KAZALO 1 UVOD KAJ JE SVETLOBA Sonce kot izvor naravne svetlobe Kako zaznamo svetlobo? Kaj so barve in kako jih zaznamo?...

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "KAZALO 1 UVOD KAJ JE SVETLOBA Sonce kot izvor naravne svetlobe Kako zaznamo svetlobo? Kaj so barve in kako jih zaznamo?..."

Transcript

1 SVETLOBA IN BARVE KAZALO 1 UVOD KAJ JE SVETLOBA Sonce kot izvor naravne svetlobe Kako zaznamo svetlobo? Kaj so barve in kako jih zaznamo? Barvni prostori CIE 1931 XYZ barvni prostor RGB barvni prostori Svetila Sevanje črnega telesa Fluorescenčne sijalke Svetila s celotnim spektrom dnevne svetlobe Kaj smo se naučili? UVOD Kaj je svetloba? Kako dojemamo in ustvarjamo barve. Kaj je črno telo in kako seva? Kaj so svetila (naravna in umetna). Kaj so varčne žarnice in kako jih izbiramo? 2 KAJ JE SVETLOBA Svetloba je elektromagnetno valovanje. Svetlobo določa: Svetlobni tok ali svetlobna moč in gostota svetlobnega toka Frekvenca (za enobarvno svetlobo) ali frekvenčni spekter (večbarvna svetloba) Frekvenca in valovna dolžina sta med sabo povezani z enačbo: c kjer je 1

2 1 12 frekvenca svetlobe ( s Hz, 1THz 1 Hz) valovna dolžina ( m, 9 1nm 1 m ) c 2, m/ s hitrost širjenja svetlobe v brezzračnem prostori. Hitrost svetlobe je odvisna od sredstva (zrak, voda, steklo itd). Kolikokrat hitreje potuje svetloba v vakuumu kot v sredstvu nam pove lomni količnik sredstva n. Voda ima npr. lomni količnik n=1,33, steklo n = 1,51, lomni količnik zraka je približno 1. Svetloba, ki jo zaznava človeško oko ima v vakuumu (ali zraku) valovno dolžino med 38nm (vijolična svetloba) in 75nm (rdeča svetloba). To ustreza frekvenčnemu obsegu med ,.1 Hz (4THz) in 7,89.1 Hz (789THz) Frekvenčni pas vidne svetloba je torej manjši od oktave. (Za primerjavo: zvok, ki ga slišimo ima frekvenčni obseg približno devet oktav (oktava je dvakratna frekvenca). Svetloba je lahko enobarvna (monokromatska, svetloba z eno samo valovno dolžine) ali večbarvna (multikromatska). Primer enobarvne svetlobe je svetloba, ki jo oddaja laser. Multikromatski spekter sevane svetlobe je lahko diskreten (svetilo seva več posameznih frekvenc) ali pa zvezen (svetilo seva vse frekvence oz. valovne dolžine v opazovanem frekvenčnem pasu). Sonce, žarnica na volframovo nitko, sveča, itd (poljubno črno telo) seva svetlobo z zveznim spektrom; fluorescenčna svetila pa večinoma diskretni spekter. 3 Sonce kot izvor naravne svetlobe Najpomembnejši izvor svetlobe je sonce. Na sončno svetlobo se je prilagodilo večina živih bitij na planetu Zemlja. Svetlobe ne potrebujemo samo za vid. V organizmu sproži niz procesov, ki omogočajo ugodno psihično in fizično počutje, zbranost in ustvarjalnost. Vsakdo lahko potrdi, da se v svetlem poletnem dnevu mnogo bolje počuti kot v jesenski sivini. Pomanjkanje sončne svetlobe lahko vodi v manjšo koncentracijo, nesposobnost psihičnih aktivnosti in v depresijo. Tudi, ko si pomagamo z umetnim svetilom kot nadomestkom naravne svetlobe, naj bo ta svetloba čim bolj podobna sončni svetlobi. Druge vrste je ambientna svetloba, ki ustvarja določeno vzdušje ob počitku in zabavi. Spekter bele dnevne svetlobe je zvezen, frekvenčni pas je med 4 in 789 THz. (. Uravnoteženo vsoto vseh barvnih komponent (frekvenc, valovnih dolžin), ki jih oddaja sonce prepozna oko kot belo svetlobo. Barvni spekter sončne svetlobe lahko razčlenimo s pomočjo optične prizme. Bela svetloba vstopa v optično prizmo in se lomi na meji zrak steklo in steklo zrak kot kaže slika. Lomni količnik stekla je odvisen od barve (valovne dolžine) svetlobe. Žarek izstopa iz prizme pod različnimi koti, odvisno od barve. V izstopajočemu žarku niso zajete vse barve, ki jih zaznava človeško oko. Oko namreč zaznava tudi vsoto dveh ali več žarkov različnih valovnih dolžin kot novo barvo. 2

3 Slika 1 Lom bele svetlobe na optični prizmi Spekter bele svetlobe Barva Valovna dolžina (nm) Frekvenca (THz) Rdeča nm THz Oranžna Rumena Zelena Modra Indigo Violična nm nm nm nm nm nm THz THz THz THz THz THz Tabela 1 Barvni spekter Spekter, ki ga seva Sonce (seva zunanji sloj sonca, imenovan fotosfera) je približno enak spektru, ki ga seva črno telo na temperaturi 55 K. Človeško oko se je zelo dobro prilagodilo na spekter, ki ga seva sonce in je najbolj občutljivo ravno za tiste valovne dolžine (barve), kjer je vrh Sončevega sevalnega spektra. Plast ozračja delno absorbira posamezne pasove, kot kaže slika 2. 3

4 Slika 2 Spekter sončne svetlobe 4 Kako zaznamo svetlobo? Kaj so barve in kako jih zaznamo? Na očesni mrežnici so celice, imenovane paličnice. To so svetlobni sprejemniki, ki lahko zaznavajo zelo slabotno svetlobo in jo prikažejo kot svetlo temno sliko. Pri nočnem gledanju je oko najbolj občutljivo za svetlobo valovne dolžine okoli 55nm. Pri tej svetlobi zazna oko še 12 2 svetlobni tok gostote približno 1 W / m. Največja občutljivost očesa za svetlobo je 12 primerljiva z največjo občutljivostjo ušesa za zvok ( 1 W / m 2 pri frekvenci 1Hz) Na mrežnici pa so tudi barvno občutljive celice, imenovane čepnice. Rumena pega, to je vdolbina v mrežnici nasproti leče, vsebuje številne čepnice. Pri človeku omogočajo barvni vid. Človeško oko lahko zaznava barve samo v primeru dovolj močne svetlobe. Največja občutljivost očesa je pri rumeno zeleni svetlobi valovne dolžine 555 nm. Čepnice imajo tri vrste pigmentov, ki so uglašeni na tri valovne dolžine. Vrhovi občutljivosti posameznih vrst čepkov so na 42-44nm (S short, kratek), 53-54nm (M middle, srednji) ter 56-58nm) (L long, dolg). To je tribarvni (trikromatski) sistem gledanja. Značilen je za nekatere primate in človeka. Mnogo drugih primatov in sesalcev je dvobarvnih (dikromatskih) z zelo omejeno barvno zaznavo ali brez barvne zaznave. Druge živali (tropske ribe, ptice) imajo celo štiribarvno gledanje, saj živijo v barvno intenzivnem okolju, kjer je natančno razlikovanje barv nujno za preživetje. Področje in normalizirano občutljivost S ( ), M( ), L( ) čepkov človeškega očesa podajata graf in tabela: 4

5 valovna dolžina (nm) Slika 3 Relativna občutljivost čepnic človeškega očesa Vrste čepnic Ime Področje Vrh spektra S β 4 5 nm nm M γ nm nm L ρ 5 7 nm nm Tabela 2 Področja zaznave treh (S, M, L) čepnic Če pade na mrežnico svetloba s spektralno porazdelitvijo moči I (), dobimo naslednje odzive: X I( ) S( ) d Y I( ) M ( ) d Z I( ) L( ) d 5

