Anexa B2 Elemente de reprezentare grafică în plan şi în spaţiu.

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Anexa B2 Elemente de reprezentare grafică în plan şi în spaţiu."

Transcript

1 Anex B Elemente de reprezentre grfică în pln şi în spţiu. 1. Tipuri de sisteme de coordonte. Coordonte crteziene Fie xoy un sistem de coordonte crteziene în pln. Fie P un punct în pln vând coordontele xp pe x Ox şi yp pe x Oy. Coordont xp se mi numeşte bscis punctului P, ir x Ox x bsciselor, şi yp se mi numeşte ordont punctului P, ir x Oy x ordontelor. Se v not P(xp,yp). Coordontele crteziene se mi numesc şi coordonte linire. Axele Ox şi Oy împrt plnul în ptru regiuni, numite cdrne deschise: cdrnul I este mulţime punctelor cre u mbele coordonte strict pozitive; cdrnul II este mulţime punctelor cre u bscisele strict negtive şi ordontele strict pozitive; cdrnul III este mulţime punctelor cre u mbele coordonte strict negtive; cdrnul IV este mulţime punctelor cre u bscisele strict pozitive şi ordontele strict negtive. Un sistem de coordonte crteziene în spţiu se noteză cu xoyz. Poziţi unui punct P din spţiul tridimensionl este dtă de cele trei coordonte le sle, xp pe x Ox, yp pe x Oy şi zp pe x Oz. Se v not P(xp,yp,zp). b. Coordonte polre Fie xoy un sistem de coordonte crteziene în pln şi P(xp,yp) un punct din pln diferit de origine O sistemului. Fie r distnţ de l P l O şi θ unghiul formt în sens trigonometric de semidrept (OP cu x Ox, θ [0,π). Numerele r şi θ se numesc coordontele polre le punctului P. Se noteză P(r,θ). r se numeşte rz polră lui P, ir θ rgumentul polr l lui P. Legătur dintre coordontele crteziene şi coordontele polre le lui P sunt exprimte de relţiile: r + = xp yp, xp yp cos( θ ) =, sin( θ ) =, θ xp + yp xp + yp [ 0, π ) B-1

2 c. Coordonte logritmice Coordontele logritmice reprezintă exprimre coordontelor unui punct pe o scră logritmică, dică c şi logritmi într-o bză b preciztă le coordontelor crteziene le punctului respectiv. Deorece logritmul se pote clcul dor pentru vlori strict pozitive, singurele puncte cre pot fi reprezentte în coordonte logritmice sunt cele din cdrnul deschis I. Astfel, dcă xoy este un sistem de coordonte crteziene şi P(xp,yp) un punct din cdrnul deschis I, tunci coordontele logritmice le punctului P sunt x=log b (xp) şi y=log b (yp), dică xp=b x şi yp=b y. d. Coordonte semilogritmice Coordontele semilogritmice reprezintă o pereche de coordonte dintre cre un este o coordontă crtezină (liniră), ir celltă o coordontă logritmică. Dcă coordont logritmică corespunde xei x, tunci se foloseşte denumire de coordonte semilogritmice pe x x. Anlog, dcă coordont logritmică corespunde xei y, tunci se foloseşte denumire de coordonte semilogritmice pe x y.. Figuri geometrice în pln. Drept Fie xoy un sistem de coordonte crteziene. Orice dreptă prlelă cu Ox se numeşte dreptă orizontlă. Orice dreptă prlelă cu Oy se numeşte dreptă verticlă. Orice dreptă cre nu este nici orizontlă şi nici verticlă se numeşte dreptă oblică. Tngent unghiului formt de o dreptă oblică cu x Ox (unghi cuprins în intervlul [0,π]) se numeşte pnt dreptei oblice şi se noteză cu m. Ecuţi dreptei oblice determintă de un punct şi de o pntă Fie d o dreptă oblică de pntă m şi P(xp,yp) un punct l dreptei d. Atunci ecuţi dreptei d este: y - yp = m (x - xy) Ecuţi dreptei determintă de două puncte distincte Fie d o dreptă şi P(xp,yp) şi R(xr,yr) două puncte distincte le dreptei d. Atunci ecuţi dreptei d este: x = xp, când drept este verticlă y = yp, când drept este orizontlă x xp xr xp = y yr yp yp, când drept este oblică Ecuţi crtezină generlă dreptei Fie d o dreptă. Ecuţi crtezină generlă dreptei d re form implicită: x+b y+c = 0, cu,b,c R, +b 0 B-

