SPEKTRI ELEKTROMAGNETNEGA VALOVANJA
|
|
- Ἀλαλά Μαρής
- 7 χρόνια πριν
- Προβολές:
Transcript
1 SPEKTRI ELEKTROMAGNETNEGA VALOVANJA - Načini pridobivanja posameznih vrst spektrov - Izvori sevanja - Ločevanje valovanj z različnimi λ - Naprave za selekcijo el.mag.valovanja za različne λ. 1. Načini pridobivanja spektrov Vzbujeni delci (ioni, atomi, molekule) se vračajo v osnovno stanje el.mag.valovanje Načini vzbujanja: - bombardiranje z elementarnimi delci (elektroni) - segrevanje v plamenu ali loku - izpostavljanje v el.toku z velikim potencialom - z absorpcijo el.mag.valovanja Črtni spekter - samo nekatere valovne dolžine Zvezni spekter - vse valovne dolžine v danem območju. Dobimo ga pri vzbujanju: - trdne snovi ali tekočine, ki sevajo zelo gost spekter - nekatere molekule z zelo gostim spektrom - snovi, katere delci spreminjajo energ.stanja zvezno 1.1. Toplotno sevanje Segreta snov oddaja energijo kot kontinuirano sevanje - sevanje črnega telesa (je funkcija T) - oscilacije atomov in molekul. Značilnosti: - višja temperatura, krajša λ sevanja - energija sevanja črnega telesa = f(t 4 ) - emisija pri dani T = f(1/λ 5 ) Segrete trdne snovi so izvor infrardeče, vidne in UV svetlobe za analize Emisija plinov Vzbujanje atomov in molekul v plinu s segrevanjem in v el. polju sevanje vidne in UV svetlobe zaradi prehodov zunanjih elektronov Atomi črtni spekter
2 Molekule (rotacijska in nihajna stanja) zvezni spekter Primer: vodik vzbujamo v el. polju kontinuiran spekter λ = µm (vir sevanja pri absorpcijski spektrofotometriji) 1.3. Emisija rtg žarkov λ = 0,1-100Å, E = 0,1-100 kev Pridobivanje: - s snopom hitrih elektronov bombardiramo kovinsko tarčo - rtg cev - snov izpostavimo primarnemu snopu rtg žarkov (značilni in zvezni spekter) in dobimo sekundarne rtg žarke (značilni spekter) - fluorescentni žarki - z uporabo radioaktivnega izvora, ki emitira rtg žarke. Nastali rtg žarki imajo črtni ali zvezni spekter (previdnost!) Slika: spekter rtg cevi z wolframovo anodo pri U = 100 kv
3 RTG cev - opis Slika: ogrevana katoda in masivna z vodo hlajena anoda - kovinska tarča (evakuirano ohišje)
4 Princip delovanja: - Kα dobimo, ko vrzel v K zapolni e - iz L - Kβ dobimo, ko vrzel v K zapolni e - iz M - Lα dobimo, ko vrzel v L zapolni e - iz M itd - elementi z at.št. < 23 dajo samo K serijo (K α1 in K α2 ) - E za K α1 in K α2 ter K β1 in K β2 so tako majhne, da jih loči detektor le z dobro ločljivostjo - K α1 in K α2 pika dobimo pri prehodu elektronov iz 2p 1s - K β1 in K β2 pika dobimo pri prehodu elektronov iz 3p 1s - E med K α1 in K α2 je v energiji spinskega kv.števila. Povzročita dvojno difrakcijo pri velikih difrakcijskih kotih. - poleg tega črtnega spektra imamo še zvezni spekter tarče (zaviranje elektronov) - ozadje. Lastnosti zveznega in črtnega spektra: - spodnja meja valovnih dolžin λ min. = f(u) na rtg cevi: λ min = 12,395/U (kv) (Å) - maksimum spektra ni odvisen od snovi na tarči - intenziteta spektra je sorazmerna Z.V 2 (Z-at.št., V-napetost) Fluorescenčno sevanje - opis Plinast vzorec absorbira el.mag.valovanje pri n.pr. bombardiranju z elektroni (t = 10-8 sek) - resonančna fluorescenca: vzbujeni atomi oddajo sevanje z enako ν oz. λ kot vpadlo valovanje - normalna fluorescenca (pogosta). Vzbujeni atomi so počasni in oddajo sevanje z manjšo ν oz. E in večjo λ (za analizo).
5 2. Izvori elektromagnetnega valovanja 2.1. Izvori polikromatske svetlobe - IR spekter: - črno telo, - Nernstova žarnica - vidni spekter: - wolframova, - kremenova, - jodova žarnica - IR in UV spekter: - plini (xenon, vodik, devterij) - rtg žarki 2.2. Izvori monokromatske svetlobe - vidni in UV spekter: - kovinske pare, - žlahtni plini pri vzbujanju s - plamenom (toploto), - električnim poljem (katodna cev) - IR spekter: - laser (žico z nekaj Cr 2 O 3 v laserju) vzbujamo s toploto - Cr 3+ pri vračanju oddaja svetlobo z λ = 694,3 nm - sistem paralelnih zrcal ojača snop (pulzirajoča t = 0,5 sek) - laserji z Nd - oksidom, tekočine, plini - vzbujanje z električno napetostjo - laser da koherentno svetlobo (niha v fazi) - uporaba v Ramanovi spektroskopiji. - Monokromatorji: - ločujejo valovanja z različnimi λ.
