a) De câte cămări are nevoie hârciogul pentru a depozita toate semințele? b) După al câtelea drum a umplut complet a doua cămară?
|
|
- ÏΓάϊος Κόρακας
- 7 χρόνια πριν
- Προβολές:
Transcript
1 CONCURSUL INTERJUDEȚEAN DE MATEMATICĂ TRAIAN LALESCU, 2009 Cls V- 1. Un hârciog cră semințe într-o glerie. L primul drum duce cu el o sămânță, l l doile duce 3 semințe, l l treile duce 5 semințe, etc., în finl l l 55-le drum duce 109 semințe. Într-o cămră, hârciogul pote depozit cel mult 1000 semințe. El începe s pună semințe într-o cămră nouă dor după ce umplut-o complet pe ce precedentă. ) De câte cămări re nevoie hârciogul pentru depozit tote semințele? b) După l câtele drum umplut complet dou cămră? 2. Determinți cifrele, b, c stfel încât p `bqp `b`cqc.185 ( 0, ir `b și `b`c sunt cifre). 3. L un spectcol, mgicinul îi cere unei persone din public să se gândescă l un număr de trei cifre, bc, unde, b, c sunt cifre în bz 10. Apoi, mgicinul îi cere personei respective să formeze numerele cb, bc, bc, cb și cb, să dune ceste cinci numere și să îi spună sum lor, N. Cunoscând vlore lui N, mgicinul pote găsi numărul inițil, bc. Jucți rolul mgicinului și găsiți bc dcă N
2 Cls VI- 1. Determinți numerele nturle și b cu propriette că r,bs p,bq Să se rte că dcă, b și c sunt numere cu propriette b `c ` b c ` ` c `b 1, tunci p `1q b `c ` bpb `1q c ` ` cpc `1q `b Un șir de numere nturle este construit după cum urmeză: se pornește cu 1, din cre se construiește 2 stfel: se lsă l o prte cifr unităților, poi se dugă l numărul stfel obținut cifr unităților înmulțită cu 5 (de exemplu 748 Ñ 74 ` ). Arătți că dcă 2009 pre printre termenii cestui șir, tunci șirul nu conține numere prime. 4. Fie BB 1 și CC 1 bisectorele unghiurilor B și C le unui triunghi ABC cu BC. Simetricul P l lui B fță de B 1 și simetricul Q l lui C fță de C 1 sunt situte pe drept MN, unde M este mijlocul lui rabs, N este mijlocul lui racs, MN 2 și MN BC. Să se clculeze perimetrul triunghiului ABC în funcție de. 2
3 Cls VII- 1. Determințisum primelor 28`23 7zecimle lenumărului p28 `24 7?2009q Fie ABC un triunghi orecre, D P pbcq și E P BCzpBCq două puncte stfel încât BD CD BE CE, ir M P AB și N P AC punctele în cre prlel prin D l AE intersecteză dreptele AB, respectiv AC. Arătți că D este mijlocul segmentului pmnq. 3. Fie numerele, b, c, u, v ą 0, cu u `v ě 2. Arătți că: ) p `bu `cvq `bpb `cu `vq `cpc `u `bvq ď 1 `u`v p `b`cq 3. 3 ˆ b) `bu `cv ` b b `cu `v ` c rp `bu `cvq` c `u `bv `bpb `cu `vq `cpc `u `bvqs ď p `b`cq 2. c) `bu `cv ` b b `cu `v ` c c `u `bv ě 3 1 `u`v. 4. Fie ABC un triunghi scuțitunghic, cu centrul de greutte G, ortocentrul H și centrul cercului circumscris O. Dcă A 1 este simetricul punctului A fță de punctul O, rătți că: ) triunghiurile AA 1 B și AA 1 C sunt dreptunghice; b) ptrulterul A 1 BHC este un prlelogrm; c) punctele O, G și H sunt colinire și OH 3 OG. 3
4 Cls VIII- 1. ) Arătți că pentru orice x, y P R re loc ineglitte p1 `x 2 qp1 `y 2 q ě p1 `xyq 2. b) Arătți că dcă, b, c P R cu bc 1, tunci p1 ` 4 qp1 `b 4 qp1 `c 4 q ě p1 `qp1 `bqp1 `cq. 2. Demonstrți că pentru orice x P R, " txu ą x ` 1 * ô txu 2 ą t2xu Un recipient re formă de prlelipiped dreptunghic cu ri totlă A. În recipient se flă un volum V de pă. Fie h 1, h 2, h 3 înălțimile pe cre le tinge p tunci când recipientul este șezt succesiv pe trei fețe le recipientului cre u un vârf comun. Demonstrți că h 1 `h 2 `h 3 ě 18V A. 4. Fie ABC un triunghi echilterl cu ortocentrul H și M, N două puncte vribile pe lturile pabq, respectiv pacq stfel încât perimetrul triunghiului AMN este egl cu lungime lturii pbcq. Arătți că distnț de l H l MN este constntă. 4
