Osobine očvrslog betona

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Osobine očvrslog betona"

Transcript

1 Osobine očvrslog betona Predavanje, Pripremili: Doc.dr. Merima Šahinagić-Isović Asis. Marko Ćećez

2 SADRŽAJ Struktura očvrslog betona Voda u očvrslom betonu Prsline i pukotine Fizičko-mehaničke osobine očvrslog betona Osnovni zakoni čvrstoće materijala Čvrstoća betona pri pritisku Čvrstoća betona pri zatezanju Čvrstoća betona pri čistom smicanju Vodonepropustljivost betona Otpornost prema dejstvu mraza Otpornost prema dejstvu mraza i soli Otpornost na habanje Otpornost na hemijske agense Deormacije pod uticajem kratkotrajnih opterećenja

3 Struktura očvrslog betona Svojstva očvrslog betona zavise: Karakteristika komponenata Strukture mješavine Formiranje strukture: I etapa: početna etapa, etapa ormiranja početne strukture, cementna masa svježeg betona počinje da prelazi u čvrsto agregatno stanje (usljed vezivanja) II etapa: postepeno ormiranje strukture očvrslog betona koju prati povećanje čvrstoće III etapa: stabilizacija strukture, kada se dostignuta čvrstoća tokom vremena bitnije ne mjenja

4 Struktura očvrslog betona Tipovi makrostrukture očvrslog betona: struktura I: zrna agregata su na velikim rastojanjima, međudejstvo ne postoji, utiču samo na dijelove cementnog kamena sa kojima su u dodiru (uticaj zrna proporcionalan sadržaju zrna i speciičnoj površini) struktura II cementni kamen obavija zrna (do 0,06mm) i ispunjava praznine između njih, dejstva pojedinih zrna se preklapaju, javlja se dopunski eekat trenja struktura III manjak cementnog kamena, obavija zrna agregata u slojevima male debljine, a praznine između njih ispunjava samo djelomično v + v + v = 1 a cp p v cp v ck v = 1 v v ck p a

5 Struktura očvrslog betona Osnovni strukturni elementi: Agregat Cementni kamen Mikrostruktura betona: Poroznost: agregat: nije od interesa sa aspekta upijanja, kvašenja zidova zrna cementni kamen: gelska (p G ), kapilarna (p k ) i Δp (neeikasno ugrađivanje, primjena aeranata, <5-6%) kontaktni sloj (0,06mm):ima veću poroznost od ostale mase cementnog kamena p= p + p +Δp G k (%)

6 Voda u očvrslom betonu Cementni kamen sadrži: hemijski vezanu vodu: cementni gel međuslojnu vodu: dio gelske vode, 10-6 mm apsorbovanu vodu: gelska voda cementnog kamena slobodnu vodu: kapilarne pore cementnog kamena vodenu paru: kapilarne pore i veće šupljine cementnog kamena Prsline i pukotine u betonu Prsline: deekti sa otvorima < 0,3mm Pukotine: deekti sa otvorima 0,3mm Uzroci nastajanja: skupljanje cementa i termički naponi (nije izložen opterećenju) izloženost opterećenjima enomen samozalječnja : hidratacija nehidratisanih čestica i karbonatizacija

7 Osnovni zakoni čvrstoće betona Odnos čvrstoća betona - količina vode za m c =const, m a =const., te isti postupak kompaktiranja područje a : nedovoljno kompaktiran beton (kruta konzistencija) područje b : najbolje kompaktiranje, optimalni sadržaj vode (plastična konzistencija) područje c : čvrstoća opada, poroznost raste (tečna konzistencija) područje d : segregacija betona

8 Osnovni zakoni čvrstoće betona Čvrstoća betona (za m c =const) zavisi: od vodocementnog aktora i stepena zbijenosti (kompaktnosti) Empirijski obrasci: Beljajev: pc k,28 = 1,5 k ω riječni šljunak k=4,0 drobljeni kamen k=3,5 Fere: k = 1+ω γ sv k,28 2 γ sc Bolomej: k,28 = A pc 1 0,5ω ω A=0,55-0,65 (manje vrijednosti za betone nižih čvrstoća, agregate lošije granulom.kompozicije)

9 Osnovni zakoni čvrstoće betona Promjena čvrstoće betona u unkciji vremena beton spravljeni od PC betoni spravljeni od PC sa dodacima Čvrstoća betona u unkciji režima očvršćavanja Kriva 1 normalni uslovi Kriva 2 zaparivanje pod atmoserskim pritiskom (T= 85 C) Kriva 3 autoklavno očvršćavanje pod pritiskom (vodena para na 0,8MPa,T=175 C)

10 Osnovni zakoni čvrstoće betona Struktura betona je grubo nehomogena krupan agregat i malterski dio (vazdušne pore i džepovi ) cementni kamen i pijesak cementni kamen (značajna količina pora, nehidratisana zrna cementa) Mehanizmi loma: tri osnovna tipa čvrstoća agregata veća od čvrstoće na zatezanje cementnog kamena ( ck ) čvrstoća agregata manja od čvrstoće na zatezanje cementnog kamena ( ck ) čvrstoća agregata i čvrstoća na zatezanje cementnog kamena ( ck ) bliske

11 Čvrstoća betona pri pritisku cilindar, prizma, kocka nema značajnijih promjena čvrstoće (h/a 3) kocka 20x20x20cm Kocka Prizma Cilindar Oblik i veličina ispitivanog tijela Odnos čvrstoće pri pritisku kocke ivice 20cm i odnosnog tijela 10 cm 0,90 15 cm 0,95 20 cm 1,00 30 cm 1,08 12x12x36 cm 1,25 20x20x60 cm 1,25 10x20 cm 1,17 15x30 cm 1,20 20x40 cm 1,26 10x10 cm 1,02 15x15 cm 1,05 20x20 cm 1,10 Koeicijenti konverzije

12 Čvrstoća betona pri pritisku t=2min, brzina porasta opterećenja (0,2-0,8MPa/s) Na rezultate ispitivanja utiče: postupak ugrađivanja betona režim njege uzorka nominalno najkrupnije zrno agregata čvrstoća agregata (20%) cementa (klasa i količina) voda (v/c aktor)

13 Čvrstoća betona pri pritisku Promjena čvrstoće tokom vremena: at ( ) () t = 1 e a- konstanta koja odgovara čvrstoći betona starog 1 dan b- konstanta koja se određuje na bazi poznate čvrstoće dovoljno starog betona p p, () t = a+ b lnt p

14 Uticaj temperature i vremena na čvrstoću betona: normalne (radne) temperature C -10 C hidratcija prestaje, 30 C hidratacija se ubrzava Beton sa PC RH=100%

15 Funkcija zrelosti (vrijeme temperatura): uslovi zimskog betoniranja kod viših temperatura, pri određivanju čvrstoće betona mlađih od 7 dana = ( 0 ) ( ) r j 0 M T T t r 1 M = T t Δt j= 1 j 1 - k,28 =20MPa 2 -k,28=25mpa

16 Čvrstoća betona pri pritisku Marka betona normirana (uslovna) čvrstoća, 20x20x20cm, 28 dana 20±4h u kalupima, T=20 C do ispitivanja u vodi ili u prostoriji sa RH=95% i T=20 C prirast napona od 0,2-0,8MPa/s MB10,15,20,25,30,35,40,45,50,55,60 Tri kriterijuma: Kriterijum 1 (3,6,9,12 ili 15 uzoraka) m x 1 3 MB + k MB k 2 1 Kriterijum 2 (10 n 30) poznata vrijednost standardne devijacije Kriterijum 3 (15 n 30) procjenjena vrijednost standardne devijacije S no = S n no i= 1 = ( m n i= 1 no n x ) o ( m n i n 1 2 x i ) 2 m no x1 MB 4( MPa) m n MB + 1,25S MB + 1,3S x1 MB 4( MPa) n no

