AGREGAT. Asistent: Josip Crnojevac, mag.ing.aedif. SVEUČILIŠTE JOSIPA JURJA STROSSMAYERA U OSIJEKU
|
|
- Καλλιόπη Παπανικολάου
- 6 χρόνια πριν
- Προβολές:
Transcript
1 AGREGAT Asistent: Josip Crnojevac, mag.ing.aeif. SVEUČILIŠTE JOSIPA JURJA STROSSMAYERA U OSIJEKU JOSIP JURAJ STROSSMAYER UNIVERSITY OF OSIJEK 1
2 Pojela agregata PODJELA AGREGATA - PREMA PODRIJETLU Agregat Prirono nevezane stijene Drobljeni prironi agregat Reciklirani agregat Umjetni agregat 2
3 Pojela agregata Prironi agregat se obiva iz prironih mineralnih izvora, prironim robljenjem bez mehaničke obrae - pijesak i šljunak. Proizveeni agregat se obiva mehaničkom obraom prironih mineralnih sirovina - robljeni prironi agregat. Reciklirani agregat se obiva robljenjem materijala koji je korišten u građevinarstvu - reciklirani beton, reciklirana opeka, reciklirano staklo it. Umjetni agregat je agregat obiven umjetnim putem iz prironih i umjetnih materijala - zgura, ekspanirana glina, leteći pepeo, ekspanirani perlit, ekspanirani polimerni materijali. 3
4 Pojela agregata PODJELA AGREGATA - PREMA VELIČINI ZRNA Agregat Krupni agregat (veličina zrna 4 mm o 125 mm) Sitni agregat (veličina zrna o 0 mm o 4 mm) 4
5 Pojela agregata PODJELA AGREGATA - PREMA GUSTOĆI Agregat Običan (2000kg/m³<ρ<3000kg/m³) Lagan (ρ<2000kg/m³) Težak (ρ>3000kg/m³) 5
6 GRANULOMETRIJSKI SASTAV AGREGATA Prestavlja raspojelu veličine zrna u ukupnom sastavu agregata. Nazivne frakcije u proizvonji agregata: 0-4 mm 4-8 mm 8-16 mm mm mm mm 6
7 Granulometrijski sastav oređuje se metoom sijanja na normiranoj seriji sita Normirana serija sita: 125 mm 63 mm 31,5 mm 16 mm 8 mm 4 mm 2 mm 1 mm 0,5 mm 0,25 mm 0,125 mm 0,063 mm 7
8 Minimalne količine agregata za prosijavanje ovisno o maksimalnoj veličini zrna agregata Maksimalna veličina zrna agregata D (mm) Minimalna masa za prosijavanje (kg)
9 PRORAČUN OPTIMALNOG GRANULOMETRIJSKOG SASTAVA Agregat EMPA krivulja A 50 m m % Fuller-ova krivulja B 100 m % Za masivni beton C 100 m 0,4 % - otvor svakog pojeinačnog sita (mm) m - najveće zrno agregata (mm) 9
10 PRIMJER: Za zaano maksimalno zrno m =16 mm Otvor sita (mm) 0 0,125 0,25 0, Postotak prolaza A 0 4,8 7,0 10,4 15,6 23,9 37,5 60,4 100 (%) B 0 8,8 12,5 17, , ,7 100 A 50 m m % A 0, , ,125 4,8 B 100 m % 0,125 B0, ,
11 PRORAČUN KUMULATIVNOG GRANULOMETRIJSKOG SASTAVA Agregat Prosijavanjem na seriji sita obivene su vrijenosti prikazane u tablici: Frakcija masa (g) otvor sita (mm) ostatak na situ (g) ostatak na situ (g) ostatak na situ (g) ostatak na situ (g) 31,5 0,0 0,0 0,0 90,0 16 0,0 0,0 510,0 7685,0 8 0,0 679,0 5992,0 965, ,0 1550,0 300,0 30, ,0 8,0 0,0 0, ,0 0,0 0,0 0,0 0,5 212,0 0,0 0,0 0,0 0,25 100,0 0,0 0,0 0,0 0, ,0 0,0 0,0 0,0 Dno 50,0 20, ,0 11
12 Granulometrijeki sastav agregata FRAKCIJA 0-4 (m=1532 g) SITO OSTATAK NA SITU PROLAZ KROZ SITO (mm) (g) (g) (%) 63 0,0 1532,0 100,0 31,5 0,0 1532,0 100,0 16 0,0 1532,0 100,0 8 0,0 1532,0 100, ,0 1342,0 87, ,0 896,0 58, ,0 536,0 35,0 0,5 212,0 324,0 21,1 0,25 100,0 224,0 14,6 0, ,0 50,0 3,3 Dno 50,0 0,0 0,0 suma 1532,0 12
13 Numerički granulometrijski sastav Frakcija (mm) Prolaz kroz sito NUMERIČKI GRANULOMETRIJSKI SASTAV AGREGATA Sito (mm) 0,125 0,25 0,50 1,00 2,00 4,00 8,00 16,00 31,50 63, % 3,3 14,6 21,1 35,0 58,5 87,6 100,0 100,0 100,0 100,0 4-8 % 0,0 0,0 0,0 0,0 0,9 1,2 69,9 100,0 100,0 100, % 0,0 0,0 0,0 0,0 0,0 1,4 5,8 92,6 100,0 100, % 0,0 0,0 0,0 0,0 0,0 0,3 0,7 11,6 99,0 100,0 Krivulja A ZADANI KUMULATIVNI SASTAV (optimalna granulometrijska krivulja) % 3,3 4,9 7,1 10,5 15,8 24,2 37,9 61,0 100,0 100,0 87,6 x 1 +1,2x 2 +1,4x 3 +0,3x 4 =24,2 x 1 = 27,0 % 100 x 1 +69,9x 2 +5,8x 3 +0,7x 4 =37,9 x 2 = 14,0 % 100 x x 2 +92,6x 3 +11,6x 4 =61,0 x 3 = 16,0 % 100 x x x 3 +99,0x 4 =100,0 x 4 = 43,0 % 13