6 Barvi vtis da vsota vse treh vrednosti odzivov X Y Z. To imenujemo tribarvni aditivni model zaznave barv. Primati, ki ga uporabljajo, so trikromati. Kumulativno občutljivost človeškega očesa na monokromatske barve kaže slika 3. Slika 4 Relativna občutljivost človeškega očesa na barve Isti barvni vtis lahko dobimo z mešanjem svetlobe različnih valovnih dolžin. Ta pojav se imenuje metamerizem. Metamerizem nastane zato, ker se vsak tip čepkov odziva na kumulativno svetlobno energijo v pasu, ki ga pokriva. Različne kombinacije svetlobe vseh možnih valovnih dolžin lahko povzročijo enak odziv in enako zaznavo barve. Vtis bele svetlobe dobimo, če je I () zvezni spekter naravne svetlobe sonca ali diskreten spekter fluorescenčnega svetila. Pogoj je le, da sta odziva X+Y+Z v obeh primerih enaka. Zakaj pa je potem umetna svetloba večine varčnih žarnic večkrat neprijetna, bode v oko, čeprav jo oko zazna kot belo svetlobo? Za isto sevalno energijo je sevalna moč odvisna od pasovne širine svetlobe manjša pasovna širina (diskretna svetloba ene same frekvence) pomeni večjo moč. Večja moč pomeni večjo obremenitev tipal (čepnic) v mrežnici, vidnih živcev ter receptorjev svetlobe v možganih. 5 Barvni prostori Tribarvni sistem, podoben kot ga ima človeško oko, uporabljamo za prikaz barv na televizijskih in računalniških zaslonih in barvnih tiskalnikih. 5.1 CIE 1931 XYZ barvni prostor Frekvenčne karakteristike treh vrst čepkov na mrežnici očesa se lahko od človeka do človeka nekoliko razlikujejo. Vsak nekoliko drugače dojema barve. Da bi se izognili tem razlikam, je CIE (International Commission on Illumination) že leta 1931 definiral barvni prostor na osnovi matematično določenega barvnega modela. Imenuje se CIE 1931 XYZ barvni prostor. Je eden izmed mnogih možnih barvnih prostorov. Ostrina vida in barvni vtis sta prvenstveno omejena na ozek zorni kot opazovanja. Večina čepkov je namreč v rumeni pegi, to je vdolbini nasproti leče, ki je razmeroma majhna. Za 6

7 opazovalca barv je zato določen zorni kot opazovanja samo 2 To je CIE 1931 standardni opazovalec. 2 XYZ Namesto S, M, L funkcij uporabimo matematično določene funkcije x ( ), y( ), z( ) z grafom: Slika 5 CIE 1931 XYZ barvni prostor V kolikor pade na mrežnico svetloba s spektralno razdelitvijo moči I (), dobimo s stališča standardnega opazovalce naslednje odzive: X I( ) x( ) d Y I( ) y( ) d Z I( ) z( ) d Če bi hoteli prikazati vse barve, bi morali uporabiti prostorsko, tridimenzionalno sliko. Primernejša je dvodimenzionalna predstavitev barv, ki jo dobimo z naslednjo transformacijo: x y X X Y Z Y X Y Z Z z x y X Y Z 1 7

8 Parameter Y je mera za svetlost (bela barva je npr. svetlejša od sive in siva je svetlejša od črne). Dobimo CIE xyy barvni prostor. Slika 6 CIE xyy barvni prostor Na zunanjem loku CIE xyy barvnega prostora so monokromatske barve, podane z valovno dolžino, znotraj so barve, ki jih dobimo z aditivnim mešanjem. 5.2 RGB barvni prostori Če izberemo dve točki na barvnem diagramu in ju povežemo s premico, je barva poljubne točke na premici enaka primerno uravnoteženi vsoti barv obeh izbranih točk. Isto velja, če izberemo tri točke v barvnem prostoru. Vse ostale barve znotraj trikotnika, lahko dobimo z ustrezno kombinacijo barv in svetlosti treh ogliščih barvnih točk. Barve ogliščih barvnih točk zato imenujemo primarne barve. Na opisan način lahko dobimo različne barvne prostore, prilagojene različnim uporabam. Primeri različnih RGB (Red rdeč, Green zelen, Blue moder) barvnih prostorov z označenimi osnovnimi barvami so na spodnjih slikah. 8

9 CIE RGB barvni prostor z označenimi osnovnimi barvami. Osnovne barve so monokromatske, E je bela barva. Adobe RGB barvni prostor. Osnovne barve niso monokromatske. Odlikuje ga širok razpon barv. Slika 7 Različni RGB barvni prostori srgb sta leta 1996 razvila Hewlett Packard in Microsoft. Namenjen je monitorjem, Internetu in barvnim tiskalnikom. Pazljiv bralec bo hitro ugotovil, da so barve na zgornjih slikah pravilno prikazane samo znotraj trikotnika srgb, saj jih opazuje z računalniškim monitorjem! 6 Svetila 6.1 Sevanje črnega telesa Črno telo, segreto na temperaturo T, seva elektromagnetno valovanje z zveznim spektrom. Izračunamo ga po Planckovi enačbi: kjer je: I (, T) d sevalna energija na enoto površine, na enoto časa in na enoto zornega kota, sevana v frekvenčnem pasu med in d pri temperaturi T. frekvenca elektromagnetnega valovanja 34 h 6,62.1 Js Planckova konstanta c 3.1 m/ s hitrost svetlobe v vakuumu 23 1 k 1,38.1 JK Boltzmannova konstanta 9

10 T absolutna temperatura v Kelvinih Primeri spektrov pri štirih temperaturah: Slika 8 Spekter sevanja črnega telesa pri različnih temperaturah Maksimum sevalnega spektra je pri frekvencah vidne svetlobe, če je sevalna temperatura črnega telesa 56 K. To pa je tudi sevalna temperatura sonca. Približne barvne temperature svetlobe podaja tabela: sveča žarnica na volframovo nitko sončna svetloba 18 K 3 K 55 K Pri fluorescenčnih svetilih lahko govorimo o ekvivalentni barvni temperaturi, saj ta svetila ne sevajo kot črna telesa: 1

11 fluorescenčne (varčne) žarnice 29 K 1 K Koliki del spektra, ki ga seva črno telo, je spekter vidne svetlobe? Izračunamo ga z integracijo spektra po Planckovi enačbi, pri čemer je temperatura T parameter: 2 1 kjer je: I( ) d I( ) d.1 % 1 spodnja frekvenca vidne svetlobe 4 THz (rdeča barva) 2 zgornja frekvenca vidne svetlobe 789 THz (vijolična barva) Kako se spreminja delež vidne svetlobe, izračunamo po zgornji enačbi. T K % 18 (sveča),6 28 (žarnica na volframovo nitko) 8, (sonce) Tabela 3 Delež vidne svetlobe v spektru teles na različnih barvnih temperaturah Izkoristek sevanja vidnega dela spektra se veča tudi pri temperaturah, višjih od 56K, kjer je vrh spektra na področju vidne svetlobe. Zastopanost infrardečih žarkov v spektru svetlobe se namreč nižja bolj, kot pada moč na področju vidne svetlobe Pri nižjih temperaturah ima spekter svetil poudarjen rdeči del spektra, pri višjih pa modri del spektra. Izkoristek žarnice na volframovo nitko bi teoretično lahko povečali z večanjem temperature. Tudi sevalni spekter bi se tako bližal spektru dnevne svetlobe. Omejitev predstavlja tališče volframa (3295 K). Pomagamo si lahko z žarnicami na plazmo (npr. obločne žarnice, ki so jih včasih uporabljali pri filmskih projektorjih). 11

12 6.2 Fluorescenčne sijalke To so svetila, kjer seva plin v stekleni cevi ali pa snov, s katero je premazana notranjost cevi. Atome snovi vzbujamo s svetlobo nekoliko višje frekvence (in s tem energije) od svetlobe, ki jo seva. Pri prehodu iz vzbujenega v osnovno stanje sevajo atomi svetlobo s frekvenco, ki jo dobimo po enačbi: Kjer je: frekveca sevane svetlobe Planckova kostanta Js energija vzbujenega stanja Katere frekvence seva snov je odvisno od same snovi (možnih energetskih nivojev vzbujenih stanj). Ker sevajo sijalke večinoma fotone vidne svetlobe, je njihov izkoristek bistveno večji od izkoristka žarnic na volframovo nitko, kjer je pretežni del sevalnega spektra na področju infrardečih žarkov. Zato jim pravimo tudi varčne sijalke. Glede na spekter oziroma barvo svetlobe, ki jo oddajajo jih delimo na: Oznaka Ekvivalentna barvna temperatura Namen Topla bela (Warm White) 27 K Intimna ambientna svetloba Hladna bela (Cool White) 41 K Za dvorane, garažo, stranišča Običajna bela (Triten) 5 K Za čitanje in delo Prava bela (Full Spectrum, True Light) K Podobna naravni dnevni svetlobi Dnevna svetloba (Daylight) 65K Modro bela za hladno vzdušje Opomba: Tabela 4 Komercialne oznake za razne sijalke Ekvivalentna barvna temperatura je temperatura črnega telesa, ki bi seval približno enako barvo svetlobe kot opazovano fluorescenčno svetilo. Spekter varčnih sijalk ni zvezen, kar sicer velja za spekter, ki ga seva črno telo. Diskretne komponente v spektru svetlobe pomenijo veliko sevalno moč v ozkih frekvenčnih pasovih, kar deluje moteče. Dve žarnici, ki oddajata na prvi pogled enako svetlobo, lahko različno obremenjujeta oko. Učinek se lahko zazna šele po daljši uporabi svetila. Če je spekter svetlobe zvezen, podoben spektru sonca, je svetloba mehka in stimulativna. Svetloba mnogih varčnih 12

