταστικό μέρος της f( ) γράφονται uxy (, ) = si( x) και
Κβαντομηχανική Ι 6o Σετ Ασκήσεων. Άσκηση 1
Χειμερινό εξάμηνο 6-7 Κβαντομηχανική Ι 6o Σετ Ασκήσεων Άσκηση a) Τρόπος α : Λύνουμε όλους (ή έστω μερικούς από) τους συνδυασμούς [l i, r j ]: [l x, x] = [l y, y] = [l z, x] = i ħ y Κ.ο.κ., και συμπεραίνουμε
ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ
ΝΙΚΟΣ ΑΛΕΞΑΝΔΡΗΣ ΜΑΘΗΜΑΤΙΚΟΣ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΠΡΟΤΕΙΝΟΜΕΝΑ ΘΕΜΑΤΑ ΣΥΝΔΥΑΣΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΝΙΚΟΣ ΑΛΕΞΑΝΔΡΗΣ ΠΤΥΧΙΟΥΧΟΣ ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΑΘΗΝΩΝ (ΕΚΠΑ) ΔΙΑΔΙΚΤΥΑΚΟ
ΕΠΑΝΑΛΗΠΤΙΚΗ ΤΕΛΙΚΗ ΕΞΕΤΑΣΗ 3 Ιουλίου 2010
ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) ΕΠΑΝΑΛΗΠΤΙΚΗ ΤΕΛΙΚΗ ΕΞΕΤΑΣΗ Ιουλίου Θέμα ( μονάδες) 4 Θεωρούμε τον Ευκλείδειο χώρο και τον υποχώρο του V που παράγεται
Παραδείγματα τριπλών oλοκληρωμάτων Επιμέλεια: Ι. Λυχναρόπουλος
Παραδείγματα τριπλών oλοκληρωμάτων Επιμέλεια: Ι. Λυχναρόπουλος Παράδειγμα Να υπολογισθεί το ολοκλήρωμα I = x e + z dv όπου = [, ] [,] [,] Η ολοκλήρωση, όπως φαίνεται από τα άκρα ολοκλήρωσης, γίνεται πάνω
1 3 (a2 ρ 2 ) 3/2 ] b V = [(a 2 b 2 ) 3/2 a 3 ] 3 (1) V total = 2V V total = 4π 3 (2)
Γενικά Μαθηματικά ΙΙΙ Δεύτερο σετ ασκήσεων, Λύσεις Άσκηση 1 Για την επίλυση της άσκησης και την εύρεση του ζητούμενου όγκου, αρχικά αναγνωρίζουμε ότι ο τόπος ολοκλήρωσης, είναι ο κύκλος x + y = b, ο οποίος
Εφαρμοσμένα Μαθηματικά ΙΙ Πρόοδος (Λύσεις) Ι. Λυχναρόπουλος
3/4/6 Εφαρμοσμένα Μαθηματικά ΙΙ Πρόοδος (Λύσεις) Ι. Λυχναρόπουλος Άσκηση (Μονάδες.5) Έστω το ολοκλήρωμα: I da {(, ) :, } 3 ( + 3 ) Να εκφράσετε το ολοκλήρωμα σε νέες συντεταγμένες, οι οποίες ορίζονται
Ο αντίστροφος μετασχηματισμός Laplace ορίζεται από το μιγαδικό ολοκλήρωμα : + +
Μετασχηματισμός aplace ορίζεται ως εξής : t X() [x( t)] xte () dt = = Ο αντίστροφος μετασχηματισμός aplace ορίζεται από το μιγαδικό ολοκλήρωμα : t x(t) = [ X()] = X() e dt π j c C είναι μία καμπύλη που
Διαφορικές Εξισώσεις.
Διαφορικές Εξισώσεις. Εαρινό εξάμηνο 05-6. Λύσεις πρώτου φυλλαδίου ασκήσεων.. Για κάθε μία από τις παρακάτω διαφορικές εξισώσεις πείτε αν είναι γραμμική ή όχι και προσδιορίστε την τάξη της. α. y + y +
Σημειώσεις για το μάθημα Μιγαδική Ανάλυση Ι. Θέμης Μήτσης. Τμήμα Μαθηματικών Πανεπιστήμιο Κρήτης Ηράκλειο
Σημειώσεις ια το μάθημα Μιαδική Ανάλυση Ι Θέμης Μήτσης Τμήμα Μαθηματικών Πανεπιστήμιο Κρήτης Ηράκλειο Στις σημειώσεις αυτές, αν η απόδειξη κάποιου θεωρήματος δεν δίνεται, τότε είτε είναι σχεδόν αυτολεξεί
Κλασικη ιαφορικη Γεωµετρια
Αριστοτελειο Πανεπιστηµιο Θεσσαλονικης Σχολη Θετικων Επιστηµων, Τµηµα Μαθηµατικων, Τοµεας Γεωµετριας Κλασικη ιαφορικη Γεωµετρια Πρώτη Εργασία, 2018-19 1 Προαπαιτούµενες γνώσεις και ϐασική προετοιµασία
ΑΝΑΛΥΣΗ 2. Μ. Παπαδημητράκης.