5 Cls IX- 1. ) Arătți că pentru orice numere nturle nenule, b, n, re loc p `bq n M 2 `n b n 1 `b n. (prin M 2 înțelegem un multiplu l numărului 2 ) b) Determinți ultimele ptru cifre le numărului Fie ABC un triunghi orecre, λ P p0, 8qzt1u, D P pbcq și E P BCzpBCq două puncte stfel încât BD CD BE CE λ, ir M P AB și N P AC punctele în cre prlel prin D l AE intersecteză dreptele AB, respectiv AC. ) Determinți t, u, v, w P R cu propriette că ÝÑ AD t ÝÑ ÝÑ ÝÑ ÝÑ ÝÑ AB `uac și AE vab `wac. b) Determinți β, γ P R stfel încât ÝÝÑ AM β ÝÑ AB și ÝÝÑ AN w ÝÑ AC. c) Arătți că mijlocul segmentului pmnq. 3. Fie, b, c ą 0 trei numere orecre. Arătți că: ) 2 `b 2 ą b? 3, 2 `c 2 ą c? 3, b 2 `c 2 ą bc; b) 2 b? 3 `b 2 ` 2 c? 3 `c 2 ě? b 2 bc `c 2 ; c) În ineglitte de l punctul b) re loc eglitte dcă și numi dcă? 3 1 b ` 1 c. 4. Fie ABC un triunghi orecre de lturi BC, b CA și c AB, cu cercul circumscris C po,rq, cercul înscris C pi,rq și cercul exînscris C pi,r q tngent interior unghiului z BAC și lturii pbcq, flt în exteriorul triunghiului ABC. ) Arătți că p `b`cq ÝÑ PI ÝÑ PA `b ÝÑ ÝÑ PB `cpc, p `b`cq ÝÝÑ PI ÝÑ PA `b ÝÑ ÝÑ PB `cpc, pentru orice punct P din plnul triunghiului ABC. b) Au loc eglitățile OI 2 R 2 2Rr și OI 2 R 2 `2Rr. 5
6 Cls X- 1. Rezolvți în mulțime numerelor rele strict pozitive ecuți: x x Fie ABCD un prlelogrm și M un punct vribil în plnul prlelogrmului. ) Să se determine vlore minimă expresiei MA MC `MB MD. b) Să se rte că dcă M nu este unul dintre vârfurile prlelogrmului ABCD, tunci se pote construi un ptrulter convex cu segmentele pmaq, pmbq, pmcq și pmdq. 3. Numerele complexe 1, 2, 3, 4 u celși modul și verifică eglitățile: 2 p 1 ` 2 ` 3 ` 4 q `2 2 `2 3 `2 4. Să se rte că este egl cu unul dintre numerele 1, 2, 3, 4 su cu unul dintre opusele cestor. 4. ) Săsertecădcăg : X Ñ Y esteofuncțieinjectivă, tuncipentruoricesubmulțimi X 1, X 2 le lui X re loc eglitte gpx 1 zx 2 q gpx 1 qzgpx 2 q. b) Să se rte că nu există funcții f : N Ñ N cre u propriette că fpfpnqq n `2009, p@qn P N. 6
7 Cls XI- # 1, dcă n este pătrt perfect, 1. Fie x n și s n x 1 ` x 2 ` ` x n. Să se rte că 0, în rest s n n Ñ 0 și să se studieze convergenț șirului cu termenul generl s? n. n 2. FieA P M n pt0,1uqomtricecupropriettecăexistă k P N stfelîncâta ta k I n`j, unde J ) Arătți că A este inversbilă. b) Pentru n 7 rătți că AJ JA O Fie A 1 tpλ µqe ` µi 2 E P M 2 pcq, λ,µ P C, E 2 Eu și A 2 tνpf ` I 2 q ν P C, F P M 2 pcq, F 2 O 2 u. Arătți că: ) A 1 X A 2 tρi 2 ρ P Cu. b) Clculți A n pentru A P A 1 Y A 2 și n P N. 4. Fie f : r0, 8q Ñ r0, 8q cu propriette că ˆ1 `x`y fpx `yq fpxq ď ln, p@qx,y P r0, 8q. 1 `x ) Determinți m P N stfel încât mulțime vlorilor lui f să ibă exct m elemente. b) Să se rte că următorul șir recurent: re limită pentru orice x 0 ě 0. x n`1 x n `fpx n q, n ě 0, 2 7
8 Cls XII- 1. Fie u și v funcții rele derivbile pe intervlul r0,1s, ir M tf : r0,1s Ñ C fptq uptq `ivptq, t P r0,1su. Pentru f P M, definim: Arătți că: p fqptq u 1 ptq `iv 1 ptq, t P r0,1s. ) pfgq f g `g f, f, g P M. ˆ1 b) f 2 f, f P M, f 0. f c) Pentru fptq 1, t P r0,1s, vem f P M și f P M. t `i d) Clculți derivt de ordinul n ě 1 funcției u : p0,1s Ñ R, upxq rctnx. e) Fie ρ : r0,1s Ñ r0,1s și r : r0,1s Ñ R două funcții continue. Arătți că: ˆ ż 1 ρptq cosprptqq dt 0 ˆ ż 1 ` ρptq sinprptqq dt 2. Fie, b P R, ă b și f, g : r,bs Ñ R funcții continue. Arătți că: ˆ ż b fpxqdx ˆ ż b ` gpxq dx 0 ˆ ż b ď ď ż 1 0 ρptq dt. f2 pxq `g 2 pxqdx. 3. Fie A un inel și x, y P A cu xy `yx `1 0. Arătți că dcă x y nu este inversbil, tunci x 3 `y 3 `y nu este inversbil. 4. Fie S tx : N Ñ R x px n qu. Arătți că: ) S împreună cu dunre și cu înmulțire uzulă șirurilor formeză o structură de inel în cre mulțime divizorilor lui zero este infinită. b) Funcți : S Ñ S dtă de p xqpnq xpn `1q xpnq este un morfism surjectiv l lui ps, `q. c) Clculți K 1 tx P S x 0u și K 2 tx P S 2 x 0u. d) Clculți k x, unde x pp 1q n q. 8
BARAJ DE JUNIORI,,Euclid Cipru, 28 mai 2012 (barajul 3)
BARAJ DE JUNIORI,,Euclid Cipru, 8 mi 0 (brjul ) Problem Arătţi că dcă, b, c sunt numere rele cre verifică + b + c =, tunci re loc ineglitte xy + yz + zx Problem Fie şi b numere nturle nenule Dcă numărul
π } R 4. ctg:r\{kπ} R FuncŃii trigonometrice 1. DefiniŃii în triunghiul dreptunghic 2. ProprietãŃile funcńiilor trigonometrice 1.