13 žarnic je ostra, obremenjujoča in lahko povzroči tudi glavobol. Analiza spektra žarnice in njegova primerjava s spektrom sončne svetlobe je zato bistvena pri izbiri svetila, saj omogoča vrednotenje kakovosti svetila. Ne samo izkoristek žarnice (to je razmerje med energijo vidne svetlobe in porabljene električne energije), pomemben je tudi spekter sevane svetlobe! Diskretne komponente v sevalnem spektru imajo podoben moteči učinek kot diskretne frekvence (toni) ob belem Gaussovem šumu. Seveda pa je popolnoma nezadosten in nesmiseln običajni komercialni podatek na kupljeni sijalki, ki pove le, kako močno žarnico na volframovo nitko lahko nadomesti varčna sijalka. Obe primerjani svetili sta neprimerljivi, saj se ne skladata po spektru sevane svetlobe. Primer spektra svetlobe, ki ga seva varčna sijalka (zelena barva) v primerjavi z zveznim spektrom dnevne svetlobe (črna barva) kaže slika 9. Slika 9 Spekter črnega telesa (črna barva) in varčne sijalke (zelena barva) Odstopanje spektra sijalke od spektra sevanja črnega telesa določa indeks prikaza barv CRI (Color Rendering Index - CRI). CRI je vpeljala CIE (International Commission on Illumination), Pove nam, kako blizu je svetilo zveznemu spektru naravne svetlobe, torej kako prijetno je za oko. CRI se določa na osnovi meritev spektra pri osmih valovnih dolžinah sijalke, ki jo želimo preizkusiti. Testne vzorce primerjamo s spektrom črnega telesa pri isti barvni temperaturi in opazovani barvi (valovni dolžini). Ugotovimo odstopanje. Za vsak vzorec izračunamo indeks: ter ga povprečimo preko osmih vzorcev. Na ta način dobimo CRI. Fluorescenčne žarnice imajo tipičen CRI med 55 in 85, pri čemer smatrajo, da so žarnice s CRI 8 do 85 že zelo dobre. Črno telo ima CRI 1, monokromatski laserski žarek pa. Sijalke imajo pogosto izpisano komercialno oznako, ki nam približno pove njen indeks prikaza barv (CRI ali Ra) in ekvivalentno barvno temperaturo. Podana je v obliki trimestnega števila. 13

14 Oznaka 84 npr. pomeni: Prva številka pomeni, da je CRI približno med 8 in 85 Drugi dve številki pomenita, da je barvna temperatura 4K. 6.3 Svetila s celotnim spektrom dnevne svetlobe Idealno svetlobo za nadomeščanje in dopolnitev dnevne svetlobe bi dalo črno telo, segreto na okoli 54 do 57 K. Podobno kot sonce bi imela ta svetloba zvezni spekter z vrhom na področju vidne svetlobe. Na človeka bi delovala stimulativno, omogočila bi zdravo življenje in ustvarjalno delo. Namesto črnega telesa bi lahko v isti namen uporabili tudi fluorescenčne sijalke, v kateri pa bi morala biti mešanica fluorescenčne snovi skrbno izbrana tako, da bi sevala praktično vse frekvence na področju vidne in delno UV svetlobe. Taka sijalka ima različne oznake: sijalka s celotnim (polnim) spektrom (Full Spectrum Light), sijalka s pravo svetlobo (True Light), sijalka z življenjsko svetlobo (Vita Light). Omogoča stimulativno počutje za ustvarjalno delo. Uporablja se kot nadomestek ali dopolnilo dnevni svetlobi. Kakšne so njene lastnosti: njena barvna temperatura mora biti čim bližja 55K imeti mora CRI 96 spekter mora biti čim bolj zvezen imeti mora zdravi nivo UV sevanja Sijalko s polnim spektrom dnevne svetlobe lahko uporabljamo tudi v medicinske namene zlasti za zdravljenje depresije, ki je posledice pomanjkanja dnevne svetlobe (npr. pomanjkanje svetlobe v polarnih krajih, podzemnih bunkerjih itd.) V prostoru s temi sijalkami uspevajo tudi zelene rastline, saj omogoča fotosintezo. 7 Kaj smo se naučili? Svetloba je elektromagnetno valovanje. Vidna svetloba ima v brezzračnem prostoru in zraku valovno dolžino med 38 in 75nm. Človeško telo je najbolj občutljivo za rumeno zeleno svetlobo valovne dolžine 55nm. Barve zaznavamo s pomočjo svetlobno občutljivih celic, imenovanih čepnic, ki se nahajajo na mrežnici očesa. Imamo tri vrste čepnic, ki spektralno pokrivajo tri frekvenčna področja vidne svetlobe. To je tribarvni sistem gledanja. Tipičen je za človeka in nekatere primate. Nekatere živali ne razločijo barv, medtem ko imajo druge, ki živijo v barvno intenzivnih okoljih (nekatere tropske ptice in ribe) celo štiribarvni sistem gledanja. Po naravnem tribarvnem sistemu gledanja se zgleduje matematično določen CIE 1931 XYZ barvni prostor in iz njega izpeljani drugi barvni prostori (npr. RGB barvni prostori) Sonce je najpopolnejši izvor naravne svetlobe. Ima zvezni sevalni spekter, na katerega se je človeško oko popolnoma uskladilo. Deluje stimulativno, omogoča ustvarjalnost in dobro počutje. Ob pomanjkanju dnevne svetlobe si pomagamo z žarnicami, ki pa imajo nizek izkoristek in prenizko sevalno temperature. Druga možnost so plinske in fluorescenčne sijalke. Na žalost spekter obeh največkrat precej odstopa od spektra svetlobe, ki ga daje sonce, saj vsebuje špice (diskretne komponente). Te so za oko moteče. Odstopanje spektra sijalk od 14

15 spektra sevanja črnega telesa pri isti barvni temperature določa indeks prikaza barv (CRI indeks). CRI indeks in ekvivalentna barvna temperatura sta podana s trimestnim številom, ki se nahaja na embalaži sijalke ob podatku za njeno moč. Sijalka, ki se najbolj približa naravni svetlobi se imenuje sijalka s polnim spektrom (Full Spectrum Light ali tudi True Light ali Vita Light). Poleg polnega spektra vidne svetlobe vsebuje tudi zdravi nivo UV žarkov. V prostorih s to svetlobo uspevajo tudi rastline, saj omogoča fotosintezo. Ob pomanjkanju sončne svetlobe deluje na človeka stimulativno in antidepresivno 15

SLIKA 1: KRIVULJA BARVNE OBČUTLJIVOSTI OČESA (Rudolf Kladnik: Osnove fizike-2.del,..stran 126, slika 18.4)

SLIKA 1: KRIVULJA BARVNE OBČUTLJIVOSTI OČESA (Rudolf Kladnik: Osnove fizike-2.del,..stran 126, slika 18.4) Naše oko zaznava svetlobo na intervalu valovnih dolžin približno od 400 do 800 nm. Odvisnost očesne občutljivosti od valovne dolžine je različna od človeka do človeka ter se spreminja s starostjo. Največja

Διαβάστε περισσότερα

Funkcijske vrste. Matematika 2. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 2. april Gregor Dolinar Matematika 2

Funkcijske vrste. Matematika 2. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 2. april Gregor Dolinar Matematika 2 Matematika 2 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 2. april 2014 Funkcijske vrste Spomnimo se, kaj je to številska vrsta. Dano imamo neko zaporedje realnih števil a 1, a 2, a

Διαβάστε περισσότερα

Odvod. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 5. december Gregor Dolinar Matematika 1

Odvod. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 5. december Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 5. december 2013 Primer Odvajajmo funkcijo f(x) = x x. Diferencial funkcije Spomnimo se, da je funkcija f odvedljiva v točki

Διαβάστε περισσότερα

Diferencialna enačba, v kateri nastopata neznana funkcija in njen odvod v prvi potenci

Diferencialna enačba, v kateri nastopata neznana funkcija in njen odvod v prvi potenci Linearna diferencialna enačba reda Diferencialna enačba v kateri nastopata neznana funkcija in njen odvod v prvi potenci d f + p= se imenuje linearna diferencialna enačba V primeru ko je f 0 se zgornja

Διαβάστε περισσότερα

Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 14. november Gregor Dolinar Matematika 1

Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 14. november Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 14. november 2013 Kvadratni koren polinoma Funkcijo oblike f(x) = p(x), kjer je p polinom, imenujemo kvadratni koren polinoma

Διαβάστε περισσότερα

Zaporedja. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 22. oktober Gregor Dolinar Matematika 1

Zaporedja. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 22. oktober Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 22. oktober 2013 Kdaj je zaporedje {a n } konvergentno, smo definirali s pomočjo limite zaporedja. Večkrat pa je dobro vedeti,

Διαβάστε περισσότερα

Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 21. november Gregor Dolinar Matematika 1

Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 21. november Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 21. november 2013 Hiperbolične funkcije Hiperbolični sinus sinhx = ex e x 2 20 10 3 2 1 1 2 3 10 20 hiperbolični kosinus coshx

Διαβάστε περισσότερα

Tretja vaja iz matematike 1

Tretja vaja iz matematike 1 Tretja vaja iz matematike Andrej Perne Ljubljana, 00/07 kompleksna števila Polarni zapis kompleksnega števila z = x + iy): z = rcos ϕ + i sin ϕ) = re iϕ Opomba: Velja Eulerjeva formula: e iϕ = cos ϕ +

Διαβάστε περισσότερα

KODE ZA ODKRIVANJE IN ODPRAVLJANJE NAPAK

KODE ZA ODKRIVANJE IN ODPRAVLJANJE NAPAK 1 / 24 KODE ZA ODKRIVANJE IN ODPRAVLJANJE NAPAK Štefko Miklavič Univerza na Primorskem MARS, Avgust 2008 Phoenix 2 / 24 Phoenix 3 / 24 Phoenix 4 / 24 Črtna koda 5 / 24 Črtna koda - kontrolni bit 6 / 24

Διαβάστε περισσότερα

Svetloba in barve. Svetloba kot del EM spektra. Svetloba kot del EM spektra. Elektrotehnika in varnost Razsvetljava

Svetloba in barve. Svetloba kot del EM spektra. Svetloba kot del EM spektra. Elektrotehnika in varnost Razsvetljava Fakulteta za kemijo in kemijsko tehnologijo Univerze v Ljubljani Oddelek za tehniško varnost 3. letnik Univerzitetni študij Elektrotehnika in varnost Razsvetljava Svetloba in barve predavatelj prof. dr.

