Grupa za nelinearnu i atomsku optiku

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Grupa za nelinearnu i atomsku optiku"

Transcript

1 Grupa za nelinearnu i atomsku optiku Hrvoje Buljan!"#"$%"&'()*+%&-.!&/0+$""34+&& hbuljan@phy.hr

2 Vanjski suradnik u HR: Doc. dr. sc. Robert Pezer Metalurški fakultet Sisak Suradnici Dipl. inž. fiz. Marinko Jablan znanstveni novak tema: Plazmonika u infracrvenom području u grafenu Dipl. inž. fiz. Dario Jukić znanstveni novak tema: Vremenski ovisna dinamika međudjelujućih D kvantnih atomskih plinova Vanjski suradnici izvan HR: Prof. Marin Soljačić MIT Boston USA Suradnja s eksperimentalcima: Prof. Moti Segev Technion Haifa Israel

3 Pregled aktivnosti. Nelinearna optika: 00-danas >0 radova u znanstvenim časopisima citata ( ~0 konferencijskih radova pozvana predavanja... Propagacija djelomično koherentne svjetlosti u nelinearnim fotoničkim sustavima; Solitoni modulacijska nestabilnost.... Međudjelujući kvantni atomski plinovi: -većina radova radova u znanstvenim časopisima ~70 citata ~5 pozvanih predavanja... Egzaktna rješenja vremenski ovisnih međudjelujućih atomskih plinova analogija s optičkim sustavima 3. Plazmonska pobuđenja u grafenu: -novo istraživanje Vremena relaksacije plazmonskih pobuđenja elektron-fonon vezanje...

4 Nelinearna optika

5 x Nelinearna optika Propagacija djelomično koherentne svjetlosti u nelinearnim fotoničkim sustavima; Solitoni modulacijska nestabilnost... Nekoherentan snop svjetlosti žarulja sunce... x x Fotonička struktira: linearna / nelinearna z Stanje sustava (intenzitet snopa i statistika na danom presjeku z) * x z)! E(xzt)E (x zt) " * B(xx z) dm" m(x m B(x! m! z)" (x z) Jednadžba gibanja: + B i # + z * + B ( $ k ) + x + B ' % + x # & k n 0 {V(x z) $ V(x z)}b! 0 V(xz)! V (xz)# #$%&'()()*)] 0

6 Teorijsko predviđanje: Nekoherentan soliton u nelinearnoj fotoničkoj rešetki samofokusiranje u ravnoteži s normalnom difrakcijom Normalna difrakcija Anomalna difrakcija Propagation constants Fourier power spectrum Intensity profile k 0 k x π/d k - 0 Floquet-Bloch power spectrum Diffraction H. Buljan et al. PRL (004). k x π/d x/d

7 . laser Eksperiment: Spatially incoherent (probe) beam spatial filter: rotating diffuser control of power spectrum 3.a Direct space imaging: intensity structure. 3.b Fourier space imaging: power spectrum N.K. Efremidis et al. PRE (00); J.W. Fleischer et al. Nature (003). magnification

8 Nekoherentan ulazni snop (x-prostor) Eksperiment: Nekoherentan soliton u nelinearnoj fotoničkoj rešetki Nekoherentan ulazni snop (k-prostor) Solitoni(x-prostor) D =.5 microns Proširena Brillouin zone schema Koherentan snop (k-prostor) Soliton(k-prostor) Difrakcija (mali intenzitet) st zone O. Cohen G. Bartal H. Buljan T. Carmon J.W. Fleischer M. Segev and D.N. Christodoulides Nature (London) (005).

9 Međudjelujući kvantni atomski plinovi

10 Međudjelujući kvantni atomski plinovi Revijalni rad: Bloch Dalibard Zwerger Rev. Mod. Phys Motivacija: Analogija s nekoherentnom svjetlošću H. Buljan et al. Phys. Rev. Lett. (005). Neravnotežna dinamika eksperimentalno dostupna + egzaktna rješenja - T. Kinoshita T. Wenger and D.S. Weiss Nature (006). X-prostor gustoća Dinamika raspodjele impulsa

11 Međudjelujući kvantni atomski plinovi Lieb-Liniger (LL) & Tonks Girardeau (TG) model D međudjelujući Bozonski plin: Opis: Schrödingerova jednadžba x + " i B ( x xn t) + t! $ N " i! + " + x i B # N " i! V (x )" 0 i B # " ij- c. ( x $ x )" i j B Pioniri (rješenja bez vanjskog potencijala): - Lieb & Liniger Phys. Rev (963); Lieb Phys. Rev (963). - M. Gaudin La Fonction de l'onde de Bethe (983). Beskonačno jake odbojne sile: c 0 / M. Girardeau J. Math. Phys. 56 (960); M. Girardeau and E.M. Wright PRL (000).

12 Braggove refleksije jako-koreliranog višečestičnog valnog paketa k B B! -. R. Pezer & H. Buljan Phys. Rev. Lett. (007) Evolucija za N=5 bozona k-prostor D Evolucija u x-prostoru (periodički r.u.) initial x-density t=0 No signature k B! -.

13 Slobodna ekspanzija međudjelujućeg Lieb-Liniger plina 0 0 ˆ 0) ( ˆ 0) ( F c N F c N B B O x x O x x 3 Početno stanje: :! k b x x FT k N F F ~ 0 0 Projekcije početnog stanja na slobodna LL eigenstanja t x t i c i t t j j N j j N F j i i j i j N N! ; ; < = > A % & ' ( ) * $ # $ 3 " B! $ / C C C C C C C C C C ; 4 )exp ( ~ ) ( ) sgn( ) ( Asimptotsko stanje imatonks-girardeau oblik: Zero when i C j C!

14 Primjer: Tri LL bozona ekspandiraju iz Osnovnog stanja u kutiji OFF u t=0 c=0. Initial state; t=0 Asymptotic state; t=infinity c= 0 L = π Slobodna ekspanzija (metode valne funkcije gustoće prorodne orbitale primjeri...) opisana u: Buljan Pezer Gasenzer Phys. Rev. Lett (008). Jukić Pezer Gasenzer Buljan Phys. Rev. A (008). Jukić Klajn Buljan Phys. Rev. A (009). c= Lijeva kolona: B ( 3 L / x x 0) Desna kolona: / ( 3 0 x x 0)

15 Plazmonska pobuđenja u grafenu

16 Plazmonska pobuđenja u metalima Površinski plazmoni TM modovi na granici metala i dielektrika Kolektivna pobuđenja Transverzalno lokalizirana IEIIHI x H y E x Ez Plasmonska disperzija q sp D! c E re ( D) E # E ( D) r y z Potrebno: ReE ( D) $ E r Zato koristimo metale Jaka apsorpcija problem za praktično korištenje površinskih plazmona u metalima

17 Elektronske vrpce Dirakovi konusi Gušenja plazmonskih pobuđenja kroz stvaranja e-šupljina parova Plazmonska relacija drukčija za grafen u odnosu na metale (a) (b) (c) (d) IEIIHI x H y E x E z Dq Dq y z E F! ev

18 Gušenje stvaranje e-šupljina parova Jako dopiranje ih može zaustaviti za danu frekvenciju Kod dopiranja pomiče se fermijev nivo E F! 0. 83eV 6 3 $ n! 5F0 cm 7 Gušenja plazmona Lokalizacija polja Grupna brzina (a) (b) (c)

19 Utjecaj fonona na gušenja Stvaranje e-šupljina para uz emisiju jednog fonona Električna AC vodljivost Relaksacijsko vrijeme (a) (b)

20 Utjecaj fonona na gušenja Stvaranje e-šupljina para uz emisiju jednog fonona Proces drugog reda Gušenja plazmona Lokalizacija polja Grupna brzina (a) (b) (c)

21 Sažetak aktivnosti. Nelinearna optika Propagacija djelomično koherentne svjetlosti u nelinearnim fotoničkim sustavima; Solitoni modulacijska nestabilnost.... Međudjelujući kvantni atomski plinovi: Egzaktna rješenja vremenski ovisnih međudjelujućih atomskih plinova analogija s optičkim sustavima 3. Plazmonska pobuđenja u grafenu: Vremena relaksacije plazmonskih pobuđenja elektron-fonon vezanje...