Trigonometrie FuncŃii trigonometrice. DefiniŃii în triunghiul dreptunghic b c b sin B, cos B, tgb c C c ctgb, sin B cosc, tgb ctgc b b. ProprietãŃile funcńiilor trigonometrice. sin:r [-,] A c B sin(-x)
TITULARIZARE 2002 Varianta 1
TITULARIZARE 2002 Vrint 1 A. Omotetii plne: definiţie, oricre două triunghiuri omotetice sunt semene, mulţime omotetiilor de celşi centru formeză un grup belin izomorf cu grupul multiplictiv l numerelor
Integrale cu parametru
1 Integrle proprii cu prmetru 2 3 Integrle proprii cu prmetru Definiţi 1.1 Dcă f : [, b ] E R, E R este o funcţie cu propriette că pentru orice y E, funcţi de vribilă x x f (x, y) este integrbilă pe intervlul
MULTIMEA NUMERELOR REALE
www.webmteinfo.com cu noi totul pre mi usor MULTIMEA NUMERELOR REALE office@ webmteinfo.com 1.1 Rdcin ptrt unui numr nturl ptrt perfect Ptrtul unui numr rtionl este totdeun pozitiv su zero (dic nenegtiv).
COLEGIUL NATIONAL CONSTANTIN CARABELLA TARGOVISTE. CONCURSUL JUDETEAN DE MATEMATICA CEZAR IVANESCU Editia a VI-a 26 februarie 2005.
SUBIECTUL Editia a VI-a 6 februarie 005 CLASA a V-a Fie A = x N 005 x 007 si B = y N y 003 005 3 3 a) Specificati cel mai mic element al multimii A si cel mai mare element al multimii B. b)stabiliti care
R R, f ( x) = x 7x+ 6. Determinați distanța dintre punctele de. B=, unde x și y sunt numere reale.
5p Determinați primul termen al progresiei geometrice ( b n ) n, știind că b 5 = 48 și b 8 = 84 5p Se consideră funcția f : intersecție a graficului funcției f cu aa O R R, f ( ) = 7+ 6 Determinați distanța
Analiza matematică, clasa a XI-a probleme rezolvate Rolul derivatei întâi
Anliz mtemtică, cls XI- proleme rezolvte Rolul derivtei întâi Virgil-Mihil Zhri DefiniŃie: Punctele critice le unei funcńii derivile sunt rădăcinile (zerourile) derivtei întâi DefiniŃie: Fie f:i R, cu
CONCURSUL NAŢIONAL DE MATEMATICĂ APLICATĂ "ADOLF HAIMOVICI" ETAPA FINALĂ - 22 mai 2010
ETAPA FINALĂ - mi 00 BAREM DE CORECTARE CLASA A IX A. Pe o dreptă se consideră 00 puncte, cre formeză 009 segmente, fiecre de cm. Pe primul segment, desupr dreptei, construim un pătrt, pe l doile segment,
EcuaŃii de gradul al doilea ax 2 + bx + c = 0, a,b,c R, a 0 1. Formule de rezolvare: > 0 b x =, x =, = b 2 4ac; sau
EcuŃii de grdul l doile x + x + c = 0,,,c R, 0 Formule de rezolvre: > 0 + x =, x =, = c; su ' + ' ' ' x =, x =, =, = c Formule utile în studiul ecuńiei de grdul l II-le: x + x = (x + x ) x x = S P 3 x
CONCURSUL INTERJUDEȚEAN DE MATEMATICĂ TRAIAN LALESCU, 1996 Clasa a V-a
CONCURSUL INTERJUDEȚEAN DE MATEMATICĂ TRAIAN LALESCU, 1996 Clasa a V-a 1. Să se determine două numere naturale a și b astfel încât c.m.m.d.c.pa,bq 12 și c.m.m.m.c.pa, bq 216. Câte soluții are problema?
CONCURSUL INTERJUDEȚEAN DE MATEMATICĂ TRAIAN LALESCU, 1998 Clasa a V-a
CONCURSUL INTERJUDEȚEAN DE MATEMATICĂ TRAIAN LALESCU, 998 Clasa a V-a. La gara Timișoara se eliberează trei bilete de tren: unul pentru Arad, altul pentru Deva și al treilea pentru Reșița. Cel pentru Deva
Subiecte Clasa a VIII-a
Subiecte lasa a VIII-a (40 de intrebari) Puteti folosi spatiile goale ca ciorna. Nu este de ajuns sa alegeti raspunsul corect pe brosura de subiecte, ele trebuie completate pe foaia de raspuns in dreptul
Să se arate că n este număr par. Dan Nedeianu
Primul test de selecție pentru juniori I. Să se determine numerele prime p, q, r cu proprietatea că 1 p + 1 q + 1 r 1. Fie ABCD un patrulater convex cu m( BCD) = 10, m( CBA) = 45, m( CBD) = 15 și m( CAB)
GEOMETRIE PLANĂ TEOREME IMPORTANTE ARII. bh lh 2. abc. abc. formula înălţimii
GEOMETRIE PLNĂ TEOREME IMPORTNTE suma unghiurilor unui triunghi este 8º suma unghiurilor unui patrulater este 6º unghiurile de la baza unui triunghi isoscel sunt congruente într-un triunghi isoscel liniile
CONCURSUL INTERJUDEŢEAN DE MATEMATICĂ ŞI INFORMATICĂ MARIAN ŢARINĂ. Ediţia a XVII-a, 7 8 Aprilie CLASA a IV-a
Ediţia a XVII-a, 7 8 Aprilie 207 SUBIECTUL CLASA a IV-a Într-o zi de Duminică, la Salina Turda, a venit un grup de vizitatori, băieți și de două ori mai multe fete. Au intrat în Salină 324 băieți și 400
Subiecte Clasa a VII-a
lasa a VII Lumina Math Intrebari Subiecte lasa a VII-a (40 de intrebari) Puteti folosi spatiile goale ca ciorna. Nu este de ajuns sa alegeti raspunsul corect pe brosura de subiecte, ele trebuie completate
Curs 10 Funcţii reale de mai multe variabile reale. Limite şi continuitate.