Διαβάστε περισσότερα

Kotne in krožne funkcije

Kotne in krožne funkcije Kotne in krožne funkcije Kotne funkcije v pravokotnem trikotniku Avtor: Rok Kralj, 4.a Gimnazija Vič, 009/10 β a c γ b α sin = a c cos= b c tan = a b cot = b a Sinus kota je razmerje kotu nasprotne katete

Διαβάστε περισσότερα

Svetloba in barve. Svetloba kot del EM spektra. Svetloba kot del EM spektra

Svetloba in barve. Svetloba kot del EM spektra. Svetloba kot del EM spektra Fakulteta za elektrotehniko Univerze v Ljubljani Laboratorij za razsvetljavo in fotometrijo Izbirni predmet - 10142 Svetlobna tehnika Svetloba in barve predavatelj prof. dr. Grega Bizjak, u.d.i.e. Svetloba

Διαβάστε περισσότερα

PONOVITEV SNOVI ZA 4. TEST

PONOVITEV SNOVI ZA 4. TEST PONOVITEV SNOVI ZA 4. TEST 1. * 2. *Galvanski člen z napetostjo 1,5 V požene naboj 40 As. Koliko električnega dela opravi? 3. ** Na uporniku je padec napetosti 25 V. Upornik prejme 750 J dela v 5 minutah.

Διαβάστε περισσότερα

Odvod. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 10. december Gregor Dolinar Matematika 1

Odvod. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 10. december Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 10. december 2013 Izrek (Rolleov izrek) Naj bo f : [a,b] R odvedljiva funkcija in naj bo f(a) = f(b). Potem obstaja vsaj ena

Διαβάστε περισσότερα

Svetloba in barve. Svetloba kot del EM spektra. Svetloba kot del EM spektra. Elektrotehnika in varnost Razsvetljava

Svetloba in barve. Svetloba kot del EM spektra. Svetloba kot del EM spektra. Elektrotehnika in varnost Razsvetljava Fakulteta za kemijo in kemijsko tehnologijo Univerze v Ljubljani Oddelek za tehniško varnost 3. letnik Univerzitetni študij Elektrotehnika in varnost Razsvetljava Svetloba in barve predavatelj prof. dr.

Διαβάστε περισσότερα

Kotni funkciji sinus in kosinus

Kotni funkciji sinus in kosinus Kotni funkciji sinus in kosinus Oznake: sinus kota x označujemo z oznako sin x, kosinus kota x označujemo z oznako cos x, DEFINICIJA V PRAVOKOTNEM TRIKOTNIKU: Kotna funkcija sinus je definirana kot razmerje

Διαβάστε περισσότερα

Fakulteta za elektrotehniko Univerze v Ljubljani Laboratorij za razsvetljavo in fotometrijo Izbirni predmet

Fakulteta za elektrotehniko Univerze v Ljubljani Laboratorij za razsvetljavo in fotometrijo Izbirni predmet Fakulteta za elektrotehniko Univerze v Ljubljani Laboratorij za razsvetljavo in fotometrijo Izbirni predmet - 10142 Svetlobna tehnika Svetloba in barve predavatelj prof. dr. Grega Bizjak, u.d.i.e. Svetloba

Διαβάστε περισσότερα

8. Diskretni LTI sistemi

8. Diskretni LTI sistemi 8. Diskreti LI sistemi. Naloga Določite odziv diskretega LI sistema s podaim odzivom a eoti impulz, a podai vhodi sigal. h[] x[] - - 5 6 7 - - 5 6 7 LI sistem se a vsak eoti impulz δ[] a vhodu odzove z

Διαβάστε περισσότερα

Zaporedja. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 15. oktober Gregor Dolinar Matematika 1

Zaporedja. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 15. oktober Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 15. oktober 2013 Oglejmo si, kako množimo dve kompleksni števili, dani v polarni obliki. Naj bo z 1 = r 1 (cosϕ 1 +isinϕ 1 )

Διαβάστε περισσότερα

11. Valovanje Valovanje. = λν λ [m] - Valovna dolžina. hitrost valovanja na napeti vrvi. frekvence lastnega nihanja strune

11. Valovanje Valovanje. = λν λ [m] - Valovna dolžina. hitrost valovanja na napeti vrvi. frekvence lastnega nihanja strune 11. Valovanje Frekvenca ν = 1 t 0 hitrost valovanja c = λ t 0 = λν λ [m] - Valovna dolžina hitrost valovanja na napeti vrvi frekvence lastnega nihanja strune interferenca valovanj iz dveh enako oddaljenih

Διαβάστε περισσότερα

Booleova algebra. Izjave in Booleove spremenljivke

Booleova algebra. Izjave in Booleove spremenljivke Izjave in Booleove spremenljivke vsako izjavo obravnavamo kot spremenljivko če je izjava resnična (pravilna), ima ta spremenljivka vrednost 1, če je neresnična (nepravilna), pa vrednost 0 pravimo, da gre

Διαβάστε περισσότερα

Energijska bilanca. E=E i +E p +E k +E lh. energija zaradi sproščanja latentne toplote. notranja energija potencialna energija. kinetična energija

Energijska bilanca. E=E i +E p +E k +E lh. energija zaradi sproščanja latentne toplote. notranja energija potencialna energija. kinetična energija Energijska bilanca E=E i +E p +E k +E lh notranja energija potencialna energija kinetična energija energija zaradi sproščanja latentne toplote Skupna energija klimatskega sistema (atmosfera, oceani, tla)

Διαβάστε περισσότερα

Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 12. november Gregor Dolinar Matematika 1

Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 12. november Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 12. november 2013 Graf funkcije f : D R, D R, je množica Γ(f) = {(x,f(x)) : x D} R R, torej podmnožica ravnine R 2. Grafi funkcij,

Διαβάστε περισσότερα

Energijska bilanca Zemlje. Osnove meteorologije november 2017

Energijska bilanca Zemlje. Osnove meteorologije november 2017 Energijska bilanca Zemlje Osnove meteorologije november 2017 Spekter elektromagnetnega sevanja Sevanje Osnovne spremenljivke za opis prenosa energije sevanjem: valovna dolžina - λ (m) frekvenca - ν (s

Διαβάστε περισσότερα

Univerza v Novi Gorici Fakulteta za znanosti o okolju Okolje (I. stopnja) Meteorologija 2013/2014. Energijska bilanca pregled

Univerza v Novi Gorici Fakulteta za znanosti o okolju Okolje (I. stopnja) Meteorologija 2013/2014. Energijska bilanca pregled Univerza v Novi Gorici Fakulteta za znanosti o okolu Okole (I. stopna) Meteorologia 013/014 Energiska bilanca pregled 1 Osnovni pomi energiski tok: P [W = J/s] gostota energiskega toka: [W/m ] toplota:q

Διαβάστε περισσότερα

IZPIT IZ ANALIZE II Maribor,

IZPIT IZ ANALIZE II Maribor, Maribor, 05. 02. 200. (a) Naj bo f : [0, 2] R odvedljiva funkcija z lastnostjo f() = f(2). Dokaži, da obstaja tak c (0, ), da je f (c) = 2f (2c). (b) Naj bo f(x) = 3x 3 4x 2 + 2x +. Poišči tak c (0, ),

Διαβάστε περισσότερα

ZAPISKI PREDAVANJ IZ PREDMETA RAZSVETLJAVA. Andrej Orgulan

ZAPISKI PREDAVANJ IZ PREDMETA RAZSVETLJAVA. Andrej Orgulan ZAPISKI PREDAVANJ IZ PREDMETA RAZSVETLJAVA Andrej Orgulan Zbrano gradivo je nastalo na osnovi predavanj pri predmetu Razsvetljava na visokošolskem strokovnem študiju na Fakulteti za elektrotehniko, računalništvo

Διαβάστε περισσότερα

Integralni račun. Nedoločeni integral in integracijske metrode. 1. Izračunaj naslednje nedoločene integrale: (a) dx. (b) x 3 +3+x 2 dx, (c) (d)

Integralni račun. Nedoločeni integral in integracijske metrode. 1. Izračunaj naslednje nedoločene integrale: (a) dx. (b) x 3 +3+x 2 dx, (c) (d) Integralni račun Nedoločeni integral in integracijske metrode. Izračunaj naslednje nedoločene integrale: d 3 +3+ 2 d, (f) (g) (h) (i) (j) (k) (l) + 3 4d, 3 +e +3d, 2 +4+4 d, 3 2 2 + 4 d, d, 6 2 +4 d, 2

Διαβάστε περισσότερα

Osnove elektrotehnike uvod

Osnove elektrotehnike uvod Osnove elektrotehnike uvod Uvod V nadaljevanju navedena vprašanja so prevod testnih vprašanj, ki sem jih našel na omenjeni spletni strani. Vprašanja zajemajo temeljna znanja opredeljenega strokovnega področja.