3 b. Cercul Locul geometric l punctelor din pln egl depărtte de un punct dt se numeşte cerc. Punctul dt portă denumire de centrul cercului, ir distnţ de l cest l oricre din punctele cercului se numeşte rz cercului. Fie xoy un sistem de coordonte crteziene, ir C cercul de centru C(xc,yc) şi de rză r. Ecuţiile cercului C sunt: ecuţi implicită cercului: (x - xc) + (y - yc) = r ecuţiile explicite le cercului: y = yc ± r ( x xc ), x [ xc r,xc + r] = xc + r cos( θ ) y = yc + r sin( θ ) ecuţiile prmetrice le cercului:, θ [ 0, π ) Mulţime punctelor căror distnţă l C este strict mi mică decât r se numeşte interiorul cercului. Reuniune dintre cerc şi interiorul său se numeşte disc de centru C şi rză r. c. Elips Locul geometric l punctelor din pln cre u propriette că sum distnţelor lor l două puncte fixe este constntă se numeşte elipsă. Cele două puncte fixe se numesc focrele elipsei. Distnţ dintre cele două focre se numeşte distnţă foclă, ir distnţele de l un punct P orecre l elipsei l cele două focre se numesc rzele focle le punctului P. Fie F şi F' cele două focre, C mijlocul segmentului [FF'], A şi A' punctele de intersecţie dreptei FF' cu elips, B şi B' intersecţi dreptei perpendiculre pe FF' în C cu elips, distnţ CA şi b distnţ CB. C este centrul de simetrie l elipsei, ir AA' şi BB' sunt xele de simetrie le elipsei. şi b se numesc semixele elipsei. Fie xoy un sistem de coordonte crteziene şi (xc,yc) coordontele centrului de simetrie C l elipsei. În continure se v consider că drept FF' este prlelă cu x Ox. Fie E elips de centru C(xc,yc) şi semixe şi b. Ecuţiile elipsei E sunt: ( x xc ) ( y yc ) ecuţi implicită elipsei: + = 1 b ecuţiile explicite le elipsei: y = yc ± b 1, x [ xc,xc + ] = xc + cos( θ ) y = yc + b sin( θ ) ( x xc ) ecuţiile prmetrice le elipsei:, θ [ 0,π ) d. Hiperbol Locul geometric l punctelor din pln cre u propriette că modulul diferenţei distnţelor lor l două puncte fixe este constnt se numeşte hiperbolă. Cele două puncte fixe se numesc focrele hiperbolei. Distnţ dintre cele două focre se numeşte distnţă foclă, ir distnţ de l un punct P orecre l hiperbolei l cele două focre se numesc rzele focle le punctului P. B-3

4 Fie F şi F' cele două focre, C mijlocul segmentului [FF'], A şi A' punctele de intersecţie dreptei FF' cu hiperbol, c distnţ CF, distnţ CA (<c) şi b = c. C este centrul de simetrie l hiperbolei, ir FF' şi meditore segmentului [FF'] sunt xele de simetrie le hiperbolei. şi b se numesc semixele hiperbolei. Fie xoy un sistem de coordonte crteziene şi (xc,yc) coordontele centrului de simetrie C l hiperbolei. În continure se v consider că drept FF' este prlelă cu x Ox. Fie H hiperbol de centru C(xc,yc) şi semixe şi b. Ecuţiile hiperbolei H sunt: ( x xc ) ( y yc ) ecuţi implicită hiperbolei: = 1 b ( x xc ) ecuţiile explicite le hiperbolei: y = yc ± b 1, Mulţime punctelor de coordonte (x,y) cre stisfc ecuţi: ( x xc ) ( y yc ) + b = 1 (,xc ] [ xc + ) x, reprezintă o hiperbolă H ' de centru C(xc,yc) şi semixe b şi, pentru cre x focrelor este prlelă cu x Oy. Hiperbolele H şi H ' se numesc hiperbole conjugte un ltei. O hiperbolă de semixe egle se numeşte hiperbolă echilteră. e. Prbol Locul geometric l punctelor din pln egl depărtte de un punct fix şi de o xă fixă se numeşte prbolă. Punctul fix se numeşte focrul prbolei, ir x fixă directore prbolei. Distnţ de l un punct orecre P l prbolei l focr se numeşte rz foclă punctului P. Fie A proiecţi focrului pe directore prbolei, C intersecţi dreptei FA cu prbol şi p distnţ dintre focr şi A. C se numeşte vârful prbolei. Drept AC este dreptă de simetrie prbolei. Fie xoy un sistem de coordonte crteziene şi (xc,yc) coordontele vârfului C l prbolei. În continure se v consider că drept AF este prlelă cu x Ox. Fie P prbol de vârf C(xc,yc) şi xă de simetrie AF. Ecuţiile prbolei P sunt: ecuţi implicită prbolei: ( y yc ) p( x xc ) = 0 ecuţiile explicite le prbolei: y = yc ± p( x xc ), x xc B-4