6 3. Ločevanje valovanj z različnimi λ - filtri: prepuščajo dano λ, ostalo absorbirajo - barvna stekla (za vidno svetlobo), - interferenčni filter ali polprepustni filter (del svetlobe gre skozi filter v izgubo, del se je odbije (ponavljanje postopka, da dobimo dano λ). Uporaben za vse λ. - monokromatorji: dajo ožji spekter λ. - izkoriščajo geometrijsko disperzijo z uporabo prizme ali uklonske mreže - uporabni za UV do IR spekter Slika: pridobivanje monokromatske vidne svetlobe s filtri za vidno svetlobo Ločitvena sposobnost monokromatorja: R = λ sred /dλ = (λ 1 +λ 2 )/2. 1/ (λ 2 -λ 1 )
7 Prizme: - prozorni kremen, - safir, - NaCl, - KBr, - CsBr Uklonske mrežice: - presevna - odsevna. Slika: disperzija (pridobivanje monokromatske svetlobe) vidne svetlobe z uklonsko mrežico za presevno svetlobo in stekleno prizmo Pridobivanje monokromatskih rtg žarkov Popolnoma monokromatski žarki - majhna intenziteta Delno monokromatski: - uporaba β-filtra: absorpcija λ pred in za zahtevano λ s filtri Primer: za Cu katodo uporabimo Ni filter
8 Slika: Zr filter za molibdenovo tarčo
9 Tabela: pregled možnih tarč in ekvivalentni filtri - P.H.S. (pulse height selection): uporaba skupaj z β-filtrom, da odstrani majhne λ - kristalni monokromator: - monokristal, uklon rtg žarkov po Braggovi enačbi - ohranimo K α pik - ločljivost monokromatorja: nλ = 2d.sinθ/d dθ/dλ = n/2d.1/cosθ - uporaben za vse λ (pri filtru to ni pravilo) - odstrani tudi ozadje.
Molekularna spektrometrija
Molekularna spektrometrija Absorpcija Fluorescenca Pojavi v snovi (posledica interakcije EM valovanje- snov): Elektronski prehodi Vibracije Rotacije Spekter Izvor svetlobe prizma Spekter Material, ki deloma
Specifičnost spektrov. Princip emisijske spektrometrije. Atomizacija in vzbujanje
Princip emisijske spektrometrije Emisijska spektrometrija temelji na nastanku in detekciji spektrov, ki so posledica radiacijske deekscitacije vzbujenih elektronov. Pri teh procesih sodelujejo zunanji
Spektroskopija. S spektroskopijo preučujemo lastnosti snovi preko njihove interakcije z različnimi področji elektromagnetnega valovanja.
Spektroskopija S spektroskopijo preučujemo lastnosti snovi preko njihove interakcije z različnimi področji elektromagnetnega valovanja. Posamezna tehnika ima ime po območju uporabljenega elektromagnetnega
2.1. MOLEKULARNA ABSORPCIJSKA SPEKTROMETRIJA
2.1. MOLEKULARNA ABSORPCJSKA SPEKTROMETRJA Molekularna absorpcijska spektrometrija (kolorimetrija, fotometrija, spektrofotometrija) temelji na merjenju absorpcije svetlobe, ki prehaja skozi preiskovano
TRANSMISIJSKI ELEKTRONSKI MIKROSKOP - TEM
TRANSMISIJSKI ELEKTRONSKI MIKROSKOP - TEM Princip mikroskopa - delovni prostor s p = 10-4 torr (sipanje in absorpcija snopa elektronov na plinu) - ogrevan filament iz W kot vir elektronov paralelen elektronski
Funkcijske vrste. Matematika 2. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 2. april Gregor Dolinar Matematika 2
Matematika 2 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 2. april 2014 Funkcijske vrste Spomnimo se, kaj je to številska vrsta. Dano imamo neko zaporedje realnih števil a 1, a 2, a
Rentgenska fluorescenčna spektrometrija-xrf, RFA
Rentgenska fluorescenčna spektrometrija-xrf, RFA Glavne značilnosti XRF: Spektralno območje: Izvor primarnega sevanja: Disperzijski element: Detektor (števec): Vzorci: Koncentracijsko območje: 0,02-3%
Odvod. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 5. december Gregor Dolinar Matematika 1
Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 5. december 2013 Primer Odvajajmo funkcijo f(x) = x x. Diferencial funkcije Spomnimo se, da je funkcija f odvedljiva v točki
Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 21. november Gregor Dolinar Matematika 1
Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 21. november 2013 Hiperbolične funkcije Hiperbolični sinus sinhx = ex e x 2 20 10 3 2 1 1 2 3 10 20 hiperbolični kosinus coshx
Kotne in krožne funkcije
Kotne in krožne funkcije Kotne funkcije v pravokotnem trikotniku Avtor: Rok Kralj, 4.a Gimnazija Vič, 009/10 β a c γ b α sin = a c cos= b c tan = a b cot = b a Sinus kota je razmerje kotu nasprotne katete
SLIKA 1: KRIVULJA BARVNE OBČUTLJIVOSTI OČESA (Rudolf Kladnik: Osnove fizike-2.del,..stran 126, slika 18.4)
Naše oko zaznava svetlobo na intervalu valovnih dolžin približno od 400 do 800 nm. Odvisnost očesne občutljivosti od valovne dolžine je različna od človeka do človeka ter se spreminja s starostjo. Največja
Tretja vaja iz matematike 1
Tretja vaja iz matematike Andrej Perne Ljubljana, 00/07 kompleksna števila Polarni zapis kompleksnega števila z = x + iy): z = rcos ϕ + i sin ϕ) = re iϕ Opomba: Velja Eulerjeva formula: e iϕ = cos ϕ +
Osnove elektrotehnike uvod
Osnove elektrotehnike uvod Uvod V nadaljevanju navedena vprašanja so prevod testnih vprašanj, ki sem jih našel na omenjeni spletni strani. Vprašanja zajemajo temeljna znanja opredeljenega strokovnega področja.
