Axiomele geometriei în plan şi în spańiu

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Axiomele geometriei în plan şi în spańiu"

Transcript

1 xiomele geometriei în pln şi în spńiu 1 xiomele geometriei în pln şi în spńiu unoştinńele de geometrie cumulte în clsele gimnzile pot fi încdrte într-un sistem logic de propozińii mtemtice: xiome, definińii, teoreme, consecinńe, leme, etc mintim că nońiunile geometrice ce nu se definesc se numesc nońiuni geometrice primre De regulă, ceste sînt: punct, dreptă, pln Puncetele, dreptele şi plnele se noteză respectiv cu literele,,, ;, b, c, ;, β, γ, eventul cu indici NoŃiunile ce se definesc cu jutorul nońiunilor primre se numesc nońiuni derivte Segment, semidreptă, unghi, triunghi, ş sînt nońiuni derivte Punctele, dreptele şi plnele se flă în nişte relńii numite relńii primre ceste se numesc incidenńă (prtenenńă), între, congruenńă Ntur obiectelor primre (punct, dreptă, pln) şi relńiilor primre pote fi rbitrră cu condińi că ele sînt legte printr-un sistem de xiome xiomele sînt propozińii cu crcter de ipoteză (cre nu se demonstreză) cre descriu legătur dintre nońiunile primre şi relńiile primre Ele reprezintă proprietăńile de bză le obiectelor de bză şi se consideră devărte xiomele sunt c nişte reguli de conduită, c nişte reguli le unui joc, ş Sistemul de xiome (reguli) les trebuie să verifice următorele condińii: xiomele trebuie să nu se contrzică; xiomele să fie suficient de numerose, stfel încât pornind de l ele să se potă studi, explic tote situńiile posibile În geometri elementră se iu c xiome proprietăńi le punctelor şi dreptelor dej fmilirizte şi mplu utilizte în gimnziu L ele se mi dugă şi lte cîtev proprietăńi importnte sugerte de observńii şi experimentări MenŃionăm că un şi ceeşi propriette pote fi considertă într-un sistem de proprietăńi drept xiomă, ir în lt sistem de xiome drept o consecinńă din xiomele cceptte, dică drept teoremă xiomele sînt propozińii cu crcter de ipoteză (cre nu se demonstreză) cre descriu legătur dintre nońiunile primre şi relńiile primre Teorem este o propozińie devărul cărei se demonstreză Teoremele sunt propozińii cre descriu proprietăńile nońiunilor primre şi derivte şi se demonstreză cu jutorul xiomelor, definińiilor, lemelor su teoremelor dej demonstrte Lem este o propozińie devărul cărei se demonstreză şi se plică l demonstrre unei teoreme DefiniŃi este o propozińie su un grup de propozińii prin cre se explică o nońiune nouă stfel, propozińi Dcă două puncte şi le dreptei prńin plnului, tunci drept prńine plnului este o xiomă (după cum vom vede), ir firmńi Sum măsurilor unghiurilor unui triunghi este 180 este o teoremă cestă teoremă se demonstreză cu jutorul următorelor propozińii mtemtice: P 1 xiom prlelelor lui Euclid (oricre r fi o dreptă şi un punct exterior cestei drepte, în plnul determint de punct şi dreptă, există cel mult o prlelă l drept dtă, cre să conńină punctul dt); P 2 teorem de existenńă prlelei (printr-un punct exterior unei drepte există cel puńin o prlelă l drept dtă);

2 xiomele geometriei în pln şi în spńiu 2 P 3 teorem despre eglitte unghiurilor lterne interne, formte l intersecńi două drepte prlele cu o secntă; P 4 definińi sumei unghiurilor; P 5 definińi unghiului lungit; P 6 teorem despre măsur unghiului lungit onvenim c tunci când ne referim l mi multe obiecte (puncte, drepte, plne, ş) şi le notăm cu simboluri diferite, să le considerăm distincte Ită câtev exemple de definińii cre vor fi folosite în continure: Trei puncte,, se numesc colinire dcă există o dreptă ce le conńine În cz contrr, punctele se numesc necolinire Se spune că drept intersecteză (este incidentă cu) plnul dcă există un punct, stfel încât şi Se spune că drept prńine (su este conńinută de plnul ) plnului dcă orice punct l dreptei prńine şi plnului Ptru puncte,,, D se numesc coplnre dcă există un pln ce le conńine În cz contrr, punctele se necoplnre legere nońiunilor primre, relńiilor primre şi sistemului de xiome respectiv, stfel încât totă geometri elementră să fie dedusă bzându-ne dor pe ele şi pe legile logicii se numeşte construcńie xiomtică geometriei elementre Se cunosc mi multe sisteme de xiome le geometriei elementre În litertur ştiinńifică este cel mi des utilizt sistemul de xiome l lui D Hilbert Geometri orgniztă conform cestui sistem de xiome corespunde cu geometri spńiului din jurul nostru, observtă cu ochiul liber onform cestei geometrii, omenii ctiveză în diversele lor meserii, de exemplu, în rhitectură, construcńi de poduri, construcńi de cse, de mşini, ş În fră de cestă geometrie mtemtică u mi fost definite şi lte geometrii, bzte pe lte xiome, unele din ele contrzic xiomele geometriei elementre ceste geometrii sînt utile în explicre şi prezicere fenomenelor ce se petrec în Univers: teori reltivităńii, evoluńi stelelor, propgre luminii, ş În continure vom exmin schem rgumentării geometriei elementre conform xiomticii lui Dvid Hilbert cest sistem de xiome constă din 20 de xiome împărńite în 5 grupe Prin cestă clsificre xiomelor se reuşeşte ce mi simplă şi lconică formulre xiomelor şi în plus, se pote constt cât de consistentă (bogtă) pote fi geometri bztă dor pe un su câtev grupe de xiome xiomele de incidenńă (Grup I) xiomele cestei grupe definesc proprietăńile de mplsre le punctelor, dreptelor şi plnelor Se dmit următorele xiome de incidenńă: I 1 Oricre r fi două puncte distincte, le spńiului, există o dreptă cre trece prin ceste puncte I 2 Oricre r fi două puncte distincte, există cel mult o dreptă cre trece prin ceste puncte

3 xiomele geometriei în pln şi în spńiu 3 Figur 1 Deci, două puncte distincte, le spńiului determină o dreptă şi numi un singură NotŃie: = (fig 1) I 3 Pe oricre dreptă sînt situte cel puńin două puncte Există cel puńin trei puncte necolinire I 4 Oricr r fi trei puncte necolinire,,, există plnul ce trece prin ceste puncte Pe fiecre pln este situt cel puńin un punct I 5 Oricre r fi trei puncte necolinire,,, există cel mult un pln cre trece prin ceste puncte stfel, trei puncte necolinire,,, determină un pln şi numi unul singur NotŃie: = () (fig 2) Figur 2 I 6 Dcă două puncte distincte, le dreptei sînt situte pe plnul, tunci fiecre punct l dreptei este situt pe plnul ltfel spus, dcă o dreptă re două puncte comune cu un pln, tunci drept este conńinută în întregime în cest pln Figur 3 I 7 Dcă două plne şi β u un punct comun, tunci ele mi u cel puńin încă un punct comun Plnele se reprezintă pe foie de ciet prin prlelogrme β Figur 4 I 8 Exist cel putin ptru puncte necolinire

4 xiomele geometriei în pln şi în spńiu 4 D Figur 5 Utiliznd ceste xiome pot fi demonstrte urmtorele teoreme: T 1 Două drepte distincte u cel mult un punct comun b E Figur 6 T 2 Dcă două plne u un punct comun, tunci ele u o dreptă comună pe cre sînt situte tote punctele comune cestor plne Figur 7 T 3 Printr-o dreptă şi un punct ce nu-i prńine trece un pln şi numi unul singur β Figur 8 T 4 Prin două drepte concurente trece un pln şi numi unul singur b Figur 9 T 5 Orice pln conńine trei puncte necolinire