Διαβάστε περισσότερα

Fizikalne osnove svetlobe in fotometrija

Fizikalne osnove svetlobe in fotometrija Fakulteta za elektrotehniko Univerze v Ljubljani Laboratorij za razsvetljavo in fotometrijo 2. letnik Aplikativna elektrotehnika - 64627 Električne inštalacije in razsvetljava Fizikalne osnove svetlobe

Διαβάστε περισσότερα

Frekvenčna analiza neperiodičnih signalov. Analiza signalov prof. France Mihelič

Frekvenčna analiza neperiodičnih signalov. Analiza signalov prof. France Mihelič Frekvenčna analiza neperiodičnih signalov Analiza signalov prof. France Mihelič Vpliv postopka daljšanja periode na spekter periodičnega signala Opazujmo družino sodih periodičnih pravokotnih impulzov

Διαβάστε περισσότερα

SKUPNE PORAZDELITVE VEČ SLUČAJNIH SPREMENLJIVK

SKUPNE PORAZDELITVE VEČ SLUČAJNIH SPREMENLJIVK SKUPNE PORAZDELITVE SKUPNE PORAZDELITVE VEČ SLUČAJNIH SPREMENLJIVK Kovaec vržemo trikrat. Z ozačimo število grbov ri rvem metu ( ali ), z Y a skuo število grbov (,, ali 3). Kako sta sremelivki i Y odvisi

Διαβάστε περισσότερα

Kontrolne karte uporabljamo za sprotno spremljanje kakovosti izdelka, ki ga izdelujemo v proizvodnem procesu.

Kontrolne karte uporabljamo za sprotno spremljanje kakovosti izdelka, ki ga izdelujemo v proizvodnem procesu. Kontrolne karte KONTROLNE KARTE Kontrolne karte uporablamo za sprotno spremlane kakovosti izdelka, ki ga izdeluemo v proizvodnem procesu. Izvaamo stalno vzorčene izdelkov, npr. vsako uro, vsake 4 ure.

Διαβάστε περισσότερα

7 Lastnosti in merjenje svetlobe

7 Lastnosti in merjenje svetlobe 7 Lastnosti in merjenje svetlobe Pri tej vaji se bomo seznanili z valovno in delčno naravo svetlobe ter s pojmi spekter, uklon in interferenca. Spoznali bomo, kako se določi valovne dolžine in izmeri gostoto

Διαβάστε περισσότερα

Delovna točka in napajalna vezja bipolarnih tranzistorjev

Delovna točka in napajalna vezja bipolarnih tranzistorjev KOM L: - Komnikacijska elektronika Delovna točka in napajalna vezja bipolarnih tranzistorjev. Določite izraz za kolektorski tok in napetost napajalnega vezja z enim virom in napetostnim delilnikom na vhod.

Διαβάστε περισσότερα

Video tehnologija. Video tehnologija. Gradniki video sistemov. Seminarske naloge

Video tehnologija. Video tehnologija. Gradniki video sistemov. Seminarske naloge Video tehnologija Video tehnologija 1. Uvod elektronski zajem, shranjevanje, prenos in reprodukcija slik in gibljivih slik TV in prikazovalniki z osebnimi računalniki fizikalne osnove svetloba, barve,

Διαβάστε περισσότερα

1. Trikotniki hitrosti

1. Trikotniki hitrosti . Trikotniki hitrosti. Z radialno črpalko želimo črpati vodo pri pogojih okolice z nazivnim pretokom 0 m 3 /h. Notranji premer rotorja je 4 cm, zunanji premer 8 cm, širina rotorja pa je,5 cm. Frekvenca

Διαβάστε περισσότερα

p 1 ENTROPIJSKI ZAKON

p 1 ENTROPIJSKI ZAKON ENROPIJSKI ZAKON REERZIBILNA srememba: moža je obrjea srememba reko eakih vmesih staj kot rvota srememba. Po obeh sremembah e sme biti obeih trajih srememb v bližji i dalji okolici. IREERZIBILNA srememba:

Διαβάστε περισσότερα

1. Definicijsko območje, zaloga vrednosti. 2. Naraščanje in padanje, ekstremi. 3. Ukrivljenost. 4. Trend na robu definicijskega območja

1. Definicijsko območje, zaloga vrednosti. 2. Naraščanje in padanje, ekstremi. 3. Ukrivljenost. 4. Trend na robu definicijskega območja ZNAČILNOSTI FUNKCIJ ZNAČILNOSTI FUNKCIJE, KI SO RAZVIDNE IZ GRAFA. Deinicijsko območje, zaloga vrednosti. Naraščanje in padanje, ekstremi 3. Ukrivljenost 4. Trend na robu deinicijskega območja 5. Periodičnost

Διαβάστε περισσότερα

Na pregledni skici napišite/označite ustrezne točke in paraboli. A) 12 B) 8 C) 4 D) 4 E) 8 F) 12

Na pregledni skici napišite/označite ustrezne točke in paraboli. A) 12 B) 8 C) 4 D) 4 E) 8 F) 12 Predizpit, Proseminar A, 15.10.2015 1. Točki A(1, 2) in B(2, b) ležita na paraboli y = ax 2. Točka H leži na y osi in BH je pravokotna na y os. Točka C H leži na nosilki BH tako, da je HB = BC. Parabola

Διαβάστε περισσότερα

SPEKTRI ELEKTROMAGNETNEGA VALOVANJA

SPEKTRI ELEKTROMAGNETNEGA VALOVANJA SPEKTRI ELEKTROMAGNETNEGA VALOVANJA - Načini pridobivanja posameznih vrst spektrov - Izvori sevanja - Ločevanje valovanj z različnimi λ - Naprave za selekcijo el.mag.valovanja za različne λ. 1. Načini

Διαβάστε περισσότερα

13. Jacobijeva metoda za računanje singularnega razcepa

13. Jacobijeva metoda za računanje singularnega razcepa 13. Jacobijeva metoda za računanje singularnega razcepa Bor Plestenjak NLA 25. maj 2010 Bor Plestenjak (NLA) 13. Jacobijeva metoda za računanje singularnega razcepa 25. maj 2010 1 / 12 Enostranska Jacobijeva

Διαβάστε περισσότερα

Numerično reševanje. diferencialnih enačb II

Numerično reševanje. diferencialnih enačb II Numerčno reševanje dferencaln enačb I Dferencalne enačbe al ssteme dferencaln enačb rešujemo numerčno z več razlogov:. Ne znamo j rešt analtčno.. Posamezn del dferencalne enačbe podan tabelarčno. 3. Podatke

Διαβάστε περισσότερα

Vaje: Barve. 1. Fotoefekt. Barbara Rovšek, Ana Gostinčar Blagotinšek, Toma d Kranjc. Vse vaje izvajamo v zatemnjenem prostoru.

Vaje: Barve. 1. Fotoefekt. Barbara Rovšek, Ana Gostinčar Blagotinšek, Toma d Kranjc. Vse vaje izvajamo v zatemnjenem prostoru. Barbara Rovšek, Ana Gostinčar Blagotinšek, Toma d Kranjc Vaje: Barve Vse vaje izvajamo v zatemnjenem prostoru. 1. Fotoefekt Naloga: Ocenite energije fotonov rdeče, zelene in modre svetlobe. Za izvedbo

Διαβάστε περισσότερα

Kvantni delec na potencialnem skoku

Kvantni delec na potencialnem skoku Kvantni delec na potencialnem skoku Delec, ki se giblje premo enakomerno, pride na mejo, kjer potencial naraste s potenciala 0 na potencial. Takšno potencialno funkcijo zapišemo kot 0, 0 0,0. Slika 1:

Διαβάστε περισσότερα

Vaja: Odbojnostni senzor z optičnimi vlakni. Namen vaje

Vaja: Odbojnostni senzor z optičnimi vlakni. Namen vaje Namen vaje Spoznavanje osnovnih fiber-optičnih in optomehanskih komponent Spoznavanje načela delovanja in praktične uporabe odbojnostnega senzorja z optičnimi vlakni, Delo z merilnimi instrumenti (signal-generator,

Διαβάστε περισσότερα

Gradniki TK sistemov

Gradniki TK sistemov Gradniki TK sistemov renos signalov v višji rekvenčni legi Vsebina Modulacija in demodulacija Vrste analognih modulacij AM M FM rimerjava spektrov analognih moduliranih signalov Mešalniki Kdaj uporabimo

Διαβάστε περισσότερα

Državni izpitni center SPOMLADANSKI IZPITNI ROK *M * FIZIKA NAVODILA ZA OCENJEVANJE. Petek, 10. junij 2016 SPLOŠNA MATURA