Eliminacijski zadatak iz Matematike 1 za kemičare

Eliminacijski zadatak iz Matematike 1 za kemičare Za mnoge reakcije vrijedi Arrheniusova jednadžba, koja opisuje vezu koeficijenta brzine reakcije i temperature: K = Ae Ea/(RT ). - T termodinamička temperatura (u K), - R = 8, 3145 J K 1 mol 1 opća plinska

Διαβάστε περισσότερα

Opća bilanca tvari - = akumulacija u dif. vremenu u dif. volumenu promatranog sustava. masa unijeta u dif. vremenu u dif. volumen promatranog sustava

Opća bilanca tvari - = akumulacija u dif. vremenu u dif. volumenu promatranog sustava. masa unijeta u dif. vremenu u dif. volumen promatranog sustava Opća bilana tvari masa unijeta u dif. vremenu u dif. volumen promatranog sustava masa iznijeta u dif. vremenu iz dif. volumena promatranog sustava - akumulaija u dif. vremenu u dif. volumenu promatranog

Διαβάστε περισσότερα

#6 Istosmjerne struje

#6 Istosmjerne struje #6 Istosmjerne struje I Jednadžbe za istosmjerne struje II Gibbsov potencijal u vodičima predavanja 20** Drudeov model za vodljive elektrone Jouleov zakon Makroskopske jednadžbe za istosmjerne struje Gibbsov

Διαβάστε περισσότερα

Wilson ratio: universal nature of quantum fluids

Wilson ratio: universal nature of quantum fluids Wilson ratio: universal nature of quantum fluids Xi-Wen Guan key collaborators: Yi-Cong Yu, Yang-Yang Chen, Hai-Qing Lin Washington University, April 205 Giamarchi, Quantum Physics in one dimension,

Διαβάστε περισσότερα

Trigonometrija 2. Adicijske formule. Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto

Trigonometrija 2. Adicijske formule. Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto Trigonometrija Adicijske formule Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto Razumijevanje postupka izrade složenijeg matematičkog problema iz osnova trigonometrije

Διαβάστε περισσότερα

Magnetizam i fotoefekt u visokotemperaturnim supravodičima

Magnetizam i fotoefekt u visokotemperaturnim supravodičima Magnetizam i fotoefekt u visokotemperaturnim supravodičima Osnovni podaci: Kompleksni metalni oksidi keramike; Perovskiti kisikove piramide ili oktaedri. Karakteristične ravnine bakrenog oksida; Izolatori

Διαβάστε περισσότερα

BIPOLARNI TRANZISTOR Auditorne vježbe

BIPOLARNI TRANZISTOR Auditorne vježbe BPOLARN TRANZSTOR Auditorne vježbe Struje normalno polariziranog bipolarnog pnp tranzistora: p n p p - p n B0 struja emitera + n B + - + - U B B U B struja kolektora p + B0 struja baze B n + R - B0 gdje

Διαβάστε περισσότερα

Elektron u periodičnom potencijalu

Elektron u periodičnom potencijalu Elektron u periodičnom potencijalu U Sommerfeldovom modelu elektroni se gibaju u potencijalnoj jami s ravnim dnom (kutija). Periodični potencijala od pravilne kristalne strukture pozitivnih iona se zanemaruje.

Διαβάστε περισσότερα

4. poglavlje (korigirano) LIMESI FUNKCIJA

4. poglavlje (korigirano) LIMESI FUNKCIJA . Limesi funkcija (sa svim korekcijama) 69. poglavlje (korigirano) LIMESI FUNKCIJA U ovom poglavlju: Neodređeni oblik Neodređeni oblik Neodređeni oblik Kose asimptote Neka je a konačan realan broj ili

Διαβάστε περισσότερα

Nανοσωλήνες άνθρακα. Ηλεκτρονική δομή ηλεκτρικές ιδιότητες. Εφαρμογές στα ηλεκτρονικά

Nανοσωλήνες άνθρακα. Ηλεκτρονική δομή ηλεκτρικές ιδιότητες. Εφαρμογές στα ηλεκτρονικά Nανοσωλήνες άνθρακα Ηλεκτρονική δομή ηλεκτρικές ιδιότητες Εφαρμογές στα ηλεκτρονικά Νανοσωλήνες άνθρακα ιστορική αναδρομή Από το γραφίτη στους Νανοσωλήνες άνθρακα Στο γραφίτη τα άτομα C συνδέονται ισχυρά

Διαβάστε περισσότερα

J. of Math. (PRC) 6 n (nt ) + n V = 0, (1.1) n t + div. div(n T ) = n τ (T L(x) T ), (1.2) n)xx (nt ) x + nv x = J 0, (1.4) n. 6 n

J. of Math. (PRC) 6 n (nt ) + n V = 0, (1.1) n t + div. div(n T ) = n τ (T L(x) T ), (1.2) n)xx (nt ) x + nv x = J 0, (1.4) n. 6 n Vol. 35 ( 215 ) No. 5 J. of Math. (PRC) a, b, a ( a. ; b., 4515) :., [3]. : ; ; MR(21) : 35Q4 : O175. : A : 255-7797(215)5-15-7 1 [1] : [ ( ) ] ε 2 n n t + div 6 n (nt ) + n V =, (1.1) n div(n T ) = n

Διαβάστε περισσότερα

Alarmni sustavi 07/08 predavanja 12. i 13. Detekcija metala, izvori napajanja u sustavima TZ

Alarmni sustavi 07/08 predavanja 12. i 13. Detekcija metala, izvori napajanja u sustavima TZ Alarmni sustavi 07/08 predavanja 12. i 13. Detekcija metala, izvori napajanja u sustavima TZ pred.mr.sc Ivica Kuric Detekcija metala instrument koji detektira promjene u magnetskom polju generirane prisutnošću

Διαβάστε περισσότερα

konst. Električni otpor

konst. Električni otpor Sveučilište J. J. Strossmayera u sijeku Elektrotehnički fakultet sijek Stručni studij Električni otpor hmov zakon Pri protjecanju struje kroz vodič pojavljuje se otpor. Georg Simon hm je ustanovio ovisnost

Διαβάστε περισσότερα

Metal u oscilirajućem električnom polju

Metal u oscilirajućem električnom polju Metal u oscilirajućem električnom polju Raspršivanje elektrona na preprekama može se tretirati kao vrst sile trenja. Jednadžba gibanja elektrona: m u = e F 0 e iωt }{{} sila el. polja γ }{{ m u }, trenje