5 xiomele geometriei în pln şi în spńiu 5 pln şdr, un pln pote fi determint: Figur 10 ) de trei puncte necolinire, b) de o dreptă şi un punct ce nu-i prńine, c) de două drepte secnte (cre se intersecteză) Să demonstrăm de exemplu teoremele 3 şi 4 Teorem 3 Printr-o dreptă şi un punct ce nu prńine cestei drepte trece un unic d Figur 11 DemonstrŃie Fie drept d dtă şi punctul d onform xiomei I 3 pe drept d există două puncte distincte şi (fig 11) Punctele,, sînt necolinire, deci, conform xiomelor I 4 -I 5, prin ceste puncte trece un pln şi numi unul singur Drept d prńine plnului, deorece două puncte distincte le ei, şi, prńin plnului (xiom I 6 ) Deci, plnul este singurul pln ce conńine punctul şi drept d cest pln se noteză (, d) su ( d, ) Plnul ce trece prin punctele necolinire,, se noteză () Teorem 4 Există un unic pln ce trece prin două drepte concurente b Figur 12 DemonstrŃie Fie şi b două drepte concurente în Pe drept, în fră de punctul mi există cel puńin un punct, (fig 12) onform teoremei 3, prin punctul şi drept b trece un pln şi numi unul singur Unicitte plnului rezultă din xiom I 6, deorece orice punct l dreptei prńine plnului ExerciŃiu DemonstrŃi teoremele T 1, T 2, T 5

6 xiomele geometriei în pln şi în spńiu 6 xiomele de ordine (grup II) xiomele de ordine evidenńiză relńi dintre punctele situte pe o dreptă; cestă relńie se exprimă prin cuvintele fi între şi ltele echivlente cu ceste Dcă punctul este situt (se flă) între punctele şi notăm Se dmit următorele xiome de ordine: II 1 Dcă vem, tunci,, sînt puncte distincte colinire şi vem Figur 13 II 2 (xiom punctului exterior) Oricre r fi două puncte distincte, există cel puńin un punct stfel încât Figur 14 II 3 Oricre r fi trei puncte distincte colinire,,, unul şi numi unul este situt între celellte două Figur 15 Îninte de formul xiom II 4 definim nońiunile de segment şi triunghi Figur ce constă din două puncte distincte, şi mulńime tuturor punctelor dreptei situte între şi se numeşte segment închis determint de punctele, şi se noteză [] : [ ] = {, } { M M } Punctele şi se numesc cpetele (extremităńile) segmentului Uneori se spune că segmentl uneşte punctele şi Pentru comoditte se exmineză şi segmentele nule [ ], [ ] Punctele segmentului, diferite de cpetele lui, se numesc puncte interiore le cestui segment MulŃime tuturor punctelor interiore le segmentului se numeşte segment deschis şi se noteză () tât segmentul nenul închis, cât şi segmentul deschis determină o dreptă, cre se numeşte drept suport segmentului respectiv Dcă o dreptă trece printr-un singur punct l unui segment, tunci se spune că drept intersecteză segmentul su că segmentul intersecteză drept Reuniune trei puncte necolinire şi segmentelor ce unesc ceste puncte se numeşte triunghi Fie,, trei puncte necolinire Triunghiul determint de ceste puncte se noteză = [ ] [ ] [ ]

7 xiomele geometriei în pln şi în spńiu 7 Figur 16 Punctele,, se numesc vârfurile triunghiului, segmentele [ ], [ ], [ ] lturile triunghiului, ir plnul () plnul triunghiului II 4 (xiom lui Psch) Dcă drept este sitută în plnul () l şi nu trece prin nici unul din vârfurile,, le, dr intersecteză o ltură (în interior), tunci drept intersecteză încă un şi numi un din lturile (în interior) D Figur 17 u jutorul xiomelor de incidenńă şi de ordin se demonstreză mi multe rezultte de geometrie şi se definesc o serie de figuri geomtrice importnte În primul rnd se deduce că orice segment nenul re cel puńin un punct interior, ir de ici rezultă că orice dreptă re o infinitte de puncte xiomele de incidenńă permit să definim semidrept, semiplnul şi semispńiul după cum urmeză Mi întîi se formuleză şi se demonstreză teoremele de seprre dreptei, plnului şi spńiului, de către un punct, o drept, un pln respectiv Teorem S1 Orice punct O l unei drepte d împrte drept d în două submulńimi nevide disjuncte de puncte, stfel încât orice două puncte, din submulńimi diferite sînt seprte de punctul O, ir orice două puncte, D din ceeşi submulńime nu sînt seprte de punctul O D O Figur 18 Teorem S2 Orice dreptă d inclusă într-un pln împrte plnul în două submulńimi nevide disjuncte de puncte, stfel încât pentru orice două puncte, din submulńimi diferite, segmentul [] intersecteză drept d, ir pentru orice două puncte, D din ceeşi submulńime segmentul nu intersecteză drept d d

8 xiomele geometriei în pln şi în spńiu 8 E D Figur 19 Teorem S3 Orice pln împrte mulńime punctelor spńiului în două submulńimi nevide disjuncte de puncte stfel încât pentru orice două puncte, din submulńimi diferite segmentul intersecteză plnul, ir pentru orice două puncte, D din ceeşi submulńime segmentul D nu intersecteză plnul D Figur 20 Fiecre din submulńimile din teorem S1 se numesc semidrepte deschise cu origine în O le dreptei d (su cu suportul d ) Reuniune semidreptei deschise cu origine ei se numeşte semidreptă închisă NotŃie: (O, [ O respectiv sînt semidrepte deschisă, închisă cu origine în O cre conńin punctul O O Figur 21 Semidreptele diferite cu celşi support d şi ceeşi origine O se numesc semidrepte opuse şi se mi noteză prin: (Od', (Od'' d '' O d d ' Figur 22 Fiecre din submulńimile din teorem S3 se numesc semispńii deschise determinte de plnul (cu frontier ) Reuniune semispńiului deschis cu frontier s se numeşte semispńiu închis NotŃie: (, ([ este semispńiul deschis (închis) cu frontier, cre conńine punctul SemispŃiile diferite cu ceeşi frontieră se numesc semispńii opuse

9 xiomele geometriei în pln şi în spńiu 9 Reuniune două semidrepte închise cu origine comună se numeşte unghi Fie [ O şi [ O două semidrepte xiomele de congruenńă (grup III) xiomele cestei grupe definesc proprietăńile relńiilor de congruenńă dintre segmente (unghiuri) Se folosesc notńiile: [ ] [ D], O ' O' ', cre se exprimă prin: segmentul (respectiv unghiul O ) este congruent cu segmentul D (respectiv cu unghiul ' O' ' ) ceste xiome sînt: III 1 Fiind dte segmentul şi semidrept cu origine în situt pe cestă semidreptă stfel încât [ ] [ ' ' ] III 2 Dcă [ ] [ ' ' ] şi [ ] [ " " ], tunci [ ' '] [ " " ] ', există un punct III 3 Dcă, ', [ ] [ ' ' ] şi [ ] [ ' ], tunci [ ] [ ' ] ' Figur 23 III 4 Fie O, drept şi ( O ' X ' o semidrept dreptei cu origine în punctul O ' tunci, în semiplnul există o unică semidreptă O 'Y' stfel încât O X ' O' Y' X ' O Figur 24 III 5 Dcă pentru triunghiurile şi ' ' u loc relńiile [ ] [ ' ' ], [ ] [ ' ], ' ' tunci re loc relńi ' ', su, schimbând notńiile, ' ' O ' X ' ' ' ' Figur 25 ducem c exemplu câtev teoreme ce rezultă din xiomele de congruenńă şi cre le vom utilize în continure 1) RelŃi de congruenńă segementelor este o relńie de echivlenńă pe mulńime segmentelor 2) Unghiurile de l bz triunghiului isoscel sînt congruente

10 xiomele geometriei în pln şi în spńiu 10 Triunghiurile şi ' ' se numesc congruente dcă există o corespondenńă f între vîrfuri, de exemplu f ( ) = ', f ( ) = ', f ( ) =, stfel încât ', ',,[ ] [ ' ' ],[ ] [ ' ],[ ] [ ' ] 3) riteriile de congruenńă le triunghiurilor: 3) (riteriul LUL) Dcă triunghiurile şi ' ' sînt stfel încât ( ) = ( ' '),( ) = ( ' ), ', tunci ' ' 3b) (riteriul ULU) Dcă triunghiurile şi ' ' sînt stfel încât ',( ) ( ' ),, tunci ' ' 3c) (riteriul LLL) Dcă triunghiurile şi ' ' sînt stfel încât ( ) ( ' '),( ) ( ' ),( ) = ( ' ), tunci ' ' 4) ongruenń triunghiurilor este o relńie de echivlenńă pe mulńime triunghiurilor 5) ongruenń unghiurilor este o relńie de echivlenńă pe mulńime unghiurilor În continure putem formul definińiile cunoscute le nońiunilor mi mre şi mi mic pentru segmente şi unghiuri şi putem deduce proprietăńile comprńiei segmentelor şi unghiurilor De exemplu, spunem că segmentul () este mi mic decât segmentul (D) şi scriem ( ) < ( D) dcă există un punct E pe semidrept (D, stfel încât E D şi ( ) ( E) E D Figur 26 În cest cz se mi spune că (D) este mi mre decât () şi se scrie ( D ) > ( ) Se numesc unghiuri dicente două unghiuri proprii cre u celşi vârf, o ltură comună şi interiorele disjuncte ( O şi O ) O Figur 27 Două unghiuri dicente cre u lturile necomune opuse se numesc unghiuri suplementre Un unghi se numeşte drept dcă el este congruent cu suplementrul său