5 3. Figuri geometrice în spţiu. Drept Fie xoyz un sistem de coordonte crteziene şi d o dreptă în spţiul structurt de cest. Ecuţiile crtezine generle le dreptei Anlitic, drept d se exprimă c intersecţie două plne, dică prin sistemul de ecuţii lcătuit din ecuţiile celor plne. Astfel, dcă P 1, de ecuţie 1 x + b 1 y + c 1 z + d 1 = 0, şi P, de ecuţie x + b y + c z + d = 0, sunt cele două plne, tunci, ecuţiile dreptei d sunt: 1x + b1 y + c1z + d1 = 0, x + b y + cz + d = 0 1,...,d R Ecuţiile prmetrice le dreptei determinte de două puncte distincte Fie P(xp,yp,zp) şi R(xr,yr,zr) două puncte distincte le dreptei d. Atunci ecuţiile prmetrice dreptei d determinte de punctele P şi R sunt: = xp + k( xr xp ) y = yp + k( yr yp ), z = zp + k( zr zp ) k R b. Sfer Locul geometric l punctelor din spţiu egl depărtte de un punct dt se numeşte sferă. Punctul dt portă denumire de centrul sferei, ir distnţ de l cest l oricre din punctele sferei se numeşte rz sferei. Fie xoyz un sistem de coordonte crteziene şi S sfer de centru C(xc,yc,zc) şi de rză r. Ecuţiile sferei S sunt: ecuţi implicită sferei: (x - xc) + (y - yc) + (z - zc) = r = xc + r cos( α ) cos( β ) z = zc + r sin( β ) ecuţiile prmetrice le sferei: y = yc + r sin( α ) cos( β ), α [ 0, π ), β [ π, π ] Mulţime punctelor căror distnţă l C este strict mi mică decât r se numeşte interiorul sferei. Reuniune dintre sferă şi interiorul său se numeşte bilă de centru C şi rză r. b. Elipsoidul Un elipsoid este o suprfţă tridimensionlă închisă cu propriette că intersecţi ei cu orice pln este o elipsă su un cerc. Un elipsoid re trei xe de simetrie, cre se intersecteză într-un punct şi cre sunt perpendiculre două câte două. Punctul de intersecţie se numeşte centru de simetrie. Fie AA, BB şi DD intersecţiile celor trei xe de simetrie cu elipsoidul, ir C centrul de simetrie. Distnţele CA, CB şi CD se numesc semixele elipsoidului şi se noteză cu, b, respectiv c. Fie xoyz un sistem de coordonte crteziene şi EL un elipsoid de semixe,b şi c, şi de B-5

6 centru de simetrie C(xc,yc,zc). Ecuţiile elipsoidului EL sunt: ( x xc ) ( y yc ) ( z zc ) ecuţi implicită elipsoidului: + + = 1 b c ecuţiile prmetrice le elipsoidului: = xc + cos( α ) cos( β ) y = yc + b sin( α ) cos( β ), z = zc + c sin( β ) α [ 0, π ), β [ π, π ] c. Prism Fie S o suprfţă poligonlă, inclusă într-un pln α, d o dreptă cre nu prţine plnului α şi nu este nici prlelă cu cest, şi α ' un pln prlel cu α. Pentru fiecre punct P l suprfeţei poligonle S fie P' intersecţi dintre plnul α ' şi prlel l d dusă prin P. Reuniune tuturor segmentelor [PP'], tunci când P prcurge suprfţ S, se numeşte prismă. Fie S ' mulţime tuturor punctelor P'. S şi S ' se numesc bzele prismei. S şi S ' sunt congruente. Dcă drept d este perpendiculră pe plnul α, tunci prism este o prism dreptă. O prismă dreptă cărei bză este o suprfţă poligonlă regultă se numeşte prismă regultă. O prismă cărei bză este mărginită de un prlelogrm se numeşte prlelipiped. Un prlelipiped drept se numeşte prlelipiped dreptunghic. Un prlelipiped dreptunghic cre re dor suprfeţe mărginite de pătrte se numeşte cub. d. Pirmid Fie S o suprfţă poligonlă, inclusă într-un pln α, şi V un punct cre nu prţine plnului α. Reuniune tuturor segmentelor [VP], tunci când P prcurge suprfţ S, se numeşte pirmidă de vârf V şi bză S. Distnţ de l V l plnul α se numeşte înălţime pirmidei. O pirmidă cărei bză este o suprfţă poligonlă regultă şi proiecţi lui V pe α este centru lui S se numeşte pirmidă regultă. O pirmidă cu bz suprfţă triunghiulră se numeşte tetredru. Fie α ' un pln prlel cu α şi cre intersecteză pirmid. Fie S ' intersecţi plnului α ' cu pirmid. S şi S ' sunt semene. Mulţime punctelor pirmidei cuprinse între plnurile α şi α ' împreună cu cele două suprfeţe S şi S ' se numeşte trunchi de pirmidă. S şi S ' se numesc bzele trunchiului de pirmidă. Distnţ dintre cele două plne se numeşte înălţime trunchiului de pirmidă. Un trunchi de pirmidă obţinut dintr-o pirmidă regultă se numeşte trunchi de pirmidă regultă. e. Cilindrul Fie D un disc, inclus într-un pln α, d o dreptă cre nu prţine plnului α şi nu este nici prlelă cu cest, şi α ' un pln prlel cu α. Pentru fiecre punct P l discului D fie P' intersecţi dintre plnul α ' şi prlel l d dusă prin P. Reuniune tuturor segmentelor [PP'], tunci când P prcurge discul D, se numeşte cilindru circulr. Fie D ' mulţime tuturor punctelor P'. D şi D ' se numesc bzele cilindrului circulr. D şi D ' u rze egle. B-6