Curs 10 Funcţii reale de mai multe variabile reale. Limite şi continuitate. Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Fie p, q N. Fie funcţia f : D R p R q. Avem următoarele
CONCURSUL INTERJUDEȚEAN DE MATEMATICĂ TRAIAN LALESCU, 2018 Clasa a V-a. 1. Scriem numerele naturale nenule consecutive sub forma:
CONCURSUL INTERJUDEȚEAN DE MATEMATICĂ TRAIAN LALESCU, 2018 Clasa a V-a 1. Scriem numerele naturale nenule consecutive sub forma: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,... (pe fiecare
METODE ŞI ETAPE NECESARE PENTRU DETERMINAREA
ETOE ŞI ETAPE ECESARE PETRU ETERIAREA UGHIULUI A OUĂ PLAE PROF. IACU ARIA, ŞCOALA ROUL LAEA, ORAVIłA, CARAŞ- SEVERI (). Unghi diedru. Fie α şi β două semiplne vând ceeşi frontieră (muchie)d. Se numeşte
Profesor Blaga Mirela-Gabriela DREAPTA
DREAPTA Fie punctele A ( xa, ya ), B ( xb, yb ), C ( xc, yc ) şi D ( xd, yd ) în planul xoy. 1)Distanţa AB = (x x ) + (y y ) Ex. Fie punctele A( 1, -3) şi B( -2, 5). Calculaţi distanţa AB. AB = ( 2 1)
GEOMETRIE PLANĂ TEOREME IMPORTANTE ARII. = înălţimea triunghiului echilateral h =, R =, r = R = bh lh 2 A D ++ D. abc. abc =
GEOMETRIE PLNĂ TEOREME IMPORTNTE suma unghiurilor unui triunghi este 8º suma unghiurilor unui patrulater este 6º unghiurile de la baza unui triunghi isoscel sunt congruente într-un triunghi isoscel liniile
Seminariile Capitolul X. Integrale Curbilinii: Serii Laurent şi Teorema Reziduurilor
Facultatea de Matematică Calcul Integral şi Elemente de Analiă Complexă, Semestrul I Lector dr. Lucian MATICIUC Seminariile 9 20 Capitolul X. Integrale Curbilinii: Serii Laurent şi Teorema Reiduurilor.
Curs 1 Şiruri de numere reale
Bibliografie G. Chiorescu, Analiză matematică. Teorie şi probleme. Calcul diferenţial, Editura PIM, Iaşi, 2006. R. Luca-Tudorache, Analiză matematică, Editura Tehnopress, Iaşi, 2005. M. Nicolescu, N. Roşculeţ,
(a) se numeşte derivata parţială a funcţiei f în raport cu variabila x i în punctul a.
Definiţie Spunem că: i) funcţia f are derivată parţială în punctul a în raport cu variabila i dacă funcţia de o variabilă ( ) are derivată în punctul a în sens obişnuit (ca funcţie reală de o variabilă
CONCURSUL INTERJUDEȚEAN DE MATEMATICĂ TRAIAN LALESCU, 2017 Clasa a V-a
CONCURSUL INTERJUDEȚEAN DE MATEMATICĂ TRAIAN LALESCU, 2017 Clasa a V-a 1. Fiind dat un număr natural nenul n, vom nota prin n! produsul 1 2 3... n (de exemplu, 4! = 1 2 3 4). Determinați numerele naturale
Seminariile 1 2 Capitolul I. Integrale improprii
Cpitolul I: Integrle improprii Lect. dr. Lucin Mticiuc Fcultte de Mtemtică Clcul integrl şi Aplicţii, Semestrul I Lector dr. Lucin MATICIUC Seminriile Cpitolul I. Integrle improprii. Să se studieze ntur
Geometria triunghiului
Geometri triunghiului 1 I Triunghiul ritrr Fie AB A c h m l β γ B D E A 1 Geometri triunghiului Formule de z pentru triunghiuri Notm prin:,, c lungimile lturilor B, A, respectiv AB; α, β, γ mrimile unghiurilor
7. Fie ABCD un patrulater inscriptibil. Un cerc care trece prin A şi B intersectează
TEMĂ 1 1. În triunghiul ABC, fie D (BC) astfel încât AB + BD = AC + CD. Demonstraţi că dacă punctele B, C şi centrele de greutate ale triunghiurilor ABD şi ACD sunt conciclice, atunci AB = AC. India 2014
a n (ζ z 0 ) n. n=1 se numeste partea principala iar seria a n (z z 0 ) n se numeste partea
Serii Laurent Definitie. Se numeste serie Laurent o serie de forma Seria n= (z z 0 ) n regulata (tayloriana) = (z z n= 0 ) + n se numeste partea principala iar seria se numeste partea Sa presupunem ca,
DISTANŢA DINTRE DOUĂ DREPTE NECOPLANARE
DISTANŢA DINTRE DOUĂ DREPTE NECOPLANARE ABSTRACT. Materialul prezintă o modalitate de a afla distanţa dintre două drepte necoplanare folosind volumul tetraedrului. Lecţia se adresează clasei a VIII-a Data:
Soluţiile problemelor propuse în nr. 2/2010
Soluţiile problemelor propuse în nr. /00 Clsele primre P.96. Mior rnjeză ptru mărgele, două lbe şi două glbene, un lângă lt, pe o ţă. În câte feluri pote rnj Mior mărgelele? (Cls I) Inst. Mri Rcu, Işi
EDITURA PARALELA 45 MATEMATICĂ DE EXCELENŢĂ. Clasa a X-a Ediţia a II-a, revizuită. pentru concursuri, olimpiade şi centre de excelenţă
Coordonatori DANA HEUBERGER NICOLAE MUŞUROIA Nicolae Muşuroia Gheorghe Boroica Vasile Pop Dana Heuberger Florin Bojor MATEMATICĂ DE EXCELENŢĂ pentru concursuri, olimpiade şi centre de excelenţă Clasa a
CONCURSUL NAŢIONAL DE MATEMATICĂ APLICATĂ "ADOLF HAIMOVICI"
INSPECTORATUL ŞCOLAR JUDEŢEAN IAŞI CONCURSUL NAŢIONAL DE MATEMATICĂ APLICATĂ "ADOLF HAIMOVICI" ETAPA JUDEŢEANĂ 8 mrtie 04 Profil rel, specilizre ştiinţele nturii FACULTATEA CONSTRUCŢII DE MAŞINI ŞI MANAGEMENT
!! " &' ': " /.., c #$% & - & ' ()",..., * +,.. * ' + * - - * ()",...(.