11 xiomele geometriei în pln şi în spńiu 11 O O 6) Există un unghi drept Figur 28 7) Tote unghiurile drepte sînt congruente între ele 8) Un unghi exterior l unui triunghi este mi mre decât fiecre dintre unghiurile triunghiului, nedicent cu cel unghi 9) În orice triunghi lturii mi mri i se opune un unghi mi mre şi vicevers: unghiului mi mic i se opune ltur mi mică xiomele grupelor I-IV permit să dăm definińi mijlocului unui segment şi bisectorei unghiului Se demonstreză că: 10) Orice segment re un singur mijloc 11) Orice unghi re o singură bisectore xiomele de continuitte (grup IV) IV 1 (xiom lui rhimede) Fie segmentele şi D stfel încât ( ) > ( D) tunci pe drept există un număr finit de puncte 1, 2,, n, stfel încât u loc relńiile: ),, ;, n 2 n 1 n b) 1 ) ( 1 2 ) ( n n ) ( D); ( 1 c) n 1 2 n-2 n-1 n D Figur 29 IV 2 Fie pe o dreptă orecre un şir infinit de segmente ), ( ),, ( n ), cu proprietăńile: ( n ) ( i i ) ( i i+ ), i N b) nu există nici un segment inclus în tote segmentele şirului considert tunci pe drept există un singur punct M cre prńine fiecărui segment din cest şir Principlele consecinńe obńinute cu jutorul grupelor I-IV sînt teori măsurării segmentelor şi unghiurilor

12 xiomele geometriei în pln şi în spńiu 12 Geometri construită în bz xiomelor grupelor I-IV se numeşte geometrie bsolută xiom prlelelor (V) V (xiom prlelelor lui Euclid) Fie o dreptă orecre şi un punct exterior dreptei tunci în plnul determint de punctul şi drept, există cel mult o dreptă cre trece prin punctul şi nu intersecteză drept Figur 30 Două drepte distincte se numesc prlele dcă ele sînt situte într-un pln şi nu se intersecteză Este justă următore teoremă Teorem Printr-un punct exterior unei drepte, în plnul determint de punct şi dreptă, există o prlelă unică l drept dtă xiom V este echivlentă cu fiecre din următorele enunńuri: 1) Orice secntă s formeză cu dreptele prlele, b unghiuri lterne interne congruente S Figur 31 2) Pentru orice triunghi sum unghiurilor este eglă cu 180 3) Există un ptrulter în cre sum unghiurilor este eglă cu 360 4) Există un dreptunghi În bz xiomelor enunńte pote fi rgumenttă totă geometri elementră studită în clsele gimnzile Se spune că geometri elementră studită în clsele nteriore este o interpretre modelului xiomtic l lui Hilbert de construire geometriei b

METODE ŞI ETAPE NECESARE PENTRU DETERMINAREA

METODE ŞI ETAPE NECESARE PENTRU DETERMINAREA ETOE ŞI ETAPE ECESARE PETRU ETERIAREA UGHIULUI A OUĂ PLAE PROF. IACU ARIA, ŞCOALA ROUL LAEA, ORAVIłA, CARAŞ- SEVERI (). Unghi diedru. Fie α şi β două semiplne vând ceeşi frontieră (muchie)d. Se numeşte

Διαβάστε περισσότερα

BARAJ DE JUNIORI,,Euclid Cipru, 28 mai 2012 (barajul 3)

BARAJ DE JUNIORI,,Euclid Cipru, 28 mai 2012 (barajul 3) BARAJ DE JUNIORI,,Euclid Cipru, 8 mi 0 (brjul ) Problem Arătţi că dcă, b, c sunt numere rele cre verifică + b + c =, tunci re loc ineglitte xy + yz + zx Problem Fie şi b numere nturle nenule Dcă numărul

Διαβάστε περισσότερα

Analiza matematică, clasa a XI-a probleme rezolvate Rolul derivatei întâi

Analiza matematică, clasa a XI-a probleme rezolvate Rolul derivatei întâi Anliz mtemtică, cls XI- proleme rezolvte Rolul derivtei întâi Virgil-Mihil Zhri DefiniŃie: Punctele critice le unei funcńii derivile sunt rădăcinile (zerourile) derivtei întâi DefiniŃie: Fie f:i R, cu

Διαβάστε περισσότερα

EcuaŃii de gradul al doilea ax 2 + bx + c = 0, a,b,c R, a 0 1. Formule de rezolvare: > 0 b x =, x =, = b 2 4ac; sau

EcuaŃii de gradul al doilea ax 2 + bx + c = 0, a,b,c R, a 0 1. Formule de rezolvare: > 0 b x =, x =, = b 2 4ac; sau EcuŃii de grdul l doile x + x + c = 0,,,c R, 0 Formule de rezolvre: > 0 + x =, x =, = c; su ' + ' ' ' x =, x =, =, = c Formule utile în studiul ecuńiei de grdul l II-le: x + x = (x + x ) x x = S P 3 x

Διαβάστε περισσότερα

Planul determinat de normală şi un punct Ecuaţia generală Plane paralele Unghi diedru Planul determinat de 3 puncte necoliniare

Planul determinat de normală şi un punct Ecuaţia generală Plane paralele Unghi diedru Planul determinat de 3 puncte necoliniare 1 Planul în spaţiu Ecuaţia generală Plane paralele Unghi diedru 2 Ecuaţia generală Plane paralele Unghi diedru Fie reperul R(O, i, j, k ) în spaţiu. Numim normala a unui plan, un vector perpendicular pe

Διαβάστε περισσότερα

Integrale cu parametru

Integrale cu parametru 1 Integrle proprii cu prmetru 2 3 Integrle proprii cu prmetru Definiţi 1.1 Dcă f : [, b ] E R, E R este o funcţie cu propriette că pentru orice y E, funcţi de vribilă x x f (x, y) este integrbilă pe intervlul

Διαβάστε περισσότερα

TRIUNGHIUL. Profesor Alina Penciu, Școala Făgăraș, județul Brașov A. Definitii:

TRIUNGHIUL. Profesor Alina Penciu, Școala Făgăraș, județul Brașov A. Definitii: TRIUNGHIUL Profesor lina Penciu, Școala Făgăraș, județul rașov Daca, si sunt trei puncte necoliniare, distincte doua câte doua, atunci ( ) [] [] [] se numeste triunghi si se noteaza cu Δ. Orice Δ determina

Διαβάστε περισσότερα

Curs 10 Funcţii reale de mai multe variabile reale. Limite şi continuitate.

Curs 10 Funcţii reale de mai multe variabile reale. Limite şi continuitate. Curs 10 Funcţii reale de mai multe variabile reale. Limite şi continuitate. Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Fie p, q N. Fie funcţia f : D R p R q. Avem următoarele

Διαβάστε περισσότερα

MULTIMEA NUMERELOR REALE

MULTIMEA NUMERELOR REALE www.webmteinfo.com cu noi totul pre mi usor MULTIMEA NUMERELOR REALE office@ webmteinfo.com 1.1 Rdcin ptrt unui numr nturl ptrt perfect Ptrtul unui numr rtionl este totdeun pozitiv su zero (dic nenegtiv).

Διαβάστε περισσότερα

Sunt variabile aleatoare care iau o infinitate numărabilă de valori. Diagrama unei variabile aleatoare discrete are forma... f. ,... pn.

Sunt variabile aleatoare care iau o infinitate numărabilă de valori. Diagrama unei variabile aleatoare discrete are forma... f. ,... pn. 86 ECUAŢII 55 Vriile letore discrete Sut vriile letore cre iu o ifiitte umărilă de vlori Digrm uei vriile letore discrete re form f, p p p ude p = = Distriuţi Poisso Are digrm 0 e e e e!!! Se costtă că

Διαβάστε περισσότερα

TITULARIZARE 2002 Varianta 1

TITULARIZARE 2002 Varianta 1 TITULARIZARE 2002 Vrint 1 A. Omotetii plne: definiţie, oricre două triunghiuri omotetice sunt semene, mulţime omotetiilor de celşi centru formeză un grup belin izomorf cu grupul multiplictiv l numerelor

Διαβάστε περισσότερα

Seminariile 1 2 Capitolul I. Integrale improprii

Seminariile 1 2 Capitolul I. Integrale improprii Cpitolul I: Integrle improprii Lect. dr. Lucin Mticiuc Fcultte de Mtemtică Clcul integrl şi Aplicţii, Semestrul I Lector dr. Lucin MATICIUC Seminriile Cpitolul I. Integrle improprii. Să se studieze ntur

Διαβάστε περισσότερα

π } R 4. ctg:r\{kπ} R FuncŃii trigonometrice 1. DefiniŃii în triunghiul dreptunghic 2. ProprietãŃile funcńiilor trigonometrice 1.