ΑΝΑΛΥΣΗ 2 Μ. Παπαδημητράκης. ΔΕΚΑΤΟ ΤΕΤΑΡΤΟ ΜΑΘΗΜΑ Άσκηση. Έστω f συνεχής στο διάστημα I και έστω ότι ισχύει f() για κάθε I. Αν η f 2 είναι παραγωγίσιμη στο I, αποδείξτε ότι η f είναι παραγωγίσιμη στο
x + ax x x 4 να είναι παραγωγίσιμη στο x Υπόδειξη: Μπορείτε να εφαρμόσετε κανόνα L Hospital ή μπορεί σας χρειαστεί η sin sin = 2sin cos
http://lar.maths.gr/, maths@maths.gr, Τηλ: 69795 Ενδεικτικές απαντήσεις ης Γραπτής Εργασίας ΠΛΗ -: Άσκηση. (5 μονάδες) i) ( μονάδες) Υπολογίστε την παράγωγο για κάθε μία από τις επόμενες συναρτήσεις: a)
ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ ΙΑΝΟΥΑΡΙΟΥ 2014 ΛΥΣΕΙΣ ΤΩΝ ΘΕΜΑΤΩΝ
ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ ΙΑΝΟΥΑΡΙΟΥ ΛΥΣΕΙΣ ΤΩΝ ΘΕΜΑΤΩΝ ΘΕΜΑ α) Δείτε στις «Σημειώσεις Μιγαδικού Λογισμού» β) Το ραγματικό και το φανταστικό μέρος της f ( ) γράφονται uy (, ) = y και v(, y) = y Οι ρώτες μερικές
ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ
ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) ΕΡΓΑΣΙΑ 4 η Ημερομηνία Αποστολής στον Φοιτητή: 5 Φεβρουαρίου 008 Ημερομηνία παράδοσης της Εργασίας: 4 Μαρτίου 008
Παντελής Μπουμπούλης, M.Sc., Ph.D. σελ. 2 math-gr.blogspot.com, bouboulis.mysch.gr
VI Ολοκληρώματα Παντελής Μπουμπούλης, MSc, PhD σελ mth-grlogspotcom, ououlismyschgr ΜΕΡΟΣ Αρχική Συνάρτηση Ορισμός Έστω f μια συνάρτηση ορισμένη σε ένα διάστημα Δ Αρχική συνάρτηση ή παράγουσα της στο Δ
ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ
ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ «ΠΛΗΡΟΦΟΡΙΚΗ» ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ 1) ΕΡΓΑΣΙΑ 4 Ηµεροµηνία αποστολής στον φοιτητή: 18 Φεβρουαρίου 005. Τελική ηµεροµηνία αποστολής από τον φοιτητή: Μαρτίου
Για την κατανόηση της ύλης αυτής θα συμβουλευθείτε επίσης το: βοηθητικό υλικό που υπάρχει στη
ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) ΕΡΓΑΣΙΑ 4 η Ημερομηνία Αποστολής στον Φοιτητή: Φεβρουαρίου Ημερομηνία παράδοσης της Εργασίας: 6 Μαρτίου Πριν από την λύση κάθε άσκησης καλό είναι να
ΘΕΜΑ Α. Α1. Θεωρία -απόδειξη θεωρήματος στη σελίδα 262 (μόνο το iii) στο σχολικό βιβλίο.
ΙΟΥΝΙΟΥ 0 ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΗΜΕΡΗΣΙΩΝ ΛΥΚΕΙΩΝ ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α Α. Θεωρία -απόδειξη θεωρήματος στη σελίδα 6 (μόνο το iii) στο σχολικό βιβλίο.
ΙΙ. b) Μιγαδικό ολοκλήρωμα
ΙΙ b Μιγαδικό ολοκλήρωμα Οι συναρτήσεις που θα θεωρούμε εδώ πραγματικές ή μιγαδικές θα τις υποθέτουμε παραγωγίσιμες Ορισμοί Έστω g :[α, β] C Αν gt xt + iyt και οι xy, yt είναι παραγωγίσιμες, τότε η παράγωγος
ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ
ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (Θ.Ε. ΠΛΗ 1) 4 η ΓΡΑΠΤΗ ΕΡΓΑΣΙΑ Ημερομηνία Ανάρτησης 14 Φεβρουαρίου 014 Ημερομηνία Παράδοσης της εργασίας από τον Φοιτητή 14 Μαρτίου
ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΕ ΕΦΑΡΜΟΓΕΣ ΣΤΗ ΒΙΟΪΑΤΡΙΚΗ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΕ ΕΦΑΡΜΟΓΕΣ ΣΤΗ ΒΙΟΪΑΤΡΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΑΝΑΛΥΣΗ Ι ΣΕΙΡΕΣ Διδάσκουσα : Δρ Μαρία Αδάμ Λυμένες ασκήσεις ) Να μελετηθούν ως προς τη σύγκλισή
Διαφορικές Εξισώσεις.
Διαφορικές Εξισώσεις. Εαρινό εξάμηνο 05-6. Λύσεις δεύτερου φυλλαδίου ασκήσεων.. Βρείτε όλες τις λύσεις της εξίσωσης Bernoulli x y = xy + y 3 καθορίζοντας προσεκτικά το διάστημα στο οποίο ορίζεται καθεμιά
Μέϑοδοι Εφαρμοσμένων Μαϑηματιϰών (ΜΕΜ 274) Λύσεις Θεμάτων Εξέτασης Ιούνη 2019
Μέϑοδοι Εφαρμοσμένων Μαϑηματιϰών ΜΕΜ 74 Λύσεις Θεμάτων Εξέτασης Ιούνη 9 Ζήτημα Α Α. Δείξτε ότι αν p, q πραγματιϰά πολυώνυμα ίδιου βαϑμού, τότε p q ϰαϑώς ±. Λύση. Αρϰεί να δείξουμε ότι για με αρϰετά μεγάλο