14 Proračunati kumulativni granulometrijski sastav PRORAČUNATI KUMULATIVNI GRANULOMETRIJSKI SASTAV AGREGATA Prolaz Frakcija Sito (mm) kroz sito (mm) (%) 0,125 0,25 0,5 1,0 2,0 4,0 8,0 16,00 31,5 63, ,9 3,9 5,7 9,4 15,8 23,6 27,0 27,0 27,0 27, ,0 0,0 0,0 0,0 0,1 0,2 9, ,0 0,0 0,0 0,0 0,0 0,2 0,9 15, ,0 0,0 0,0 0,0 0,0 0,1 0,3 5, Suma 100 0,9 3,9 5,7 9,4 15,9 24,2 37,2 61,2 100,0 100,0 x 1... x n računski obiveni prolazi kroz sito (%) 14
15 Postotak prolaza kroz sito (%) Agregat Krivulje prosijavanja svake frakcije, te zaanog (optimalnog) i proračunatog kumulativnog sastava Zaani kumulativni sastav (krivulja A) Proracunati kumaulativni sastav (suma) 0 0 0,12 0,25 0,50 1,00 2,00 4,00 8,00 16,00 31,50 63,00 Otvorna situ (mm) 15
16 UTJECAJ VLAŽNOSTI I APSORPCIJE AGREGATA Za potrebe proračuna sastava betona pretpostavlja se a je agregat zasićen površinski suh U stvarnosti je agregat najčešće: nezasićen površinski suh ili vlažan 16
17 Korekcija mase agregata za izrau betona m zps =2000 kg Frakcija (mm) Masa (m zps ) Apsorpcija - Vlažnost + Korigirana masa % kg % kg % kg kg ,4 6,16 4,5 19,8 453, ,2 4,32 3,0 10,8 366, ,1 13,2 2,1 25,2 1212,0 Ukupno ,68-55,8 2032,12 Korekcija voe m voe =150 kg 23,68 55,8 117,88 kg V voe =117,88 litara 17
18 Ispitivanje oblika zrna agregata ISPITIVANJE OBLIKA ZRNA AGREGATA Oblik zrna agregata ocjenjuje se obzirom na omjer uljine zrna (L) i ebljine zrna agregata (E) Ineks oblika (SI) Razre SI Ineks oblika (SI) Namjena SI M M 1 (%) SI40 40 Betoni o uključivo klase C 12/15 SI20 20 Ostali betoni M 2 - masa zrna agregata čiji je omjer L/E > 3 M 1 - ukupna masa ispitanih zrna 18
19 Maksimalna veličina zrna agregata MAKSIMALNA VELIČINA ZRNA AGREGATA D max m D m m m1 x y D max 1,25 a a minimalni horizontalni razmak armature D max 1/4 minimalna imenzija betonskog elementa Za betonske ploče vrijei: D max 1/3 minimalna imenzija betonskog elementa 19
20 Moul finoće zrnatosti agregata MODUL FINOĆE ZRNATOSTI AGREGATA MF D p o 0, K D 0,125 p 100 p n MF p o maseni postotak ostatka na situ p p maseni postotak prolaza na situ D najveće zrno agregata n broj sita 20
SVJEŽI BETON. Asistent: Josip Crnojevac, mag.ing.aedif. SVEUČILIŠTE JOSIPA JURJA STROSSMAYERA U OSIJEKU
SJEŽI BETON Asistent: Josip Crnojevac, mag.ing.aedif. jcrnojevac@gmail.com SEUČILIŠTE JOSIPA JURJA STROSSMAYERA U OSIJEKU JOSIP JURAJ STROSSMAYER UNIERSITY OF OSIJEK 1 Uvod Beton je umjetni građevni materijal
VEŽBA 7. ISPITIVANJE BETONA I NJEGOVIH KOMPONENTI
VEŽBA 7. ISPITIVANJE BETONA I NJEGOVIH KOMPONENTI O betonu... Beton je konstruktivni materijal koji nastaje očvršćavanjem mešavine: kamenih agregata, mineralnog veziva i vode aditivi Aktivne komponente
PREDNAPETI BETON Primjer nadvožnjaka preko autoceste
PREDNAPETI BETON Primjer nadvožnjaka preko autoceste 7. VJEŽBE PLAN ARMATURE PREDNAPETOG Dominik Skokandić, mag.ing.aedif. PLAN ARMATURE PREDNAPETOG 1. Rekapitulacija odabrane armature 2. Određivanje duljina
Projekat betona. Vježbe, Pripremili: Doc.dr. Merima Šahinagić-Isović Asis. Marko Ćećez
Projekat betona Vježbe, 08.01.2013. Pripremili: Doc.dr. Merima Šahinagić-Isović Asis. Marko Ćećez Opis objekta Poslovno stambeni objekat Spratnost: Su + Pr + 4 + Pk Neto površina objekta 6277,54 m 2 Dati
PRORAČUN GLAVNOG KROVNOG NOSAČA
PRORAČUN GLAVNOG KROVNOG NOSAČA STATIČKI SUSTAV, GEOMETRIJSKE KARAKTERISTIKE I MATERIJAL Statički sustav glavnog krovnog nosača je slobodno oslonjena greda raspona l11,0 m. 45 0 65 ZAŠTITNI SLOJ BETONA
PRIMJENA RECIKLIRANOG AGREGATA IZ GRAĐEVNOG OTPADA
PRIMJENA RECIKLIRANOG AGREGATA IZ GRAĐEVNOG OTPADA 1 UVOD Recikliranje građevinskog otpada u pojedinim europskim zemljama, kao što su Nizozemska, Belgija i Danska čini više od 80% ukupno proizvedenog građevinskog