π } R 4. ctg:r\{kπ} R FuncŃii trigonometrice 1. DefiniŃii în triunghiul dreptunghic 2. ProprietãŃile funcńiilor trigonometrice 1. Trigonometrie FuncŃii trigonometrice. DefiniŃii în triunghiul dreptunghic b c b sin B, cos B, tgb c C c ctgb, sin B cosc, tgb ctgc b b. ProprietãŃile funcńiilor trigonometrice. sin:r [-,] A c B sin(-x)

Διαβάστε περισσότερα

Geometria triunghiului

Geometria triunghiului Geometri triunghiului 1 I Triunghiul ritrr Fie AB A c h m l β γ B D E A 1 Geometri triunghiului Formule de z pentru triunghiuri Notm prin:,, c lungimile lturilor B, A, respectiv AB; α, β, γ mrimile unghiurilor

Διαβάστε περισσότερα

a n (ζ z 0 ) n. n=1 se numeste partea principala iar seria a n (z z 0 ) n se numeste partea

a n (ζ z 0 ) n. n=1 se numeste partea principala iar seria a n (z z 0 ) n se numeste partea Serii Laurent Definitie. Se numeste serie Laurent o serie de forma Seria n= (z z 0 ) n regulata (tayloriana) = (z z n= 0 ) + n se numeste partea principala iar seria se numeste partea Sa presupunem ca,

Διαβάστε περισσότερα

Curs 14 Funcţii implicite. Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi"

Curs 14 Funcţii implicite. Facultatea de Hidrotehnică Universitatea Tehnică Gh. Asachi Curs 14 Funcţii implicite Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Fie F : D R 2 R o funcţie de două variabile şi fie ecuaţia F (x, y) = 0. (1) Problemă În ce condiţii ecuaţia

Διαβάστε περισσότερα

Profesor Blaga Mirela-Gabriela DREAPTA

Profesor Blaga Mirela-Gabriela DREAPTA DREAPTA Fie punctele A ( xa, ya ), B ( xb, yb ), C ( xc, yc ) şi D ( xd, yd ) în planul xoy. 1)Distanţa AB = (x x ) + (y y ) Ex. Fie punctele A( 1, -3) şi B( -2, 5). Calculaţi distanţa AB. AB = ( 2 1)

Διαβάστε περισσότερα

Seminar 3. Serii. Probleme rezolvate. 1 n . 7. Problema 3.2. Să se studieze natura seriei n 1. Soluţie 3.1. Avem inegalitatea. u n = 1 n 7. = v n.

Seminar 3. Serii. Probleme rezolvate. 1 n . 7. Problema 3.2. Să se studieze natura seriei n 1. Soluţie 3.1. Avem inegalitatea. u n = 1 n 7. = v n. Semir 3 Serii Probleme rezolvte Problem 3 Să se studieze tur seriei Soluţie 3 Avem ieglitte = ) u = ) ) = v, Seri = v este covergetă fiid o serie geometrică cu rţi q = < Pe bz criteriului de comprţie cu

Διαβάστε περισσότερα

sin d = 8 2π 2 = 32 π

sin d = 8 2π 2 = 32 π .. Eerciţii reolvte. INTEGRALA E UPRAFAŢĂ E AL OILEA TIP. ÂMPURI OLENOIALE. Eerciţiul... ă se clculee dd dd dd, () fiind fţ eterioră sferei + + 4. oluţie. Avem: sin θ cos φ, sin θ sin φ, cos θ, θ[, π],

Διαβάστε περισσότερα

Geometrie computationala 2. Preliminarii geometrice

Geometrie computationala 2. Preliminarii geometrice Platformă de e-learning și curriculă e-content pentru învățământul superior tehnic Geometrie computationala 2. Preliminarii geometrice Preliminarii geometrice Spatiu Euclidean: E d Spatiu de d-tupluri,

Διαβάστε περισσότερα

Vectori liberi Produs scalar Produs vectorial Produsul mixt. 1 Vectori liberi. 2 Produs scalar. 3 Produs vectorial. 4 Produsul mixt.

Vectori liberi Produs scalar Produs vectorial Produsul mixt. 1 Vectori liberi. 2 Produs scalar. 3 Produs vectorial. 4 Produsul mixt. liberi 1 liberi 2 3 4 Segment orientat liberi Fie S spaţiul geometric tridimensional cu axiomele lui Euclid. Orice pereche de puncte din S, notată (A, B) se numeşte segment orientat. Dacă A B, atunci direcţia

Διαβάστε περισσότερα

Anexa B2 Elemente de reprezentare grafică în plan şi în spaţiu.

Anexa B2 Elemente de reprezentare grafică în plan şi în spaţiu. Anex B Elemente de reprezentre grfică în pln şi în spţiu. 1. Tipuri de sisteme de coordonte. Coordonte crteziene Fie xoy un sistem de coordonte crteziene în pln. Fie P un punct în pln vând coordontele

Διαβάστε περισσότερα

Tema: şiruri de funcţii

Tema: şiruri de funcţii Tem: şiruri de fucţii. Clculţi limit (simplă) şirului de fucţii f : [ 0,], f ( ) R Avem lim f ( 0) = ir petru 0, vem lim f ( ) Î cocluzie, dcă otăm f: [ 0, ], f ( ) =, = 0 =, 0 + + = +, tuci lim f f =..

Διαβάστε περισσότερα

(a) se numeşte derivata parţială a funcţiei f în raport cu variabila x i în punctul a.

(a) se numeşte derivata parţială a funcţiei f în raport cu variabila x i în punctul a. Definiţie Spunem că: i) funcţia f are derivată parţială în punctul a în raport cu variabila i dacă funcţia de o variabilă ( ) are derivată în punctul a în sens obişnuit (ca funcţie reală de o variabilă

Διαβάστε περισσότερα

COLEGIUL NATIONAL CONSTANTIN CARABELLA TARGOVISTE. CONCURSUL JUDETEAN DE MATEMATICA CEZAR IVANESCU Editia a VI-a 26 februarie 2005.

COLEGIUL NATIONAL CONSTANTIN CARABELLA TARGOVISTE. CONCURSUL JUDETEAN DE MATEMATICA CEZAR IVANESCU Editia a VI-a 26 februarie 2005. SUBIECTUL Editia a VI-a 6 februarie 005 CLASA a V-a Fie A = x N 005 x 007 si B = y N y 003 005 3 3 a) Specificati cel mai mic element al multimii A si cel mai mare element al multimii B. b)stabiliti care

Διαβάστε περισσότερα

Axiomatica Hilbert a spaţiului euclidian

Axiomatica Hilbert a spaţiului euclidian Axiomatica Hilbert a spaţiului euclidian Mircea Crâşmăreanu Prezentare generală a sistemului axiomatic Hilbert Prin Geometrie Euclidiană se înţelege într-un sens general şi clasic acea geometrie ce are

Διαβάστε περισσότερα

3. Locuri geometrice Locuri geometrice uzuale

3. Locuri geometrice Locuri geometrice uzuale 3. Locuri geometrice 3.. Locuri geometrice uzuale oţiunea de loc geometric în plan care se găseşte şi în ELEETELE LUI EUCLID se pare că a fost folosită încă de PLATO (47-347) şi ARISTOTEL(383-3). Locurile

Διαβάστε περισσότερα

Asupra unei metode pentru calculul unor integrale definite din functii trigonometrice

Asupra unei metode pentru calculul unor integrale definite din functii trigonometrice Educţi Mtemtică Vol. 1, Nr. (5), 59 68 Asupr unei metode pentru clculul unor integrle definite din functii trigonometrice Ion Alemn Astrct In this pper is presented one method of clcultion for the trigonometricl

Διαβάστε περισσότερα

1. ŞIRURI ŞI SERII DE NUMERE REALE

1. ŞIRURI ŞI SERII DE NUMERE REALE . ŞIRURI ŞI SERII DE NUMERE REALE. Eerciţii rezolvte Eerciţiul Stbiliţi dcă următorele şiruri sut fudmetle: ), N 5 b) + + + +, N * c) + + +, N * cos(!) d), N ( ) e), N Soluţii p p ) +p - < şi mjortul este