17 Čvrstoća betona pri zatezanju: Zavisi od: vrste i količine agregata, sadržaja cementa, v/c aktora, tehnološkog procesa spravljanja, ugrađivanja, njege i dr. drobljeni agregat veće z od riječnog agregata povećavanjem sadržaja cementa z se povećava u manjoj mjeri od p povećavanjem v/c aktora z manje opada u odnosu na p direktno aksijalno zatezanje κ = 0,12 za κ = 0,10 za κ = 0,07 za p p p = 20MPa = 30MPa = 50MPa κ = / p z

18 Čvrstoća betona pri zatezanju: savijanjem (JUS U.M1.010 i JUS U.M1.011) zs = 6M b h gr 2 z / zs = 0,45 0,60 zs / = 1 1,25 z cjepanjem putem linijskog pritiska (JUS U.M1.022) zc = 2P gr πdl z / = 0,85 zc

19 Čvrstoća betona pri zatezanju: Kriva (1)- rezultati ispitivanja direktnom metodom Kriva (2)- rezultati ispitivanja metodom cijepanja Kriva (3)- rezultati ispitivanja putem savijanja jednom koncentrisanom silom Kriva (4)- veličine izračunate putem izraza (a) Kriva (5)- veličine izračunate putem izraza (b) (a) zm = 0, bk (b) zs z 0, 40 = 0,60 + < 1 4 h

20 Čvrstoća betona pri čistom smicanju: zavisi od: otpornosti na smicanje krupnog agregata (moždanici), čvrstoće spoja (adhezije između agregata i cementnog kamena) pretpostavka je da su naponi smicanja pri lomu ravnomjerno raspoređeni po površini presjeka po kojoj se vrši smicanje τs = (0,07 0,08) p z τs 2 z

21 Vodonepropustljivost betona zavisi od: vodocementnog aktora, stepena hidratacije cementa, od poroznosti cementnog kamena, strukture pora (otvorene i zatvorene pore), svojstva cementa i agregata, načina ugrađivanja, njege i dr. mikrokapilari do 10-7 mm (gelske pore)ne utiču na ovu osobinu makrokapilari preko 10-7 mm (kapilarne pore) utiču na ovu osobinu VDP (koeicijent iltracije): Qv a k = ( m ili cm s s) S Δ p t

22 Vodonepropustljivost betona JUS U.M1.015: VDP Cilindar:150/150mm (ili ploča: 200x200x150mm) donja površina prečnika 100mm ohrapavi se i izlaže pritisku uzorci stari 28 dana, 7 dana prije početka ispitivanja u prostoriju sa RH=65% i T= 20 C marka vodonepropusnosti: V-2 (3 uzorka) V-4, V-6, V-8 i V-12 (6 uzoraka) DIN 1048: dubina kvašenja kocka:20cm, 3 uzorka 1bar 48h, 3bara 24h, 7 bara 24h h<12cm, danas h 4cm

23 Otpornost prema dejstvu mraza JUS U.M1.016 zavisi od: kompaktnosti betona (kapilarne pore preko10-7 mm) ispitivanje čvrstoće pri pritisku, min 75%, gubitak mase 5% marke otpornosti na mraz: M-50,M-100,M-150,M uzoraka kocke od 15cm ili 20cm, ili cilindri 15cm (9 etalona, 6 za ispitivanje) za M-50, 9 uzoraka (6 etalona, 3 za ispitivanje) smrzavanje -20 C (4h ili 6h) odmrzavanje 20±3 C (4h ili 6h) Ekvivalentna starost etalonskih uzoraka: t a =28 dana n-broj ciklusa c-parametar koji zavisi od broja ciklusa u 24h t = t + c n c a Tri ciklusa Dva ciklusa Jedan ciklus Kocke a=15 cm i cilindri Ø=h=15 cm (ciklus 4+4 sata) 0,20 0,35 0,80 Kocke a=20 cm (ciklus 6+6 sati) -- 0,25 0,70

24 Otpornost prema dejstvu mraza i soli JUS U.M1.055 troprocentni rastvor NaCl nakon djelovanja rastvora 25 ciklusa (smrzavanja-odmrzavanja) : 16-18h T=-20 C, 6-8h na sobnoj temperaturi(t =20 C) Stepen oštećenja Gubitak mase (mg/mm) Dubina oštećenja najviše (mm) Vizuelni opis Kriterijum za cijenu 0 bez ljuštenja slabo ljuštenje 0, srednje ljuštenje 0, jako ljuštenje 1,00 10 Nema promjene na površini Oštećenje inog materijala Oštećenje površine vidljiva pojedina zrna agregata Vidljiva zrna agregata na cijeloj površini Otporan Otporan Neotporan Neotporan

25 Otpornost na habanje JUS B.B8.015: kocke od 7,1cm (A=50cm 2 ) drobljeni agregat (krupne rakcije, min sitnih rakcija) cementi visokih klasa niski vodocemnetni aktori njega betona Otpornost na hemijske agense zavisi od hemijske otpornosti cementa i kompaktnost betona niski vodocemnetni aktori eikasno ugrađivanje (kompaktiranje) njega betona Praktično: dokaže se hemijska otpornost cementa

26 Deormacije pod uticajem kratkotrajnih opterećenja cementni kamen i agregat: linearna zavisnost beton: kontaktna površina cementnog kamena i agregata (mikroprsline pri srazmjerno niskim nivoima naprezanja) radni dijagram modul elastičnosti Poasonov koeicijent

27 Deormacije pod uticajem kratkotrajnih opterećenja radni dijagram (σ-ε) 1 betoni većih čvrstoća: režim diktiranog povećanja napona 0,5±0,3MP/s 2 betoni manjih čvrstoća: režim diktiranog povećanja dilatacija tangnetni modul elastičnosti tgα tg sekantni modul elastičnosti tg (0,3-0,5) p područje radnih napona σ = E ε = tgα ε α

28 Deormacije pod uticajem kratkotrajnih opterećenja modul elastičnosti JUS U.M h/a 4,a 4D,σ d =0,5MPa, σ g = p /3 Prema PBAB: E = k 9, E = Δσ Δε

29 Deormacije pod uticajem kratkotrajnih opterećenja Poasonov koeicijent (μ) odnos poprečnih i podužnih dilatacija uzorka μ=0,15-0,25 (u području radnih napona) μ=0,4-0,5 neposredno pred lom (pop.deormacije 0,8-1,0mm/m 1 )

30 Slijedeće predavanje: REOLOŠKA SVOJSTVA OČVRSLOG BETONA I TRAJNOST

Osobine očvrslog betona

Osobine očvrslog betona Osobine očvrslog betona Predavanje, 13.11.2012. Pripremili: Doc.dr. Merima Šahinagić-Isović Asis. Marko Ćećez Struktura očvrslog betona Svojstva očvrslog betona zavise: Karakteristika komponenata Strukture

Διαβάστε περισσότερα

VEŽBA 7. ISPITIVANJE BETONA I NJEGOVIH KOMPONENTI

VEŽBA 7. ISPITIVANJE BETONA I NJEGOVIH KOMPONENTI VEŽBA 7. ISPITIVANJE BETONA I NJEGOVIH KOMPONENTI O betonu... Beton je konstruktivni materijal koji nastaje očvršćavanjem mešavine: kamenih agregata, mineralnog veziva i vode aditivi Aktivne komponente