Διαβάστε περισσότερα

POBUĐENJA JEZGRE I RASPADI

POBUĐENJA JEZGRE I RASPADI POBUĐENJA JEZGRE I RASPADI Radioaktivni raspadi iz osnovnog ili pobuđenih stanja jezgre γ-raspad : elektromagnetska interakcija. Početno i konačno stanje pripadaju istoj Jezgri. Elektromagnetski prijelazi

Διαβάστε περισσότερα

Operacije s matricama

Operacije s matricama Linearna algebra I Operacije s matricama Korolar 3.1.5. Množenje matrica u vektorskom prostoru M n (F) ima sljedeća svojstva: (1) A(B + C) = AB + AC, A, B, C M n (F); (2) (A + B)C = AC + BC, A, B, C M

Διαβάστε περισσότερα

Parts Manual. Trio Mobile Surgery Platform. Model 1033

Parts Manual. Trio Mobile Surgery Platform. Model 1033 Trio Mobile Surgery Platform Model 1033 Parts Manual For parts or technical assistance: Pour pièces de service ou assistance technique : Für Teile oder technische Unterstützung Anruf: Voor delen of technische

Διαβάστε περισσότερα

Supporting Information

Supporting Information Supporting Information Aluminum Complexes of N 2 O 2 3 Formazanate Ligands Supported by Phosphine Oxide Donors Ryan R. Maar, Amir Rabiee Kenaree, Ruizhong Zhang, Yichen Tao, Benjamin D. Katzman, Viktor

Διαβάστε περισσότερα

Primjer: Mogu li molekule zraka napustiti Zemlju

Primjer: Mogu li molekule zraka napustiti Zemlju Primjer: Mogu li molekule zraka napustiti Zemlju Da bi neko tijelo moglo napustiti površinu Zemaljske kugle potrebno je da mu je ukupna energija (kinetička+potencijalna) veća od nule. Kako je na površini

Διαβάστε περισσότερα

ZBIRKA POTPUNO RIJEŠENIH ZADATAKA

ZBIRKA POTPUNO RIJEŠENIH ZADATAKA **** IVANA SRAGA **** 1992.-2011. ZBIRKA POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE POTPUNO RIJEŠENI ZADACI PO ŽUTOJ ZBIRCI INTERNA SKRIPTA CENTRA ZA PODUKU α M.I.M.-Sraga - 1992.-2011.

Διαβάστε περισσότερα

PRIMJER 3. MATLAB filtdemo

PRIMJER 3. MATLAB filtdemo PRIMJER 3. MATLAB filtdemo Prijenosna funkcija (IIR) Hz () =, 6 +, 3 z +, 78 z +, 3 z +, 53 z +, 3 z +, 78 z +, 3 z +, 6 z, 95 z +, 74 z +, z +, 9 z +, 4 z +, 5 z +, 3 z +, 4 z 3 4 5 6 7 8 3 4 5 6 7 8

Διαβάστε περισσότερα

Zadatak 4b- Dimenzionisanje rožnjače

Zadatak 4b- Dimenzionisanje rožnjače Zadatak 4b- Dimenzionisanje rožnjače Rožnjača je statičkog sistema kontinualnog nosača raspona L= 5x6,0m. Usvaja se hladnooblikovani šuplji profil pravougaonog poprečnog preseka. Raster rožnjača: λ r 2.5m

Διαβάστε περισσότερα

1. Duljinska (normalna) deformacija ε. 2. Kutna (posmina) deformacija γ. 3. Obujamska deformacija Θ

1. Duljinska (normalna) deformacija ε. 2. Kutna (posmina) deformacija γ. 3. Obujamska deformacija Θ Deformaije . Duljinska (normalna) deformaija. Kutna (posmina) deformaija γ 3. Obujamska deformaija Θ 3 Tenor deformaija tenor drugog reda ij γ γ γ γ γ γ 3 9 podataka+mjerna jedinia 4 Simetrinost tenora

Διαβάστε περισσότερα

ΔΗΜΟΤΙΚΕΣ ΕΚΛΟΓΕΣ 18/5/2014 ΑΚΥΡΑ

ΔΗΜΟΤΙΚΕΣ ΕΚΛΟΓΕΣ 18/5/2014 ΑΚΥΡΑ ΔΗΜΟΤΙΚΕΣ ΕΚΛΟΓΕΣ 18/5/2014 ΑΚΥΡΑ ΑΔΑΜΗΣ Δ.Κ. / Τ.Κ. E.T. ΕΓΓ/ΝΟΙ ΨΗΦΙΣΑΝ ΕΓΚΥΡΑ ΓΙΟΒΑΣ ΙΩΑΝΝΗΣ ΛΕΥΚΑ ΠΑΝΑΓΙΩΤΗΣ ΜΑΝΤΑΣ ΠΑΝΑΓΙΩΤΗΣ ΔΑΛΙΑΝΗΣ ΓΕΩΡΓΙΟΣ ΑΣΤΡΟΣ 5 2.728 1.860 36 1.825 69 3,8% 152 8,3% 739 40,5%

Διαβάστε περισσότερα

INTELIGENTNO UPRAVLJANJE

INTELIGENTNO UPRAVLJANJE INTELIGENTNO UPRAVLJANJE Fuzzy sistemi zaključivanja Vanr.prof. Dr. Lejla Banjanović-Mehmedović Mehmedović 1 Osnovni elementi fuzzy sistema zaključivanja Fazifikacija Baza znanja Baze podataka Baze pravila

Διαβάστε περισσότερα

( , treći kolokvij) 3. Na dite lokalne ekstreme funkcije z = x 4 + y 4 2x 2 + 2y 2 3. (20 bodova)

( , treći kolokvij) 3. Na dite lokalne ekstreme funkcije z = x 4 + y 4 2x 2 + 2y 2 3. (20 bodova) A MATEMATIKA (.6.., treći kolokvij. Zadana je funkcija z = e + + sin(. Izračunajte a z (,, b z (,, c z.. Za funkciju z = 3 + na dite a diferencijal dz, b dz u točki T(, za priraste d =. i d =.. c Za koliko

Διαβάστε περισσότερα

Diskretna 3D fotonička rešetka u sustavu 2D vezanih valovoda. Mihovil Bosnar Mentor: Prof. dr. sc. Hrvoje Buljan

Diskretna 3D fotonička rešetka u sustavu 2D vezanih valovoda. Mihovil Bosnar Mentor: Prof. dr. sc. Hrvoje Buljan Diskretna 3D fotonička rešetka u sustavu 2D vezanih valovoda Mihovil Bosnar Mentor: Prof. dr. sc. Hrvoje Buljan Problem Promatra se sustav slabo vezanih valovoda translacijski invarijantan u smjeru z te

Διαβάστε περισσότερα

FAKULTET PROMETNIH ZNANOSTI

FAKULTET PROMETNIH ZNANOSTI SVUČILIŠT U ZAGU FAKULTT POMTNIH ZNANOSTI predmet: Nastavnik: Prof. dr. sc. Zvonko Kavran zvonko.kavran@fpz.hr * Autorizirana predavanja 2016. 1 Pojačala - Pojačavaju ulazni signal - Zahtjev linearnost

Διαβάστε περισσότερα

Matematika 1 - vježbe. 11. prosinca 2015.