Διαβάστε περισσότερα

5. FUNCŢII IMPLICITE. EXTREME CONDIŢIONATE.

5. FUNCŢII IMPLICITE. EXTREME CONDIŢIONATE. 5 Eerciţii reolvate 5 UNCŢII IMPLICITE EXTREME CONDIŢIONATE Eerciţiul 5 Să se determine şi dacă () este o funcţie definită implicit de ecuaţia ( + ) ( + ) + Soluţie ie ( ) ( + ) ( + ) + ( )R Evident este

Διαβάστε περισσότερα

Curs 1 Şiruri de numere reale

Curs 1 Şiruri de numere reale Bibliografie G. Chiorescu, Analiză matematică. Teorie şi probleme. Calcul diferenţial, Editura PIM, Iaşi, 2006. R. Luca-Tudorache, Analiză matematică, Editura Tehnopress, Iaşi, 2005. M. Nicolescu, N. Roşculeţ,

Διαβάστε περισσότερα

CERCUL LUI EULER ŞI DREAPTA LUI SIMSON

CERCUL LUI EULER ŞI DREAPTA LUI SIMSON CERCUL LUI EULER ŞI DREAPTA LUI SIMSON ABSTRACT. Articolul prezintă două rezultate deosebite legate de patrulaterul inscriptibil şi câteva consecinţe ce decurg din aceste rezultate. Lecţia se adresează

Διαβάστε περισσότερα

R R, f ( x) = x 7x+ 6. Determinați distanța dintre punctele de. B=, unde x și y sunt numere reale.

R R, f ( x) = x 7x+ 6. Determinați distanța dintre punctele de. B=, unde x și y sunt numere reale. 5p Determinați primul termen al progresiei geometrice ( b n ) n, știind că b 5 = 48 și b 8 = 84 5p Se consideră funcția f : intersecție a graficului funcției f cu aa O R R, f ( ) = 7+ 6 Determinați distanța

Διαβάστε περισσότερα

TEMA 5: DERIVATE ŞI DIFERENȚIALE

TEMA 5: DERIVATE ŞI DIFERENȚIALE TEMA 5: DERIVATE ŞI DIFERENȚIALE 35 TEMA 5: DERIVATE ŞI DIFERENȚIALE Obiective: Deinire principlelor proprietăţi mtemtice le uncţiilor, le itelor de uncţii şi le uncţiilor continue Deinire principlelor

Διαβάστε περισσότερα

Asemănarea triunghiurilor O selecție de probleme de geometrie elementară pentru gimnaziu Constantin Chirila Colegiul Naţional Garabet Ibrãileanu,

Asemănarea triunghiurilor O selecție de probleme de geometrie elementară pentru gimnaziu Constantin Chirila Colegiul Naţional Garabet Ibrãileanu, Asemănarea triunghiurilor O selecție de probleme de geometrie elementară pentru gimnaziu Constantin Chirila Colegiul Naţional Garabet Ibrãileanu, Iaşi Repere metodice ale predării asemănării în gimnaziu

Διαβάστε περισσότερα

CONCURSUL NAŢIONAL DE MATEMATICĂ APLICATĂ "ADOLF HAIMOVICI" ETAPA FINALĂ - 22 mai 2010

CONCURSUL NAŢIONAL DE MATEMATICĂ APLICATĂ ADOLF HAIMOVICI ETAPA FINALĂ - 22 mai 2010 ETAPA FINALĂ - mi 00 BAREM DE CORECTARE CLASA A IX A. Pe o dreptă se consideră 00 puncte, cre formeză 009 segmente, fiecre de cm. Pe primul segment, desupr dreptei, construim un pătrt, pe l doile segment,

Διαβάστε περισσότερα

GEOMETRIE PLANĂ TEOREME IMPORTANTE ARII. bh lh 2. abc. abc. formula înălţimii

GEOMETRIE PLANĂ TEOREME IMPORTANTE ARII. bh lh 2. abc. abc. formula înălţimii GEOMETRIE PLNĂ TEOREME IMPORTNTE suma unghiurilor unui triunghi este 8º suma unghiurilor unui patrulater este 6º unghiurile de la baza unui triunghi isoscel sunt congruente într-un triunghi isoscel liniile

Διαβάστε περισσότερα

Să se arate că n este număr par. Dan Nedeianu

Să se arate că n este număr par. Dan Nedeianu Primul test de selecție pentru juniori I. Să se determine numerele prime p, q, r cu proprietatea că 1 p + 1 q + 1 r 1. Fie ABCD un patrulater convex cu m( BCD) = 10, m( CBA) = 45, m( CBD) = 15 și m( CAB)

Διαβάστε περισσότερα

Cum folosim cazuri particulare în rezolvarea unor probleme

Cum folosim cazuri particulare în rezolvarea unor probleme Cum folosim cazuri particulare în rezolvarea unor probleme GHEORGHE ECKSTEIN 1 Atunci când întâlnim o problemă pe care nu ştim s-o abordăm, adesea este bine să considerăm cazuri particulare ale acesteia.

Διαβάστε περισσότερα

Metode iterative pentru probleme neliniare - contractii

Metode iterative pentru probleme neliniare - contractii Metode iterative pentru probleme neliniare - contractii Problemele neliniare sunt in general rezolvate prin metode iterative si analiza convergentei acestor metode este o problema importanta. 1 Contractii

Διαβάστε περισσότερα

V.7. Condiţii necesare de optimalitate cazul funcţiilor diferenţiabile

V.7. Condiţii necesare de optimalitate cazul funcţiilor diferenţiabile Metode de Optimizare Curs V.7. Condiţii necesare de optimalitate cazul funcţiilor diferenţiabile Propoziţie 7. (Fritz-John). Fie X o submulţime deschisă a lui R n, f:x R o funcţie de clasă C şi ϕ = (ϕ,ϕ

Διαβάστε περισσότερα

1.PUNCTUL.DREAPTA.PLANUL

1.PUNCTUL.DREAPTA.PLANUL 1.PUNCTUL.DREPT.PLNUL 1.Punctul E=F P Q P Q 2.Drept d su drept B (d) B Semidrept O, nott [O O su (O, dic fr O 3.Segmentul B, nott [B] M B (B),[B),(B] M este mijlocul lui [B] dc M=MB=B/2 su [M] [MB](=B/2)

Διαβάστε περισσότερα

III. Serii absolut convergente. Serii semiconvergente. ii) semiconvergentă dacă este convergentă iar seria modulelor divergentă.

III. Serii absolut convergente. Serii semiconvergente. ii) semiconvergentă dacă este convergentă iar seria modulelor divergentă. III. Serii absolut convergente. Serii semiconvergente. Definiţie. O serie a n se numeşte: i) absolut convergentă dacă seria modulelor a n este convergentă; ii) semiconvergentă dacă este convergentă iar

Διαβάστε περισσότερα

7. Fie ABCD un patrulater inscriptibil. Un cerc care trece prin A şi B intersectează

7. Fie ABCD un patrulater inscriptibil. Un cerc care trece prin A şi B intersectează TEMĂ 1 1. În triunghiul ABC, fie D (BC) astfel încât AB + BD = AC + CD. Demonstraţi că dacă punctele B, C şi centrele de greutate ale triunghiurilor ABD şi ACD sunt conciclice, atunci AB = AC. India 2014

Διαβάστε περισσότερα

y y x x 1 y1 Elemente de geometrie analiticã 1. Segmente 1. DistanŃa dintre douã puncte A(x 1,y 1 ), B(x 2,y 2 ): AB = 2. Panta dreptei AB: m AB =

y y x x 1 y1 Elemente de geometrie analiticã 1. Segmente 1. DistanŃa dintre douã puncte A(x 1,y 1 ), B(x 2,y 2 ): AB = 2. Panta dreptei AB: m AB = Elemente de geometrie analiticã. Segmente. DistanŃa dintre douã puncte A(, ), B(, ): AB = ) + ( ) (. Panta dreptei AB: m AB = +. Coordonatele (,) ale mijlocului segmentului AB: =, =. Coordonatele punctului

Διαβάστε περισσότερα

Seminariile Capitolul X. Integrale Curbilinii: Serii Laurent şi Teorema Reziduurilor

Seminariile Capitolul X. Integrale Curbilinii: Serii Laurent şi Teorema Reziduurilor Facultatea de Matematică Calcul Integral şi Elemente de Analiă Complexă, Semestrul I Lector dr. Lucian MATICIUC Seminariile 9 20 Capitolul X. Integrale Curbilinii: Serii Laurent şi Teorema Reiduurilor.