Διαβάστε περισσότερα

STRUKTURA OČVRSLOG BETONA

STRUKTURA OČVRSLOG BETONA STRUKTURA OČVRSLOG BETONA Formiranjestrukture Formiranje strukture I Početnaetapa etapa formiranja početne strukture, kada, usled vezivanja,cementa masa svežeg betona počinje da prelazi u čvrsto agregatno

Διαβάστε περισσότερα

PROJEKAT BETONSKE MEŠAVINE Redosled postupaka

PROJEKAT BETONSKE MEŠAVINE Redosled postupaka Redosled postupaka - Izbor komponentnih materijala (na osnovu vrste konstrukcije, sredine u kojoj se gradi i ekonomskih aktora) - Određivanje nominalno najvećeg zrna agregata (D) (na osnovu planova oplate

Διαβάστε περισσότερα

Projektovanje sastava betona

Projektovanje sastava betona Projektovanje sastava betona Predavanje, 04.12.2012. Pripremili: Doc.dr. Merima Šahinagić-Isović Asis. Marko Ćećez SADRŽAJ Opće postavke Izbor komponentnih materijala Agregat Cement Voda Aditivi Sastav

Διαβάστε περισσότερα

Konstruisanje. Dobro došli na... SREDNJA MAŠINSKA ŠKOLA NOVI SAD DEPARTMAN ZA PROJEKTOVANJE I KONSTRUISANJE

Konstruisanje. Dobro došli na... SREDNJA MAŠINSKA ŠKOLA NOVI SAD DEPARTMAN ZA PROJEKTOVANJE I KONSTRUISANJE Dobro došli na... Konstruisanje GRANIČNI I KRITIČNI NAPON slajd 2 Kritični naponi Izazivaju kritične promene oblika Delovi ne mogu ispravno da vrše funkciju Izazivaju plastične deformacije Može doći i

Διαβάστε περισσότερα

Beton. Predavanje,

Beton. Predavanje, Beton Predavanje, 21.09.2012. Betoni Vještački kameni materijal dobijen očvršćavanjem mješavine nekog vezivnog materijala i agregata (granulata) Vezivni materijal: gips, kreč, cement, asfalt, epoksi smole

Διαβάστε περισσότερα

Projekat betona. Vježbe, Pripremili: Doc.dr. Merima Šahinagić-Isović Asis. Marko Ćećez

Projekat betona. Vježbe, Pripremili: Doc.dr. Merima Šahinagić-Isović Asis. Marko Ćećez Projekat betona Vježbe, 08.01.2013. Pripremili: Doc.dr. Merima Šahinagić-Isović Asis. Marko Ćećez Opis objekta Poslovno stambeni objekat Spratnost: Su + Pr + 4 + Pk Neto površina objekta 6277,54 m 2 Dati

Διαβάστε περισσότερα

BETONSKE KONSTRUKCIJE 1 Osnovne akademske studije, V semestar

BETONSKE KONSTRUKCIJE 1 Osnovne akademske studije, V semestar BETONSKE KONSTRUKCIJE 1 Osnovne akademske studije, V semestar Prof dr Stanko Brčić email: stanko@np.ac.rs Departman za Tehničke nauke, GRAÐEVINARSTVO Državni Univerzitet u Novom Pazaru 2014/15 Sadržaj

Διαβάστε περισσότερα

Kontrola kvaliteta betona Projekat betona

Kontrola kvaliteta betona Projekat betona Kontrola kvaliteta betona Projekat betona Predavanje, 08.01.2013. Pripremili: Doc.dr. Merima Šahinagić-Isović Asis. Marko Ćećez SADRŽAJ Kontrola kvaliteta betona: Opće postavke Partije betona Kontrola

Διαβάστε περισσότερα

3525$&8158&1(',=$/,&(6$1$92-1,095(7(120

3525$&8158&1(',=$/,&(6$1$92-1,095(7(120 Srednja masinska skola OSOVE KOSTRUISAJA List1/8 355$&8158&1(',=$/,&(6$1$9-1,095(7(10 3ROD]QLSRGDFL maksimalno opterecenje Fa := 36000 visina dizanja h := 440 mm Rucna sila Fr := 350 1DYRMQRYUHWHQR optereceno

Διαβάστε περισσότερα

PROJEKAT BETONSKE MEŠAVINE Redosled postupaka

PROJEKAT BETONSKE MEŠAVINE Redosled postupaka Redosled postupaka - Izbor koponentnih aterijala (na osnovu vrste konstrukcije, sredine u kojoj se gradi i ekonoskih faktora) - Određivanje noinalno najvećeg zrna agregata (D) (na osnovu planova oplate

Διαβάστε περισσότερα

Eliminacijski zadatak iz Matematike 1 za kemičare

Eliminacijski zadatak iz Matematike 1 za kemičare Za mnoge reakcije vrijedi Arrheniusova jednadžba, koja opisuje vezu koeficijenta brzine reakcije i temperature: K = Ae Ea/(RT ). - T termodinamička temperatura (u K), - R = 8, 3145 J K 1 mol 1 opća plinska

Διαβάστε περισσότερα

Novi Sad god Broj 1 / 06 Veljko Milković Bulevar cara Lazara 56 Novi Sad. Izveštaj o merenju

Novi Sad god Broj 1 / 06 Veljko Milković Bulevar cara Lazara 56 Novi Sad. Izveštaj o merenju Broj 1 / 06 Dana 2.06.2014. godine izmereno je vreme zaustavljanja elektromotora koji je radio u praznom hodu. Iz gradske mreže 230 V, 50 Hz napajan je monofazni asinhroni motor sa dva brusna kamena. Kada

Διαβάστε περισσότερα

numeričkih deskriptivnih mera.

numeričkih deskriptivnih mera. DESKRIPTIVNA STATISTIKA Numeričku seriju podataka opisujemo pomoću Numeričku seriju podataka opisujemo pomoću numeričkih deskriptivnih mera. Pokazatelji centralne tendencije Aritmetička sredina, Medijana,

Διαβάστε περισσότερα

Posebne vrste betona Izvođenje betonskih radova u ekstremnim klimatskim uslovima

Posebne vrste betona Izvođenje betonskih radova u ekstremnim klimatskim uslovima Posebne vrste betona Izvođenje betonskih radova u ekstremnim klimatskim uslovima Predavanje, 25.12.2012. Pripremili: Doc.dr. Merima Šahinagić-Isović Asis. Marko Ćećez SADRŽAJ Posebne vrste betona: Hidrotehnički

Διαβάστε περισσότερα

BETONI VISOKIH. Uvod. pritisku granicu od 100 MPa. em rezultat primene određenih postupaka tokom proizvodnje i ugrađivanja betonskih mešavina.

BETONI VISOKIH. Uvod. pritisku granicu od 100 MPa. em rezultat primene određenih postupaka tokom proizvodnje i ugrađivanja betonskih mešavina. BETONI VISOKIH ČVRSTOĆA Uvod Zahvaljujući intenzivnom razvoju u oblasti teorije i tehnologije betona, danas se na bazi cementa kao veziva mogu dobiti i betoni kod kojih čvrstoće pri pritisku premašuju

Διαβάστε περισσότερα

Betonske konstrukcije 1

Betonske konstrukcije 1 Betonske konstrukcije 1 Prof.dr Snežana Marinković Doc.dr Ivan Ignjatović GF Beograd Betonske konstrukcije 1 1 Sadržaj Uvod Osnove proračuna Osobine materijala ULS-Savijanje ULS-Smicanje ULS-Stabilnost

Διαβάστε περισσότερα

PREDNAPETI BETON Primjer nadvožnjaka preko autoceste

PREDNAPETI BETON Primjer nadvožnjaka preko autoceste PREDNAPETI BETON Primjer nadvožnjaka preko autoceste 7. VJEŽBE PLAN ARMATURE PREDNAPETOG Dominik Skokandić, mag.ing.aedif. PLAN ARMATURE PREDNAPETOG 1. Rekapitulacija odabrane armature 2. Određivanje duljina