Osobine i karakteristike građevinskih materijala. Predavanje,
Osobine i karakteristike građevinskih materijala Predavanje, 15.03.2012. Parametri stanja i strukturne karakteristike Fizičke osobine Fizičko-mehaničke osobine Konstrukcione osobine Reološke osobine Tehnološke
PROJEKAT BETONSKE MEŠAVINE Redosled postupaka
Redosled postupaka - Izbor koponentnih aterijala (na osnovu vrste konstrukcije, sredine u kojoj se gradi i ekonoskih faktora) - Određivanje noinalno najvećeg zrna agregata (D) (na osnovu planova oplate
Betonske konstrukcije 1 - vežbe 3 - Veliki ekscentricitet -Dodatni primeri
Betonske konstrukcije 1 - vežbe 3 - Veliki ekscentricitet -Dodatni primeri 1 1 Zadatak 1b Čisto savijanje - vezano dimenzionisanje Odrediti potrebnu površinu armature za presek poznatih dimenzija, pravougaonog
Betonske konstrukcije 1 - vežbe 1 -
Betonske konstrukcije 1 - vežbe 1 - Savijanje pravougaoni presek Sadržaj vežbi: Osnove proračuna Primer 1 vezano dimenzionisanje Primer 2 slobodno dimenzionisanje 1 SLOŽENO savijanje ε cu2 =3.5ä β2x G
Projektovanje sastava betona
Projektovanje sastava betona Predavanje, 04.12.2012. Pripremili: Doc.dr. Merima Šahinagić-Isović Asis. Marko Ćećez SADRŽAJ Opće postavke Izbor komponentnih materijala Agregat Cement Voda Aditivi Sastav
Granulometrijski sastav tla
Granulometrijski sastav tla Granlometrijski sastav je efinisan krivom koja opisuje saržaj zrna različite veličine izražen u procentima težine. Ovaj kalasifikacioni sistem je jenostavan za efinisanje graničnih
3525$&8158&1(',=$/,&(6$1$92-1,095(7(120
Srednja masinska skola OSOVE KOSTRUISAJA List1/8 355$&8158&1(',=$/,&(6$1$9-1,095(7(10 3ROD]QLSRGDFL maksimalno opterecenje Fa := 36000 visina dizanja h := 440 mm Rucna sila Fr := 350 1DYRMQRYUHWHQR optereceno
Srednjenaponski izolatori
Srednjenaponski izolatori Linijski potporni izolatori tip R-ET Komercijalni naziv LPI 24 N ET 1) LPI 24 L ET/5 1)2) LPI 24 L ET/6 1)2) LPI 38 L ET 1) Oznaka prema IEC 720 R 12,5 ET 125 N R 12,5 ET 125
PROJEKAT BETONSKE MEŠAVINE Redosled postupaka
Redosled postupaka - Izbor komponentnih materijala (na osnovu vrste konstrukcije, sredine u kojoj se gradi i ekonomskih aktora) - Određivanje nominalno najvećeg zrna agregata (D) (na osnovu planova oplate
Novi Sad god Broj 1 / 06 Veljko Milković Bulevar cara Lazara 56 Novi Sad. Izveštaj o merenju
Broj 1 / 06 Dana 2.06.2014. godine izmereno je vreme zaustavljanja elektromotora koji je radio u praznom hodu. Iz gradske mreže 230 V, 50 Hz napajan je monofazni asinhroni motor sa dva brusna kamena. Kada
Beton. Predavanje,
Beton Predavanje, 21.09.2012. Betoni Vještački kameni materijal dobijen očvršćavanjem mješavine nekog vezivnog materijala i agregata (granulata) Vezivni materijal: gips, kreč, cement, asfalt, epoksi smole
Teorija betonskih konstrukcija 1. Vežbe br. 4. GF Beograd
Teorija betonskih konstrukcija 1 Vežbe br. 4 GF Beograd Teorija betonskih konstrukcija 1 1 "T" preseci - VEZANO dimenzionisanje Poznato: statički uticaji (M G,Q ) sračunato kvalitet materijala (f cd, f
4 PRORAČUN DOBITAKA TOPLINE LJETO
4 PRORAČUN DOBITAKA TOPLINE LJETO Izvori topline u ljetnom razdoblju: 1. unutrašnji izvori topline Q I (dobitak topline od ljudi, rasvjete, strojeva, susjednih prostorija, ) 2. vanjski izvori topline Q
POVRŠINA TANGENCIJALNO-TETIVNOG ČETVEROKUTA
POVRŠIN TNGENIJLNO-TETIVNOG ČETVEROKUT MLEN HLP, JELOVR U mnoštvu mnogokuta zanimljiva je formula za površinu četverokuta kojemu se istoobno može upisati i opisati kružnica: gje su a, b, c, uljine stranica
Opšte KROVNI POKRIVAČI I
1 KROVNI POKRIVAČI I FASADNE OBLOGE 2 Opšte Podela prema zaštitnim svojstvima: Hladne obloge - zaštita hale od atmosferskih padavina, Tople obloge - zaštita hale od atmosferskih padavina i prodora hladnoće