7 drept. Dcă drept d este perpendiculră pe plnul α, tunci cilindrul este un cilindru circulr f. Conul Fie D un disc, inclus într-un pln α, şi V un punct cre nu prţine plnului α. Reuniune tuturor segmentelor [VP], tunci când P prcurge discul D, se numeşte con circulr de vârf V şi bză D. Distnţ de l V l plnul α se numeşte înălţime conului. Un con pentru cre proiecţi vârfului pe plnul bzei coincide cu centrul bzei se numeşte con drept. Fie α ' un pln prlel cu α şi cre intersecteză conul. Fie D ' intersecţi plnului α ' cu pirmid. Mulţime punctelor conului cuprinse între plnurile α şi α ' împreună cu cele două discuri D şi D ' se numeşte trunchi de con. D şi D ' se numesc bzele trunchiului de con. Distnţ dintre cele două plne se numeşte înălţime trunchiului de con. Un trunchi de con obţinut dintr-un con drept se numeşte trunchi de con drept. B-7

sin d = 8 2π 2 = 32 π

sin d = 8 2π 2 = 32 π .. Eerciţii reolvte. INTEGRALA E UPRAFAŢĂ E AL OILEA TIP. ÂMPURI OLENOIALE. Eerciţiul... ă se clculee dd dd dd, () fiind fţ eterioră sferei + + 4. oluţie. Avem: sin θ cos φ, sin θ sin φ, cos θ, θ[, π],

Διαβάστε περισσότερα

BARAJ DE JUNIORI,,Euclid Cipru, 28 mai 2012 (barajul 3)

BARAJ DE JUNIORI,,Euclid Cipru, 28 mai 2012 (barajul 3) BARAJ DE JUNIORI,,Euclid Cipru, 8 mi 0 (brjul ) Problem Arătţi că dcă, b, c sunt numere rele cre verifică + b + c =, tunci re loc ineglitte xy + yz + zx Problem Fie şi b numere nturle nenule Dcă numărul

Διαβάστε περισσότερα

Ecuaţia generală Probleme de tangenţă Sfera prin 4 puncte necoplanare. Elipsoidul Hiperboloizi Paraboloizi Conul Cilindrul. 1 Sfera.

Ecuaţia generală Probleme de tangenţă Sfera prin 4 puncte necoplanare. Elipsoidul Hiperboloizi Paraboloizi Conul Cilindrul. 1 Sfera. pe ecuaţii generale 1 Sfera Ecuaţia generală Probleme de tangenţă 2 pe ecuaţii generale Sfera pe ecuaţii generale Ecuaţia generală Probleme de tangenţă Numim sferă locul geometric al punctelor din spaţiu

Διαβάστε περισσότερα

EcuaŃii de gradul al doilea ax 2 + bx + c = 0, a,b,c R, a 0 1. Formule de rezolvare: > 0 b x =, x =, = b 2 4ac; sau

EcuaŃii de gradul al doilea ax 2 + bx + c = 0, a,b,c R, a 0 1. Formule de rezolvare: > 0 b x =, x =, = b 2 4ac; sau EcuŃii de grdul l doile x + x + c = 0,,,c R, 0 Formule de rezolvre: > 0 + x =, x =, = c; su ' + ' ' ' x =, x =, =, = c Formule utile în studiul ecuńiei de grdul l II-le: x + x = (x + x ) x x = S P 3 x

Διαβάστε περισσότερα

Definiţia generală Cazul 1. Elipsa şi hiperbola Cercul Cazul 2. Parabola Reprezentari parametrice ale conicelor Tangente la conice