Διαβάστε περισσότερα

2.1 Sfera. (EGS) ecuaţie care poartă denumirea de ecuaţia generală asferei. (EGS) reprezintă osferă cu centrul în punctul. 2 + p 2

2.1 Sfera. (EGS) ecuaţie care poartă denumirea de ecuaţia generală asferei. (EGS) reprezintă osferă cu centrul în punctul. 2 + p 2 .1 Sfera Definitia 1.1 Se numeşte sferă mulţimea tuturor punctelor din spaţiu pentru care distanţa la u punct fi numit centrul sferei este egalăcuunnumăr numit raza sferei. Fie centrul sferei C (a, b,

Διαβάστε περισσότερα

O adaptare didactica a unui sistem axiomatic

O adaptare didactica a unui sistem axiomatic O adaptare didactica a unui sistem axiomatic Oana Constantinescu In acest document dorim sa prezentam o adaptare a unui sistem axiomatic semiformalizat pentru geometria in plan si in spatiu. Spunem adaptare

Διαβάστε περισσότερα

DISTANŢA DINTRE DOUĂ DREPTE NECOPLANARE

DISTANŢA DINTRE DOUĂ DREPTE NECOPLANARE DISTANŢA DINTRE DOUĂ DREPTE NECOPLANARE ABSTRACT. Materialul prezintă o modalitate de a afla distanţa dintre două drepte necoplanare folosind volumul tetraedrului. Lecţia se adresează clasei a VIII-a Data:

Διαβάστε περισσότερα

Cursul 4. Matrice. Rangul unei matrice. Rezolvarea sistemelor de ecuaţii liniare. Metoda eliminării a lui Gauss

Cursul 4. Matrice. Rangul unei matrice. Rezolvarea sistemelor de ecuaţii liniare. Metoda eliminării a lui Gauss Lector univ dr Cristin Nrte Cursul 4 Mtrice Rngul unei mtrice Rezolvre sistemelor de ecuţii linire Metod eliminării lui Guss Definiţie O mtrice m n este o serie de mn intrări, numite elemente, rnjte în

Διαβάστε περισσότερα

Curs 4 Serii de numere reale

Curs 4 Serii de numere reale Curs 4 Serii de numere reale Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Criteriul rădăcinii sau Criteriul lui Cauchy Teoremă (Criteriul rădăcinii) Fie x n o serie cu termeni

Διαβάστε περισσότερα

GEOMETRIE PLANĂ TEOREME IMPORTANTE ARII. = înălţimea triunghiului echilateral h =, R =, r = R = bh lh 2 A D ++ D. abc. abc =

GEOMETRIE PLANĂ TEOREME IMPORTANTE ARII. = înălţimea triunghiului echilateral h =, R =, r = R = bh lh 2 A D ++ D. abc. abc = GEOMETRIE PLNĂ TEOREME IMPORTNTE suma unghiurilor unui triunghi este 8º suma unghiurilor unui patrulater este 6º unghiurile de la baza unui triunghi isoscel sunt congruente într-un triunghi isoscel liniile

Διαβάστε περισσότερα

Integrale generalizate (improprii)

Integrale generalizate (improprii) Integrle generlizte (improprii) Fie f : [, ] R, definită prin =, α > 0. Pentru u, funţi α f este integrilă pe intervlul [, u] şi u ln α+ α+ u u = ( α)u α α, α = ln u, α =. Dă treem l limită pentru u oţinem

Διαβάστε περισσότερα

Dreapta in plan. = y y 0

Dreapta in plan. = y y 0 Dreapta in plan 1 Dreapta in plan i) Presupunem ca planul este inzestrat cu un reper ortonormat de dreapta (O, i, j). Fiecarui punct M al planului ii corespunde vectorul OM numit vector de pozitie al punctului

Διαβάστε περισσότερα

GEOMETRIE ANALITICĂ. Capitolul 5 VECTORI LIBERI. #1. Spaţiul vectorial al vectorilor liberi

GEOMETRIE ANALITICĂ. Capitolul 5 VECTORI LIBERI. #1. Spaţiul vectorial al vectorilor liberi GEOMETRIE ANALITICĂ Cpitolul 5 VECTORI LIBERI # Spţiul vectoril l vectorilor liberi Fie E spţiul tridimensionl l geometriei elementre orientt Definiţii Pentru oricre două puncte A B E considerăm segmentul

Διαβάστε περισσότερα

Cercul lui Euler ( al celor nouă puncte și nu numai!)

Cercul lui Euler ( al celor nouă puncte și nu numai!) Cercul lui Euler ( al celor nouă puncte și nu numai!) Prof. ION CĂLINESCU,CNDG, Câmpulung Voi prezenta o abordare simplă a determinării cercului lui Euler, pe baza unei probleme de loc geometric. Preliminarii:

Διαβάστε περισσότερα

3. REPREZENTAREA PLANULUI

3. REPREZENTAREA PLANULUI 3.1. GENERALITĂŢI 3. REPREZENTAREA PLANULUI Un plan este definit, în general, prin trei puncte necoliniare sau prin o dreaptă şi un punct exterior, două drepte concurente sau două drepte paralele (fig.3.1).

Διαβάστε περισσότερα

Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor

Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor. Fiind date doua multimi si spunem ca am definit o functie (aplicatie) pe cu valori in daca fiecarui element

Διαβάστε περισσότερα

Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor X) functia f 1

Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor X) functia f 1 Functii definitie proprietati grafic functii elementare A. Definitii proprietatile functiilor. Fiind date doua multimi X si Y spunem ca am definit o functie (aplicatie) pe X cu valori in Y daca fiecarui

Διαβάστε περισσότερα

Algebra si Geometrie Seminar 9

Algebra si Geometrie Seminar 9 Algebra si Geometrie Seminar 9 Decembrie 017 ii Equations are just the boring part of mathematics. I attempt to see things in terms of geometry. Stephen Hawking 9 Dreapta si planul in spatiu 1 Notiuni

Διαβάστε περισσότερα

GEOMETRIE PENTRU GIMNAZIU Partea I (cls. a V a, a VI a, a VII a) Geometrie pentru pregătirea Evaluării Naționale la Matematică

GEOMETRIE PENTRU GIMNAZIU Partea I (cls. a V a, a VI a, a VII a) Geometrie pentru pregătirea Evaluării Naționale la Matematică Geometrie pentru pregătirea Evaluării Naționale la Matematică (Cls. a V a, a VI a, a VII a) UNITĂȚI DE MĂSURĂ Lungime rie Volum Capacitate DE REȚINUT! Masă 1hm 1ha 1dam 1ar 1dm 1l 1q 1kg 1t 1kg 1v 1kg

Διαβάστε περισσότερα

6. METODELE GEOMETRIEI DESCRIPTIVE

6. METODELE GEOMETRIEI DESCRIPTIVE METDELE GEMETRIEI DESCRITIVE 75 6. METDELE GEMETRIEI DESCRITIVE rin etodele geoetriei descriptive se relieă odificre proiecţiilor eleentelor geoetrice din poiţiile dte în lte poiţii, prticulre fţă de plnele

Διαβάστε περισσότερα

MARCAREA REZISTOARELOR

MARCAREA REZISTOARELOR 1.2. MARCAREA REZISTOARELOR 1.2.1 MARCARE DIRECTĂ PRIN COD ALFANUMERIC. Acest cod este format din una sau mai multe cifre şi o literă. Litera poate fi plasată după grupul de cifre (situaţie în care valoarea

Διαβάστε περισσότερα

Analiza în curent continuu a schemelor electronice Eugenie Posdărăscu - DCE SEM 1 electronica.geniu.ro

Analiza în curent continuu a schemelor electronice Eugenie Posdărăscu - DCE SEM 1 electronica.geniu.ro Analiza în curent continuu a schemelor electronice Eugenie Posdărăscu - DCE SEM Seminar S ANALA ÎN CUENT CONTNUU A SCHEMELO ELECTONCE S. ntroducere Pentru a analiza în curent continuu o schemă electronică,

Διαβάστε περισσότερα

CURS XI XII SINTEZĂ. 1 Algebra vectorială a vectorilor liberi

CURS XI XII SINTEZĂ. 1 Algebra vectorială a vectorilor liberi Lect. dr. Facultatea de Electronică, Telecomunicaţii şi Tehnologia Informaţiei Algebră, Semestrul I, Lector dr. Lucian MATICIUC http://math.etti.tuiasi.ro/maticiuc/ CURS XI XII SINTEZĂ 1 Algebra vectorială