..,.. 00 !!.6 7 " 57 +: #$% & - & ' ()",..., * +,.. * ' + * - - * ()",.....(. 8.. &' ': " /..,... :, 00. c. " *+ ' * ' * +' * - * «/'» ' - &, $%' * *& 300.65 «, + *'». 3000400- -00 3-00.6, 006 3 4.!"#"$
sin d = 8 2π 2 = 32 π
.. Eerciţii reolvte. INTEGRALA E UPRAFAŢĂ E AL OILEA TIP. ÂMPURI OLENOIALE. Eerciţiul... ă se clculee dd dd dd, () fiind fţ eterioră sferei + + 4. oluţie. Avem: sin θ cos φ, sin θ sin φ, cos θ, θ[, π],
Toate subiectele sunt obligatorii. Timpul de lucru efectiv este de 3 ore. Se acordă din oficiu 10 puncte. SUBIECTUL I.
Modelul 4 Se acordă din oficiu puncte.. Fie numărul complex z = i. Calculaţi (z ) 25. 2. Dacă x şi x 2 sunt rădăcinile ecuaţiei x 2 9x+8 =, atunci să se calculeze x2 +x2 2 x x 2. 3. Rezolvaţi în mulţimea
Concursul Interjudeţean de Matematică Academician Radu Miron Vaslui, noiembrie Subiecte clasa a VII-a
Concursul Interjudeţean de Matematică Academician Radu Miron Vaslui, -3 noiembrie 0 Subiecte clasa a VII-a. Fie în exteriorul triunghiului ascuţitunghic ABC, triunghiurile dreptunghice ABP şi ACT cu ipotenuzele
GRADUL II n α+1 1
GRADUL II 2007 BUCUREŞTI 1. Fie A un inel cu unitate. Notăm cu Z(A) = {a A ( )x A,ax = xa}. Să se arate că: a) Z(A) este un subinel comutativ al lui A (numit centrul inelului A). b) Dacă B este un alt
Curs 2 Şiruri de numere reale
Curs 2 Şiruri de numere reale Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Convergenţă şi mărginire Teoremă Orice şir convergent este mărginit. Demonstraţie Fie (x n ) n 0 un
Tema: şiruri de funcţii
Tem: şiruri de fucţii. Clculţi limit (simplă) şirului de fucţii f : [ 0,], f ( ) R Avem lim f ( 0) = ir petru 0, vem lim f ( ) Î cocluzie, dcă otăm f: [ 0, ], f ( ) =, = 0 =, 0 + + = +, tuci lim f f =..
Integrala nedefinită (primitive)
nedefinita nedefinită (primitive) nedefinita 2 nedefinita februarie 20 nedefinita.tabelul primitivelor Definiţia Fie f : J R, J R un interval. Funcţia F : J R se numeşte primitivă sau antiderivată a funcţiei
TRIUNGHIUL. Profesor Alina Penciu, Școala Făgăraș, județul Brașov A. Definitii:
TRIUNGHIUL Profesor lina Penciu, Școala Făgăraș, județul rașov Daca, si sunt trei puncte necoliniare, distincte doua câte doua, atunci ( ) [] [] [] se numeste triunghi si se noteaza cu Δ. Orice Δ determina
y y x x 1 y1 Elemente de geometrie analiticã 1. Segmente 1. DistanŃa dintre douã puncte A(x 1,y 1 ), B(x 2,y 2 ): AB = 2. Panta dreptei AB: m AB =
Elemente de geometrie analiticã. Segmente. DistanŃa dintre douã puncte A(, ), B(, ): AB = ) + ( ) (. Panta dreptei AB: m AB = +. Coordonatele (,) ale mijlocului segmentului AB: =, =. Coordonatele punctului
Asupra unei metode pentru calculul unor integrale definite din functii trigonometrice
Educţi Mtemtică Vol. 1, Nr. (5), 59 68 Asupr unei metode pentru clculul unor integrle definite din functii trigonometrice Ion Alemn Astrct In this pper is presented one method of clcultion for the trigonometricl
Curs 4 Serii de numere reale
Curs 4 Serii de numere reale Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Criteriul rădăcinii sau Criteriul lui Cauchy Teoremă (Criteriul rădăcinii) Fie x n o serie cu termeni
CONCURSUL INTERJUDEȚEAN DE MATEMATICĂ TRAIAN LALESCU, 2014 Clasa a V-a
CONCURSUL INTERJUDEȚEAN DE MATEMATICĂ TRAIAN LALESCU, 2014 Clasa a V-a 1. Aflați cel mai mare număr de cinci cifre astfel încât cea de-a patra cifră să fie mai mare decât cea de-a cincea, a treia să fie
Planul determinat de normală şi un punct Ecuaţia generală Plane paralele Unghi diedru Planul determinat de 3 puncte necoliniare
1 Planul în spaţiu Ecuaţia generală Plane paralele Unghi diedru 2 Ecuaţia generală Plane paralele Unghi diedru Fie reperul R(O, i, j, k ) în spaţiu. Numim normala a unui plan, un vector perpendicular pe
DEFINITIVAT 1993 PROFESORI I. sinx. 0, dacă x = 0
DEFINITIVAT 1993 TIMIŞOARA PROFESORI I 1. a) Metodica predării noţiunii de derivată a unei funcţii. b) Să se reprezinte grafic funci a sinx, dacă x (0,2π] f : [0,2π] R, f(x) = x. 0, dacă x = 0 2. Fie G
Curs 14 Funcţii implicite. Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi"
Curs 14 Funcţii implicite Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Fie F : D R 2 R o funcţie de două variabile şi fie ecuaţia F (x, y) = 0. (1) Problemă În ce condiţii ecuaţia
Asupra unei inegalităţi date la barajul OBMJ 2006
Asupra unei inegalităţi date la barajul OBMJ 006 Mircea Lascu şi Cezar Lupu La cel de-al cincilea baraj de Juniori din data de 0 mai 006 a fost dată următoarea inegalitate: Fie x, y, z trei numere reale
Sunt variabile aleatoare care iau o infinitate numărabilă de valori. Diagrama unei variabile aleatoare discrete are forma... f. ,... pn.