Državni izpitni center SPOMLADANSKI IZPITNI ROK *M * FIZIKA NAVODILA ZA OCENJEVANJE. Petek, 10. junij 2016 SPLOŠNA MATURA Državni izpitni center *M16141113* SPOMLADANSKI IZPITNI ROK FIZIKA NAVODILA ZA OCENJEVANJE Petek, 1. junij 16 SPLOŠNA MATURA RIC 16 M161-411-3 M161-411-3 3 IZPITNA POLA 1 Naloga Odgovor Naloga Odgovor

Διαβάστε περισσότερα

NEPARAMETRIČNI TESTI. pregledovanje tabel hi-kvadrat test. as. dr. Nino RODE

NEPARAMETRIČNI TESTI. pregledovanje tabel hi-kvadrat test. as. dr. Nino RODE NEPARAMETRIČNI TESTI pregledovanje tabel hi-kvadrat test as. dr. Nino RODE Parametrični in neparametrični testi S pomočjo z-testa in t-testa preizkušamo domneve o parametrih na vzorcih izračunamo statistike,

Διαβάστε περισσότερα

Transformator. Delovanje transformatorja I. Delovanje transformatorja II

Transformator. Delovanje transformatorja I. Delovanje transformatorja II Transformator Transformator je naprava, ki v osnovi pretvarja napetost iz enega nivoja v drugega. Poznamo vrsto različnih izvedb transformatorjev, glede na njihovo specifičnost uporabe:. Energetski transformator.

Διαβάστε περισσότερα

Razsvetljava z umetno svetlobo

Razsvetljava z umetno svetlobo Fakulteta za kemijo in kemijsko tehnologijo Univerze v Ljubljani Oddelek za tehniško varnost 3. letnik Univerzitetni študij Elektrotehnika in varnost Razsvetljava Razsvetljava z umetno svetlobo predavatelj

Διαβάστε περισσότερα

7 Lastnosti in merjenje svetlobe

7 Lastnosti in merjenje svetlobe 7 Lastnosti in merjenje svetlobe Pri tej vaji se bomo seznanili z valovno in delčno naravo svetlobe ter s pojmi spekter, uklon in interferenca. Spoznali bomo, kako se določi valovne dolžine, katere valovne

Διαβάστε περισσότερα

1. vaja: Fotoefekt. Naloga: Ocenite energije fotonov rdeče, zelene in modre svetlobe!

1. vaja: Fotoefekt. Naloga: Ocenite energije fotonov rdeče, zelene in modre svetlobe! 1. vaja: Fotoefekt Naloga: Ocenite energije fotonov rdeče, zelene in modre svetlobe! Fotocelica, svetilka, ampermeter, voltmeter, izvir napetosti, rdeč, zelen in moder filter. Navodilo: Vstavite med svetilko

Διαβάστε περισσότερα

matrike A = [a ij ] m,n αa 11 αa 12 αa 1n αa 21 αa 22 αa 2n αa m1 αa m2 αa mn se števanje po komponentah (matriki morata biti enakih dimenzij):

matrike A = [a ij ] m,n αa 11 αa 12 αa 1n αa 21 αa 22 αa 2n αa m1 αa m2 αa mn se števanje po komponentah (matriki morata biti enakih dimenzij): 4 vaja iz Matematike 2 (VSŠ) avtorica: Melita Hajdinjak datum: Ljubljana, 2009 matrike Matrika dimenzije m n je pravokotna tabela m n števil, ki ima m vrstic in n stolpcev: a 11 a 12 a 1n a 21 a 22 a 2n

Διαβάστε περισσότερα

PRAKTIKUM RAZSVETLJAVA

PRAKTIKUM RAZSVETLJAVA Univerza v Ljubljani Fakulteta za elektrotehniko PRAKTKUM ZA PREDMET RAZSVETLJAVA Študent(ka): Študijsko leto poslušanja: 010/11 Datum pregleda vaj: Predlagana ocena vaj: Podpis ocenjevalca: Pripravila:

Διαβάστε περισσότερα

MATEMATIČNI IZRAZI V MAFIRA WIKIJU

MATEMATIČNI IZRAZI V MAFIRA WIKIJU I FAKULTETA ZA MATEMATIKO IN FIZIKO Jadranska cesta 19 1000 Ljubljan Ljubljana, 25. marec 2011 MATEMATIČNI IZRAZI V MAFIRA WIKIJU KOMUNICIRANJE V MATEMATIKI Darja Celcer II KAZALO: 1 VSTAVLJANJE MATEMATIČNIH

Διαβάστε περισσότερα

Tabele termodinamskih lastnosti vode in vodne pare

Tabele termodinamskih lastnosti vode in vodne pare Univerza v Ljubljani Fakulteta za strojništvo Laboratorij za termoenergetiko Tabele termodinamskih lastnosti vode in vodne pare po modelu IAPWS IF-97 izračunano z XSteam Excel v2.6 Magnus Holmgren, xsteam.sourceforge.net

Διαβάστε περισσότερα

Molekularna spektrometrija

Molekularna spektrometrija Molekularna spektrometrija Absorpcija Fluorescenca Pojavi v snovi (posledica interakcije EM valovanje- snov): Elektronski prehodi Vibracije Rotacije Spekter Izvor svetlobe prizma Spekter Material, ki deloma

Διαβάστε περισσότερα

*M * Osnovna in višja raven MATEMATIKA NAVODILA ZA OCENJEVANJE. Sobota, 4. junij 2011 SPOMLADANSKI IZPITNI ROK. Državni izpitni center

*M * Osnovna in višja raven MATEMATIKA NAVODILA ZA OCENJEVANJE. Sobota, 4. junij 2011 SPOMLADANSKI IZPITNI ROK. Državni izpitni center Državni izpitni center *M40* Osnovna in višja raven MATEMATIKA SPOMLADANSKI IZPITNI ROK NAVODILA ZA OCENJEVANJE Sobota, 4. junij 0 SPLOŠNA MATURA RIC 0 M-40-- IZPITNA POLA OSNOVNA IN VIŠJA RAVEN 0. Skupaj:

Διαβάστε περισσότερα

Fotometrija mersko vrednotenje svetlobe

Fotometrija mersko vrednotenje svetlobe Fotometrija mersko vrednotenje svetlobe Svetloba kot del EM spektra Pri fotometriji svetlobo obravnavamo kot del elektromagnetnega spektra, ki se nahaja med mikrovalovi in rentgenskimi žarki. Ima pa tudi

Διαβάστε περισσότερα

Fotometrija mersko vrednotenje svetlobe

Fotometrija mersko vrednotenje svetlobe EDC Kranj - višja strokovna šola Kumunala Javna razsvetljava Fotometrija mersko vrednotenje svetlobe 4. poglavje predavatelj doc. dr. Grega Bizjak, u.d.i.e. Javna razsvetljava: Fotometrija 2 Svetloba kot

Διαβάστε περισσότερα

Fotosinteza pri pouku naravoslovja: Trije preprosti poskusi

Fotosinteza pri pouku naravoslovja: Trije preprosti poskusi Barbara Vilhar Fotosinteza pri pouku naravoslovja: Trije preprosti poskusi delavnica Seminar za učitelje naravoslovja Rogaška Slatina, 19. februar 2006 Univerza v Ljubljani Biotehniška fakulteta Oddelek

Διαβάστε περισσότερα

Logatherm WPL 14 AR T A ++ A + A B C D E F G A B C D E F G. kw kw /2013

Logatherm WPL 14 AR T A ++ A + A B C D E F G A B C D E F G. kw kw /2013 WP 14 R T d 9 10 11 53 d 2015 811/2013 WP 14 R T 2015 811/2013 WP 14 R T Naslednji podatki o izdelku izpolnjujejo zahteve uredb U 811/2013, 812/2013, 813/2013 in 814/2013 o dopolnitvi smernice 2010/30/U.

Διαβάστε περισσότερα

KVANTNA FIZIKA. Svetloba valovanje ali delci?

KVANTNA FIZIKA. Svetloba valovanje ali delci? KVANTNA FIZIKA Proti koncu 19. stoletja je vrsta poskusov kazala še druga neskladja s predvidevanji klasične fizike, poleg tistih, ki so vodila k posebni teoriji relativnosti. Ti pojavi so povezani z obnašanjem

Διαβάστε περισσότερα

Gimnazija Krˇsko. vektorji - naloge

Gimnazija Krˇsko. vektorji - naloge Vektorji Naloge 1. V koordinatnem sistemu so podane točke A(3, 4), B(0, 2), C( 3, 2). a) Izračunaj dolžino krajevnega vektorja točke A. (2) b) Izračunaj kot med vektorjema r A in r C. (4) c) Izrazi vektor

Διαβάστε περισσότερα

Enačba, v kateri poleg neznane funkcije neodvisnih spremenljivk ter konstant nastopajo tudi njeni odvodi, se imenuje diferencialna enačba.