Διαβάστε περισσότερα

ISPITIVANJA TRAJNOSTI

ISPITIVANJA TRAJNOSTI ISPITIVANJA TRAJNOSTI VODONEPROPUSNOST (HRN EN 12390-8) Ispitivanje propusnosti betonskog uzorka izloženog konstantnom tlaku vode od 5 bara u trajanju od 72 sata Nakon ispitivanja uzorak se lomi cijepanjem

Διαβάστε περισσότερα

SEKUNDARNE VEZE međumolekulske veze

SEKUNDARNE VEZE međumolekulske veze PRIMARNE VEZE hemijske veze među atomima SEKUNDARNE VEZE međumolekulske veze - Slabije od primarnih - Elektrostatičkog karaktera - Imaju veliki uticaj na svojstva supstanci: - agregatno stanje - temperatura

Διαβάστε περισσότερα

ČVRSTOĆE BETONA. - VRSTE BETONA - TLAČNA ČVRSTOĆA (f cc. ) - VLAČNA ČVRSTOĆA (f ct. ) - ČVRSTOĆE NA ODREZ I POSMIK (f cp

ČVRSTOĆE BETONA. - VRSTE BETONA - TLAČNA ČVRSTOĆA (f cc. ) - VLAČNA ČVRSTOĆA (f ct. ) - ČVRSTOĆE NA ODREZ I POSMIK (f cp ČVRSTOĆE BETONA BETONSKE KONSTRUKCIJE - VRSTE BETONA - TLAČNA ČVRSTOĆA (f cc ) - VLAČNA ČVRSTOĆA (f ct ) - ČVRSTOĆE NA ODREZ I POSMIK (f cp ) - ČVRSTOĆE NA UDAR I ZAMOR - ENERGIJA SLOMA - ČVRSTOĆE U KONSTRUKCIJAMA

Διαβάστε περισσότερα

DIMENZIONISANJE PRAVOUGAONIH POPREČNIH PRESEKA NAPREGNUTIH NA PRAVO SLOŽENO SAVIJANJE

DIMENZIONISANJE PRAVOUGAONIH POPREČNIH PRESEKA NAPREGNUTIH NA PRAVO SLOŽENO SAVIJANJE TEORIJA ETONSKIH KONSTRUKCIJA T- DIENZIONISANJE PRAVOUGAONIH POPREČNIH PRESEKA NAPREGNUTIH NA PRAVO SLOŽENO SAVIJANJE 3.5 f "2" η y 2 D G N z d y A "" 0 Z a a G - tačka presek koja određje položaj sistemne

Διαβάστε περισσότερα

Osobine svježeg betona

Osobine svježeg betona Osobine svježeg betona Predavanje, 12.11.2013. Pripreili: Doc.dr. Meria Šahinagić-Isović Asis. Marko Ćećez SADRŽAJ Struktura svježeg betona Reološka svojstva svježeg betona Tehnološka svojstva svježeg

Διαβάστε περισσότερα

Izravni posmik. Posmična čvrstoća tla. Laboratorijske metode određivanja kriterija čvratoće ( c i φ )

Izravni posmik. Posmična čvrstoća tla. Laboratorijske metode određivanja kriterija čvratoće ( c i φ ) Posmična čvrstoća tla Posmična se čvrstoća se često prikazuje Mohr-Coulombovim kriterijem čvrstoće u - σ dijagramu c + σ n tanφ Kriterij čvrstoće C-kohezija φ -kut trenja c + σ n tan φ φ c σ n Posmična

Διαβάστε περισσότερα

IZRAČUNAVANJE POKAZATELJA NAČINA RADA NAČINA RADA (ISKORIŠĆENOSTI KAPACITETA, STEPENA OTVORENOSTI RADNIH MESTA I NIVOA ORGANIZOVANOSTI)

IZRAČUNAVANJE POKAZATELJA NAČINA RADA NAČINA RADA (ISKORIŠĆENOSTI KAPACITETA, STEPENA OTVORENOSTI RADNIH MESTA I NIVOA ORGANIZOVANOSTI) IZRAČUNAVANJE POKAZATELJA NAČINA RADA NAČINA RADA (ISKORIŠĆENOSTI KAPACITETA, STEPENA OTVORENOSTI RADNIH MESTA I NIVOA ORGANIZOVANOSTI) Izračunavanje pokazatelja načina rada OTVORENOG RM RASPOLOŽIVO RADNO

Διαβάστε περισσότερα

PT ISPITIVANJE PENETRANTIMA

PT ISPITIVANJE PENETRANTIMA FSB Sveučilišta u Zagrebu Zavod za kvalitetu Katedra za nerazorna ispitivanja PT ISPITIVANJE PENETRANTIMA Josip Stepanić SADRŽAJ kapilarni učinak metoda ispitivanja penetrantima uvjeti promatranja SADRŽAJ

Διαβάστε περισσότερα

Betonske konstrukcije 1 - vežbe 3 - Veliki ekscentricitet -Dodatni primeri

Betonske konstrukcije 1 - vežbe 3 - Veliki ekscentricitet -Dodatni primeri Betonske konstrukcije 1 - vežbe 3 - Veliki ekscentricitet -Dodatni primeri 1 1 Zadatak 1b Čisto savijanje - vezano dimenzionisanje Odrediti potrebnu površinu armature za presek poznatih dimenzija, pravougaonog

Διαβάστε περισσότερα

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET Goran Stančić SIGNALI I SISTEMI Zbirka zadataka NIŠ, 014. Sadržaj 1 Konvolucija Literatura 11 Indeks pojmova 11 3 4 Sadržaj 1 Konvolucija Zadatak 1. Odrediti konvoluciju

Διαβάστε περισσότερα

MIKROARMIRANI BETONI I MALTERI

MIKROARMIRANI BETONI I MALTERI MIKROARMIRANI BETONI I MALTERI VRSTE VLAKANA ZA MIKROARMIRANJE MALTERA I BETONA Prirodnog porekla celulozna pamučna jutana od konoplje od bambusa,, i dr. VLAKNA Vešta tačkog porekla čelična (od običnog

Διαβάστε περισσότερα

Reološka svojstva očvrslog betona i trajnost

Reološka svojstva očvrslog betona i trajnost Reološka svojstva očvrslog betona i trajnost Predavanje, 20.11.2012. Pripremili: Doc.dr. Merima Šahinagić-Isović Asis. Marko Ćećez Reološke osobine očvrslog betona Osnovne reloške karakteristike betona

Διαβάστε περισσότερα

OM2 V3 Ime i prezime: Index br: I SAVIJANJE SILAMA TANKOZIDNIH ŠTAPOVA

OM2 V3 Ime i prezime: Index br: I SAVIJANJE SILAMA TANKOZIDNIH ŠTAPOVA OM V me i preime: nde br: 1.0.01. 0.0.01. SAVJANJE SLAMA TANKOZDNH ŠTAPOVA A. TANKOZDN ŠTAPOV PROZVOLJNOG OTVORENOG POPREČNOG PRESEKA Preposavka: Smičući napon je konsanan po debljini ida (duž pravca upravnog

Διαβάστε περισσότερα

Prof. dr DRAGICA JEVTIĆ, dipl.inž.tehn. DODACI BETONU

Prof. dr DRAGICA JEVTIĆ, dipl.inž.tehn. DODACI BETONU Prof. dr DRAGICA JEVTIĆ, dipl.inž.tehn. DODACI BETONU Upotrebljavamo termin dodatak betonu ili aditiv (,,adjuvant" na francuskom,,,admixture" na engleskom) koji označava svaki proizvod dodat pri mešanju