3 Klasifikacija tla i indeksni pokazatelji.
3 Klasifikacija tla i indeksni pokazatelji. 3.1 Osnovne grupe tla Postoji niz različitih klasifikacija tla. Svakako, klasifikacija treba omogućiti da se pomoću jednostavnih pokusa svrstaju tla u grupe
NAREDBA O OBAVEZNOM ATESTIRANJU FRAKCIONISANOG KAMENOG AGREGATA ZA BETON I ASFALT. ("Sl. list SFRJ", br. 41/87)
NAREDBA O OBAVEZNOM ATESTIRANJU FRAKCIONISANOG KAMENOG AGREGATA ZA BETON I ASFALT ("Sl. list SFRJ", br. 41/87) 1. Obaveznom atestiranju podleže sledeće vrste frakcionisanog kamenog agregata za beton i
Komponente betona: Agregat, Voda i Aditivi
Komponente betona: Agregat, Voda i Aditivi Predavanje, 05.11.2013. Pripremili: Doc.dr. Merima Šahinagić-Isović Asis. Marko Ćećez SADRŽAJ Osnovni uslovi kvaliteta agregata Granulometrijski sastav agregata
Konstruisanje. Dobro došli na... SREDNJA MAŠINSKA ŠKOLA NOVI SAD DEPARTMAN ZA PROJEKTOVANJE I KONSTRUISANJE
Dobro došli na... Konstruisanje GRANIČNI I KRITIČNI NAPON slajd 2 Kritični naponi Izazivaju kritične promene oblika Delovi ne mogu ispravno da vrše funkciju Izazivaju plastične deformacije Može doći i
Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu
Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Trigonometrijske jednačine i nejednačine. Zadaci koji se rade bez upotrebe trigonometrijskih formula. 00. FF cos x sin x
MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15
MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 Matrice - osnovni pojmovi (Matrice i determinante) 2 / 15 (Matrice i determinante) 2 / 15 Matrice - osnovni pojmovi Matrica reda
3 SEDIMENTNE STRUKTURE
3 SEDIMENTNE STRUKTURE 3.1 UVOD fizičke osobine sedimenata koje su uglavnom odraz taložnih procesa, ali mogu biti i posttaložnog odnosno dijagenetskog podrijetla najčešće obuhvaćaju veličinu zrna morfologiju
Antene. Srednja snaga EM zračenja se dobija na osnovu intenziteta fluksa Pointingovog vektora kroz sferu. Gustina snage EM zračenja:
Anene Transformacija EM alasa u elekrični signal i obrnuo Osnovne karakerisike anena su: dijagram zračenja, dobiak (Gain), radna učesanos, ulazna impedansa,, polarizacija, efikasnos, masa i veličina, opornos
4. STATIČKI PRORAČUN STUBIŠTA
JBG 4. STTIČKI PRORČUN STUBIŠT PROGR IZ KOLEGIJ BETONSKE I ZIDNE KONSTRUKCIJE 9 6 5 5 SVEUČILIŠTE U ZGREBU JBG 4. Statiči proračun stubišta 4.. Stubišni ra 4... naliza opterećenja 5 5 4 6 8 0 Slia 4..
Program testirati pomoću podataka iz sledeće tabele:
Deo 2: Rešeni zadaci 135 Vrednost integrala je I = 2.40407 42. Napisati program za izračunavanje koeficijenta proste linearne korelacije (Pearsonovog koeficijenta) slučajnih veličina X = (x 1,..., x n
4. STATIČKI PRORAČUN STUBIŠTA
JBAG 4. STATIČKI PRORAČUN STUBIŠTA PROGRA IZ KOLEGIJA BETONSKE I ZIDANE KONSTRUKCIJE 9 5 SVEUČILIŠTE U ZAGREBU JBAG 4. Statiči proračun stubišta 4.. Stubišni ra 4... Analiza opterećenja 5 5 4 6 8 5 6 0
PRIMJER 3. MATLAB filtdemo
PRIMJER 3. MATLAB filtdemo Prijenosna funkcija (IIR) Hz () =, 6 +, 3 z +, 78 z +, 3 z +, 53 z +, 3 z +, 78 z +, 3 z +, 6 z, 95 z +, 74 z +, z +, 9 z +, 4 z +, 5 z +, 3 z +, 4 z 3 4 5 6 7 8 3 4 5 6 7 8
BETONSKE KONSTRUKCIJE. Program
BETONSKE KONSTRUKCIJE Program Zagreb, 017. Ime i prezime 50 60 (h) 16 (h0) () () 600 (B) 600 (B) 500 () 500 () SDRŽJ 1. Tehnički opis.... Proračun ploče POZ 01-01... 3.1. naliza opterećenja ploče POZ 01-01...
Kontrola proizvodnje betona prema EN 206-1
Kontrola proizvodnje betona prema EN 206-1 Sadržaj Agregat Kriteriji za granulometrijski sastav agregata 4 Pregled svojstava i kategorija 8 Cement Označavanje cementa prema EN 197-1 12 Beton Odnosi između
2. KOLOKVIJ IZ MATEMATIKE 1
2 cos(3 π 4 ) sin( + π 6 ). 2. Pomoću linearnih transformacija funkcije f nacrtajte graf funkcije g ako je, g() = 2f( + 3) +. 3. Odredite domenu funkcije te odredite f i njenu domenu. log 3 2 + 3 7, 4.