Definiţia generală Cazul 1. Elipsa şi hiperbola Cercul Cazul 2. Parabola Reprezentari parametrice ale conicelor Tangente la conice 1 Conice pe ecuaţii reduse 2 Conice pe ecuaţii reduse Definiţie Numim conica locul geometric al punctelor din plan pentru care raportul distantelor la un punct fix F şi la o dreaptă fixă (D) este o constantă

Διαβάστε περισσότερα

Profesor Blaga Mirela-Gabriela DREAPTA

Profesor Blaga Mirela-Gabriela DREAPTA DREAPTA Fie punctele A ( xa, ya ), B ( xb, yb ), C ( xc, yc ) şi D ( xd, yd ) în planul xoy. 1)Distanţa AB = (x x ) + (y y ) Ex. Fie punctele A( 1, -3) şi B( -2, 5). Calculaţi distanţa AB. AB = ( 2 1)

Διαβάστε περισσότερα

CONICE. DEFINITII CA LOCURI GEOMETRICE SI PROPRIETATI. 1. Elipsa. Cadrul de lucru al acestui curs este un plan an euclidian orientat E 2 =

CONICE. DEFINITII CA LOCURI GEOMETRICE SI PROPRIETATI. 1. Elipsa. Cadrul de lucru al acestui curs este un plan an euclidian orientat E 2 = CONICE. DEFINITII CA LOCURI GEOMETRICE SI PROPRIETATI 1. Elips Cdrul de lucru l cestui curs este un pln n euclidin orientt E = ( ( E ) ) E,, , Φ. Denition 1.1. Se consider dou puncte distincte F, F

Διαβάστε περισσότερα

Planul determinat de normală şi un punct Ecuaţia generală Plane paralele Unghi diedru Planul determinat de 3 puncte necoliniare

Planul determinat de normală şi un punct Ecuaţia generală Plane paralele Unghi diedru Planul determinat de 3 puncte necoliniare 1 Planul în spaţiu Ecuaţia generală Plane paralele Unghi diedru 2 Ecuaţia generală Plane paralele Unghi diedru Fie reperul R(O, i, j, k ) în spaţiu. Numim normala a unui plan, un vector perpendicular pe

Διαβάστε περισσότερα

Conice. Lect. dr. Constantin-Cosmin Todea. U.T. Cluj-Napoca

Conice. Lect. dr. Constantin-Cosmin Todea. U.T. Cluj-Napoca Conice Lect. dr. Constantin-Cosmin Todea U.T. Cluj-Napoca Definiţie: Se numeşte curbă algebrică plană mulţimea punctelor din plan de ecuaţie implicită de forma (C) : F (x, y) = 0 în care funcţia F este

Διαβάστε περισσότερα

1.PUNCTUL.DREAPTA.PLANUL

1.PUNCTUL.DREAPTA.PLANUL 1.PUNCTUL.DREPT.PLNUL 1.Punctul E=F P Q P Q 2.Drept d su drept B (d) B Semidrept O, nott [O O su (O, dic fr O 3.Segmentul B, nott [B] M B (B),[B),(B] M este mijlocul lui [B] dc M=MB=B/2 su [M] [MB](=B/2)

Διαβάστε περισσότερα

Analiza matematică, clasa a XI-a probleme rezolvate Rolul derivatei întâi

Analiza matematică, clasa a XI-a probleme rezolvate Rolul derivatei întâi Anliz mtemtică, cls XI- proleme rezolvte Rolul derivtei întâi Virgil-Mihil Zhri DefiniŃie: Punctele critice le unei funcńii derivile sunt rădăcinile (zerourile) derivtei întâi DefiniŃie: Fie f:i R, cu

Διαβάστε περισσότερα

METODE ŞI ETAPE NECESARE PENTRU DETERMINAREA

METODE ŞI ETAPE NECESARE PENTRU DETERMINAREA ETOE ŞI ETAPE ECESARE PETRU ETERIAREA UGHIULUI A OUĂ PLAE PROF. IACU ARIA, ŞCOALA ROUL LAEA, ORAVIłA, CARAŞ- SEVERI (). Unghi diedru. Fie α şi β două semiplne vând ceeşi frontieră (muchie)d. Se numeşte

Διαβάστε περισσότερα

2.1 Sfera. (EGS) ecuaţie care poartă denumirea de ecuaţia generală asferei. (EGS) reprezintă osferă cu centrul în punctul. 2 + p 2

2.1 Sfera. (EGS) ecuaţie care poartă denumirea de ecuaţia generală asferei. (EGS) reprezintă osferă cu centrul în punctul. 2 + p 2 .1 Sfera Definitia 1.1 Se numeşte sferă mulţimea tuturor punctelor din spaţiu pentru care distanţa la u punct fi numit centrul sferei este egalăcuunnumăr numit raza sferei. Fie centrul sferei C (a, b,

Διαβάστε περισσότερα

R R, f ( x) = x 7x+ 6. Determinați distanța dintre punctele de. B=, unde x și y sunt numere reale.