Διαβάστε περισσότερα

Komponente betona: Cement

Komponente betona: Cement Komponente betona: Cement Predavanje, 29.10.2013. Pripremili: Doc.dr. Merima Šahinagić-Isović Asis. Marko Ćećez SADRŽAJ Vrste mineralnih veziva Općenito o cementu Hidratacija cementa Tehnologija proizvodnje

Διαβάστε περισσότερα

Komponente betona: Cement

Komponente betona: Cement Komponente betona: Cement Predavanje, 23.10.2012. Pripremili: Doc.dr. Merima Šahinagić-Isović Asis. Marko Ćećez SADRŽAJ Vrste mineralnih veziva Općenito o cementu Hidratacija cementa Tehnologija proizvodnje

Διαβάστε περισσότερα

TABLICE I DIJAGRAMI iz predmeta BETONSKE KONSTRUKCIJE II

TABLICE I DIJAGRAMI iz predmeta BETONSKE KONSTRUKCIJE II TABLICE I DIJAGRAMI iz predmeta BETONSKE KONSTRUKCIJE II TABLICA 1: PARCIJALNI KOEFICIJENTI SIGURNOSTI ZA DJELOVANJA Parcijalni koeficijenti sigurnosti γf Vrsta djelovanja Djelovanje Stalno Promjenjivo

Διαβάστε περισσότερα

I.13. Koliki je napon između neke tačke A čiji je potencijal 5 V i referentne tačke u odnosu na koju se taj potencijal računa?

I.13. Koliki je napon između neke tačke A čiji je potencijal 5 V i referentne tačke u odnosu na koju se taj potencijal računa? TET I.1. Šta je Kulonova sila? elektrostatička sila magnetna sila c) gravitaciona sila I.. Šta je elektrostatička sila? sila kojom međusobno eluju naelektrisanja u mirovanju sila kojom eluju naelektrisanja

Διαβάστε περισσότερα

AGREGAT. Asistent: Josip Crnojevac, mag.ing.aedif. SVEUČILIŠTE JOSIPA JURJA STROSSMAYERA U OSIJEKU

AGREGAT. Asistent: Josip Crnojevac, mag.ing.aedif.   SVEUČILIŠTE JOSIPA JURJA STROSSMAYERA U OSIJEKU AGREGAT Asistent: Josip Crnojevac, mag.ing.aeif. jcrnojevac@gmail.com SVEUČILIŠTE JOSIPA JURJA STROSSMAYERA U OSIJEKU JOSIP JURAJ STROSSMAYER UNIVERSITY OF OSIJEK 1 Pojela agregata PODJELA AGREGATA - PREMA

Διαβάστε περισσότερα

Komponente betona: Agregat, Voda i Aditivi

Komponente betona: Agregat, Voda i Aditivi Komponente betona: Agregat, Voda i Aditivi Predavanje, 05.11.2013. Pripremili: Doc.dr. Merima Šahinagić-Isović Asis. Marko Ćećez SADRŽAJ Osnovni uslovi kvaliteta agregata Granulometrijski sastav agregata

Διαβάστε περισσότερα

LOGO ISPITIVANJE MATERIJALA ZATEZANJEM

LOGO ISPITIVANJE MATERIJALA ZATEZANJEM LOGO ISPITIVANJE MATERIJALA ZATEZANJEM Vrste opterećenja Ispitivanje zatezanjem Svojstva otpornosti materijala Zatezna čvrstoća Granica tečenja Granica proporcionalnosti Granica elastičnosti Modul

Διαβάστε περισσότερα

FTN Novi Sad Katedra za motore i vozila. Teorija kretanja drumskih vozila Vučno-dinamičke performanse vozila: MAKSIMALNA BRZINA

FTN Novi Sad Katedra za motore i vozila. Teorija kretanja drumskih vozila Vučno-dinamičke performanse vozila: MAKSIMALNA BRZINA : MAKSIMALNA BRZINA Maksimalna brzina kretanja F O (N) F OI i m =i I i m =i II F Oid Princip određivanja v MAX : Drugi Njutnov zakon Dokle god je: F O > ΣF otp vozilo ubrzava Kada postane: F O = ΣF otp

Διαβάστε περισσότερα

DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović

DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović Novi Sad April 17, 2018 1 / 22 Teorija grafova April 17, 2018 2 / 22 Definicija Graf je ure dena trojka G = (V, G, ψ), gde je (i) V konačan skup čvorova,

Διαβάστε περισσότερα

( , 2. kolokvij)

( , 2. kolokvij) A MATEMATIKA (0..20., 2. kolokvij). Zadana je funkcija y = cos 3 () 2e 2. (a) Odredite dy. (b) Koliki je nagib grafa te funkcije za = 0. (a) zadanu implicitno s 3 + 2 y = sin y, (b) zadanu parametarski

Διαβάστε περισσότερα

Slika 5.1 Oblici ponašanja tla pri smicanju

Slika 5.1 Oblici ponašanja tla pri smicanju MEHANIKA TLA: Čvrstoća tla 66 6. ČVRSTOĆA TLA Jedna od najvažnijih inženjerskih osobina tla je svakako smičuća čvrstoća tla. Ona predstavlja najveći smičući napon koji se može naneti strukturi tla u određenom

Διαβάστε περισσότερα

PRORAČUN GLAVNOG KROVNOG NOSAČA

PRORAČUN GLAVNOG KROVNOG NOSAČA PRORAČUN GLAVNOG KROVNOG NOSAČA STATIČKI SUSTAV, GEOMETRIJSKE KARAKTERISTIKE I MATERIJAL Statički sustav glavnog krovnog nosača je slobodno oslonjena greda raspona l11,0 m. 45 0 65 ZAŠTITNI SLOJ BETONA

Διαβάστε περισσότερα

FTN Novi Sad Katedra za motore i vozila. Teorija kretanja drumskih vozila Vučno-dinamičke performanse vozila: MAKSIMALNA BRZINA

FTN Novi Sad Katedra za motore i vozila. Teorija kretanja drumskih vozila Vučno-dinamičke performanse vozila: MAKSIMALNA BRZINA : MAKSIMALNA BRZINA Maksimalna brzina kretanja F O (N) F OI i m =i I i m =i II F Oid Princip određivanja v MAX : Drugi Njutnov zakon Dokle god je: F O > ΣF otp vozilo ubrzava Kada postane: F O = ΣF otp

Διαβάστε περισσότερα

TEHNOLOGIJA MATERIJALA U RUDARSTVU

TEHNOLOGIJA MATERIJALA U RUDARSTVU V E Ž B E TEHNOLOGIJA MATERIJALA U RUDARSTVU Rade Tokalić Suzana Lutovac ISPITIVANJE METALA I LEGURA I ispitivanja sa razaranjem uzoraka II ispitivanja bez razaranja uzoraka III - ispitivanja strukture

Διαβάστε περισσότερα

SEMINAR IZ KOLEGIJA ANALITIČKA KEMIJA I. Studij Primijenjena kemija

SEMINAR IZ KOLEGIJA ANALITIČKA KEMIJA I. Studij Primijenjena kemija SEMINAR IZ OLEGIJA ANALITIČA EMIJA I Studij Primijenjena kemija 1. 0,1 mola NaOH je dodano 1 litri čiste vode. Izračunajte ph tako nastale otopine. NaOH 0,1 M NaOH Na OH Jak elektrolit!!! Disoira potpuno!!!