LANCI & ELEMENTI ZA KAČENJE
LANCI & ELEMENTI ZA KAČENJE 0 4 0 1 Lanci za vešanje tereta prema standardu MSZ EN 818-2 Lanci su izuzetno pogodni za obavljanje zahtevnih operacija prenošenja tereta. Opseg radne temperature se kreće
OSNOVNI TEHNIČKI UVJETI ZA KAKVOĆU MATERIJALA I IZVEDBU KOLNIKA
OSNOVNI TEHNIČKI UVJETI ZA KAKVOĆU MATERIJALA I IZVEDBU KOLNIKA Izvođač je dužan dostaviti potrebnu dokumentaciju za sve građevinske materijale koji će se koristiti u izgradnji a kojom se dokazuju tražena
10. STABILNOST KOSINA
MEHANIKA TLA: Stabilnot koina 101 10. STABILNOST KOSINA 10.1 Metode proračuna koina Problem analize tabilnoti zemljanih maa vodi e na određivanje odnoa između rapoložive mičuće čvrtoće i proečnog mičućeg
ZAVRŠNI RAD FRANE MRŠIĆ-BOŽINOVIĆ
SVEUČILIŠTE U SPLITU GRAĐEVINSKO ARHITEKTONSKI FAKULTET ZAVRŠNI RAD FRANE MRŠIĆ-BOŽINOVIĆ SPLIT,2015 SVEUČILIŠTE U SPLITU GRAĐEVINSKO ARHITEKTONSKI FAKULTET Utjecaj mineralnih dodataka na svojstva betona
PRERADA GROŽðA. Sveučilište u Splitu Kemijsko-tehnološki fakultet. Zavod za prehrambenu tehnologiju i biotehnologiju. Referati za vježbe iz kolegija
Sveučilište u Splitu Kemijsko-tehnološki fakultet Zavod za prehrambenu tehnologiju i biotehnologiju Referati za vježbe iz kolegija PRERADA GROŽðA Stručni studij kemijske tehnologije Smjer: Prehrambena
MEHANIKA FLUIDA. Prosti cevovodi
MEHANIKA FLUIDA Prosti ceooi zaatak Naći brzin oe kroz naglaak izlaznog prečnika =5 mm, postaljenog na kraj gmenog crea prečnika D=0 mm i žine L=5 m na čijem je prenjem el građen entil koeficijenta otpora
21. ŠKOLSKO/OPĆINSKO/GRADSKO NATJECANJE IZ GEOGRAFIJE GODINE 8. RAZRED TOČNI ODGOVORI
21. ŠKOLSKO/OPĆINSKO/GRADSKO NATJECANJE IZ GEOGRAFIJE 2014. GODINE 8. RAZRED TOČNI ODGOVORI Bodovanje za sve zadatke: - boduju se samo točni odgovori - dodatne upute navedene su za pojedine skupine zadataka
GLAZBENA UMJETNOST. Rezultati državne mature 2010.
GLAZBENA UJETNOST Rezultati državne mature 2010. Deskriptivna statistika ukupnog rezultata PARAETAR VRIJEDNOST N 112 k 61 72,5 St. pogreška mjerenja 5,06 edijan 76,0 od 86 St. devijacija 15,99 Raspon 66
BETONSKE KONSTRUKCIJE. Program
BETONSKE KONSTRUKCIJE Program Zagreb, 009. Ime i prezime 50 60 (h) 16 (h0) (A) (A) 600 (B) 600 (B) 500 (A) 500 (A) SADRŽAJ 1. Tehnički opis.... Proračun ploče POZ 01-01...3.1. Analiza opterećenja ploče
Dijagonalizacija operatora
Dijagonalizacija operatora Problem: Može li se odrediti baza u kojoj zadani operator ima dijagonalnu matricu? Ova problem je povezan sa sljedećim pojmovima: 1 Karakteristični polinom operatora f 2 Vlastite
Otpornost R u kolu naizmjenične struje
Otpornost R u kolu naizmjenične struje Pretpostavimo da je otpornik R priključen na prostoperiodični napon: Po Omovom zakonu pad napona na otporniku je: ( ) = ( ω ) u t sin m t R ( ) = ( ) u t R i t Struja
BETONSKE KONSTRUKCIJE 3 M 1/r dijagrami
BETONSKE KONSTRUKCIJE 3 M 1/r dijagrami Izv. prof. dr.. Tomilav Kišiček dipl. ing. građ. 0.10.014. Betonke kontrukije III 1 NBK1.147 Slika 5.4 Proračunki dijagrami betona razreda od C1/15 do C90/105, lijevo:
Priveznice W re r R e o R p o e p S e l S ing n s
Priveznice Wire Rope Slings PRIVEZNICE OD ČEIČNO UŽEA (RAE) jenosruke SINE WIRE ROPE SINS Sanar EN P P P P P P P P P P P P ozvoljeno operećenje kg elemeni priveznice prekina jenokrako vešanje ) ouvaanje
ELEKTROTEHNIČKI ODJEL
MATEMATIKA. Neka je S skup svih živućih državljana Republike Hrvatske..04., a f preslikavanje koje svakom elementu skupa S pridružuje njegov horoskopski znak (bez podznaka). a) Pokažite da je f funkcija,
Katedra za biofiziku i radiologiju. Medicinski fakultet Sveučilišta Josipa Jurja Strossmayera u Osijeku. Vlaga zraka
Katedra za biofiziku i radiologiju Medicinski fakultet Sveučilišta Josipa Jurja Strossmayera u Osijeku Vlaga zraka Vlagu zraka čini vodena para koja se, uz ostale plinove, nalazi u zraku. Masa vodene pare
(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k.