1. vaja: Fotoefekt. Naloga: Ocenite energije fotonov rdeče, zelene in modre svetlobe!
1. vaja: Fotoefekt Naloga: Ocenite energije fotonov rdeče, zelene in modre svetlobe! Fotocelica, svetilka, ampermeter, voltmeter, izvir napetosti, rdeč, zelen in moder filter. Navodilo: Vstavite med svetilko
KAZALO 1 UVOD KAJ JE SVETLOBA Sonce kot izvor naravne svetlobe Kako zaznamo svetlobo? Kaj so barve in kako jih zaznamo?...
SVETLOBA IN BARVE KAZALO 1 UVOD... 1 2 KAJ JE SVETLOBA... 1 3 Sonce kot izvor naravne svetlobe... 2 4 Kako zaznamo svetlobo? Kaj so barve in kako jih zaznamo?... 4 5 Barvni prostori... 6 5.1 CIE 1931 XYZ
Booleova algebra. Izjave in Booleove spremenljivke
Izjave in Booleove spremenljivke vsako izjavo obravnavamo kot spremenljivko če je izjava resnična (pravilna), ima ta spremenljivka vrednost 1, če je neresnična (nepravilna), pa vrednost 0 pravimo, da gre
Diferencialna enačba, v kateri nastopata neznana funkcija in njen odvod v prvi potenci
Linearna diferencialna enačba reda Diferencialna enačba v kateri nastopata neznana funkcija in njen odvod v prvi potenci d f + p= se imenuje linearna diferencialna enačba V primeru ko je f 0 se zgornja
Energijska bilanca. E=E i +E p +E k +E lh. energija zaradi sproščanja latentne toplote. notranja energija potencialna energija. kinetična energija
Energijska bilanca E=E i +E p +E k +E lh notranja energija potencialna energija kinetična energija energija zaradi sproščanja latentne toplote Skupna energija klimatskega sistema (atmosfera, oceani, tla)
7 Lastnosti in merjenje svetlobe
7 Lastnosti in merjenje svetlobe Pri tej vaji se bomo seznanili z valovno in delčno naravo svetlobe ter s pojmi spekter, uklon in interferenca. Spoznali bomo, kako se določi valovne dolžine in izmeri gostoto
IZPIT IZ ANALIZE II Maribor,
Maribor, 05. 02. 200. (a) Naj bo f : [0, 2] R odvedljiva funkcija z lastnostjo f() = f(2). Dokaži, da obstaja tak c (0, ), da je f (c) = 2f (2c). (b) Naj bo f(x) = 3x 3 4x 2 + 2x +. Poišči tak c (0, ),
KVANTNA FIZIKA. Svetloba valovanje ali delci?
KVANTNA FIZIKA Proti koncu 19. stoletja je vrsta poskusov kazala še druga neskladja s predvidevanji klasične fizike, poleg tistih, ki so vodila k posebni teoriji relativnosti. Ti pojavi so povezani z obnašanjem
Energijska bilanca Zemlje. Osnove meteorologije november 2017
Energijska bilanca Zemlje Osnove meteorologije november 2017 Spekter elektromagnetnega sevanja Sevanje Osnovne spremenljivke za opis prenosa energije sevanjem: valovna dolžina - λ (m) frekvenca - ν (s
ATOMSKA ABSORPCIJSKA SPEKTROMETRIJA
ATOMSKA ABSORPCIJSKA SPEKTROMETRIJA Atomska absorpcijska spektrometrija Metoda, ki temelji na absorpciji svetlobe. Svetlobo absorbirajo atomi v osnovnem stanju Velja Beer-Lambert-ov zakon (podobna kvantitativna
Zaporedja. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 22. oktober Gregor Dolinar Matematika 1
Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 22. oktober 2013 Kdaj je zaporedje {a n } konvergentno, smo definirali s pomočjo limite zaporedja. Večkrat pa je dobro vedeti,
Državni izpitni center SPOMLADANSKI IZPITNI ROK *M * FIZIKA NAVODILA ZA OCENJEVANJE. Petek, 10. junij 2016 SPLOŠNA MATURA
Državni izpitni center *M16141113* SPOMLADANSKI IZPITNI ROK FIZIKA NAVODILA ZA OCENJEVANJE Petek, 1. junij 16 SPLOŠNA MATURA RIC 16 M161-411-3 M161-411-3 3 IZPITNA POLA 1 Naloga Odgovor Naloga Odgovor
1. Definicijsko območje, zaloga vrednosti. 2. Naraščanje in padanje, ekstremi. 3. Ukrivljenost. 4. Trend na robu definicijskega območja
ZNAČILNOSTI FUNKCIJ ZNAČILNOSTI FUNKCIJE, KI SO RAZVIDNE IZ GRAFA. Deinicijsko območje, zaloga vrednosti. Naraščanje in padanje, ekstremi 3. Ukrivljenost 4. Trend na robu deinicijskega območja 5. Periodičnost
Fotosinteza pri pouku naravoslovja: Trije preprosti poskusi
Barbara Vilhar Fotosinteza pri pouku naravoslovja: Trije preprosti poskusi delavnica Seminar za učitelje naravoslovja Rogaška Slatina, 19. februar 2006 Univerza v Ljubljani Biotehniška fakulteta Oddelek
8. Diskretni LTI sistemi
8. Diskreti LI sistemi. Naloga Določite odziv diskretega LI sistema s podaim odzivom a eoti impulz, a podai vhodi sigal. h[] x[] - - 5 6 7 - - 5 6 7 LI sistem se a vsak eoti impulz δ[] a vhodu odzove z
UNIVERZA V LJUBLJANI FMF, oddelek za fiziko seminar Laser na proste elektrone
UNIVERZA V LJUBLJANI FMF, oddelek za fiziko seminar Laser na proste elektrone Bojan Žunkovič mentor: doc. dr. Matjaž Žitnik 7. maj 2007 Povzetek V preteklosti je bilo sinhrotronsko sevanje pri pospeševanju
Laboratorij za termoenergetiko. Vodikove tehnologije
Laboratorij za termoenergetiko Vodikove tehnologije Pokrivanje svetovnih potreb po energiji premog 27% plin 22% biomasa 10% voda 2% sonce 0,4% veter 0,3% nafta 32% jedrska 6% geoterm. 0,2% biogoriva 0,2%
PONOVITEV SNOVI ZA 4. TEST
PONOVITEV SNOVI ZA 4. TEST 1. * 2. *Galvanski člen z napetostjo 1,5 V požene naboj 40 As. Koliko električnega dela opravi? 3. ** Na uporniku je padec napetosti 25 V. Upornik prejme 750 J dela v 5 minutah.
Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 14. november Gregor Dolinar Matematika 1
Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 14. november 2013 Kvadratni koren polinoma Funkcijo oblike f(x) = p(x), kjer je p polinom, imenujemo kvadratni koren polinoma
1 Michelsonov interferometer
1 Michelsonov interferometer Dva ˇzarka laserske svetlobe, ki ju ustvarimo s polprepustno stekleno ploščo, po odboju od zrcal interferirata, kar opazimo kot svetle ali temne kroˇzne lise na sredini zaslona.
Vaje: Barve. 1. Fotoefekt. Barbara Rovšek, Ana Gostinčar Blagotinšek, Toma d Kranjc. Vse vaje izvajamo v zatemnjenem prostoru.
Barbara Rovšek, Ana Gostinčar Blagotinšek, Toma d Kranjc Vaje: Barve Vse vaje izvajamo v zatemnjenem prostoru. 1. Fotoefekt Naloga: Ocenite energije fotonov rdeče, zelene in modre svetlobe. Za izvedbo
Frekvenčna analiza neperiodičnih signalov. Analiza signalov prof. France Mihelič
Frekvenčna analiza neperiodičnih signalov Analiza signalov prof. France Mihelič Vpliv postopka daljšanja periode na spekter periodičnega signala Opazujmo družino sodih periodičnih pravokotnih impulzov
Vaja: Odbojnostni senzor z optičnimi vlakni. Namen vaje
Namen vaje Spoznavanje osnovnih fiber-optičnih in optomehanskih komponent Spoznavanje načela delovanja in praktične uporabe odbojnostnega senzorja z optičnimi vlakni, Delo z merilnimi instrumenti (signal-generator,
7 Lastnosti in merjenje svetlobe
7 Lastnosti in merjenje svetlobe Pri tej vaji se bomo seznanili z valovno in delčno naravo svetlobe ter s pojmi spekter, uklon in interferenca. Spoznali bomo, kako se določi valovne dolžine, katere valovne
e 2 4πε 0 r i r j Ze 2 4πε 0 r i j<i
Poglavje 9 Atomi z več elektroni Za atom z enim elektronom smo lahko dobili analitične rešitve za lastne vrednosti in lastne funkcije energije. Pri atomih z več elektroni to ni mogoče in se moramo zadovoljiti
Mitja Krnel. Fizika energijskih virov
Mitja Krnel Fizika energijskih virov Vsebina Izkoriščanje sončne energije Orientacija sončnih zbiralnikov Zgradba in delovanje zbiralnikov Selektivni premazi Vrste sončnih zbiralnikov Ogrevanje vode Ogrevanje
SKUPNE PORAZDELITVE VEČ SLUČAJNIH SPREMENLJIVK
SKUPNE PORAZDELITVE SKUPNE PORAZDELITVE VEČ SLUČAJNIH SPREMENLJIVK Kovaec vržemo trikrat. Z ozačimo število grbov ri rvem metu ( ali ), z Y a skuo število grbov (,, ali 3). Kako sta sremelivki i Y odvisi
KODE ZA ODKRIVANJE IN ODPRAVLJANJE NAPAK
1 / 24 KODE ZA ODKRIVANJE IN ODPRAVLJANJE NAPAK Štefko Miklavič Univerza na Primorskem MARS, Avgust 2008 Phoenix 2 / 24 Phoenix 3 / 24 Phoenix 4 / 24 Črtna koda 5 / 24 Črtna koda - kontrolni bit 6 / 24
Fazni diagram binarne tekočine
Fazni diagram binarne tekočine Žiga Kos 5. junij 203 Binarno tekočino predstavljajo delci A in B. Ti se med seboj lahko mešajo v različnih razmerjih. V nalogi želimo izračunati fazni diagram take tekočine,
1 Michelsonov interferometer
1 Michelsonov interferometer Dva žarka laserske svetlobe, ki ju ustvarimo s polprepustno stekleno ploščo, po odboju od zrcal interferirata, kar opazimo kot svetle ali temne krožne lise na sredini zaslona.