86 ECUAŢII 55 Vriile letore discrete Sut vriile letore cre iu o ifiitte umărilă de vlori Digrm uei vriile letore discrete re form f, p p p ude p = = Distriuţi Poisso Are digrm 0 e e e e!!! Se costtă că
BACALAUREAT 2007 SESIUNEA IULIE M1-1
BACALAUREAT 2007 SESIUNEA IULIE M1-1 Filiera teoretică, specializarea matematică - informatică. Filiera vocaţională, profil Militar, specializarea matematică - informatică. a) Să se calculeze modulul vectorului
Testul nr. 1. Testul nr. 2
CONCURSUL INTERJUDEȚEAN DE MATEMATICĂ TRAIAN LALESCU, 1986 Clasa a V-a 1. Este numărul 1+2+3+ +1985 par? 2. Să se afle cel mai mic număr natural care împărțit la 5 dă restul 4, împărțit la 6 dă restul
CONCURSUL INTERJUDEŢEAN DE MATEMATICĂ ŞI INFORMATICĂ MARIAN ŢARINĂ. Ediţia a X-a, MAI 2010 CLASA A IV-A
Ediţia a X-a, 4 5 MAI 00 CLASA A IV-A I. Suma a două numere naturale este 75. Dacă adunăm de patru ori primul număr cu de trei ori al doilea număr obţinem 40. Aflaţi numărul cel mai mare. Eugenia Miron
III. Serii absolut convergente. Serii semiconvergente. ii) semiconvergentă dacă este convergentă iar seria modulelor divergentă.
III. Serii absolut convergente. Serii semiconvergente. Definiţie. O serie a n se numeşte: i) absolut convergentă dacă seria modulelor a n este convergentă; ii) semiconvergentă dacă este convergentă iar
V.7. Condiţii necesare de optimalitate cazul funcţiilor diferenţiabile
Metode de Optimizare Curs V.7. Condiţii necesare de optimalitate cazul funcţiilor diferenţiabile Propoziţie 7. (Fritz-John). Fie X o submulţime deschisă a lui R n, f:x R o funcţie de clasă C şi ϕ = (ϕ,ϕ
Tit Tihon CNRV Roman FISA DE EVALUARE A UNITATII DE INVATARE. Caracteristici vizibile observate PUNCTAJ ACORDAT
Tit Tihon CNRV Romn FISA DE EVALUARE A UNITATII DE INVATARE Nr. crt 5 6 7 8 9 0 Nr. crt Nr. crt Crcteristici vizibile observte PUNCTAJ ACORDAT preciere D+ Nu Observţii privind preciere folosire mnulului
CONCURSUL INTERJUDEȚEAN DE MATEMATICĂ TRAIAN LALESCU, 2016 Clasa a V-a
CONCURSUL INTERJUDEȚEAN DE MATEMATICĂ TRAIAN LALESCU, 2016 Clasa a V-a 1. Fie a, b și c cifre nenule nu neapărat distincte. Aflați cel mai mic și cel mai mare număr natural abc cu proprietatea că media
Integrale generalizate (improprii)
Integrle generlizte (improprii) Fie f : [, ] R, definită prin =, α > 0. Pentru u, funţi α f este integrilă pe intervlul [, u] şi u ln α+ α+ u u = ( α)u α α, α = ln u, α =. Dă treem l limită pentru u oţinem
1.PUNCTUL.DREAPTA.PLANUL
1.PUNCTUL.DREPT.PLNUL 1.Punctul E=F P Q P Q 2.Drept d su drept B (d) B Semidrept O, nott [O O su (O, dic fr O 3.Segmentul B, nott [B] M B (B),[B),(B] M este mijlocul lui [B] dc M=MB=B/2 su [M] [MB](=B/2)
Lucian Maticiuc SEMINAR 1 3. Capitolul I: Integrala definită. Primitive. 1. Să se arate că. f (x) dx = 0. Rezolvare:
Cpitolul I: Integrl definită. Primitive Conf. dr. Lucin Mticiuc Fcultte de Hidrotehnică, Geodezie şi Ingineri Mediului Anliz Mtemtică II, Semestrul II Conf. dr. Lucin MATICIUC. Să se rte că Rezolvre: SEMINAR
Subiecte Clasa a VI-a
Clasa a VI Lumina Math Intrebari (40 de intrebari) Puteti folosi spatiile goale ca ciorna. Nu este de ajuns sa alegeti raspunsul corect pe brosura de subiecte, ele trebuie completate pe foaia de raspuns
1. ŞIRURI ŞI SERII DE NUMERE REALE
. ŞIRURI ŞI SERII DE NUMERE REALE. Eerciţii rezolvte Eerciţiul Stbiliţi dcă următorele şiruri sut fudmetle: ), N 5 b) + + + +, N * c) + + +, N * cos(!) d), N ( ) e), N Soluţii p p ) +p - < şi mjortul este
Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor X) functia f 1
Functii definitie proprietati grafic functii elementare A. Definitii proprietatile functiilor. Fiind date doua multimi X si Y spunem ca am definit o functie (aplicatie) pe X cu valori in Y daca fiecarui
ANALIZĂ MATEMATICĂ pentru examenul licenţă, manual valabil începând cu sesiunea iulie 2013 Specializarea Matematică informatică coordonator: Dorel I.