1 3 Skupovi brojeva 3.1 Skup prirodnih brojeva - N N = {1, 2, 3,...} Aksiom matematičke indukcije Neka je N skup prirodnih brojeva i M podskup od N. Ako za M vrijede svojstva: 1) 1 M 2) n M (n + 1) M,
6a. BETONSKE STIJENE. 6a. BETONSKE STIJENE
BETON Poznat u doba rimljana, vezivo puzzolan (vulkanski pepeo iz mjesta Pozuoliu blizini Vezuva) s dodacima. Ponovno uveden u graditeljstvo sredinom 19. stoljeća - vezivo portland cement - Engleska. Danas
TABLICE I DIJAGRAMI iz predmeta BETONSKE KONSTRUKCIJE II
TABLICE I DIJAGRAMI iz predmeta BETONSKE KONSTRUKCIJE II TABLICA 1: PARCIJALNI KOEFICIJENTI SIGURNOSTI ZA DJELOVANJA Parcijalni koeficijenti sigurnosti γf Vrsta djelovanja Djelovanje Stalno Promjenjivo
BETONSKE KONSTRUKCIJE 2
BETONSE ONSTRUCIJE 2 vježbe, 31.10.2017. 31.10.2017. DATUM SATI TEMATSA CJELINA 10.- 11.10.2017. 2 17.-18.10.2017. 2 24.-25.10.2017. 2 31.10.- 1.11.2017. uvod ponljanje poznatih postupaka dimenzioniranja
PREDAVANJA. Redni broj predavanja. Nastavna jedinica. 1. Uvod, Temelji, Hidroizolacije. 2. Osnovni elementi i tipologije konstrukcija visokogradnje
PREDAVANJA Redni broj predavanja Nastavna jedinica 1. Uvod, Temelji, Hidroizolacije 2. Osnovni elementi i tipologije konstrukcija visokogradnje 3. Kameno ziđe 4. Betonske stijene 5. Pregradne stijene 6.
I.13. Koliki je napon između neke tačke A čiji je potencijal 5 V i referentne tačke u odnosu na koju se taj potencijal računa?
TET I.1. Šta je Kulonova sila? elektrostatička sila magnetna sila c) gravitaciona sila I.. Šta je elektrostatička sila? sila kojom međusobno eluju naelektrisanja u mirovanju sila kojom eluju naelektrisanja
Elementi spektralne teorije matrica
Elementi spektralne teorije matrica Neka je X konačno dimenzionalan vektorski prostor nad poljem K i neka je A : X X linearni operator. Definicija. Skalar λ K i nenula vektor u X se nazivaju sopstvena
M086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost
M086 LA 1 M106 GRP Tema: CSB nejednakost. 19. 10. 2017. predavač: Rudolf Scitovski, Darija Marković asistent: Darija Brajković, Katarina Vincetić P 1 www.fizika.unios.hr/grpua/ 1 Baza vektorskog prostora.
KONVEKSNI SKUPOVI. Definicije: potprostor, afin skup, konveksan skup, konveksan konus. 1/5. Back FullScr
KONVEKSNI SKUPOVI Definicije: potprostor, afin skup, konveksan skup, konveksan konus. 1/5 KONVEKSNI SKUPOVI Definicije: potprostor, afin skup, konveksan skup, konveksan konus. 1/5 1. Neka su x, y R n,
ODREĐIVANJE MODULA STIŠLJIVOSTI U EDOMETRU
SVEUČILIŠTE U ZAGREBU GEOTEHNIČKI FAKULTET ZORAN BAJSIĆ ODREĐIVANJE MODULA STIŠLJIVOSTI U EDOMETRU ZAVRŠNI RAD VARAŽDIN, 2012. SVEUČILIŠTE U ZAGREBU GEOTEHNIČKI FAKULTET ZAVRŠNI RAD ODREĐIVANJE MODULA
- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova)
MEHANIKA 1 1. KOLOKVIJ 04/2008. grupa I 1. Zadane su dvije sile F i. Sila F = 4i + 6j [ N]. Sila je zadana s veličinom = i leži na pravcu koji s koordinatnom osi x zatvara kut od 30 (sve komponente sile
1.4 Tangenta i normala
28 1 DERIVACIJA 1.4 Tangenta i normala Ako funkcija f ima derivaciju u točki x 0, onda jednadžbe tangente i normale na graf funkcije f u točki (x 0 y 0 ) = (x 0 f(x 0 )) glase: t......... y y 0 = f (x
2. LABORATORIJSKA IDENTIFIKACIJA I KLASIFIKACIJA TLA
MEHANIKA TLA: Laboratorijska identifikacija i klasifikacija tla 24 2. LABORATORIJSKA IDENTIFIKACIJA I KLASIFIKACIJA TLA 2.1 Uvod Kao što je već rečeno, geralna osnova za klasifikaciju usvojena je podela
Dvanaesti praktikum iz Analize 1
Dvaaesti praktikum iz Aalize Zlatko Lazovi 20. decembar 206.. Dokazati da fukcija f = 5 l tg + 5 ima bar jedu realu ulu. Ree e. Oblast defiisaosti fukcije je D f = k Z da postoji ula fukcije a 0, π 2.
Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju
RAČUN OSTATAKA 1 1 Prsten celih brojeva Z := N + {} N + = {, 3, 2, 1,, 1, 2, 3,...} Osnovni primer. (Z, +,,,, 1) je komutativan prsten sa jedinicom: sabiranje (S1) asocijativnost x + (y + z) = (x + y)
ТЕМПЕРАТУРА СВЕЖЕГ БЕТОНА
ТЕМПЕРАТУРА СВЕЖЕГ БЕТОНА empertur sežeg beton menj se tokom remen i zisi od ećeg broj utijnih prmetr: Početne temperture mešine (n izsku iz mešie), emperture sredine, opote hidrtije ement, Rzmene topote
Periodičke izmjenične veličine
EHNČK FAKULE SVEUČLŠA U RJEC Zavod za elekroenergeiku Sudij: Preddiploski sručni sudij elekroehnike Kolegij: Osnove elekroehnike Nosielj kolegija: Branka Dobraš Periodičke izjenične veličine Osnove elekroehnike
100g maslaca: 751kcal = 20g : E maslac E maslac = (751 x 20)/100 E maslac = 150,2kcal 100g med: 320kcal = 30g : E med E med = (320 x 30)/100 E med =
100g maslaca: 751kcal = 20g : E maslac E maslac = (751 x 20)/100 E maslac = 150,2kcal 100g med: 320kcal = 30g : E med E med = (320 x 30)/100 E med = 96kcal 100g mleko: 49kcal = 250g : E mleko E mleko =
numeričkih deskriptivnih mera.