Matematika 1 - vježbe. 11. prosinca 2015. Matematika - vježbe. prosinca 5. Stupnjevi i radijani Ako je kut φ jednak i rad, tada je veza između i 6 = Zadatak.. Izrazite u stupnjevima: a) 5 b) 7 9 c). d) 7. a) 5 9 b) 7 6 6 = = 5 c). 6 8.5 d) 7.

Διαβάστε περισσότερα

Kaskadna kompenzacija SAU

Kaskadna kompenzacija SAU Kaskadna kompenzacija SAU U inženjerskoj praksi, naročito u sistemima regulacije elektromotornih pogona i tehnoloških procesa, veoma često se primenjuje metoda kaskadne kompenzacije, u čijoj osnovi su

Διαβάστε περισσότερα

1.1.1 Harmonički oscilator (slobodni, bez prisile, bez gušenja; horizontalan)

1.1.1 Harmonički oscilator (slobodni, bez prisile, bez gušenja; horizontalan) . Jednostavno harmonijsko titranje Pri valnim fenomenima elementi vala izvode titranja. Stoga ćemo u početku razmotriti razne oblike titranja i njihova svojstva. Ako s ψ t) označimo opći pomak od ravnoteže,

Διαβάστε περισσότερα

Reverzibilni procesi

Reverzibilni procesi Reverzbln proces Reverzbln proces: proces pr koja sste nkada nje vše od beskonačno ale vrednost udaljen od ravnoteže, beskonačno ala proena spoljašnjh uslova ože vratt sste u blo koju tačku, proena ože

Διαβάστε περισσότερα

BETONSKE KONSTRUKCIJE 3 M 1/r dijagrami

BETONSKE KONSTRUKCIJE 3 M 1/r dijagrami BETONSKE KONSTRUKCIJE 3 M 1/r dijagrami Izv. prof. dr.. Tomilav Kišiček dipl. ing. građ. 0.10.014. Betonke kontrukije III 1 NBK1.147 Slika 5.4 Proračunki dijagrami betona razreda od C1/15 do C90/105, lijevo:

Διαβάστε περισσότερα

Pismeni ispit iz matematike Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: ( ) + 1.

Pismeni ispit iz matematike Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: ( ) + 1. Pismeni ispit iz matematike 0 008 GRUPA A Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: λ + z = Ispitati funkciju i nacrtati njen grafik: + ( λ ) + z = e Izračunati

Διαβάστε περισσότερα

Το άτομο του Υδρογόνου

Το άτομο του Υδρογόνου Το άτομο του Υδρογόνου Δυναμικό Coulomb Εξίσωση Schrödinger h e (, r, ) (, r, ) E (, r, ) m ψ θφ r ψ θφ = ψ θφ Συνθήκες ψ(, r θφ, ) = πεπερασμένη ψ( r ) = 0 ψ(, r θφ, ) =ψ(, r θφ+, ) π Επιτρεπτές ενέργειες

Διαβάστε περισσότερα

Gauss, Stokes, Maxwell. Vektorski identiteti ( ),

Gauss, Stokes, Maxwell. Vektorski identiteti ( ), Vektorski identiteti ( ), Gauss, Stokes, Maxwell Saša Ilijić 21. listopada 2009. Saša Ilijić, predavanja FER/F2: Vektorski identiteti, nabla, Gauss, Stokes, Maxwell... (21. listopada 2009.) Skalarni i

Διαβάστε περισσότερα

m i N 1 F i = j i F ij + F x

m i N 1 F i = j i F ij + F x N m i i = 1,..., N m i Fi x N 1 F ij, j = 1, 2,... i 1, i + 1,..., N m i F i = j i F ij + F x i mi Fi j Fj i mj O P i = F i = j i F ij + F x i, i = 1,..., N P = i F i = N F ij + i j i N i F x i, i = 1,...,

Διαβάστε περισσότερα

Pismeni ispit iz matematike GRUPA A 1. Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj, zatim naći 4 z.

Pismeni ispit iz matematike GRUPA A 1. Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj, zatim naći 4 z. Pismeni ispit iz matematike 06 007 Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj z = + i, zatim naći z Ispitati funkciju i nacrtati grafik : = ( ) y e + 6 Izračunati integral:

Διαβάστε περισσότερα

Numerička matematika 2. kolokvij (1. srpnja 2009.)

Numerička matematika 2. kolokvij (1. srpnja 2009.) Numerička matematika 2. kolokvij (1. srpnja 29.) Zadatak 1 (1 bodova.) Teorijsko pitanje. (A) Neka je G R m n, uz m n, pravokutna matrica koja ima puni rang po stupcima, tj. rang(g) = n. (a) Napišite puni

Διαβάστε περισσότερα

HMY 799 1: Αναγνώριση Συστημάτων

HMY 799 1: Αναγνώριση Συστημάτων HMY 799 : Αναγνώριση Συστημάτων Διάλεξη 5 Εκτίμηση φάσματος ισχύος Συνάφεια Παραδείγματα Στοχαστικά Διανύσματα Autoregressive model with exogenous inputs (ARX y( t + a y( t +... + a y( t n = bu( t +...

Διαβάστε περισσότερα

Fizikalni sustavi i njihovo modeliranje - 2. dio

Fizikalni sustavi i njihovo modeliranje - 2. dio Fizikalni sustavi i njihovo modeliranje - 2. dio «Napredna kvantna fizika» Ivo Batistić Fizički odsjek, PMF Sveučilište u Zagrebu predavanja 2010 Pregled predavanja Kondov i Andersonov model Modeli čvrste

Διαβάστε περισσότερα

OSNOVE TEHNOLOGIJE PROMETA

OSNOVE TEHNOLOGIJE PROMETA OSNOVE TEHNOLOGIJE PROMETA MODUL: Tehnologija teleomuniacijsog rometa FAKULTET PROMETNIH ZNANOSTI Predavači: Doc.dr.sc. Štefica Mrvelj Maro Matulin, dil.ing. Zagreb, ožuja 2009. Oće informacije Konzultacije:

Διαβάστε περισσότερα

Linearna algebra 2 prvi kolokvij,

Linearna algebra 2 prvi kolokvij, 1 2 3 4 5 Σ jmbag smjer studija Linearna algebra 2 prvi kolokvij, 7. 11. 2012. 1. (10 bodova) Neka je dano preslikavanje s : R 2 R 2 R, s (x, y) = (Ax y), pri čemu je A: R 2 R 2 linearan operator oblika

Διαβάστε περισσότερα

Deformacije. Tenzor deformacija tenzor drugog reda. Simetrinost tenzora deformacija. 1. Duljinska deformacija ε. 1. Duljinska (normalna) deformacija ε

Deformacije. Tenzor deformacija tenzor drugog reda. Simetrinost tenzora deformacija. 1. Duljinska deformacija ε. 1. Duljinska (normalna) deformacija ε Deformae. Duljinska (normalna) deformaa. Kutna (posmina) deformaa. Obujamska deformaa Θ Tenor deformaa tenor drugog reda 9 podatakamjerna jedinia Simetrinost tenora deformaa 6 podataka 4. Duljinska deformaa

Διαβάστε περισσότερα

Elektrotehnički fakultet univerziteta u Beogradu 16.maj Odsek za Softversko inžinjerstvo