ANALIZĂ MATEMATICĂ pentru exmenul licenţă, mnul vlbil începând cu sesiune iulie 23 Specilizre Mtemtică informtică coordontor: Dorel I. Duc Cuprins Cpitolul. Serii de numere rele. Noţiuni generle 2. Serii
Sisteme diferenţiale liniare de ordinul 1
1 Metoda eliminării 2 Cazul valorilor proprii reale Cazul valorilor proprii nereale 3 Catedra de Matematică 2011 Forma generală a unui sistem liniar Considerăm sistemul y 1 (x) = a 11y 1 (x) + a 12 y 2
Metode iterative pentru probleme neliniare - contractii
Metode iterative pentru probleme neliniare - contractii Problemele neliniare sunt in general rezolvate prin metode iterative si analiza convergentei acestor metode este o problema importanta. 1 Contractii
Ministerul Educaţiei Naționale Centrul Naţional de Evaluare şi Examinare
Miisterul Educaţiei Națioale Cetrul Naţioal de Evaluare şi Eamiare Eameul de bacalaureat aţioal 08 Proba E c) Matematică M_mate-ifo Clasa a XI-a Toate subiectele sut obligatorii Se acordă 0 pucte di oficiu
Varianta 1. SUBIECTUL I Pe foaia de teză se trec numai rezultatele.
Varianta 1 1 a) Rezultatul calculului 3,7 1 6 este egal cu numărul b) Rădăcina pătrată a numărului 11 este egală cu numărul c) Media aritmetică a numerelor 3 + 7 şi 3 7 este egală cu a) Soluţia întreagă
5. FUNCŢII IMPLICITE. EXTREME CONDIŢIONATE.
5 Eerciţii reolvate 5 UNCŢII IMPLICITE EXTREME CONDIŢIONATE Eerciţiul 5 Să se determine şi dacă () este o funcţie definită implicit de ecuaţia ( + ) ( + ) + Soluţie ie ( ) ( + ) ( + ) + ( )R Evident este
T R A I A N ( ) Trigonometrie. \ kπ; k. este periodică (perioada principală T * =π ), impară, nemărginită.
Trignmetrie Funcţia sinus sin : [, ] este peridică (periada principală T * = ), impară, mărginită. Funcţia arcsinus arcsin : [, ], este impară, mărginită, bijectivă. Funcţia csinus cs : [, ] este peridică
Axiomele geometriei în plan şi în spańiu
xiomele geometriei în pln şi în spńiu 1 xiomele geometriei în pln şi în spńiu unoştinńele de geometrie cumulte în clsele gimnzile pot fi încdrte într-un sistem logic de propozińii mtemtice: xiome, definińii,
GEOMETRIE PENTRU GIMNAZIU Partea I (cls. a V a, a VI a, a VII a) Geometrie pentru pregătirea Evaluării Naționale la Matematică
Geometrie pentru pregătirea Evaluării Naționale la Matematică (Cls. a V a, a VI a, a VII a) UNITĂȚI DE MĂSURĂ Lungime rie Volum Capacitate DE REȚINUT! Masă 1hm 1ha 1dam 1ar 1dm 1l 1q 1kg 1t 1kg 1v 1kg
MARCAREA REZISTOARELOR
1.2. MARCAREA REZISTOARELOR 1.2.1 MARCARE DIRECTĂ PRIN COD ALFANUMERIC. Acest cod este format din una sau mai multe cifre şi o literă. Litera poate fi plasată după grupul de cifre (situaţie în care valoarea
Cercul lui Euler ( al celor nouă puncte și nu numai!)
Cercul lui Euler ( al celor nouă puncte și nu numai!) Prof. ION CĂLINESCU,CNDG, Câmpulung Voi prezenta o abordare simplă a determinării cercului lui Euler, pe baza unei probleme de loc geometric. Preliminarii:
CERCUL LUI EULER ŞI DREAPTA LUI SIMSON
CERCUL LUI EULER ŞI DREAPTA LUI SIMSON ABSTRACT. Articolul prezintă două rezultate deosebite legate de patrulaterul inscriptibil şi câteva consecinţe ce decurg din aceste rezultate. Lecţia se adresează
Subiecte Clasa a VIII-a
(40 de intrebari) Puteti folosi spatiile goale ca ciorna. Nu este de ajuns sa alegeti raspunsul corect pe brosura de subiecte, ele trebuie completate pe foaia de raspuns in dreptul numarului intrebarii
Anexa B2 Elemente de reprezentare grafică în plan şi în spaţiu.
Anex B Elemente de reprezentre grfică în pln şi în spţiu. 1. Tipuri de sisteme de coordonte. Coordonte crteziene Fie xoy un sistem de coordonte crteziene în pln. Fie P un punct în pln vând coordontele
Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor
Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor. Fiind date doua multimi si spunem ca am definit o functie (aplicatie) pe cu valori in daca fiecarui element
EDITURA PARALELA 45. Matematică de excelenţă pentru concursuri, olimpiade şi centre de excelenţă. clasa a VIII-a. mate 2000 excelenţă
Maranda Linţ Dorin Linţ Rozalia Marinescu Dan Ştefan Marinescu Mihai Monea Steluţa Monea Marian Stroe Matematică de excelenţă pentru concursuri, olimpiade şi centre de excelenţă clasa a VIII-a mate 000
Probleme pentru clasa a XI-a
Probleme pentru clasa a XI-a 1 ( ) 01. Fie A si B doua matrici de ordin n cu elemente numere reale, care satisfac relatia AB = A + B. a) Sa se arate ca det(a 2 + B 2 ) 0. b) Sa se arate ca rang A + B =
DEFINITIVAT 1991 PROFESORI I. x 2 dacă x [ 2,2) f(x) =. 10 x 2, dacă x [2, 5] x+1, dacă x Q x 3 +2, dacă x / Q,
DEFINITIVAT 99 BUCUREŞTI. a) Derivabilitate. Proprietăţi ale funcţiilor derivabile. b) Fie f : [ 3, ) R dată prin 4, dacă x [ 3, 2) x x 2 dacă x [ 2,2) f(x) =. 0 x 2, dacă x [2, 5] 2, dacă x ( 5, ) Să
VARIANTE PENTRU BACALAUREAT, M1-1, 2007
VARIANTE PENTRU BACALAUREAT, M-, 27 VARIANTA SUBIECTUL I. a) Să se determine ecuația dreptei care trece prin punctul A(2; 5;3) și este paralelă cu dreapta x = y 2 4 6 = z +3 9. b) Să se determine valoarea
3. Locuri geometrice Locuri geometrice uzuale
3. Locuri geometrice 3.. Locuri geometrice uzuale oţiunea de loc geometric în plan care se găseşte şi în ELEETELE LUI EUCLID se pare că a fost folosită încă de PLATO (47-347) şi ARISTOTEL(383-3). Locurile
SERII NUMERICE. Definiţia 3.1. Fie (a n ) n n0 (n 0 IN) un şir de numere reale şi (s n ) n n0
SERII NUMERICE Definiţia 3.1. Fie ( ) n n0 (n 0 IN) un şir de numere reale şi (s n ) n n0 şirul definit prin: s n0 = 0, s n0 +1 = 0 + 0 +1, s n0 +2 = 0 + 0 +1 + 0 +2,.......................................