DESKRIPTIVNA STATISTIKA Numeričku seriju podataka opisujemo pomoću Numeričku seriju podataka opisujemo pomoću numeričkih deskriptivnih mera. Pokazatelji centralne tendencije Aritmetička sredina, Medijana,
Prof. dr. sc. Z. Prelec ENERGETSKA POSTROJENJA Poglavlje: 7 (Regenerativni zagrijači napojne vode) List: 1
(Regenerativni zagrijači napojne vode) List: 1 REGENERATIVNI ZAGRIJAČI NAPOJNE VODE Regenerativni zagrijači napojne vode imaju zadatak da pomoću pare iz oduzimanja turbine vrše predgrijavanje napojne vode
p d R r E 1, ν 1 Slika 15. Stezni spoj glavčina-osovina (vratilo); puna osovina (slika a), šuplja osovina (slika b)
BLOSTJN POSU JV - STZN SPOJ STZN SPOJ zazi za naezanja i omake ko sastavljenih cijevi mogu se abiti ko oačuna steznog soja gje elementi soja mogu biti o istog ili o azličitih mateijala.. SPOJ OSOVN GLAVČN
Proračun potrebne glavne snage rezanja i glavnog strojnog vremena obrade
Zaod a tehnologiju Katedra a alatne strojee Proračun potrebne glane snage reanja i glanog strojnog remena obrade Sadržaj aj ježbe be: Proračun snage kod udužnog anjskog tokarenja Glano strojno rijeme kod
Pismeni ispit iz matematike GRUPA A 1. Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj, zatim naći 4 z.
Pismeni ispit iz matematike 06 007 Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj z = + i, zatim naći z Ispitati funkciju i nacrtati grafik : = ( ) y e + 6 Izračunati integral:
Grafičko prikazivanje atributivnih i geografskih nizova
Grafičko prikazivanje atributivnih i geografskih nizova Biserka Draščić Ban Pomorski fakultet u Rijeci 17. veljače 2011. Grafičko prikazivanje atributivnih nizova Atributivni nizovi prikazuju se grafički
MIKROARMIRANI BETONI I MALTERI
MIKROARMIRANI BETONI I MALTERI VRSTE VLAKANA ZA MIKROARMIRANJE MALTERA I BETONA Prirodnog porekla celulozna pamučna jutana od konoplje od bambusa,, i dr. VLAKNA Vešta tačkog porekla čelična (od običnog
ENERGETSKA EFIKASNOST U ZGRADARSTVU DIFUZIJA VODENE PARE
ENERGETSKA EFIKASNOST U ZGRADARSTVU DIFUZIJA VODENE PARE Vlažan vazduh Atmosferski vazduh, pored osnovnih komponenata (kiseonik, azot i male količine vodonika, ugljendioksida i plemenitih gasova), može
SVEUČILIŠTE JOSIPA JURJA STROSSMAYERA U OSIJEKU GRAĐEVINSKI FAKULTET OSIJEK ZAVRŠNI RAD
SVEUČILIŠTE JOSIPA JURJA STROSSMAYERA U OSIJEKU ZAVRŠNI RAD Osijek, 14. rujna 2017. Marijan Mikec SVEUČILIŠTE JOSIPA JURJA STROSSMAYERA U OSIJEKU ZAVRŠNI RAD Izrada projektno-tehničke dokumentacije armiranobetonske
MATEMATIKA I 1.kolokvij zadaci za vježbu I dio
MATEMATIKA I kolokvij zadaci za vježbu I dio Odredie c 0 i kosinuse kueva koje s koordinanim osima čini vekor c = a b ako je a = i + j, b = i + k Odredie koliki je volumen paralelepipeda, čiji se bridovi
( , 2. kolokvij)
A MATEMATIKA (0..20., 2. kolokvij). Zadana je funkcija y = cos 3 () 2e 2. (a) Odredite dy. (b) Koliki je nagib grafa te funkcije za = 0. (a) zadanu implicitno s 3 + 2 y = sin y, (b) zadanu parametarski
Opća bilanca tvari - = akumulacija u dif. vremenu u dif. volumenu promatranog sustava. masa unijeta u dif. vremenu u dif. volumen promatranog sustava
Opća bilana tvari masa unijeta u dif. vremenu u dif. volumen promatranog sustava masa iznijeta u dif. vremenu iz dif. volumena promatranog sustava - akumulaija u dif. vremenu u dif. volumenu promatranog
Eliminacijski zadatak iz Matematike 1 za kemičare
Za mnoge reakcije vrijedi Arrheniusova jednadžba, koja opisuje vezu koeficijenta brzine reakcije i temperature: K = Ae Ea/(RT ). - T termodinamička temperatura (u K), - R = 8, 3145 J K 1 mol 1 opća plinska
Riješeni zadaci: Nizovi realnih brojeva
Riješei zadaci: Nizovi realih brojeva Nizovi, aritmetički iz, geometrijski iz Fukciju a : N R azivamo beskoači) iz realih brojeva i ozačavamo s a 1, a,..., a,... ili a ), pri čemu je a = a). Aritmetički
F (t) F (t) F (t) OGLEDNI PRIMJER SVEUČILIŠTE J.J.STROSSMAYERA U OSIJEKU ZADATAK
OGLEDNI PRIMJER ZADAAK Odredte dnamčke karakterstke odzv armranobetonskog okvra C-C prkazanog na slc s prpadajućom tlorsnom površnom, na zadanu uzbudu tjekom prve tr sekunde, ako je konstrukcja prje djelovanja