Elektrotehnički fakultet univerziteta u Beogradu 16.maj Odsek za Softversko inžinjerstvo Elektrotehnčk fakultet unverzteta u Beogradu 6.maj 8. Odsek za Softversko nžnjerstvo Performanse računarskh sstema Drug kolokvjum Predmetn nastavnk: dr Jelca Protć (35) a) () Posmatra se segment od N uzastonh

Διαβάστε περισσότερα

F2_kolokvij_K2_zadaci izbor_rješenja lipanj, 2008

F2_kolokvij_K2_zadaci izbor_rješenja lipanj, 2008 F_kolokvij_K_zadai izbor_rješenja lipanj, 008 Fermatov prinip:. Fermatov prinip o širenju svjetlosnih zraka; izvedite zakon refleksije pomoću prinipa minimalnog vremena širenja svjetlosti između dviju

Διαβάστε περισσότερα

Molekulare Ebene (biochemische Messungen) Zelluläre Ebene (Elektrophysiologie, Imaging-Verfahren) Netzwerk Ebene (Multielektrodensysteme) Areale (MRT, EEG...) Gene Neuronen Synaptische Kopplung kleine

Διαβάστε περισσότερα

M086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost

M086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost M086 LA 1 M106 GRP Tema: CSB nejednakost. 19. 10. 2017. predavač: Rudolf Scitovski, Darija Marković asistent: Darija Brajković, Katarina Vincetić P 1 www.fizika.unios.hr/grpua/ 1 Baza vektorskog prostora.

Διαβάστε περισσότερα

2. Ako je funkcija f(x) parna onda se Fourierov red funkcije f(x) reducira na Fourierov kosinusni red. f(x) cos

2. Ako je funkcija f(x) parna onda se Fourierov red funkcije f(x) reducira na Fourierov kosinusni red. f(x) cos . KOLOKVIJ PRIMIJENJENA MATEMATIKA FOURIEROVE TRANSFORMACIJE 1. Za periodičnu funkciju f(x) s periodom p=l Fourierov red je gdje su a,a n, b n Fourierovi koeficijenti od f(x) gdje su a =, a n =, b n =..

Διαβάστε περισσότερα

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2 ECE 634 Spring 6 Prof. David R. Jackson ECE Dept. Notes Fields in a Source-Free Region Example: Radiation from an aperture y PEC E t x Aperture Assume the following choice of vector potentials: A F = =

Διαβάστε περισσότερα

OSNOVI ELEKTRONIKE VEŽBA BROJ 1 OSNOVNA KOLA SA DIODAMA

OSNOVI ELEKTRONIKE VEŽBA BROJ 1 OSNOVNA KOLA SA DIODAMA ELEKTROTEHNIČKI FAKULTET U BEOGRADU KATEDRA ZA ELEKTRONIKU OSNOVI ELEKTRONIKE SVI ODSECI OSIM ODSEKA ZA ELEKTRONIKU LABORATORIJSKE VEŽBE VEŽBA BROJ 1 OSNOVNA KOLA SA DIODAMA Autori: Goran Savić i Milan

Διαβάστε περισσότερα

Atomi i jezgre 1.1. Atomi i kvanti 1.2. Atomska jezgra λ = h p E = hf, E niži

Atomi i jezgre 1.1. Atomi i kvanti 1.2. Atomska jezgra λ = h p E = hf, E niži tomi i jezgre.. tomi i kvanti.. tomska jezgra Kvant je najmanji mogući iznos neke veličine. Foton, čestica svjetlosti, je kvant energije: gdje je f frekvencija fotona, a h Planckova konstanta. E = hf,

Διαβάστε περισσότερα

Κωνσταντίνος Μακρής. Βιογραφικό Σηµείωµα

Κωνσταντίνος Μακρής. Βιογραφικό Σηµείωµα Κωνσταντίνος Μακρής Βιογραφικό Σηµείωµα ΕΡΕΥΝΗΤΙΚΑ ΕΝ ΙΑΦΕΡΟΝΤΑ Μη-Γραµµική Οπτική, Μη-Γραµµική υναµική, Κυµατική διάδοση σε περιοδικά συστήµατα, µη-γραµµική κυµατοδήγηση, οπτικά σολιτόνια, διακριτά σολιτόνια

Διαβάστε περισσότερα

An Advanced Manipulation for Space Redundant Macro-Micro Manipulator System

An Advanced Manipulation for Space Redundant Macro-Micro Manipulator System 6 (5..9) 6 An Advanced Manipulation for Space Redundant Macro-Micro Manipulator System Kazuya Yoshida, Hiromitsu Watanabe * *Tohoku University : (Macro-micro manipulator system) (Flexible base), (Vibration

Διαβάστε περισσότερα

Metali. «Fizika čvrstog stanja» Ivo Batistić. predavanja 2014/2015 (zadnja inačica 28. rujna 2016.) Fizički odsjek, PMF Sveučilište u Zagrebu

Metali. «Fizika čvrstog stanja» Ivo Batistić. predavanja 2014/2015 (zadnja inačica 28. rujna 2016.) Fizički odsjek, PMF Sveučilište u Zagrebu Metali «Fizika čvrstog stanja» Ivo Batistić Fizički odsjek, PMF Sveučilište u Zagrebu predavanja 2014/2015 (zadnja inačica 28 rujna 2016) Pregled predavanja Uvod Drude-Sommerfeldov model Termodinamička

Διαβάστε περισσότερα

TeSys contactors a.c. coils for 3-pole contactors LC1-D

TeSys contactors a.c. coils for 3-pole contactors LC1-D References a.c. coils for 3-pole contactors LC1-D Control circuit voltage Average resistance Inductance of Reference (1) Weight Uc at 0 C ± 10 % closed circuit For 3-pole " contactors LC1-D09...D38 and

Διαβάστε περισσότερα

Fakultet kemijskog inženjerstva i tehnologije Sveučilišta u Zagrebu Seminar 06 Plinski zakoni dr. sc. Biserka Tkalčec dr. sc.

Fakultet kemijskog inženjerstva i tehnologije Sveučilišta u Zagrebu Seminar 06 Plinski zakoni dr. sc. Biserka Tkalčec dr. sc. Fakultet kemijskog inženjerstva i tehnologije Sveučilišta u Zagrebu Seminar 06 Plinski zakoni dr. sc. Biserka Tkalčec dr. sc. Lidija Furač Pri normalnim uvjetima tlaka i temperature : 11 elemenata su plinovi

Διαβάστε περισσότερα

Ó³ Ÿ , º 3(180).. 313Ä320

Ó³ Ÿ , º 3(180).. 313Ä320 Ó³ Ÿ. 213.. 1, º 3(18).. 313Ä32 ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ. ˆŸ ˆŸ ƒ ƒ Ÿ ˆ Š ˆ Šˆ Š ŒŒ ˆ ˆ ˆ ˆ ˆ Œ ˆŠ.. μ a, Œ.. Œ Í ± μ,. ƒ. ²Ò ± a ˆ É ÉÊÉ Ö ÒÌ ² μ μ ±μ ± ³ ʱ, Œμ ± ÊÎ μ- ² μ É ²Ó ± É ÉÊÉ Ö μ Ë ± ³... ±μ ²ÓÍÒ