Διαβάστε περισσότερα

PRILOG. Tab. 1.a. Dozvoljena trajna opterećenja bakarnih pravougaonih profila u(a) za θ at =35 C i θ=30 C, (θ tdt =65 C)

PRILOG. Tab. 1.a. Dozvoljena trajna opterećenja bakarnih pravougaonih profila u(a) za θ at =35 C i θ=30 C, (θ tdt =65 C) PRILOG Tab. 1.a. Dozvoljena trajna opterećenja bakarnih pravougaonih profila u(a) za θ at =35 C i θ=30 C, (θ tdt =65 C) Tab 3. Vrednosti sačinilaca α i β za tipične konstrukcije SN-sabirnica Tab 4. Minimalni

Διαβάστε περισσότερα

BETONSKE KONSTRUKCIJE 3 M 1/r dijagrami

BETONSKE KONSTRUKCIJE 3 M 1/r dijagrami BETONSKE KONSTRUKCIJE 3 M 1/r dijagrami Izv. prof. dr.. Tomilav Kišiček dipl. ing. građ. 0.10.014. Betonke kontrukije III 1 NBK1.147 Slika 5.4 Proračunki dijagrami betona razreda od C1/15 do C90/105, lijevo:

Διαβάστε περισσότερα

Geometrijske karakteristike poprenih presjeka nosaa. 9. dio

Geometrijske karakteristike poprenih presjeka nosaa. 9. dio Geometrijske karakteristike poprenih presjeka nosaa 9. dio 1 Sile presjeka (unutarnje sile): Udužna sila N Poprena sila T Moment uvijanja M t Moment savijanja M Napreanja 1. Normalno napreanje σ. Posmino

Διαβάστε περισσότερα

Kaskadna kompenzacija SAU

Kaskadna kompenzacija SAU Kaskadna kompenzacija SAU U inženjerskoj praksi, naročito u sistemima regulacije elektromotornih pogona i tehnoloških procesa, veoma često se primenjuje metoda kaskadne kompenzacije, u čijoj osnovi su

Διαβάστε περισσότερα

Ispitivanje toka i skiciranje grafika funkcija

Ispitivanje toka i skiciranje grafika funkcija Ispitivanje toka i skiciranje grafika funkcija Za skiciranje grafika funkcije potrebno je ispitati svako od sledećih svojstava: Oblast definisanosti: D f = { R f R}. Parnost, neparnost, periodičnost. 3

Διαβάστε περισσότερα

konst. Električni otpor

konst. Električni otpor Sveučilište J. J. Strossmayera u sijeku Elektrotehnički fakultet sijek Stručni studij Električni otpor hmov zakon Pri protjecanju struje kroz vodič pojavljuje se otpor. Georg Simon hm je ustanovio ovisnost

Διαβάστε περισσότερα

Otpornost R u kolu naizmjenične struje

Otpornost R u kolu naizmjenične struje Otpornost R u kolu naizmjenične struje Pretpostavimo da je otpornik R priključen na prostoperiodični napon: Po Omovom zakonu pad napona na otporniku je: ( ) = ( ω ) u t sin m t R ( ) = ( ) u t R i t Struja

Διαβάστε περισσότερα

RIJEŠENI ZADACI I TEORIJA IZ

RIJEŠENI ZADACI I TEORIJA IZ RIJEŠENI ZADACI I TEORIJA IZ LOGARITAMSKA FUNKCIJA SVOJSTVA LOGARITAMSKE FUNKCIJE OSNOVE TRIGONOMETRIJE PRAVOKUTNOG TROKUTA - DEFINICIJA TRIGONOMETRIJSKIH FUNKCIJA - VRIJEDNOSTI TRIGONOMETRIJSKIH FUNKCIJA

Διαβάστε περισσότερα

( , treći kolokvij) 3. Na dite lokalne ekstreme funkcije z = x 4 + y 4 2x 2 + 2y 2 3. (20 bodova)

( , treći kolokvij) 3. Na dite lokalne ekstreme funkcije z = x 4 + y 4 2x 2 + 2y 2 3. (20 bodova) A MATEMATIKA (.6.., treći kolokvij. Zadana je funkcija z = e + + sin(. Izračunajte a z (,, b z (,, c z.. Za funkciju z = 3 + na dite a diferencijal dz, b dz u točki T(, za priraste d =. i d =.. c Za koliko

Διαβάστε περισσότερα

18. listopada listopada / 13

18. listopada listopada / 13 18. listopada 2016. 18. listopada 2016. 1 / 13 Neprekidne funkcije Važnu klasu funkcija tvore neprekidne funkcije. To su funkcije f kod kojih mala promjena u nezavisnoj varijabli x uzrokuje malu promjenu

Διαβάστε περισσότερα

IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f

IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f 2. Nule i znak funkcije; presek sa y-osom IspitivaƬe

Διαβάστε περισσότερα

Škola za dizajn tekstila i kože Novi Pazar PREDMET: GRAĐEVINSKI MATERIJALI

Škola za dizajn tekstila i kože Novi Pazar PREDMET: GRAĐEVINSKI MATERIJALI Škola za dizajn tekstila i kože Novi Pazar PREDMET: GRAĐEVINSKI MATERIJALI Definicija Mineralna veziva su materijali neorganskog porekla, najčešće u praškastom stanju, koji pomešani sa vodom daju plastična

Διαβάστε περισσότερα

Preuzeto iz elektronske pravne baze Paragraf Lex

Preuzeto iz elektronske pravne baze Paragraf Lex www.paragraf.rs Preuzeto iz elektronske pravne baze Paragraf Lex Ukoliko ovaj propis niste preuzeli sa Paragrafovog sajta ili niste sigurni da li je u pitanju važeća verzija propisa, poslednju verziju

Διαβάστε περισσότερα

ANKERI TIPOVI, PRORAČUN I KONSTRUISANJE

ANKERI TIPOVI, PRORAČUN I KONSTRUISANJE KERI TIPOVI, PRORČU I KOSTRUISJE SPREGUTE KOSTRUKCIJE OD ČELIK I BETO STDRDI E 992-4- Proračun ankera za primenu u betonu E 992-4-2 Ubetonirani ankeri sa glavom E 992-4-3 nker kanali E 992-4-4 aknadno

Διαβάστε περισσότερα

OBRTNA TELA. Vladimir Marinkov OBRTNA TELA VALJAK

OBRTNA TELA. Vladimir Marinkov OBRTNA TELA VALJAK OBRTNA TELA VALJAK P = 2B + M B = r 2 π M = 2rπH V = BH 1. Zapremina pravog valjka je 240π, a njegova visina 15. Izračunati površinu valjka. Rešenje: P = 152π 2. Površina valjka je 112π, a odnos poluprečnika

Διαβάστε περισσότερα

BETONI UVOD Komponente

BETONI UVOD Komponente BETONI Sadržaj aj 1. Uvod 2. Materijali za izradu betona 3. Određivanje sastava betona 4. Svojstva svežeg betona 5. Fizičko mehanička svojstva očvrslog betona 6. Reološka svojstva očvrslog betona 7. Ispitivanja

Διαβάστε περισσότερα

INTELIGENTNO UPRAVLJANJE

INTELIGENTNO UPRAVLJANJE INTELIGENTNO UPRAVLJANJE Fuzzy sistemi zaključivanja Vanr.prof. Dr. Lejla Banjanović-Mehmedović Mehmedović 1 Osnovni elementi fuzzy sistema zaključivanja Fazifikacija Baza znanja Baze podataka Baze pravila

Διαβάστε περισσότερα

35(7+2'1,3525$&8195$7,/$GLPHQ]LRQLVDQMHYUDWLOD

35(7+2'1,3525$&8195$7,/$GLPHQ]LRQLVDQMHYUDWLOD Predmet: Mašinski elementi Proraþun vratila strana 1 Dimenzionisati vratilo elektromotora sledecih karakteristika: ominalna snaga P 3kW Broj obrtaja n 14 min 1 Shema opterecenja: Faktor neravnomernosti

Διαβάστε περισσότερα

3. dio: KERAMIKA, BETON I DRVO BETON

3. dio: KERAMIKA, BETON I DRVO BETON 3. dio: KERAMIKA, BETON I DRVO BETON je heterogeni polifazni kompozitni materijal. Prostim okom vide se u presjeku betona zrna agregata u matrici cementnog kamena. U cementnom kamenu i oko zrna agregata

Διαβάστε περισσότερα

2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x

2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x Zadatak (Darjan, medicinska škola) Izračunaj vrijednosti trigonometrijskih funkcija broja ako je 6 sin =,,. 6 Rješenje Ponovimo trigonometrijske funkcije dvostrukog kuta! Za argument vrijede sljedeće formule:

Διαβάστε περισσότερα

Matematika 1 - vježbe. 11. prosinca 2015.