2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x
Zadatak (Darjan, medicinska škola) Izračunaj vrijednosti trigonometrijskih funkcija broja ako je 6 sin =,,. 6 Rješenje Ponovimo trigonometrijske funkcije dvostrukog kuta! Za argument vrijede sljedeće formule:
3. dio: KERAMIKA, BETON I DRVO BETON
3. dio: KERAMIKA, BETON I DRVO BETON je heterogeni polifazni kompozitni materijal. Prostim okom vide se u presjeku betona zrna agregata u matrici cementnog kamena. U cementnom kamenu i oko zrna agregata
6. Plan armature prednapetog nosača
6. Plan armature prednapetog nosača 6.1. Rekapitulacija odabrane armature Prednapeta armatura odabrano:3 natege 6812 Uzdužna nenapeta armatura. u polju donji rub nosača (mjerodavna je provjera nosivosti
Mate Vijuga: Rijeseni zadaci iz matematike za srednju skolu
16. UVOD U STATISTIKU Statistika je nauka o sakupljanju i analizi sakupljenih podatka u cilju donosenja zakljucaka o mogucem toku ili obliku neizvjesnosti koja se obradjuje. Frekventna distribucija - je
MEHANIKA FLUIDA. Isticanje kroz otvore sa promenljivim nivoom tečnosti
MEHANIKA FLUIDA Isticanje kroz otvore sa promenljivim nivoom tečnosti zadatak Prizmatična sud podeljen je vertikalnom pregradom, u kojoj je otvor prečnika d, na dve komore Leva komora je napunjena vodom
Ispitivanje toka i skiciranje grafika funkcija
Ispitivanje toka i skiciranje grafika funkcija Za skiciranje grafika funkcije potrebno je ispitati svako od sledećih svojstava: Oblast definisanosti: D f = { R f R}. Parnost, neparnost, periodičnost. 3
radni nerecenzirani materijal za predavanja
Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Kažemo da je funkcija f : a, b R u točki x 0 a, b postiže lokalni minimum ako postoji okolina O(x 0 ) broja x 0 takva da je
PRAVA. Prava je u prostoru određena jednom svojom tačkom i vektorom paralelnim sa tom pravom ( vektor paralelnosti).
PRAVA Prava je kao i ravan osnovni geometrijski ojam i ne definiše se. Prava je u rostoru određena jednom svojom tačkom i vektorom aralelnim sa tom ravom ( vektor aralelnosti). M ( x, y, z ) 3 Posmatrajmo
POPIS DEL IN PREDIZMERE
POPIS DEL IN PREDIZMERE ZEMELJSKI USAD v P 31 - P 32 ( l=18 m ) I. PREDDELA 1.1 Zakoličba, postavitev in zavarovanje prečnih profilov m 18,0 Preddela skupaj EUR II. ZEMELJSKA DELA 2.1 Izkop zemlje II.
SISTEMI NELINEARNIH JEDNAČINA
SISTEMI NELINEARNIH JEDNAČINA April, 2013 Razni zapisi sistema Skalarni oblik: Vektorski oblik: F = f 1 f n f 1 (x 1,, x n ) = 0 f n (x 1,, x n ) = 0, x = (1) F(x) = 0, (2) x 1 0, 0 = x n 0 Definicije
Numerička matematika 2. kolokvij (1. srpnja 2009.)
Numerička matematika 2. kolokvij (1. srpnja 29.) Zadatak 1 (1 bodova.) Teorijsko pitanje. (A) Neka je G R m n, uz m n, pravokutna matrica koja ima puni rang po stupcima, tj. rang(g) = n. (a) Napišite puni
VOLUMEN ILI OBUJAM TIJELA
VOLUMEN ILI OBUJAM TIJELA Veličina prostora kojeg tijelo zauzima Izvedena fizikalna veličina Oznaka: V Osnovna mjerna jedinica: kubni metar m 3 Obujam kocke s bridom duljine 1 m jest V = a a a = a 3, V
, Zagreb. Prvi kolokvij iz Analognih sklopova i Elektroničkih sklopova
Grupa A 29..206. agreb Prvi kolokvij Analognih sklopova i lektroničkih sklopova Kolokvij se vrednuje s ukupno 42 boda. rijednost pojedinog zadatka navedena je na kraju svakog zadatka.. a pojačalo na slici
Pošto pretvaramo iz veće u manju mjernu jedinicu broj 2.5 množimo s 1000,
PRERAČUNAVANJE MJERNIH JEDINICA PRIMJERI, OSNOVNE PRETVORBE, POTENCIJE I ZNANSTVENI ZAPIS, PREFIKSKI, ZADACI S RJEŠENJIMA Primjeri: 1. 2.5 m = mm Pretvaramo iz veće u manju mjernu jedinicu. 1 m ima dm,
Gauss, Stokes, Maxwell. Vektorski identiteti ( ),
Vektorski identiteti ( ), Gauss, Stokes, Maxwell Saša Ilijić 21. listopada 2009. Saša Ilijić, predavanja FER/F2: Vektorski identiteti, nabla, Gauss, Stokes, Maxwell... (21. listopada 2009.) Skalarni i
PRAVILNIK O TEHNIČKIM NORMATIVIMA ZA BETON I ARMIRANI BETON. ("Sl. list SFRJ", br. 11/87) I OPŠTE ODREDBE. Član 1
PRAVILNIK O TEHNIČKIM NORMATIVIMA ZA BETON I ARMIRANI BETON ("Sl. list SFRJ", br. 11/87) I OPŠTE ODREDBE Član 1 Ovim pravilnikom propisuju se uslovi i zahtevi koji moraju biti ispunjeni pri projektovanju,