Enačba, v kateri poleg neznane funkcije neodvisnih spremenljivk ter konstant nastopajo tudi njeni odvodi, se imenuje diferencialna enačba. 1. Osnovni pojmi Enačba, v kateri poleg neznane funkcije neodvisnih spremenljivk ter konstant nastopajo tudi njeni odvodi, se imenuje diferencialna enačba. Primer 1.1: Diferencialne enačbe so izrazi: y

Διαβάστε περισσότερα

Gimnazija Ptuj. Mikroskop. Referat. Predmet: Fizika. Mentor: Prof. Viktor Vidovič. Datum: Avtor: Matic Prevolšek

Gimnazija Ptuj. Mikroskop. Referat. Predmet: Fizika. Mentor: Prof. Viktor Vidovič. Datum: Avtor: Matic Prevolšek Gimnazija Ptuj Mikroskop Referat Predmet: Fizika Mentor: Prof. Viktor Vidovič Datum: 14. 3. 2010 Avtor: Matic Prevolšek Kazalo Opis mikroskopa 3 Povečava mikroskopa 5 Zgradba mikroskopa Ločljivost mikroskopa

Διαβάστε περισσότερα

Osnove matematične analize 2016/17

Osnove matematične analize 2016/17 Osnove matematične analize 216/17 Neža Mramor Kosta Fakulteta za računalništvo in informatiko Univerza v Ljubljani Kaj je funkcija? Funkcija je predpis, ki vsakemu elementu x iz definicijskega območja

Διαβάστε περισσότερα

Vaje: Električni tokovi

Vaje: Električni tokovi Barbara Rovšek, Bojan Golli, Ana Gostinčar Blagotinšek Vaje: Električni tokovi 1 Merjenje toka in napetosti Naloga: Izmerite tok, ki teče skozi žarnico, ter napetost na žarnici Za izvedbo vaje potrebujete

Διαβάστε περισσότερα

Fotometrija. Področja svetlobe. Mimogrede

Fotometrija. Področja svetlobe. Mimogrede Fakulteta za elektrotehniko Univerze v Ljubljani Laboratorij za razsvetljavo in fotometrijo Izbirni predmet - 10142 Svetlobna tehnika Fotometrija predavatelj prof. dr. Grega Bizjak, u.d.i.e. Mimogrede

Διαβάστε περισσότερα

Fazni diagram binarne tekočine

Fazni diagram binarne tekočine Fazni diagram binarne tekočine Žiga Kos 5. junij 203 Binarno tekočino predstavljajo delci A in B. Ti se med seboj lahko mešajo v različnih razmerjih. V nalogi želimo izračunati fazni diagram take tekočine,

Διαβάστε περισσότερα

DISKRETNA FOURIERJEVA TRANSFORMACIJA

DISKRETNA FOURIERJEVA TRANSFORMACIJA 29.03.2004 Definicija DFT Outline DFT je linearna transformacija nekega vektorskega prostora dimenzije n nad obsegom K, ki ga označujemo z V K, pri čemer ima slednji lastnost, da vsebuje nek poseben element,

Διαβάστε περισσότερα

MERITVE LABORATORIJSKE VAJE. Študij. leto: 2011/2012 UNIVERZA V MARIBORU. Skupina: 9

MERITVE LABORATORIJSKE VAJE. Študij. leto: 2011/2012 UNIVERZA V MARIBORU. Skupina: 9 .cwww.grgor nik ol i c NVERZA V MARBOR FAKTETA ZA EEKTROTEHNKO, RAČNANŠTVO N NFORMATKO 2000 Maribor, Smtanova ul. 17 Študij. lto: 2011/2012 Skupina: 9 MERTVE ABORATORJSKE VAJE Vaja št.: 4.1 Določanj induktivnosti

Διαβάστε περισσότερα

Splošno o interpolaciji

Splošno o interpolaciji Splošno o interpolaciji J.Kozak Numerične metode II (FM) 2011-2012 1 / 18 O funkciji f poznamo ali hočemo uporabiti le posamezne podatke, na primer vrednosti r i = f (x i ) v danih točkah x i Izberemo

Διαβάστε περισσότερα

+105 C (plošče in trakovi +85 C) -50 C ( C)* * Za temperature pod C se posvetujte z našo tehnično službo. ϑ m *20 *40 +70

+105 C (plošče in trakovi +85 C) -50 C ( C)* * Za temperature pod C se posvetujte z našo tehnično službo. ϑ m *20 *40 +70 KAIFLEX ST Tehnični podatki Material Izjemno fleksibilna zaprtocelična izolacija, fleksibilna elastomerna pena (FEF) Opis Uporaba Temperaturno območje Toplotna prevodnost W/(m K ) pri različnih srednjih

Διαβάστε περισσότερα

PROCESIRANJE SIGNALOV

PROCESIRANJE SIGNALOV Rešive pisega izpia PROCESIRANJE SIGNALOV Daum: 7... aloga Kolikša je ampliuda reje harmoske kompoee arisaega periodičega sigala? f() - -3 - - 3 Rešiev: Časova fukcija a iervalu ( /,/) je lieara fukcija:

Διαβάστε περισσότερα

Fizikalne osnove svetlobe

Fizikalne osnove svetlobe Fakulteta za elektrotehniko Univerze v Ljubljani Laboratorij za razsvetljavo in fotometrijo Izbirni predmet - 10142 Svetlobna tehnika Fizikalne osnove svetlobe predavatelj prof. dr. Grega Bizjak, u.d.i.e.

Διαβάστε περισσότερα

Funkcije več spremenljivk

Funkcije več spremenljivk DODATEK C Funkcije več spremenljivk C.1. Osnovni pojmi Funkcija n spremenljivk je predpis: f : D f R, (x 1, x 2,..., x n ) u = f (x 1, x 2,..., x n ) kjer D f R n imenujemo definicijsko območje funkcije

Διαβάστε περισσότερα

Definicija. definiramo skalarni produkt. x i y i. in razdaljo. d(x, y) = x y = < x y, x y > = n (x i y i ) 2. i=1. i=1

Definicija. definiramo skalarni produkt. x i y i. in razdaljo. d(x, y) = x y = < x y, x y > = n (x i y i ) 2. i=1. i=1 Funkcije več realnih spremenljivk Osnovne definicije Limita in zveznost funkcije več spremenljivk Parcialni odvodi funkcije več spremenljivk Gradient in odvod funkcije več spremenljivk v dani smeri Parcialni

Διαβάστε περισσότερα

VALOVANJE UVOD POLARIZACIJA STOJEČE VALOVANJE ODBOJ, LOM IN UKLON INTERFERENCA

VALOVANJE UVOD POLARIZACIJA STOJEČE VALOVANJE ODBOJ, LOM IN UKLON INTERFERENCA VALOVANJE 10.1. UVOD 10.2. POLARIZACIJA 10.3. STOJEČE VALOVANJE 10.4. ODBOJ, LOM IN UKLON 10.5. INTERFERENCA 10.6. MATEMATIČNA OBDELAVA INTERFERENCE IN STOJEČEGA VALOVANJA 10.1. UVOD Valovanje je širjenje

Διαβάστε περισσότερα

Statistična analiza. doc. dr. Mitja Kos, mag. farm. Katedra za socialno farmacijo Univerza v Ljubljani- Fakulteta za farmacijo

Statistična analiza. doc. dr. Mitja Kos, mag. farm. Katedra za socialno farmacijo Univerza v Ljubljani- Fakulteta za farmacijo Statistična analiza opisnih spremenljivk doc. dr. Mitja Kos, mag. arm. Katedra za socialno armacijo Univerza v Ljubljani- Fakulteta za armacijo Statistični znaki Proučevane spremenljivke: statistični znaki

Διαβάστε περισσότερα

izr. prof. dr. Ciril Arkar, asis. dr. Tomaž Šuklje, asis mag. Suzana Domjan

izr. prof. dr. Ciril Arkar, asis. dr. Tomaž Šuklje, asis mag. Suzana Domjan Gradbena fizika 2016/2017 Predavanja: Vaje vodijo: prof. dr. Sašo Medved Univerza v Ljubljani, Fakulteta za strojništvo Aškerčeva 6; dvoriščna stavba DS N3 saso.medved@fs.uni-lj.si izr. prof. dr. Ciril

Διαβάστε περισσότερα

ZVOK UVOD HITROST ZVOKA V SNOVI JAKOST IN GLASNOST ZVOKA DOPPLERJEV POJAV MACHOV STOŽEC UVOD

ZVOK UVOD HITROST ZVOKA V SNOVI JAKOST IN GLASNOST ZVOKA DOPPLERJEV POJAV MACHOV STOŽEC UVOD ZVOK 11.1. UVOD 11.2. HITROST ZVOKA V SNOVI 11.3. JAKOST IN GLASNOST ZVOKA 11.4. DOPPLERJEV POJAV 11.5. MACHOV STOŽEC 11.1. UVOD Zvok je longitudinalno valovanje, ki ga človeško uho zaznava. Skozi prazen

Διαβάστε περισσότερα

FAKULTETA ZA STROJNIŠTVO Matematika 4 Pisni izpit 22. junij Navodila

FAKULTETA ZA STROJNIŠTVO Matematika 4 Pisni izpit 22. junij Navodila FAKULTETA ZA STROJNIŠTVO Matematika 4 Pisni izpit 22 junij 212 Ime in priimek: Vpisna št: Navodila Pazljivo preberite besedilo naloge, preden se lotite reševanja Veljale bodo samo rešitve na papirju, kjer