Διαβάστε περισσότερα

Curs 2 Şiruri de numere reale

Curs 2 Şiruri de numere reale Curs 2 Şiruri de numere reale Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Convergenţă şi mărginire Teoremă Orice şir convergent este mărginit. Demonstraţie Fie (x n ) n 0 un

Διαβάστε περισσότερα

Subiecte Clasa a VIII-a

Subiecte Clasa a VIII-a Subiecte lasa a VIII-a (40 de intrebari) Puteti folosi spatiile goale ca ciorna. Nu este de ajuns sa alegeti raspunsul corect pe brosura de subiecte, ele trebuie completate pe foaia de raspuns in dreptul

Διαβάστε περισσότερα

Conice. Lect. dr. Constantin-Cosmin Todea. U.T. Cluj-Napoca

Conice. Lect. dr. Constantin-Cosmin Todea. U.T. Cluj-Napoca Conice Lect. dr. Constantin-Cosmin Todea U.T. Cluj-Napoca Definiţie: Se numeşte curbă algebrică plană mulţimea punctelor din plan de ecuaţie implicită de forma (C) : F (x, y) = 0 în care funcţia F este

Διαβάστε περισσότερα

CONCURSUL INTERJUDEȚEAN DE MATEMATICĂ TRAIAN LALESCU, 1998 Clasa a V-a

CONCURSUL INTERJUDEȚEAN DE MATEMATICĂ TRAIAN LALESCU, 1998 Clasa a V-a CONCURSUL INTERJUDEȚEAN DE MATEMATICĂ TRAIAN LALESCU, 998 Clasa a V-a. La gara Timișoara se eliberează trei bilete de tren: unul pentru Arad, altul pentru Deva și al treilea pentru Reșița. Cel pentru Deva

Διαβάστε περισσότερα

ANALIZĂ MATEMATICĂ pentru examenul licenţă, manual valabil începând cu sesiunea iulie 2013 Specializarea Matematică informatică coordonator: Dorel I.

ANALIZĂ MATEMATICĂ pentru examenul licenţă, manual valabil începând cu sesiunea iulie 2013 Specializarea Matematică informatică coordonator: Dorel I. ANALIZĂ MATEMATICĂ pentru exmenul licenţă, mnul vlbil începând cu sesiune iulie 23 Specilizre Mtemtică informtică coordontor: Dorel I. Duc Cuprins Cpitolul. Serii de numere rele. Noţiuni generle 2. Serii

Διαβάστε περισσότερα

Sisteme diferenţiale liniare de ordinul 1

Sisteme diferenţiale liniare de ordinul 1 1 Metoda eliminării 2 Cazul valorilor proprii reale Cazul valorilor proprii nereale 3 Catedra de Matematică 2011 Forma generală a unui sistem liniar Considerăm sistemul y 1 (x) = a 11y 1 (x) + a 12 y 2

Διαβάστε περισσότερα

Cuprins: Introducere De la geometria absolută la geometria hiperbolică Izometrii în planul hiperbolic, grupul de izometrii...

Cuprins: Introducere De la geometria absolută la geometria hiperbolică Izometrii în planul hiperbolic, grupul de izometrii... Cuprins: Introducere... 1. De la geometria absolută la geometria hiperbolică... 2. Izometrii în planul hiperbolic, grupul de izometrii... 3. Grup discret de izometrii în plan, exemple... 4. Bibliografie

Διαβάστε περισσότερα

Capitolul 4 PROPRIETĂŢI TOPOLOGICE ŞI DE NUMĂRARE ALE LUI R. 4.1 Proprietăţi topologice ale lui R Puncte de acumulare

Capitolul 4 PROPRIETĂŢI TOPOLOGICE ŞI DE NUMĂRARE ALE LUI R. 4.1 Proprietăţi topologice ale lui R Puncte de acumulare Capitolul 4 PROPRIETĂŢI TOPOLOGICE ŞI DE NUMĂRARE ALE LUI R În cele ce urmează, vom studia unele proprietăţi ale mulţimilor din R. Astfel, vom caracteriza locul" unui punct în cadrul unei mulţimi (în limba

Διαβάστε περισσότερα

CONCURSUL INTERJUDEȚEAN DE MATEMATICĂ TRAIAN LALESCU, 2018 Clasa a V-a. 1. Scriem numerele naturale nenule consecutive sub forma:

CONCURSUL INTERJUDEȚEAN DE MATEMATICĂ TRAIAN LALESCU, 2018 Clasa a V-a. 1. Scriem numerele naturale nenule consecutive sub forma: CONCURSUL INTERJUDEȚEAN DE MATEMATICĂ TRAIAN LALESCU, 2018 Clasa a V-a 1. Scriem numerele naturale nenule consecutive sub forma: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,... (pe fiecare

Διαβάστε περισσότερα

SERII NUMERICE. Definiţia 3.1. Fie (a n ) n n0 (n 0 IN) un şir de numere reale şi (s n ) n n0

SERII NUMERICE. Definiţia 3.1. Fie (a n ) n n0 (n 0 IN) un şir de numere reale şi (s n ) n n0 SERII NUMERICE Definiţia 3.1. Fie ( ) n n0 (n 0 IN) un şir de numere reale şi (s n ) n n0 şirul definit prin: s n0 = 0, s n0 +1 = 0 + 0 +1, s n0 +2 = 0 + 0 +1 + 0 +2,.......................................

Διαβάστε περισσότερα

Criptosisteme cu cheie publică III

Criptosisteme cu cheie publică III Criptosisteme cu cheie publică III Anul II Aprilie 2017 Problema rucsacului ( knapsack problem ) Considerăm un număr natural V > 0 şi o mulţime finită de numere naturale pozitive {v 0, v 1,..., v k 1 }.

Διαβάστε περισσότερα

Capitole speciale de geometrie pentru profesori. Camelia Frigioiu

Capitole speciale de geometrie pentru profesori. Camelia Frigioiu apitole speciale de geometrie pentru profesori amelia Frigioiu Galaţi, 2010 2 uprins 1 Geometrie sintetică plană 1 1.1 oncurenţa liniilor importante într-un triunghi............ 1 1.1.1 oncurenţa medianelor,

Διαβάστε περισσότερα

Conice - Câteva proprietǎţi elementare

Conice - Câteva proprietǎţi elementare Conice - Câteva proprietǎţi elementare lect.dr. Mihai Chiş Facultatea de Matematicǎ şi Informaticǎ Universitatea de Vest din Timişoara Viitori Olimpici ediţia a 5-a, etapa I, clasa a XII-a 1 Definiţii

Διαβάστε περισσότερα

TEMA 3. Analiză matematică - clasa a XI-a (3h/săpt.), clasa a XII-a (3h/săpt.)

TEMA 3. Analiză matematică - clasa a XI-a (3h/săpt.), clasa a XII-a (3h/săpt.) LECłII DE SINTEZĂ în vedere pregătirii sesiunii iulie-ugust emenului de BACALAUREAT - M pentru cndidńii solvenńi i liceelor din filier tehnologică, profil: servicii, resurse nturle şi protecńi mediului,

Διαβάστε περισσότερα

Lectia VII Dreapta si planul

Lectia VII Dreapta si planul Planul. Ecuatii, pozitii relative Dreapta. Ecuatii, pozitii relative Aplicatii Lectia VII Dreapta si planul Oana Constantinescu Oana Constantinescu Lectia VII Planul. Ecuatii, pozitii relative Dreapta.

Διαβάστε περισσότερα

DEFINITIVAT 1993 PROFESORI I. sinx. 0, dacă x = 0

DEFINITIVAT 1993 PROFESORI I. sinx. 0, dacă x = 0 DEFINITIVAT 1993 TIMIŞOARA PROFESORI I 1. a) Metodica predării noţiunii de derivată a unei funcţii. b) Să se reprezinte grafic funci a sinx, dacă x (0,2π] f : [0,2π] R, f(x) = x. 0, dacă x = 0 2. Fie G

Διαβάστε περισσότερα

Laborator 11. Mulţimi Julia. Temă

Laborator 11. Mulţimi Julia. Temă Laborator 11 Mulţimi Julia. Temă 1. Clasa JuliaGreen. Să considerăm clasa JuliaGreen dată de exemplu la curs pentru metoda locului final şi să schimbăm numărul de iteraţii nriter = 100 în nriter = 101.