Matematika 1 - vježbe. 11. prosinca 2015. Matematika - vježbe. prosinca 5. Stupnjevi i radijani Ako je kut φ jednak i rad, tada je veza između i 6 = Zadatak.. Izrazite u stupnjevima: a) 5 b) 7 9 c). d) 7. a) 5 9 b) 7 6 6 = = 5 c). 6 8.5 d) 7.

Διαβάστε περισσότερα

Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama.

Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. a b Verovatno a da sluqajna promenljiva X uzima vrednost iz intervala

Διαβάστε περισσότερα

radni nerecenzirani materijal za predavanja R(f) = {f(x) x D}

radni nerecenzirani materijal za predavanja R(f) = {f(x) x D} Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Neka su D i K bilo koja dva neprazna skupa. Postupak f koji svakom elementu x D pridružuje točno jedan element y K zovemo funkcija

Διαβάστε περισσότερα

Mašinsko učenje. Regresija.

Mašinsko učenje. Regresija. Mašinsko učenje. Regresija. Danijela Petrović May 17, 2016 Uvod Problem predviđanja vrednosti neprekidnog atributa neke instance na osnovu vrednosti njenih drugih atributa. Uvod Problem predviđanja vrednosti

Διαβάστε περισσότερα

(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k.

(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k. 1 3 Skupovi brojeva 3.1 Skup prirodnih brojeva - N N = {1, 2, 3,...} Aksiom matematičke indukcije Neka je N skup prirodnih brojeva i M podskup od N. Ako za M vrijede svojstva: 1) 1 M 2) n M (n + 1) M,

Διαβάστε περισσότερα

Tip ureappleaja: ecovit Jedinice VKK 226 VKK 286 VKK 366 VKK 476 VKK 656

Tip ureappleaja: ecovit Jedinice VKK 226 VKK 286 VKK 366 VKK 476 VKK 656 TehniËki podaci Tip ureappeaja: ecovit Jedinice VKK 226 VKK 286 VKK 366 VKK 476 VKK 66 Nazivna topotna snaga (na /),122,,28, 7,436,,47,6 1,16,7 Nazivna topotna snaga (na 60/) 4,21,,621, 7,23,,246,4 14,663,2

Διαβάστε περισσότερα

INŽENJERSTVO NAFTE I GASA. 2. vežbe. 2. vežbe Tehnologija bušenja II Slide 1 of 50

INŽENJERSTVO NAFTE I GASA. 2. vežbe. 2. vežbe Tehnologija bušenja II Slide 1 of 50 INŽENJERSTVO NAFTE I GASA Tehnologija bušenja II 2. vežbe 2. vežbe Tehnologija bušenja II Slide 1 of 50 Proračuni trajektorija koso-usmerenih bušotina 2. vežbe Tehnologija bušenja II Slide 2 of 50 Proračun

Διαβάστε περισσότερα

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju RAČUN OSTATAKA 1 1 Prsten celih brojeva Z := N + {} N + = {, 3, 2, 1,, 1, 2, 3,...} Osnovni primer. (Z, +,,,, 1) je komutativan prsten sa jedinicom: sabiranje (S1) asocijativnost x + (y + z) = (x + y)

Διαβάστε περισσότερα

SPREGNUTE KONSTRUKCIJE

SPREGNUTE KONSTRUKCIJE SPREGNUTE KONSTRUKCIJE Prof. dr. sc. Ivica Džeba Građevinski fakultet Sveučilišta u Zagrebu SPREGNUTI NOSAČI 1B. DIO PRIJENJIVO NA SVE KLASE POPREČNIH PRESJEKA OBAVEZNA PRIJENA ZA KLASE PRESJEKA 3 i 4

Διαβάστε περισσότερα

PRETHODNI PRORACUN VRATILA (dimenzionisanje vratila)

PRETHODNI PRORACUN VRATILA (dimenzionisanje vratila) Predet: Mašinski eleenti Proračun vratila strana Dienzionisati vratilo elektrootora sledecih karakteristika: oinalna snaga P = 3kW roj obrtaja n = 400 in Shea opterecenja: Faktor neravnoernosti K =. F

Διαβάστε περισσότερα

BETONSKE KONSTRUKCIJE ESPB: 6. Semestar: V. Prof. dr Snežana Marinković Doc. dr Ivan Ignjatović

BETONSKE KONSTRUKCIJE ESPB: 6. Semestar: V. Prof. dr Snežana Marinković Doc. dr Ivan Ignjatović 1 BETONSKE KONSTRUKCIJE Prof. dr Snežana Marinković Doc. dr Ivan Ignjatović Semestar: V ESPB: 6 LITERATURA BETONSKE KONSTRUKCIJE Najdanović Dušan BETON I ARMIRANI BETON 87 1 Priručnik 2 Prilozi OSOBINE

Διαβάστε περισσότερα

3.1 Granična vrednost funkcije u tački

3.1 Granična vrednost funkcije u tački 3 Granična vrednost i neprekidnost funkcija 2 3 Granična vrednost i neprekidnost funkcija 3. Granična vrednost funkcije u tački Neka je funkcija f(x) definisana u tačkama x za koje je 0 < x x 0 < r, ili

Διαβάστε περισσότερα

Program testirati pomoću podataka iz sledeće tabele:

Program testirati pomoću podataka iz sledeće tabele: Deo 2: Rešeni zadaci 135 Vrednost integrala je I = 2.40407 42. Napisati program za izračunavanje koeficijenta proste linearne korelacije (Pearsonovog koeficijenta) slučajnih veličina X = (x 1,..., x n

Διαβάστε περισσότερα

PRAVILNIK O TEHNIČKIM NORMATIVIMA ZA BETON I ARMIRANI BETON. ("Sl. list SFRJ", br. 11/87) I OPŠTE ODREDBE. Član 1

PRAVILNIK O TEHNIČKIM NORMATIVIMA ZA BETON I ARMIRANI BETON. (Sl. list SFRJ, br. 11/87) I OPŠTE ODREDBE. Član 1 PRAVILNIK O TEHNIČKIM NORMATIVIMA ZA BETON I ARMIRANI BETON ("Sl. list SFRJ", br. 11/87) I OPŠTE ODREDBE Član 1 Ovim pravilnikom propisuju se uslovi i zahtevi koji moraju biti ispunjeni pri projektovanju,

Διαβάστε περισσότερα

1. Duljinska (normalna) deformacija ε. 2. Kutna (posmina) deformacija γ. 3. Obujamska deformacija Θ

1. Duljinska (normalna) deformacija ε. 2. Kutna (posmina) deformacija γ. 3. Obujamska deformacija Θ Deformaije . Duljinska (normalna) deformaija. Kutna (posmina) deformaija γ 3. Obujamska deformaija Θ 3 Tenor deformaija tenor drugog reda ij γ γ γ γ γ γ 3 9 podataka+mjerna jedinia 4 Simetrinost tenora