Διαβάστε περισσότερα

X g 1990 g PSRB

X g 1990 g PSRB e-mail: shibata@provence.c.u-tokyo.ac.jp 2005 1. 40 % 1 4 1) 1 PSRB1913 16 30 2) 3) X g 1990 g 4) g g 2 g 2. 1990 2000 3) 10 1 Page 1 5) % 1 g g 3. 1 3 1 6) 3 S S S n m (1/a, b k /a) a b k 1 1 3 S n m,

Διαβάστε περισσότερα

B G [0; 1) S S # S y 1 ; y 3 0 t 20 y 2 ; y 4 0 t 20 y 1 y 2 h n t: r = 10 5 ; a = 10 6 ei n = ỹi n y i t n ); i = 1; 3: r = 10 5 ; a = 10 6 ei n = ỹi n y i t n ); i = 2; 4: r = 10 5 ; a = 10 6 t = 20

Διαβάστε περισσότερα

MICROMASTER Vector MIDIMASTER Vector

MICROMASTER Vector MIDIMASTER Vector s MICROMASTER Vector MIDIMASTER Vector... 2 1.... 4 2. -MICROMASTER VECTOR... 5 3. -MIDIMASTER VECTOR... 16 4.... 24 5.... 28 6.... 32 7.... 54 8.... 56 9.... 61 Siemens plc 1998 G85139-H1751-U553B 1.

Διαβάστε περισσότερα

CHAPTER (2) Electric Charges, Electric Charge Densities and Electric Field Intensity

CHAPTER (2) Electric Charges, Electric Charge Densities and Electric Field Intensity CHAPTE () Electric Chrges, Electric Chrge Densities nd Electric Field Intensity Chrge Configurtion ) Point Chrge: The concept of the point chrge is used when the dimensions of n electric chrge distriution

Διαβάστε περισσότερα

Geodesic paths for quantum many-body systems

Geodesic paths for quantum many-body systems Geodesic paths for quantum many-body systems Michael Tomka, Tiago Souza, Steve Rosenberg, and Anatoli Polkovnikov Department of Physics Boston University Group: Condensed Matter Theory June 6, 2016 Workshop:

Διαβάστε περισσότερα

ˆŒ œ ƒ ƒ ˆ ˆŸ ˆ Š ˆ 137 Cs Š ˆ Œ.

ˆŒ œ ƒ ƒ ˆ ˆŸ ˆ Š ˆ 137 Cs Š ˆ Œ. Ó³ Ÿ. 2017.. 14, º 6(211).. 630Ä636 ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ. Š ˆŒ ˆ Š ˆŸ ˆŸ ˆŒ œ ƒ ƒ ˆ ˆŸ ˆ Š ˆ 137 Cs Š ˆ Œ. œ.., 1,.. ³,. ƒ. Š ² ±μ,.. ³ ±,.. ³ μ,. ˆ. É ²μ,. ˆ. ÕÉÕ ±μ, ƒ.. Ë,, ˆ.. ±μ ˆ É ÉÊÉ μ Ð Ë ± ³.. Œ.

Διαβάστε περισσότερα

TROŠAK KAPITALA Predmet: Upravljanje finansijskim odlukama i rizicima Profesor: Dr sci Sead Mušinbegovid Fakultet za menadžment i poslovnu ekonomiju

TROŠAK KAPITALA Predmet: Upravljanje finansijskim odlukama i rizicima Profesor: Dr sci Sead Mušinbegovid Fakultet za menadžment i poslovnu ekonomiju TROŠAK KAPITALA Predmet: Upravljanje finansijskim odlukama i rizicima Profesor: Dr sci Sead Mušinbegovid Fakultet za menadžment i poslovnu ekonomiju Sadržaj predavnaja: Trošak kapitala I. Trošak duga II.

Διαβάστε περισσότερα

2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x

2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x Zadatak (Darjan, medicinska škola) Izračunaj vrijednosti trigonometrijskih funkcija broja ako je 6 sin =,,. 6 Rješenje Ponovimo trigonometrijske funkcije dvostrukog kuta! Za argument vrijede sljedeće formule:

Διαβάστε περισσότερα

SEMINAR IZ KOLEGIJA ANALITIČKA KEMIJA I. Studij Primijenjena kemija

SEMINAR IZ KOLEGIJA ANALITIČKA KEMIJA I. Studij Primijenjena kemija SEMINAR IZ OLEGIJA ANALITIČA EMIJA I Studij Primijenjena kemija 1. 0,1 mola NaOH je dodano 1 litri čiste vode. Izračunajte ph tako nastale otopine. NaOH 0,1 M NaOH Na OH Jak elektrolit!!! Disoira potpuno!!!

Διαβάστε περισσότερα

Dvojna priroda čestica

Dvojna priroda čestica Dvojna priroda čestica Kao mladi student Sveučilišta u Parizu, Louis DeBroglie je bio pod utjecajem teorije relativnosti i fotoelektričnog efekta. Fotoelektrični efekt je ukazivao na čestična svojstva

Διαβάστε περισσότερα

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM Solutions to Question 1 a) The cumulative distribution function of T conditional on N n is Pr T t N n) Pr max X 1,..., X N ) t N n) Pr max

Διαβάστε περισσότερα

Prey-Taxis Holling-Tanner

Prey-Taxis Holling-Tanner Vol. 28 ( 2018 ) No. 1 J. of Math. (PRC) Prey-Taxis Holling-Tanner, (, 730070) : prey-taxis Holling-Tanner.,,.. : Holling-Tanner ; prey-taxis; ; MR(2010) : 35B32; 35B36 : O175.26 : A : 0255-7797(2018)01-0140-07

Διαβάστε περισσότερα

Osnove elektrotehnike I popravni parcijalni ispit VARIJANTA A

Osnove elektrotehnike I popravni parcijalni ispit VARIJANTA A Osnove elektrotehnike I popravni parcijalni ispit 1..014. VARIJANTA A Prezime i ime: Broj indeksa: Profesorov prvi postulat: Što se ne može pročitati, ne može se ni ocijeniti. A C 1.1. Tri naelektrisanja

Διαβάστε περισσότερα

1.4 Tangenta i normala

1.4 Tangenta i normala 28 1 DERIVACIJA 1.4 Tangenta i normala Ako funkcija f ima derivaciju u točki x 0, onda jednadžbe tangente i normale na graf funkcije f u točki (x 0 y 0 ) = (x 0 f(x 0 )) glase: t......... y y 0 = f (x

Διαβάστε περισσότερα

+ z, όπου I x, I y, I z είναι οι ροπές αδράνειας

+ z, όπου I x, I y, I z είναι οι ροπές αδράνειας r Έστω κβαντικός περιστροφέας ολικής στροφορμής J, που περιγράφεται από Jx J y J τη Χαμιλτονιανή H = z, όπου I x, I y, I z είναι οι ροπές αδράνειας I x I y I z του περιστροφέα ως προς τους άξονες x,y,z,

Διαβάστε περισσότερα

Ó³ Ÿ , º 7(163).. 737Ä741 ˆ ˆŠ ˆ ˆŠ Š ˆ. .. ² Ì μ,.. Œ ± μ,.. Œ ÉÕÏ ±,.. Œμ μ μ,. Œ. Ò, Œ.. ±μ. Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê

Ó³ Ÿ , º 7(163).. 737Ä741 ˆ ˆŠ ˆ ˆŠ Š ˆ. .. ² Ì μ,.. Œ ± μ,.. Œ ÉÕÏ ±,.. Œμ μ μ,. Œ. Ò, Œ.. ±μ. Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê Ó³ Ÿ. 2010.. 7, º 7(163).. 737Ä741 ˆ ˆŠ ˆ ˆŠ Š ˆ ˆ ƒ ˆŠˆ œ Š Šˆ Š ˆ ILC Ÿ ƒ ˆ ˆ ƒ ˆ ˆŸ.. ² Ì μ,.. Œ ± μ,.. Œ ÉÕÏ ±,.. Œμ μ μ,. Œ. Ò, Œ.. ±μ Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê μ É ± ʲÓÉ ±μ μé± Ì Ô² ±É μ ÒÌ Î, ÉÒ ³

Διαβάστε περισσότερα

ΓΗ ΚΑΙ ΣΥΜΠΑΝ. Εικόνα 1. Φωτογραφία του γαλαξία μας (από αρχείο της NASA)

ΓΗ ΚΑΙ ΣΥΜΠΑΝ. Εικόνα 1. Φωτογραφία του γαλαξία μας (από αρχείο της NASA) ΓΗ ΚΑΙ ΣΥΜΠΑΝ Φύση του σύμπαντος Η γη είναι μία μονάδα μέσα στο ηλιακό μας σύστημα, το οποίο αποτελείται από τον ήλιο, τους πλανήτες μαζί με τους δορυφόρους τους, τους κομήτες, τα αστεροειδή και τους μετεωρίτες.

Διαβάστε περισσότερα

PRERADA GROŽðA. Sveučilište u Splitu Kemijsko-tehnološki fakultet. Zavod za prehrambenu tehnologiju i biotehnologiju. Referati za vježbe iz kolegija

PRERADA GROŽðA. Sveučilište u Splitu Kemijsko-tehnološki fakultet. Zavod za prehrambenu tehnologiju i biotehnologiju. Referati za vježbe iz kolegija Sveučilište u Splitu Kemijsko-tehnološki fakultet Zavod za prehrambenu tehnologiju i biotehnologiju Referati za vježbe iz kolegija PRERADA GROŽðA Stručni studij kemijske tehnologije Smjer: Prehrambena

Διαβάστε περισσότερα

Contribution à l évolution des méthodologies de caractérisation et d amélioration des voies ferrées

Contribution à l évolution des méthodologies de caractérisation et d amélioration des voies ferrées Contribution à l évolution des méthodologies de caractérisation et d amélioration des voies ferrées Noureddine Rhayma To cite this version: Noureddine Rhayma. Contribution à l évolution des méthodologies

Διαβάστε περισσότερα

Hartree-Fock Theory. Solving electronic structure problem on computers

Hartree-Fock Theory. Solving electronic structure problem on computers Hartree-Foc Theory Solving electronic structure problem on computers Hartree product of non-interacting electrons mean field molecular orbitals expectations values one and two electron operators Pauli

Διαβάστε περισσότερα

Estimation of grain boundary segregation enthalpy and its role in stable nanocrystalline alloy design

Estimation of grain boundary segregation enthalpy and its role in stable nanocrystalline alloy design Supplemental Material for Estimation of grain boundary segregation enthalpy and its role in stable nanocrystalline alloy design By H. A. Murdoch and C.A. Schuh Miedema model RKM model ΔH mix ΔH seg ΔH

Διαβάστε περισσότερα

Funkcije raspodjele u kvantnoj fizici Fermi-Diracova raspodjela

Funkcije raspodjele u kvantnoj fizici Fermi-Diracova raspodjela Funkcije raspodjele u kvantnoj fizici Fermi-Diracova raspodjela Promatramo sustav fermiona u kojem postoji g 1 stanja energije E 1 g 2 stanja energije E 2 (pri tome je E 2 > E 1 ) g 3 stanja energije E

Διαβάστε περισσότερα

ITU-R P (2012/02) khz 150

ITU-R P (2012/02) khz 150 (0/0) khz 0 P ii (IPR) (ITU-T/ITU-R/ISO/IEC) ITU-R http://www.itu.int/itu-r/go/patents/en http://www.itu.int/publ/r-rec/en BO BR BS BT F M P RA RS S SA SF SM SNG TF V ITU-R 0 ITU 0 (ITU) khz 0 (0-009-00-003-00-994-990)

Διαβάστε περισσότερα

ED. 06/2013 ED. 07/2008 PART CATALOGUE APEX 10 TWO POST LIFT 0 / 19

ED. 06/2013 ED. 07/2008 PART CATALOGUE APEX 10 TWO POST LIFT 0 / 19 ED.06/2013 ED.07/2008 PARTCATALOGUE APEX10 TWOPOSTLIFT 0/19 TAV.0 LIFT ED.06/13 1/19 TAV.0 LIFT ED.06/13 ITEM PART NO. DESCRIPTION QTY REMARK 1 Z23A110000 Power-side column assembly 1 2 Z23A120000 Off-side

Διαβάστε περισσότερα

Š ƒ ˆŠ œ ˆ ˆ ˆ Œ ƒ ˆ Š ˆˆ Š

Š ƒ ˆŠ œ ˆ ˆ ˆ Œ ƒ ˆ Š ˆˆ Š Ó³ Ÿ. 204.., º 4(88).. 768Ä776 ˆ ˆŠ ˆ ˆŠ Š ˆ Š ƒ ˆŠ œ ˆ ˆ ˆ Œ ƒ ˆ Š ˆˆ Š Š ˆ Œ ˆ Š Œ ˆ Œ. Œ. Ò Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê ËË ±É μ ÉÓ ³ μ μμ μ μé μ ±Í μ μ μ²ó μ ³ Ô² ±É μ μ μ μì² Ö É μé ÊÌ ³ É μ : ÔËË ±É μ É

Διαβάστε περισσότερα

PROSTA GREDA (PROSTO OSLONJENA GREDA)

PROSTA GREDA (PROSTO OSLONJENA GREDA) ROS GRED (ROSO OSONJEN GRED) oprečna sila i moment savijanja u gredi y a b c d e a) Zadana greda s opterećenjem l b) Sile opterećenja na gredu c) Određivanje sila presjeka grede u presjeku a) Unutrašnje

Διαβάστε περισσότερα

Physique des réacteurs à eau lourde ou légère en cycle thorium : étude par simulation des performances de conversion et de sûreté

Physique des réacteurs à eau lourde ou légère en cycle thorium : étude par simulation des performances de conversion et de sûreté Physique des réacteurs à eau lourde ou légère en cycle thorium : étude par simulation des performances de conversion et de sûreté Alexis Nuttin To cite this version: Alexis Nuttin. Physique des réacteurs

Διαβάστε περισσότερα

φ(t) TE 0 φ(z) φ(z) φ(z) φ(z) η(λ) G(z,λ) λ φ(z) η(λ) η(λ) = t CIGS 0 G(z,λ)φ(z)dz t CIGS η(λ) φ(z) 0 z

Διαβάστε περισσότερα

Dvoatomna linearna rešetka

Dvoatomna linearna rešetka Dvoatomna linearna rešetka Promatramo linearnu rešetku s dva različita atom u elementarnoj ćeliji. Konstanta rešetke je a. Udaljenost između susjednih različih atoma je a/2 Mase atoma su M 1 i M 2. (Neka