Toplotni tokovi. 1. Energijski zakon Temperatura
Toplotni tokovi 1. Energijski zakon Med količinami, ki se ohranjajo, smo poleg mase in naboja omenili tudi energijo. V okviru modula o snovnih tokovih smo vpeljali kinetično, potencialno, prožnostno in
Fizikalne osnove svetlobe
Fakulteta za elektrotehniko Univerze v Ljubljani Laboratorij za razsvetljavo in fotometrijo Izbirni predmet - 10142 Svetlobna tehnika Fizikalne osnove svetlobe predavatelj prof. dr. Grega Bizjak, u.d.i.e.
I Rentgenska svetloba
I Rentgenska svetloba Vsebina odkritje rentgenske svetlobe (žarkov X) spekter rentgenske svetlobe interakcije rentgenske svetlobe količine in enote učinki rentgenske svetlobe Poizkusi s katodnimi žarki
Odvod. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 10. december Gregor Dolinar Matematika 1
Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 10. december 2013 Izrek (Rolleov izrek) Naj bo f : [a,b] R odvedljiva funkcija in naj bo f(a) = f(b). Potem obstaja vsaj ena
Eksperimenti iz Atomov, molekul in jeder
Eksperimenti iz Atomov, molekul in jeder Gregor Bavdek, Bojan Golli, Matjaž Koželj Pedagoška fakulteta UL Ljubljana 2017 Kazalo 1 Franck-Hertzov poskus 2 2 Lastna nihanja molekul CO in CO 2 : model na
izr. prof. dr. Ciril Arkar, asis. dr. Tomaž Šuklje, asis mag. Suzana Domjan
Gradbena fizika 2016/2017 Predavanja: Vaje vodijo: prof. dr. Sašo Medved Univerza v Ljubljani, Fakulteta za strojništvo Aškerčeva 6; dvoriščna stavba DS N3 saso.medved@fs.uni-lj.si izr. prof. dr. Ciril
9. Notranja energija in toplota
9. Notranja energija in toplota - Toplota je tisti del notranje energije, ki se pretaka ed dvea telesoa, ko je ed njia teperaturna razlika! - Notranja energija telesa je sestavljena iz kinetične energije
Poglavje 7. Poglavje 7. Poglavje 7. Regulacijski sistemi. Regulacijski sistemi. Slika 7. 1: Normirana blokovna shema regulacije EM
Slika 7. 1: Normirana blokovna shema regulacije EM Fakulteta za elektrotehniko 1 Slika 7. 2: Principielna shema regulacije AM v KSP Fakulteta za elektrotehniko 2 Slika 7. 3: Merjenje komponent fluksa s
4. Z električnim poljem ne moremo vplivati na: a) α-delce b) β-delce c) γ-žarke d) protone e) elektrone
1. Katera od naslednjih trditev velja za katodne žarke? a) Katodni žarki so odbijajo od katode. b) Katodni žarki izvirajo iz katode c) Katodni žarki so elektromagnetno valovanje z kratko valovno dolžino.
PROCESIRANJE SIGNALOV
Rešive pisega izpia PROCESIRANJE SIGNALOV Daum: 7... aloga Kolikša je ampliuda reje harmoske kompoee arisaega periodičega sigala? f() - -3 - - 3 Rešiev: Časova fukcija a iervalu ( /,/) je lieara fukcija:
Integralni račun. Nedoločeni integral in integracijske metrode. 1. Izračunaj naslednje nedoločene integrale: (a) dx. (b) x 3 +3+x 2 dx, (c) (d)
Integralni račun Nedoločeni integral in integracijske metrode. Izračunaj naslednje nedoločene integrale: d 3 +3+ 2 d, (f) (g) (h) (i) (j) (k) (l) + 3 4d, 3 +e +3d, 2 +4+4 d, 3 2 2 + 4 d, d, 6 2 +4 d, 2
Laboratorij za termoenergetiko. Vodikove tehnologije in PEM gorivne celice
Laboratorij za termoenergetiko Vodikove tehnologije in PEM gorivne celice Pokrivanje svetovnih potreb po energiji premog 27% plin 22% biomasa 10% voda 2% sonce 0,4% veter 0,3% nafta 32% jedrska 6% geoterm.
Lastnosti in delovanje polimerne gorivne celice
FAKULTETA ZA STROJNIŠTVO Laboratorij za termoenergetiko LABORATORIJSKA VAJA Lastnosti in delovanje polimerne gorivne celice Mitja Mori, Mihael Sekavčnik CILJ VAJE - Spoznati sestavo in vrste gorivnih celic.
ATOMSKA ABSORPCIJSKA SPEKTROMETRIJA
ATOMSKA ABSORPCIJSKA SPEKTROMETRIJA Atomska absorpcijska spektrometrija Metoda, ki temelji na absorpciji svetlobe. Svetlobo absorbirajo atomi v osnovnem stanju Velja Beer-Lambert-ov zakon(podobna kvantitativna
Prenos toplote prenos energije katerega pogojuje razlika temperatur temperatura je krajevno od točke do točke različna
PRENOS OPOE Def. Prenos toplote prenos energije katerega pogojuje razlika temperatur temperatura je krajevno od točke do točke različna Načini prenosa toplote: PREVAJANJE (kondukcija, PRESOP (konvekcija
MATEMATIČNI IZRAZI V MAFIRA WIKIJU
I FAKULTETA ZA MATEMATIKO IN FIZIKO Jadranska cesta 19 1000 Ljubljan Ljubljana, 25. marec 2011 MATEMATIČNI IZRAZI V MAFIRA WIKIJU KOMUNICIRANJE V MATEMATIKI Darja Celcer II KAZALO: 1 VSTAVLJANJE MATEMATIČNIH
Delovna točka in napajalna vezja bipolarnih tranzistorjev
KOM L: - Komnikacijska elektronika Delovna točka in napajalna vezja bipolarnih tranzistorjev. Določite izraz za kolektorski tok in napetost napajalnega vezja z enim virom in napetostnim delilnikom na vhod.