Διαβάστε περισσότερα

Strukture podataka i algoritmi 1. kolokvij 16. studenog Zadatak 1

Strukture podataka i algoritmi 1. kolokvij 16. studenog Zadatak 1 Strukture podataka i algoritmi 1. kolokvij Na kolokviju je dozvoljeno koristiti samo pribor za pisanje i službeni šalabahter. Predajete samo papire koje ste dobili. Rezultati i uvid u kolokvije: ponedjeljak,

Διαβάστε περισσότερα

10. STABILNOST KOSINA

10. STABILNOST KOSINA MEHANIKA TLA: Stabilnot koina 101 10. STABILNOST KOSINA 10.1 Metode proračuna koina Problem analize tabilnoti zemljanih maa vodi e na određivanje odnoa između rapoložive mičuće čvrtoće i proečnog mičućeg

Διαβάστε περισσότερα

Računarska grafika. Rasterizacija linije

Računarska grafika. Rasterizacija linije Računarska grafika Osnovni inkrementalni algoritam Drugi naziv u literaturi digitalni diferencijalni analizator (DDA) Pretpostavke (privremena ograničenja koja se mogu otkloniti jednostavnim uopštavanjem

Διαβάστε περισσότερα

VIJČANI SPOJ VIJCI HRN M.E2.257 PRIRUBNICA HRN M.E2.258 BRTVA

VIJČANI SPOJ VIJCI HRN M.E2.257 PRIRUBNICA HRN M.E2.258 BRTVA VIJČANI SPOJ PRIRUBNICA HRN M.E2.258 VIJCI HRN M.E2.257 BRTVA http://de.wikipedia.org http://de.wikipedia.org Prirubnički spoj cjevovoda na parnom stroju Prirubnički spoj cjevovoda http://de.wikipedia.org

Διαβάστε περισσότερα

Dimenzioniranje nosaa. 1. Uvjeti vrstoe

Dimenzioniranje nosaa. 1. Uvjeti vrstoe Dimenzioniranje nosaa 1. Uvjeti vrstoe 1 Otpornost materijala prouava probleme 1. vrstoe,. krutosti i 3. elastine stabilnosti konstrukcija i dijelova konstrukcija od vrstog deformabilnog materijala. Moraju

Διαβάστε περισσότερα

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Trigonometrijske jednačine i nejednačine. Zadaci koji se rade bez upotrebe trigonometrijskih formula. 00. FF cos x sin x

Διαβάστε περισσότερα

Obrada signala

Obrada signala Obrada signala 1 18.1.17. Greška kvantizacije Pretpostavka je da greška kvantizacije ima uniformnu raspodelu 7 6 5 4 -X m p x 1,, za x druge vrednosti x 3 x X m 1 X m = 3 x Greška kvantizacije x x x p

Διαβάστε περισσότερα

PRIMJER 3. MATLAB filtdemo

PRIMJER 3. MATLAB filtdemo PRIMJER 3. MATLAB filtdemo Prijenosna funkcija (IIR) Hz () =, 6 +, 3 z +, 78 z +, 3 z +, 53 z +, 3 z +, 78 z +, 3 z +, 6 z, 95 z +, 74 z +, z +, 9 z +, 4 z +, 5 z +, 3 z +, 4 z 3 4 5 6 7 8 3 4 5 6 7 8

Διαβάστε περισσότερα

Opšte KROVNI POKRIVAČI I

Opšte KROVNI POKRIVAČI I 1 KROVNI POKRIVAČI I FASADNE OBLOGE 2 Opšte Podela prema zaštitnim svojstvima: Hladne obloge - zaštita hale od atmosferskih padavina, Tople obloge - zaštita hale od atmosferskih padavina i prodora hladnoće

Διαβάστε περισσότερα

Pismeni ispit iz matematike GRUPA A 1. Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj, zatim naći 4 z.

Pismeni ispit iz matematike GRUPA A 1. Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj, zatim naći 4 z. Pismeni ispit iz matematike 06 007 Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj z = + i, zatim naći z Ispitati funkciju i nacrtati grafik : = ( ) y e + 6 Izračunati integral:

Διαβάστε περισσότερα

Značenje indeksa. Konvencija o predznaku napona

Značenje indeksa. Konvencija o predznaku napona * Opšte stanje napona Tenzor napona Značenje indeksa Normalni napon: indeksi pokazuju površinu na koju djeluje. Tangencijalni napon: prvi indeks pokazuje površinu na koju napon djeluje, a drugi pravac

Διαβάστε περισσότερα

Trajnost materijala. Mr.sc. Irina Stipanović Oslaković, dipl.ing.građ. Institut građevinarstva Hrvatske d.d., Zagreb

Trajnost materijala. Mr.sc. Irina Stipanović Oslaković, dipl.ing.građ. Institut građevinarstva Hrvatske d.d., Zagreb Trajnost materijala Mr.sc. Irina Stipanović Oslaković, dipl.ing.građ. Institut građevinarstva Hrvatske d.d., Zagreb Sadržaj aj izlaganja Problem trajnosti građevinskih materijala Djelovanja iz okoliša

Διαβάστε περισσότερα

Zamor materijala Smitov dijagram. Prof.dr Darko Bajić Mašinski fakultet Podgorica

Zamor materijala Smitov dijagram. Prof.dr Darko Bajić Mašinski fakultet Podgorica Zamor materijala Smitov dijagram Prof.dr Darko Bajić fakultet Podgorica darko@ac.me Šta je predstavlja ZAMOR MATERIJALA? To je proces postepenog ili kontinualnog razaranja strukture materijala nekog elementa

Διαβάστε περισσότερα

Klasifikacija blizu Kelerovih mnogostrukosti. konstantne holomorfne sekcione krivine. Kelerove. mnogostrukosti. blizu Kelerove.

Klasifikacija blizu Kelerovih mnogostrukosti. konstantne holomorfne sekcione krivine. Kelerove. mnogostrukosti. blizu Kelerove. Klasifikacija blizu Teorema Neka je M Kelerova mnogostrukost. Operator krivine R ima sledeća svojstva: R(X, Y, Z, W ) = R(Y, X, Z, W ) = R(X, Y, W, Z) R(X, Y, Z, W ) + R(Y, Z, X, W ) + R(Z, X, Y, W ) =

Διαβάστε περισσότερα

Antene. Srednja snaga EM zračenja se dobija na osnovu intenziteta fluksa Pointingovog vektora kroz sferu. Gustina snage EM zračenja:

Antene. Srednja snaga EM zračenja se dobija na osnovu intenziteta fluksa Pointingovog vektora kroz sferu. Gustina snage EM zračenja: Anene Transformacija EM alasa u elekrični signal i obrnuo Osnovne karakerisike anena su: dijagram zračenja, dobiak (Gain), radna učesanos, ulazna impedansa,, polarizacija, efikasnos, masa i veličina, opornos

Διαβάστε περισσότερα

ELEKTROTEHNIČKI ODJEL

ELEKTROTEHNIČKI ODJEL MATEMATIKA. Neka je S skup svih živućih državljana Republike Hrvatske..04., a f preslikavanje koje svakom elementu skupa S pridružuje njegov horoskopski znak (bez podznaka). a) Pokažite da je f funkcija,

Διαβάστε περισσότερα

TRIGONOMETRIJA TROKUTA

TRIGONOMETRIJA TROKUTA TRIGONOMETRIJA TROKUTA Standardne oznake u trokutuu ABC: a, b, c stranice trokuta α, β, γ kutovi trokuta t,t,t v,v,v s α,s β,s γ R r s težišnice trokuta visine trokuta simetrale kutova polumjer opisane

Διαβάστε περισσότερα