Διαβάστε περισσότερα

μ μ μ s t j2 fct T () = a() t e π s t ka t e e j2π fct j2π fcτ0 R() = ( τ0) xt () = α 0 dl () pt ( lt) + wt () l wt () N 2 (0, σ ) Time-Delay Estimation Bias / T c 0.4 0.3 0.2 0.1 0-0.1-0.2-0.3 In-phase

Διαβάστε περισσότερα

ƒ Š ˆ Šˆ Š Œˆ Šˆ Š ˆŒ PAMELA ˆ AMS-02

ƒ Š ˆ Šˆ Š Œˆ Šˆ Š ˆŒ PAMELA ˆ AMS-02 ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ 2017.. 48.. 5.. 582Ä588 œ ˆ Œ ˆ Š Ÿ Š Œ ƒ Š ˆ Šˆ Š Œˆ Šˆ Š ˆŒ PAMELA ˆ AMS-02.. ² ± 1, Š. Œ. ²μͱ 2,.. μ μ³μ²μ 1,. ˆ. Ê 2,.Œ.ƒ ²Ó 2,.. Ê 1,.. Š ²²μ 1, 2,.. ŠÊ Íμ 1,,.. ʱÓÖ μ 1,. ƒ. Œ

Διαβάστε περισσότερα

PARNA POSTROJENJA ZA KOMBINIRANU PROIZVODNJU ELEKTRIČNE I TOPLINSKE ENERGIJE (ENERGANE)

PARNA POSTROJENJA ZA KOMBINIRANU PROIZVODNJU ELEKTRIČNE I TOPLINSKE ENERGIJE (ENERGANE) (Enegane) List: PARNA POSTROJENJA ZA KOMBINIRANU PROIZVODNJU ELEKTRIČNE I TOPLINSKE ENERGIJE (ENERGANE) Na mjestima gdje se istovremeno troši električna i toplinska energija, ekonomičan način opskrbe energijom

Διαβάστε περισσότερα

Noriyasu MASUMOTO, Waseda University, Okubo, Shinjuku, Tokyo , Japan Hiroshi YAMAKAWA, Waseda University

Noriyasu MASUMOTO, Waseda University, Okubo, Shinjuku, Tokyo , Japan Hiroshi YAMAKAWA, Waseda University A Study on Predctve Control Usng a Short-Term Predcton Method Based on Chaos Theory (Predctve Control of Nonlnear Systems Usng Plural Predcted Dsturbance Values) Noryasu MASUMOTO, Waseda Unversty, 3-4-1

Διαβάστε περισσότερα

k k ΚΕΦΑΛΑΙΟ 1 G = (V, E) V E V V V G E G e = {v, u} E v u e v u G G V (G) E(G) n(g) = V (G) m(g) = E(G) G S V (G) S G N G (S) = {u V (G)\S v S : {v, u} E(G)} G v S v V (G) N G (v) = N G ({v}) x V (G)

Διαβάστε περισσότερα

Πειράµατα Πυρηνικής Φυσικής Χρησιµοποιώντας Πολωµένους Στόχους. He και Πολωµένες Δέσµες Ακτίνων-γ

Πειράµατα Πυρηνικής Φυσικής Χρησιµοποιώντας Πολωµένους Στόχους. He και Πολωµένες Δέσµες Ακτίνων-γ Πειράµατα Πυρηνικής Φυσικής Χρησιµοποιώντας Πολωµένους Στόχους 3 He και Πολωµένες Δέσµες Ακτίνων-γ Γεώργιος Λάσκαρης, Research Fellow Duke University, NC USA Stanford University, CA USA Ø Κίνητρα για την

Διαβάστε περισσότερα

Funkcije dviju varjabli (zadaci za vježbu)

Funkcije dviju varjabli (zadaci za vježbu) Funkcije dviju varjabli (zadaci za vježbu) Vidosava Šimić 22. prosinca 2009. Domena funkcije dvije varijable Ako je zadano pridruživanje (x, y) z = f(x, y), onda se skup D = {(x, y) ; f(x, y) R} R 2 naziva

Διαβάστε περισσότερα

STATISTIKA S M E I M N I AR R 7 : METODE UZORKA

STATISTIKA S M E I M N I AR R 7 : METODE UZORKA Fakultet za menadžment u turizmu i ugotiteljtvu, Opatija Sveučilišni preddiplomki tudij Polovna ekonomija u turizmu i ugotiteljtvu Noitelj kolegija: Prof. dr. c. Suzana Marković Aitentica: Jelena Komšić

Διαβάστε περισσότερα

Εξήγηση του νόμου του Båth με τη βοήθεια του φυσικού χρόνου

Εξήγηση του νόμου του Båth με τη βοήθεια του φυσικού χρόνου Εξήγηση του νόμου του Båth με τη βοήθεια του φυσικού χρόνου Παπαδοπούλου Κωνσταντίνα Α.Μ. : 045 Τριμελής επιτροπή: Βαρώτσος Παναγιώτης Σαρλής Νικόλαος Σκορδάς Ευθύμιος (κύριος επιβλέπων) ΝΟΜΟΣ Båth M max

Διαβάστε περισσότερα

ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ Ä664

ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ Ä664 ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ 2017.. 48.. 5.. 653Ä664 ˆ Œ ˆ ˆ e + e K + K nπ (n =1, 2, 3) Š Œ ŠŒ -3 Š - ˆ Œ Š -2000 ƒ.. μéμ Î 1,2, μé ³ ±μ²² μ Í ŠŒ -3: A.. ß ±μ 1,2,. Œ. ʲÓÎ ±μ 1,2,.. ̳ ÉÏ 1,2,.. μ 1,.. ÏÉμ μ 1,.

Διαβάστε περισσότερα

Elektrotehnički fakultet univerziteta u Beogradu 17.maj Odsek za Softversko inžinjerstvo

Elektrotehnički fakultet univerziteta u Beogradu 17.maj Odsek za Softversko inžinjerstvo Elektrotehnički fakultet univerziteta u Beogradu 7.maj 009. Odsek za Softversko inžinjerstvo Performanse računarskih sistema Drugi kolokvijum Predmetni nastavnik: dr Jelica Protić (35) a) (0) Posmatra

Διαβάστε περισσότερα

MATEMATIKA Pokažite da za konjugiranje (a + bi = a bi) vrijedi. a) z=z b) z 1 z 2 = z 1 z 2 c) z 1 ± z 2 = z 1 ± z 2 d) z z= z 2

MATEMATIKA Pokažite da za konjugiranje (a + bi = a bi) vrijedi. a) z=z b) z 1 z 2 = z 1 z 2 c) z 1 ± z 2 = z 1 ± z 2 d) z z= z 2 (kompleksna analiza, vježbe ). Izračunajte a) (+i) ( i)= b) (i+) = c) i + i 4 = d) i+i + i 3 + i 4 = e) (a+bi)(a bi)= f) (+i)(i )= Skicirajte rješenja u kompleksnoj ravnini.. Pokažite da za konjugiranje

Διαβάστε περισσότερα

Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama.

Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. a b Verovatno a da sluqajna promenljiva X uzima vrednost iz intervala

Διαβάστε περισσότερα