Διαβάστε περισσότερα

BREVIAR TEORETIC CU EXEMPLE CONCRETE, PENTRU PREGĂTIREA EXAMENULUI DE EVALUARE NAŢIONALĂ, clasa a VIII-a

BREVIAR TEORETIC CU EXEMPLE CONCRETE, PENTRU PREGĂTIREA EXAMENULUI DE EVALUARE NAŢIONALĂ, clasa a VIII-a GEOMETRIE-Evaluare Naţională 010 BREVIAR TEORETIC CU EXEMPLE CONCRETE, PENTRU PREGĂTIREA EXAMENULUI DE EVALUARE NAŢIONALĂ, clasa a VIII-a - 010 Propunător: Şcoala cu clasele I-VIII Măteşti, com. Săpoca,

Διαβάστε περισσότερα

1. INTRODUCERE Ce ar trebui să ne reamintim

1. INTRODUCERE Ce ar trebui să ne reamintim . INTRDUCERE.. Ce r trebui să ne remintim Mecnic Teoretică pote fi împărţită după ntur problemei ce se studiză în trei părţi. Aceste coincid cu ordine de priţie şi de dezvoltre Mecnicii: Sttic re c obiective:

Διαβάστε περισσότερα

Sorin Peligrad Adrian Ţurcanu Marius Antonescu Florin Antohe Lucia Popa Agnes Voica. Matematică. algebră, geometrie

Sorin Peligrad Adrian Ţurcanu Marius Antonescu Florin Antohe Lucia Popa Agnes Voica. Matematică. algebră, geometrie Sorin Peligrad drian Ţurcanu Marius ntonescu Florin ntohe Lucia Popa gnes Voica Matematică algebră, geometrie Caiet de lucru. Clasa a VI-a Partea I Modalităţi de lucru diferenţiate Pregătire suplimentară

Διαβάστε περισσότερα

f(x) = l 0. Atunci f are local semnul lui l, adică, U 0 V(x 0 ) astfel încât sgnf(x) = sgnl, x U 0 D\{x 0 }. < f(x) < l +

f(x) = l 0. Atunci f are local semnul lui l, adică, U 0 V(x 0 ) astfel încât sgnf(x) = sgnl, x U 0 D\{x 0 }. < f(x) < l + Semnul local al unei funcţii care are limită. Propoziţie. Fie f : D (, d) R, x 0 D. Presupunem că lim x x 0 f(x) = l 0. Atunci f are local semnul lui l, adică, U 0 V(x 0 ) astfel încât sgnf(x) = sgnl,

Διαβάστε περισσότερα

29 Iunie Aplicaţii ale numerelor complexe în Geometrie. Absolvent: Haliţă Diana-Florina. Coordonator ştiinţific: Prof. Dr.

29 Iunie Aplicaţii ale numerelor complexe în Geometrie. Absolvent: Haliţă Diana-Florina. Coordonator ştiinţific: Prof. Dr. I UNIVERSITATEA BABEŞ-BOLYAI CLUJ-NAPOCA FACULTATEA DE MATEMATICĂ ŞI INFORMATICĂ Specializarea Matematică-Informatică, linia de studiu română 29 Iunie I 1 2 3 I 4 5 MATEM 6 MATEM 7 Bibliografie I Motivaţia:

Διαβάστε περισσότερα

Ecuaţia generală Probleme de tangenţă Sfera prin 4 puncte necoplanare. Elipsoidul Hiperboloizi Paraboloizi Conul Cilindrul. 1 Sfera.

Ecuaţia generală Probleme de tangenţă Sfera prin 4 puncte necoplanare. Elipsoidul Hiperboloizi Paraboloizi Conul Cilindrul. 1 Sfera. pe ecuaţii generale 1 Sfera Ecuaţia generală Probleme de tangenţă 2 pe ecuaţii generale Sfera pe ecuaţii generale Ecuaţia generală Probleme de tangenţă Numim sferă locul geometric al punctelor din spaţiu

Διαβάστε περισσότερα

z a + c 0 + c 1 (z a)

z a + c 0 + c 1 (z a) 1 Serii Laurent (continuare) Teorema 1.1 Fie D C un domeniu, a D şi f : D \ {a} C o funcţie olomorfă. Punctul a este pol multiplu de ordin p al lui f dacă şi numai dacă dezvoltarea în serie Laurent a funcţiei

Διαβάστε περισσότερα

CINEMATICA RIGIDULUI

CINEMATICA RIGIDULUI CNEMATCA GDULU CNEMATCA CPULU GD CNEMATCA CPULU GD 8.. Elementele generle le mişcării corpului rigid 8.. Problemele cinemticii corpului rigid Corpul rigid este un element importnt în tehnică şi semnifică

Διαβάστε περισσότερα

Integrala nedefinită (primitive)

Integrala nedefinită (primitive) nedefinita nedefinită (primitive) nedefinita 2 nedefinita februarie 20 nedefinita.tabelul primitivelor Definiţia Fie f : J R, J R un interval. Funcţia F : J R se numeşte primitivă sau antiderivată a funcţiei

Διαβάστε περισσότερα

Subiecte Clasa a VII-a

Subiecte Clasa a VII-a lasa a VII Lumina Math Intrebari Subiecte lasa a VII-a (40 de intrebari) Puteti folosi spatiile goale ca ciorna. Nu este de ajuns sa alegeti raspunsul corect pe brosura de subiecte, ele trebuie completate

Διαβάστε περισσότερα

1.3 Baza a unui spaţiu vectorial. Dimensiune

1.3 Baza a unui spaţiu vectorial. Dimensiune .3 Baza a unui spaţiu vectorial. Dimensiune Definiţia.3. Se numeşte bază a spaţiului vectorial V o familie de vectori B care îndeplineşte condiţiile de mai jos: a) B este liniar independentă; b) B este

Διαβάστε περισσότερα

Calcul diferenţial şi integral (notiţe de curs)

Calcul diferenţial şi integral (notiţe de curs) Clcul diferenţil şi integrl (notiţe de curs) Şt. Blint E. Kslik, L. Tǎnsie, A. Tomoiogă, I. Rodilǎ, N. Bonchiş, S. Mriş Cuprins 0 L ce pote fi util un curs de clcul diferenţil şi integrl pentru un student

Διαβάστε περισσότερα

Aplicaţii ale numerelor complexe în geometrie, utilizând Geogebra

Aplicaţii ale numerelor complexe în geometrie, utilizând Geogebra ale numerelor complexe în geometrie, utilizând Geogebra Adevărul matematic, indiferent unde, la Paris sau la Toulouse, este unul şi acelaşi (Blaise Pascal) Diana-Florina Haliţă grupa 331 dianahalita@gmailcom

Διαβάστε περισσότερα

7. PROBLEME DE SINTEZĂ (punct, dreaptă, plan, metode)

7. PROBLEME DE SINTEZĂ (punct, dreaptă, plan, metode) PL STZĂ 115 7. PL STZĂ (punct, dreaptă, plan, metode) 7.1 Probleme reolvate 1. Se dă forma geometrică din figura 7.1. Să se repreinte epura ei şi să se studiee tipurile de drepte, plane şi poiţiile relative

Διαβάστε περισσότερα

2.3 Geometria analitică liniarăînspaţiu

2.3 Geometria analitică liniarăînspaţiu 2.3 Geometria analitică liniarăînspaţiu Pentru început sădefinim câteva noţiuni de bază în geometria analitică. Definitia 2.3.1 Se numeşte reper în spaţiu o mulţime formată dintr-un punct O (numit originea

Διαβάστε περισσότερα

Capitolul 4. Integrale improprii Integrale cu limite de integrare infinite

Capitolul 4. Integrale improprii Integrale cu limite de integrare infinite Capitolul 4 Integrale improprii 7-8 În cadrul studiului integrabilităţii iemann a unei funcţii s-au evidenţiat douăcondiţii esenţiale:. funcţia :[ ] este definită peintervalînchis şi mărginit (interval

Διαβάστε περισσότερα

CAPITOLUL 6 FORME LINIARE, BILINIARE ŞI PĂTRATICE. 6.1 Forme liniare

CAPITOLUL 6 FORME LINIARE, BILINIARE ŞI PĂTRATICE. 6.1 Forme liniare Algebră liniră CAPITOLUL 6 FORME LINIARE, BILINIARE ŞI PĂTRATICE 6 Forme linire Fie V un spţiu vectoril peste un corp K Definiţi 6 Se numeşte formă liniră su funcţionlă liniră o plicţie f : V K cre stisfce

Διαβάστε περισσότερα

Elemente de geometrie

Elemente de geometrie 6 Elemente de geometrie ercet=m [i descoperim 1 Puncte şi linii el mai înalt vîrf de pe Pămînt este vîrful Everest (homolungma) din unţii Himalaya. El se află la altitudinea de 8 848 m deasupra nivelului

Διαβάστε περισσότερα