R R, f ( x) = x 7x+ 6. Determinați distanța dintre punctele de. B=, unde x și y sunt numere reale. 5p Determinați primul termen al progresiei geometrice ( b n ) n, știind că b 5 = 48 și b 8 = 84 5p Se consideră funcția f : intersecție a graficului funcției f cu aa O R R, f ( ) = 7+ 6 Determinați distanța

Διαβάστε περισσότερα

SUPRAFEŢE CURBE SUPRAFEŢE CURBE

SUPRAFEŢE CURBE SUPRAFEŢE CURBE SUPRAFEŢE CURBE 53 9. SUPRAFEŢE CURBE Suprfeţele cure sunt suprfeţe generte prin mişcre unor linii drepte su cure, numite genertore, după numite legi. Clsificre suprfeţelor cure, după form genertorei :

Διαβάστε περισσότερα

Subiecte Clasa a VIII-a

Subiecte Clasa a VIII-a Subiecte lasa a VIII-a (40 de intrebari) Puteti folosi spatiile goale ca ciorna. Nu este de ajuns sa alegeti raspunsul corect pe brosura de subiecte, ele trebuie completate pe foaia de raspuns in dreptul

Διαβάστε περισσότερα

MULTIMEA NUMERELOR REALE

MULTIMEA NUMERELOR REALE www.webmteinfo.com cu noi totul pre mi usor MULTIMEA NUMERELOR REALE office@ webmteinfo.com 1.1 Rdcin ptrt unui numr nturl ptrt perfect Ptrtul unui numr rtionl este totdeun pozitiv su zero (dic nenegtiv).

Διαβάστε περισσότερα

Conice - Câteva proprietǎţi elementare

Conice - Câteva proprietǎţi elementare Conice - Câteva proprietǎţi elementare lect.dr. Mihai Chiş Facultatea de Matematicǎ şi Informaticǎ Universitatea de Vest din Timişoara Viitori Olimpici ediţia a 5-a, etapa I, clasa a XII-a 1 Definiţii

Διαβάστε περισσότερα

y y x x 1 y1 Elemente de geometrie analiticã 1. Segmente 1. DistanŃa dintre douã puncte A(x 1,y 1 ), B(x 2,y 2 ): AB = 2. Panta dreptei AB: m AB =

y y x x 1 y1 Elemente de geometrie analiticã 1. Segmente 1. DistanŃa dintre douã puncte A(x 1,y 1 ), B(x 2,y 2 ): AB = 2. Panta dreptei AB: m AB = Elemente de geometrie analiticã. Segmente. DistanŃa dintre douã puncte A(, ), B(, ): AB = ) + ( ) (. Panta dreptei AB: m AB = +. Coordonatele (,) ale mijlocului segmentului AB: =, =. Coordonatele punctului

Διαβάστε περισσότερα

(a) se numeşte derivata parţială a funcţiei f în raport cu variabila x i în punctul a.

(a) se numeşte derivata parţială a funcţiei f în raport cu variabila x i în punctul a. Definiţie Spunem că: i) funcţia f are derivată parţială în punctul a în raport cu variabila i dacă funcţia de o variabilă ( ) are derivată în punctul a în sens obişnuit (ca funcţie reală de o variabilă

Διαβάστε περισσότερα

TRIUNGHIUL. Profesor Alina Penciu, Școala Făgăraș, județul Brașov A. Definitii:

TRIUNGHIUL. Profesor Alina Penciu, Școala Făgăraș, județul Brașov A. Definitii: TRIUNGHIUL Profesor lina Penciu, Școala Făgăraș, județul rașov Daca, si sunt trei puncte necoliniare, distincte doua câte doua, atunci ( ) [] [] [] se numeste triunghi si se noteaza cu Δ. Orice Δ determina

Διαβάστε περισσότερα

Cercul lui Euler ( al celor nouă puncte și nu numai!)

Cercul lui Euler ( al celor nouă puncte și nu numai!) Cercul lui Euler ( al celor nouă puncte și nu numai!) Prof. ION CĂLINESCU,CNDG, Câmpulung Voi prezenta o abordare simplă a determinării cercului lui Euler, pe baza unei probleme de loc geometric. Preliminarii:

Διαβάστε περισσότερα

π } R 4. ctg:r\{kπ} R FuncŃii trigonometrice 1. DefiniŃii în triunghiul dreptunghic 2. ProprietãŃile funcńiilor trigonometrice 1.