antična Grčija - snov zgrajena iz atomov /rezultat razmišljanja/
ZGRADBA ATOMA 1.1 - DALTON atom (atomos nedeljiv) antična Grčija - snov zgrajena iz atomov /rezultat razmišljanja/ dokaz izpred ~ 200 let Temelj so 3 zakoni: ZAKON O OHRANITVI MASE /Lavoisier, 1774/ ZAKON
INTELIGENTNO UPRAVLJANJE
INTELIGENTNO UPRAVLJANJE Fuzzy sistemi zaključivanja Vanr.prof. Dr. Lejla Banjanović-Mehmedović Mehmedović 1 Osnovni elementi fuzzy sistema zaključivanja Fazifikacija Baza znanja Baze podataka Baze pravila
+105 C (plošče in trakovi +85 C) -50 C ( C)* * Za temperature pod C se posvetujte z našo tehnično službo. ϑ m *20 *40 +70
KAIFLEX ST Tehnični podatki Material Izjemno fleksibilna zaprtocelična izolacija, fleksibilna elastomerna pena (FEF) Opis Uporaba Temperaturno območje Toplotna prevodnost W/(m K ) pri različnih srednjih
Univerza v Novi Gorici Fakulteta za znanosti o okolju Okolje (I. stopnja) Meteorologija 2013/2014. Energijska bilanca pregled
Univerza v Novi Gorici Fakulteta za znanosti o okolu Okole (I. stopna) Meteorologia 013/014 Energiska bilanca pregled 1 Osnovni pomi energiski tok: P [W = J/s] gostota energiskega toka: [W/m ] toplota:q
Analiza tankih plasti z Rutherfordovim povratnim sipanjem
Analiza tankih plasti z Rutherfordovim povratnim sipanjem Jernej Zlatič Fakulteta za matematiko in fiziko Univerza v Ljubljani Mentor: dr. Primož Pelicon 31. marec, 2004 1 Povzetek V seminarju je opisana
ΠΡΙΤΣΙΝΑΔΟΡΟΣ ΛΑΔΙΟΥ ΑΕΡΟΣ ΓΙΑ ΠΡΙΤΣΙΝΙΑ M4/M12 ΟΔΗΓΙΕΣ ΧΡΗΣΗΣ - ΑΝΤΑΛΛΑΚΤΙΚΑ
GR ΠΡΙΤΣΙΝΑΔΟΡΟΣ ΛΑΔΙΟΥ ΑΕΡΟΣ ΓΙΑ ΠΡΙΤΣΙΝΙΑ M4/M12 ΟΔΗΓΙΕΣ ΧΡΗΣΗΣ - ΑΝΤΑΛΛΑΚΤΙΚΑ H OLJLAJNYOMÁSÚ SZEGECSELŐ M4/M12 SZEGECSEKHEZ HASZNÁLATI UTASÍTÁS - ALKATRÉSZEK SLO OLJNO-PNEVMATSKI KOVIČAR ZA ZAKOVICE
Analizna kemija. Odgovori na izpitna vprašanja 2. del. Laboratorijska biomedicina šolsko leto 2008/2009
Analizna kemija Odgovori na izpitna vprašanja 2. del Laboratorijska biomedicina šolsko leto 2008/2009 Elektroanalizne metode: Potenciometrija in voltametrija. Molekularna absorpcijska spektrometrija in
2. Uklon rentgenskih žarkov na kristalih
Kristalne ravnine in indeksi Kristalne (mrežne) ravnine = geometrični koncept za prikaz pojava difrakcije na kristalnih strukturah 2. Uklon rentgenskih žarkov na kristalih Indeksi h k l (Miller-jevi indeksi)
*M * Osnovna in višja raven MATEMATIKA NAVODILA ZA OCENJEVANJE. Sobota, 4. junij 2011 SPOMLADANSKI IZPITNI ROK. Državni izpitni center
Državni izpitni center *M40* Osnovna in višja raven MATEMATIKA SPOMLADANSKI IZPITNI ROK NAVODILA ZA OCENJEVANJE Sobota, 4. junij 0 SPLOŠNA MATURA RIC 0 M-40-- IZPITNA POLA OSNOVNA IN VIŠJA RAVEN 0. Skupaj:
Tabele termodinamskih lastnosti vode in vodne pare
Univerza v Ljubljani Fakulteta za strojništvo Laboratorij za termoenergetiko Tabele termodinamskih lastnosti vode in vodne pare po modelu IAPWS IF-97 izračunano z XSteam Excel v2.6 Magnus Holmgren, xsteam.sourceforge.net
Kvantni delec na potencialnem skoku
Kvantni delec na potencialnem skoku Delec, ki se giblje premo enakomerno, pride na mejo, kjer potencial naraste s potenciala 0 na potencial. Takšno potencialno funkcijo zapišemo kot 0, 0 0,0. Slika 1:
VALOVANJE UVOD POLARIZACIJA STOJEČE VALOVANJE ODBOJ, LOM IN UKLON INTERFERENCA
VALOVANJE 10.1. UVOD 10.2. POLARIZACIJA 10.3. STOJEČE VALOVANJE 10.4. ODBOJ, LOM IN UKLON 10.5. INTERFERENCA 10.6. MATEMATIČNA OBDELAVA INTERFERENCE IN STOJEČEGA VALOVANJA 10.1. UVOD Valovanje je širjenje
CM707. GR Οδηγός χρήσης... 2-7. SLO Uporabniški priročnik... 8-13. CR Korisnički priručnik... 14-19. TR Kullanım Kılavuzu... 20-25