LUCRARE DE DIPLOMĂ CENTRE REMARCABILE ÎN TRIUNGHI
UNIVERSITATEA BABEŞ-BOLYAI CLUJ-NAPOCA FACULTATEA DE MATEMATICĂ ŞI INFORMATICĂ SPECIALIZAREA MATEMATICI APLICATE LUCRARE DE DIPLOMĂ CENTRE REMARCABILE ÎN TRIUNGHI Conducător Ştiinţific: Lect. Dr. VĂCĂREŢU
Metode de interpolare bazate pe diferenţe divizate
Metode de interpolare bazate pe diferenţe divizate Radu Trîmbiţaş 4 octombrie 2005 1 Forma Newton a polinomului de interpolare Lagrange Algoritmul nostru se bazează pe forma Newton a polinomului de interpolare
CONCURSUL DE MATEMATICĂ APLICATĂ ADOLF HAIMOVICI, 2016 ETAPA LOCALĂ, HUNEDOARA Clasa a IX-a profil științe ale naturii, tehnologic, servicii
ADOLF HAIMOVICI, 206 Clasa a IX-a profil științe ale naturii, tehnologic, servicii. Se consideră predicatul binar p(x, y) : 4x + 3y = 206, x, y N și mulțimea A = {(x, y) N N 4x+3y = 206}. a) Determinați
Seminar 3. Serii. Probleme rezolvate. 1 n . 7. Problema 3.2. Să se studieze natura seriei n 1. Soluţie 3.1. Avem inegalitatea. u n = 1 n 7. = v n.
Semir 3 Serii Probleme rezolvte Problem 3 Să se studieze tur seriei Soluţie 3 Avem ieglitte = ) u = ) ) = v, Seri = v este covergetă fiid o serie geometrică cu rţi q = < Pe bz criteriului de comprţie cu
TEMA 5: DERIVATE ŞI DIFERENȚIALE
TEMA 5: DERIVATE ŞI DIFERENȚIALE 35 TEMA 5: DERIVATE ŞI DIFERENȚIALE Obiective: Deinire principlelor proprietăţi mtemtice le uncţiilor, le itelor de uncţii şi le uncţiilor continue Deinire principlelor
Cum folosim cazuri particulare în rezolvarea unor probleme
Cum folosim cazuri particulare în rezolvarea unor probleme GHEORGHE ECKSTEIN 1 Atunci când întâlnim o problemă pe care nu ştim s-o abordăm, adesea este bine să considerăm cazuri particulare ale acesteia.
Conice - Câteva proprietǎţi elementare
Conice - Câteva proprietǎţi elementare lect.dr. Mihai Chiş Facultatea de Matematicǎ şi Informaticǎ Universitatea de Vest din Timişoara Viitori Olimpici ediţia a 5-a, etapa I, clasa a XII-a 1 Definiţii
GRADUL II 1995 CRAIOVA PROFESORI I
GRADUL II 1995 CRAIOVA PROFESORI I 1. Fie f : R R definită prin f(x) = x(1+e x ). a) Să se arate că f este indefinit derivabilă şi că f (n) (x) = a n e x +b n xe x, ( ) n 3, ( ) x R. Deduceţi că a n+1
CONCURSUL DE MATEMATICĂ APLICATĂ ADOLF HAIMOVICI, 2017 ETAPA LOCALĂ, HUNEDOARA Clasa a IX-a profil științe ale naturii, tehnologic, servicii
Clasa a IX-a 1 x 1 a) Demonstrați inegalitatea 1, x (0, 1) x x b) Demonstrați că, dacă a 1, a,, a n (0, 1) astfel încât a 1 +a + +a n = 1, atunci: a +a 3 + +a n a1 +a 3 + +a n a1 +a + +a n 1 + + + < 1
Subiecte Clasa a V-a
(40 de intrebari) Puteti folosi spatiile goale ca ciorna. Nu este de ajuns sa alegeti raspunsul corect pe brosura de subiecte, ele trebuie completate pe foaia de raspuns in dreptul numarului intrebarii
BISECTOAREI GLISANTE
ÎN LEGĂTURĂ CU TEOREMA BISECTOAREI GLISANTE de ANDREI ECKSTEIN, TIMIŞOARA În aceast articol ne propunem să reunim diverse proprietăţi cunoscute, legate de teorema bisectoarei glisante şi de bogatul ei
Definiţia generală Cazul 1. Elipsa şi hiperbola Cercul Cazul 2. Parabola Reprezentari parametrice ale conicelor Tangente la conice
1 Conice pe ecuaţii reduse 2 Conice pe ecuaţii reduse Definiţie Numim conica locul geometric al punctelor din plan pentru care raportul distantelor la un punct fix F şi la o dreaptă fixă (D) este o constantă
Criptosisteme cu cheie publică III
Criptosisteme cu cheie publică III Anul II Aprilie 2017 Problema rucsacului ( knapsack problem ) Considerăm un număr natural V > 0 şi o mulţime finită de numere naturale pozitive {v 0, v 1,..., v k 1 }.
Conice. Lect. dr. Constantin-Cosmin Todea. U.T. Cluj-Napoca
Conice Lect. dr. Constantin-Cosmin Todea U.T. Cluj-Napoca Definiţie: Se numeşte curbă algebrică plană mulţimea punctelor din plan de ecuaţie implicită de forma (C) : F (x, y) = 0 în care funcţia F este