π } R 4. ctg:r\{kπ} R FuncŃii trigonometrice 1. DefiniŃii în triunghiul dreptunghic 2. ProprietãŃile funcńiilor trigonometrice 1. Trigonometrie FuncŃii trigonometrice. DefiniŃii în triunghiul dreptunghic b c b sin B, cos B, tgb c C c ctgb, sin B cosc, tgb ctgc b b. ProprietãŃile funcńiilor trigonometrice. sin:r [-,] A c B sin(-x)

Διαβάστε περισσότερα

Axiomele geometriei în plan şi în spańiu

Axiomele geometriei în plan şi în spańiu xiomele geometriei în pln şi în spńiu 1 xiomele geometriei în pln şi în spńiu unoştinńele de geometrie cumulte în clsele gimnzile pot fi încdrte într-un sistem logic de propozińii mtemtice: xiome, definińii,

Διαβάστε περισσότερα

GEOMETRIE ANALITICĂ. Capitolul 5 VECTORI LIBERI. #1. Spaţiul vectorial al vectorilor liberi

GEOMETRIE ANALITICĂ. Capitolul 5 VECTORI LIBERI. #1. Spaţiul vectorial al vectorilor liberi GEOMETRIE ANALITICĂ Cpitolul 5 VECTORI LIBERI # Spţiul vectoril l vectorilor liberi Fie E spţiul tridimensionl l geometriei elementre orientt Definiţii Pentru oricre două puncte A B E considerăm segmentul

Διαβάστε περισσότερα

TEMA 5: DERIVATE ŞI DIFERENȚIALE

TEMA 5: DERIVATE ŞI DIFERENȚIALE TEMA 5: DERIVATE ŞI DIFERENȚIALE 35 TEMA 5: DERIVATE ŞI DIFERENȚIALE Obiective: Deinire principlelor proprietăţi mtemtice le uncţiilor, le itelor de uncţii şi le uncţiilor continue Deinire principlelor

Διαβάστε περισσότερα

3. Locuri geometrice Locuri geometrice uzuale

3. Locuri geometrice Locuri geometrice uzuale 3. Locuri geometrice 3.. Locuri geometrice uzuale oţiunea de loc geometric în plan care se găseşte şi în ELEETELE LUI EUCLID se pare că a fost folosită încă de PLATO (47-347) şi ARISTOTEL(383-3). Locurile

Διαβάστε περισσότερα

COLEGIUL NATIONAL CONSTANTIN CARABELLA TARGOVISTE. CONCURSUL JUDETEAN DE MATEMATICA CEZAR IVANESCU Editia a VI-a 26 februarie 2005.

COLEGIUL NATIONAL CONSTANTIN CARABELLA TARGOVISTE. CONCURSUL JUDETEAN DE MATEMATICA CEZAR IVANESCU Editia a VI-a 26 februarie 2005. SUBIECTUL Editia a VI-a 6 februarie 005 CLASA a V-a Fie A = x N 005 x 007 si B = y N y 003 005 3 3 a) Specificati cel mai mic element al multimii A si cel mai mare element al multimii B. b)stabiliti care

Διαβάστε περισσότερα

Seminariile Capitolul X. Integrale Curbilinii: Serii Laurent şi Teorema Reziduurilor

Seminariile Capitolul X. Integrale Curbilinii: Serii Laurent şi Teorema Reziduurilor Facultatea de Matematică Calcul Integral şi Elemente de Analiă Complexă, Semestrul I Lector dr. Lucian MATICIUC Seminariile 9 20 Capitolul X. Integrale Curbilinii: Serii Laurent şi Teorema Reiduurilor.

Διαβάστε περισσότερα

Dacă centrul cercului este în origine, atunci ecuaţia cercului va fi = 2

Dacă centrul cercului este în origine, atunci ecuaţia cercului va fi = 2 Capitolul 9 CONICE ŞI CUADRICE 9.1 Conice pe ecuaţii reduse 9.1.1 Cercul Definiţia 9.1 Fie un plan () şi un reper ortonormat R =(; ) Cercul este locul geometric al punctelor din plan care au proprietatea

Διαβάστε περισσότερα

TITULARIZARE 2002 Varianta 1

TITULARIZARE 2002 Varianta 1 TITULARIZARE 2002 Vrint 1 A. Omotetii plne: definiţie, oricre două triunghiuri omotetice sunt semene, mulţime omotetiilor de celşi centru formeză un grup belin izomorf cu grupul multiplictiv l numerelor