1 2 3 4 5 6 7 OFFMANAUTO CM707 GR Οδηγός χρήσης... 2-7 SLO Uporabniški priročnik... 8-13 CR Korisnički priručnik... 14-19 TR Kullanım Kılavuzu... 20-25 ENG User Guide... 26-31 GR CM707 ΟΔΗΓΟΣ ΧΡΗΣΗΣ Περιγραφή
FOTOSINTEZA Wan Hill primerjal rastlinsko fotosintezo s fotosintezo BAKTERIJ
FOTOSINTEZA FOTOSINTEZA je proces, pri katerem s pomočjo svetlobne energijje nastajajo v živih celicah organske spojine. 1772 Priestley RASTLINA slab zrak dober zrak Rastlina s pomočjo svetlobe spreminja
p 1 ENTROPIJSKI ZAKON
ENROPIJSKI ZAKON REERZIBILNA srememba: moža je obrjea srememba reko eakih vmesih staj kot rvota srememba. Po obeh sremembah e sme biti obeih trajih srememb v bližji i dalji okolici. IREERZIBILNA srememba:
ARHITEKTURA DETAJL 1, 1:10
0.15 0.25 3.56 0.02 0.10 0.12 0.10 SESTV S2 polimer-bitumenska,dvoslojna(po),... 1.0 cm po zahtevah SIST DIN 52133 in nadstandardno, (glej opis v tehn.poročilu), npr.: PHOENIX STR/Super 5 M * GEMINI P
Fizikalne osnove svetlobe in fotometrija
Fakulteta za elektrotehniko Univerze v Ljubljani Laboratorij za razsvetljavo in fotometrijo 2. letnik Aplikativna elektrotehnika - 64627 Električne inštalacije in razsvetljava Fizikalne osnove svetlobe
IZVODI ZADACI ( IV deo) Rešenje: Najpre ćemo logaritmovati ovu jednakost sa ln ( to beše prirodni logaritam za osnovu e) a zatim ćemo
IZVODI ZADACI ( IV deo) LOGARITAMSKI IZVOD Logariamskim izvodom funkcije f(), gde je >0 i, nazivamo izvod logarima e funkcije, o jes: (ln ) f ( ) f ( ) Primer. Nadji izvod funkcije Najpre ćemo logarimovai
Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju
RAČUN OSTATAKA 1 1 Prsten celih brojeva Z := N + {} N + = {, 3, 2, 1,, 1, 2, 3,...} Osnovni primer. (Z, +,,,, 1) je komutativan prsten sa jedinicom: sabiranje (S1) asocijativnost x + (y + z) = (x + y)
1. TVORBA ŠIBKEGA (SIGMATNEGA) AORISTA: Največ grških glagolov ima tako imenovani šibki (sigmatni) aorist. Osnova se tvori s. γραψ
TVORBA AORISTA: Grški aorist (dovršnik) izraža dovršno dejanje; v indikativu izraža poleg dovršnosti tudi preteklost. Za razliko od prezenta ima aorist posebne aktivne, medialne in pasivne oblike. Pri
Ljubljana,
Ljubljana, 18.10.2005 www.gamelandsports.com/cupmetalb.jpg http://www.meteorite martin.de/images/meteor/odessa.jpg O KOVINAH Kovine so elementi področij s, d in f periodnega sistema. Elemente I. skupine
IZVODI ZADACI (I deo)
IZVODI ZADACI (I deo) Najpre da se podsetimo tablice i osnovnih pravila:. C`=0. `=. ( )`= 4. ( n )`=n n-. (a )`=a lna 6. (e )`=e 7. (log a )`= 8. (ln)`= ` ln a (>0) 9. = ( 0) 0. `= (>0) (ovde je >0 i a
STRUKTURA ATOMA IN PERIODNI SISTEM ELEMENTOV
4. STRUKTURA ATOMA IN PERIODNI SISTEM ELEMENTOV STRUKTURA ATOMA IN PERIODNI SISTEM ELEMENTOV V začetku 19. st. (Dalton) so domnevali, da je atom najmanjši in nedeljivi delec snovi. Že Faraday (1834) je
The Thermal Comfort Properties of Reusable and Disposable Surgical Gown Fabrics Original Scientific Paper
24 The Thermal Comfort Properties of Surgical Gown Fabrics 1 1 2 1 2 Termofiziološke lastnosti udobnosti kirurških oblačil za enkratno in večkratno uporabo december 2008 marec 2009 Izvleček Kirurška oblačila
Fizika na maturi, Moderna fizika
6. MODERNA FIZIKA Fizika na maturi, 2013 6. 1. FOTON Energija elektromagnetnega valovanja je kvantizirana. Kvant te energije imenujemo foton. Energija fotonov: Planckova konstanta: Čim večja je frekvenca
ZGRADBA ATOMA IN PERIODNI SISTEM
ZGRADBA ATOMA IN PERIODNI SISTEM Kemijske lastnosti elementov se periodično spreminjajo z naraščajočo relativno atomsko maso oziroma kot vemo danes z naraščajočim vrstnim številom. Dmitrij I. Mendeljejev,
PITAGORA, ki je večino svojega življenja posvetil številom, je bil mnenja, da ves svet temelji na številih in razmerjih med njimi.