Διαβάστε περισσότερα

CO2 + H2O sladkor + O2

CO2 + H2O sladkor + O2 VAJA 5 FOTOSINTEZA CO2 + H2O sladkor + O2 Meritve fotosinteze CO 2 + H 2 O sladkor + O 2 Fiziologija rastlin laboratorijske vaje SVETLOBNE REAKCIJE (tilakoidna membrana) TEMOTNE REAKCIJE (stroma kloroplasta)

Διαβάστε περισσότερα

Svetlobni viri in svetilke

Svetlobni viri in svetilke Fakulteta za elektrotehniko Univerze v Ljubljani Laboratorij za razsvetljavo in fotometrijo 2. letnik Aplikativna elektrotehnika - 64627 Električne inštalacije in razsvetljava Svetlobni viri in svetilke

Διαβάστε περισσότερα

S53WW. Meritve anten. RIS 2005 Novo Mesto

S53WW. Meritve anten. RIS 2005 Novo Mesto S53WW Meritve anten RIS 2005 Novo Mesto 15.01.2005 Parametri, s katerimi opišemo anteno: Smernost (D, directivity) Dobitek (G, gain) izkoristek (η=g/d, efficiency) Smerni (sevalni) diagram (radiation pattern)

Διαβάστε περισσότερα

Matematika 1. Gabrijel Tomšič Bojan Orel Neža Mramor Kosta

Matematika 1. Gabrijel Tomšič Bojan Orel Neža Mramor Kosta Matematika Gabrijel Tomšič Bojan Orel Neža Mramor Kosta 6. november 200 Poglavje 2 Zaporedja in številske vrste 2. Zaporedja 2.. Uvod Definicija 2... Zaporedje (a n ) = a, a 2,..., a n,... je predpis,

Διαβάστε περισσότερα

SEMINARSKA NALOGA Funkciji sin(x) in cos(x)

SEMINARSKA NALOGA Funkciji sin(x) in cos(x) FAKULTETA ZA MATEMATIKO IN FIZIKO Praktična Matematika-VSŠ(BO) Komuniciranje v matematiki SEMINARSKA NALOGA Funkciji sin(x) in cos(x) Avtorica: Špela Marinčič Ljubljana, maj 2011 KAZALO: 1.Uvod...1 2.

Διαβάστε περισσότερα

50 odtenkov svetlobe

50 odtenkov svetlobe 50 odtenkov svetlobe Evgenija Burger, Katharina Pavlin, Tamara Pogačar, Mentor: Žiga Krajnik Povzetek Za vsakim dežjem posije sonce. Je pojav mavrice res tako preprost kot ta rek? Kakšna fizikalno-matematična

Διαβάστε περισσότερα

Funkcija je predpis, ki vsakemu elementu x iz definicijskega območja D R priredi neko število f (x) R.

Funkcija je predpis, ki vsakemu elementu x iz definicijskega območja D R priredi neko število f (x) R. II. FUNKCIJE 1. Osnovni pojmi 2. Sestavljanje funkcij 3. Pregled elementarnih funkcij 4. Zveznost Kaj je funkcija? Definicija Funkcija je predpis, ki vsakemu elementu x iz definicijskega območja D R priredi

Διαβάστε περισσότερα

Snov v električnem polju. Električno polje dipola (prvi način) Prvi način: r + d 2

Snov v električnem polju. Električno polje dipola (prvi način) Prvi način: r + d 2 Snov v lktričnm polju lktrično polj ipola (prvi način) P P - Prvi način: z r = r Δr r = r Δr Δr Δ r - r r r r r r Δr rδr =, = 4πε r r 4πε r r r r = r cos, r r r = r cos. r Vlja: = cos, r r r r r = cos,

Διαβάστε περισσότερα

vezani ekstremi funkcij

vezani ekstremi funkcij 11. vaja iz Matematike 2 (UNI) avtorica: Melita Hajdinjak datum: Ljubljana, 2009 ekstremi funkcij več spremenljivk nadaljevanje vezani ekstremi funkcij Dana je funkcija f(x, y). Zanimajo nas ekstremi nad

Διαβάστε περισσότερα

SONČNE CELICE. Primož Hudi. Mentor: doc. dr. Zlatko Bradač. V seminarju sem predstavil sestavo ter delovanje sončnih celic.

SONČNE CELICE. Primož Hudi. Mentor: doc. dr. Zlatko Bradač. V seminarju sem predstavil sestavo ter delovanje sončnih celic. SONČNE CELICE Primož Hudi V seminarju sem predstavil sestavo ter delovanje sončnih celic. Mentor: doc. dr. Zlatko Bradač Maribor, 2009 Kazalo 1 UVOD...3 2 SONČNE CELICE...4 2.1 SESTAVA SONČNE CELICE...4

Διαβάστε περισσότερα

Matematika 1. Gregor Dolinar. 2. januar Fakulteta za elektrotehniko Univerza v Ljubljani. Gregor Dolinar Matematika 1

Matematika 1. Gregor Dolinar. 2. januar Fakulteta za elektrotehniko Univerza v Ljubljani. Gregor Dolinar Matematika 1 Mtemtik 1 Gregor Dolinr Fkultet z elektrotehniko Univerz v Ljubljni 2. jnur 2014 Gregor Dolinr Mtemtik 1 Izrek (Izrek o povprečni vrednosti) Nj bo m ntnčn spodnj mej in M ntnčn zgornj mej integrbilne funkcije

Διαβάστε περισσότερα

1. Έντυπα αιτήσεων αποζημίωσης... 2 1.1. Αξίωση αποζημίωσης... 2 1.1.1. Έντυπο... 2 1.1.2. Πίνακας μεταφράσεων των όρων του εντύπου...

1. Έντυπα αιτήσεων αποζημίωσης... 2 1.1. Αξίωση αποζημίωσης... 2 1.1.1. Έντυπο... 2 1.1.2. Πίνακας μεταφράσεων των όρων του εντύπου... ΑΠΟΖΗΜΙΩΣΗ ΘΥΜΑΤΩΝ ΕΓΚΛΗΜΑΤΙΚΩΝ ΠΡΑΞΕΩΝ ΣΛΟΒΕΝΙΑ 1. Έντυπα αιτήσεων αποζημίωσης... 2 1.1. Αξίωση αποζημίωσης... 2 1.1.1. Έντυπο... 2 1.1.2. Πίνακας μεταφράσεων των όρων του εντύπου... 3 1 1. Έντυπα αιτήσεων

Διαβάστε περισσότερα

Univerza v Ljubljani Fakulteta za računalništvo in informatiko MATEMATIKA. Polona Oblak

Univerza v Ljubljani Fakulteta za računalništvo in informatiko MATEMATIKA. Polona Oblak Univerza v Ljubljani Fakulteta za računalništvo in informatiko MATEMATIKA Polona Oblak Ljubljana, 04 CIP - Kataložni zapis o publikaciji Narodna in univerzitetna knjižnica, Ljubljana 5(075.8)(0.034.) OBLAK,

Διαβάστε περισσότερα

1 Fibonaccijeva stevila

1 Fibonaccijeva stevila 1 Fibonaccijeva stevila Fibonaccijevo število F n, kjer je n N, lahko definiramo kot število načinov zapisa števila n kot vsoto sumandov, enakih 1 ali Na primer, število 4 lahko zapišemo v obliki naslednjih

Διαβάστε περισσότερα

Vaje iz MATEMATIKE 8. Odvod funkcije., pravimo, da je funkcija f odvedljiva v točki x 0 z odvodom. f (x f(x 0 + h) f(x 0 ) 0 ) := lim

Vaje iz MATEMATIKE 8. Odvod funkcije., pravimo, da je funkcija f odvedljiva v točki x 0 z odvodom. f (x f(x 0 + h) f(x 0 ) 0 ) := lim Študij AHITEKTURE IN URBANIZMA, šol l 06/7 Vaje iz MATEMATIKE 8 Odvod funkcije f( Definicija: Naj bo f definirana na neki okolici točke 0 Če obstaja lim 0 +h f( 0 h 0 h, pravimo, da je funkcija f odvedljiva

Διαβάστε περισσότερα

ŠOLSKI CENTER ZA POŠTO, EKONOMIJO IN TELEKOMUNIKACIJE Celjska 16, 1000 Ljubljana SEMINARSKA NALOGA. ANTENE za začetnike. (kako se odločiti za anteno)

ŠOLSKI CENTER ZA POŠTO, EKONOMIJO IN TELEKOMUNIKACIJE Celjska 16, 1000 Ljubljana SEMINARSKA NALOGA. ANTENE za začetnike. (kako se odločiti za anteno) ŠOLSKI CENTER ZA POŠTO, EKONOMIJO IN TELEKOMUNIKACIJE Celjska 16, 1000 Ljubljana SEMINARSKA NALOGA ANTENE za začetnike (kako se odločiti za anteno) Mentor: univ. dipl. Inž. el. Stanko PERPAR Avtor: Peter

Διαβάστε περισσότερα