ZGODBA O ATOMU ATOMI V ANTIKI Od nekdaj so se ljudje spraševali iz česa je zgrajen svet. TALES iz Mileta je trdil, da je osnovna snov, ki gradi svet VODA, kar pa sploh ni presenetljivo. PITAGORA, ki je
Logatherm WPL 14 AR T A ++ A + A B C D E F G A B C D E F G. kw kw /2013
WP 14 R T d 9 10 11 53 d 2015 811/2013 WP 14 R T 2015 811/2013 WP 14 R T Naslednji podatki o izdelku izpolnjujejo zahteve uredb U 811/2013, 812/2013, 813/2013 in 814/2013 o dopolnitvi smernice 2010/30/U.
ODBOJNOSTNI SENZOR Z OPTIČNIMI VLAKNI
ODBOJNOSTNI SENZOR Z OPTIČNIMI VLAKNI Spoznavanje osnovnih vlakensko-optičnih (fiber-optičnih) komponent, Vodenje svetlobe po optičnem vlaknu, Spoznavanje načela delovanja in praktične uporabe odbojnostnega
Masni spektrometer. Ionizacija molekul v plinih. M + e M *+ + 2e eV (70eV), t = s ABCD *+ ABC+ + D* AB + + CD* AB* + CD + vakum.
Masni spektrometer uvajanje ionizacija Masni analizator detektor vakum Ionizacija molekul v plinih procesor M + e M *+ + 2e 50 100eV (70eV), t = 10-16 s ABCD *+ ABC+ + D* AB + + CD* AB* + CD + Izotopni
11. Valovanje Valovanje. = λν λ [m] - Valovna dolžina. hitrost valovanja na napeti vrvi. frekvence lastnega nihanja strune
11. Valovanje Frekvenca ν = 1 t 0 hitrost valovanja c = λ t 0 = λν λ [m] - Valovna dolžina hitrost valovanja na napeti vrvi frekvence lastnega nihanja strune interferenca valovanj iz dveh enako oddaljenih
Kako delujejo merilniki ionizirajočega sevanja
24.05.2012 Kako delujejo merilniki ionizirajočega sevanja Helena Janžekovič Uvod Vrste ionizirajočega sevanja Interakcija delcev s snovjo Vrste merilnikov in fizikalne količine Delovanje merilnikov ionizirajočega
ZAPISKI PREDAVANJ IZ PREDMETA RAZSVETLJAVA. Andrej Orgulan
ZAPISKI PREDAVANJ IZ PREDMETA RAZSVETLJAVA Andrej Orgulan Zbrano gradivo je nastalo na osnovi predavanj pri predmetu Razsvetljava na visokošolskem strokovnem študiju na Fakulteti za elektrotehniko, računalništvo
МЕХАНИКА НА ФЛУИДИ (AFI, TI, EE)
Zada~i za program 2 po predmetot МЕХАНИКА НА ФЛУИДИ (AFI, TI, EE) Предметен наставник: Проф. д-р Методија Мирчевски Асистент: Виктор Илиев (rok za predavawe na programot - 07. i 08. maj 2010) (во термини
SONČNE CELICE. Primož Hudi. Mentor: doc. dr. Zlatko Bradač. V seminarju sem predstavil sestavo ter delovanje sončnih celic.
SONČNE CELICE Primož Hudi V seminarju sem predstavil sestavo ter delovanje sončnih celic. Mentor: doc. dr. Zlatko Bradač Maribor, 2009 Kazalo 1 UVOD...3 2 SONČNE CELICE...4 2.1 SESTAVA SONČNE CELICE...4
Elementi spektralne teorije matrica
Elementi spektralne teorije matrica Neka je X konačno dimenzionalan vektorski prostor nad poljem K i neka je A : X X linearni operator. Definicija. Skalar λ K i nenula vektor u X se nazivaju sopstvena
Kristalna struktura polikristaliničnih snovi
MIKROSTRUKTURA 1 Kristalna struktura polikristaliničnih snovi Snovi redko nastopajo v monokristalinični obliki - izjemi sta monokristal SiO 2 (kvarc) v kvarčnih urah in monokristal Si v sestavnih delih
Termodinamika vlažnega zraka. stanja in spremembe
Termodinamika vlažnega zraka stanja in spremembe Termodinamika vlažnega zraka Najpogostejši medij v sušilnih procesih konvektivnega sušenja je VLAŽEN ZRAK Obravnavamo ga kot dvokomponentno zmes Suhi zrak
INSTRUMENTALNA FARMACEVTSKA ANALIZA
INSTRUMENTALNA FARMACEVTSKA ANALIZA Vaje in seminarji Nace Zidar, Rok Frlan, Janez Mravljak, Simon Žakelj, Jurij Trontelj, Zoran Lavrič ENOVITI MAGISTRSKI ŠTUDIJSKI PROGRAM FARMACIJA KAZALO 1. NMR-SPEKTROSKOPIJA...
Gimnazija Krˇsko. vektorji - naloge
Vektorji Naloge 1. V koordinatnem sistemu so podane točke A(3, 4), B(0, 2), C( 3, 2). a) Izračunaj dolžino krajevnega vektorja točke A. (2) b) Izračunaj kot med vektorjema r A in r C. (4) c) Izrazi vektor