Διαβάστε περισσότερα

a n (ζ z 0 ) n. n=1 se numeste partea principala iar seria a n (z z 0 ) n se numeste partea

a n (ζ z 0 ) n. n=1 se numeste partea principala iar seria a n (z z 0 ) n se numeste partea Serii Laurent Definitie. Se numeste serie Laurent o serie de forma Seria n= (z z 0 ) n regulata (tayloriana) = (z z n= 0 ) + n se numeste partea principala iar seria se numeste partea Sa presupunem ca,

Διαβάστε περισσότερα

Metode iterative pentru probleme neliniare - contractii

Metode iterative pentru probleme neliniare - contractii Metode iterative pentru probleme neliniare - contractii Problemele neliniare sunt in general rezolvate prin metode iterative si analiza convergentei acestor metode este o problema importanta. 1 Contractii

Διαβάστε περισσότερα

CONCURSUL NAŢIONAL DE MATEMATICĂ APLICATĂ "ADOLF HAIMOVICI" ETAPA FINALĂ - 22 mai 2010

CONCURSUL NAŢIONAL DE MATEMATICĂ APLICATĂ ADOLF HAIMOVICI ETAPA FINALĂ - 22 mai 2010 ETAPA FINALĂ - mi 00 BAREM DE CORECTARE CLASA A IX A. Pe o dreptă se consideră 00 puncte, cre formeză 009 segmente, fiecre de cm. Pe primul segment, desupr dreptei, construim un pătrt, pe l doile segment,

Διαβάστε περισσότερα

6. METODELE GEOMETRIEI DESCRIPTIVE

6. METODELE GEOMETRIEI DESCRIPTIVE METDELE GEMETRIEI DESCRITIVE 75 6. METDELE GEMETRIEI DESCRITIVE rin etodele geoetriei descriptive se relieă odificre proiecţiilor eleentelor geoetrice din poiţiile dte în lte poiţii, prticulre fţă de plnele

Διαβάστε περισσότερα

Geometria triunghiului

Geometria triunghiului Geometri triunghiului 1 I Triunghiul ritrr Fie AB A c h m l β γ B D E A 1 Geometri triunghiului Formule de z pentru triunghiuri Notm prin:,, c lungimile lturilor B, A, respectiv AB; α, β, γ mrimile unghiurilor

Διαβάστε περισσότερα

6.CONUL ŞI CILINDRUL. Fig Fig. 6.2 Fig. 6.3

6.CONUL ŞI CILINDRUL. Fig Fig. 6.2 Fig. 6.3 6.CONUL ŞI CILINDRUL 6.1.GENERALITĂŢI Conul este corpul geometric mărginit de o suprafaţă conică şi un plan; suprafaţa conică este generată prin rotaţia unei drepte mobile, numită generatoare, concurentă

Διαβάστε περισσότερα

DISTANŢA DINTRE DOUĂ DREPTE NECOPLANARE

DISTANŢA DINTRE DOUĂ DREPTE NECOPLANARE DISTANŢA DINTRE DOUĂ DREPTE NECOPLANARE ABSTRACT. Materialul prezintă o modalitate de a afla distanţa dintre două drepte necoplanare folosind volumul tetraedrului. Lecţia se adresează clasei a VIII-a Data:

Διαβάστε περισσότερα

III. Serii absolut convergente. Serii semiconvergente. ii) semiconvergentă dacă este convergentă iar seria modulelor divergentă.

III. Serii absolut convergente. Serii semiconvergente. ii) semiconvergentă dacă este convergentă iar seria modulelor divergentă. III. Serii absolut convergente. Serii semiconvergente. Definiţie. O serie a n se numeşte: i) absolut convergentă dacă seria modulelor a n este convergentă; ii) semiconvergentă dacă este convergentă iar

Διαβάστε περισσότερα

Geometrie computationala 2. Preliminarii geometrice

Geometrie computationala 2. Preliminarii geometrice Platformă de e-learning și curriculă e-content pentru învățământul superior tehnic Geometrie computationala 2. Preliminarii geometrice Preliminarii geometrice Spatiu Euclidean: E d Spatiu de d-tupluri,

Διαβάστε περισσότερα

5. FUNCŢII IMPLICITE. EXTREME CONDIŢIONATE.

5. FUNCŢII IMPLICITE. EXTREME CONDIŢIONATE. 5 Eerciţii reolvate 5 UNCŢII IMPLICITE EXTREME CONDIŢIONATE Eerciţiul 5 Să se determine şi dacă () este o funcţie definită implicit de ecuaţia ( + ) ( + ) + Soluţie ie ( ) ( + ) ( + ) + ( )R Evident este

Διαβάστε περισσότερα

Vectori liberi Produs scalar Produs vectorial Produsul mixt. 1 Vectori liberi. 2 Produs scalar. 3 Produs vectorial. 4 Produsul mixt.

Vectori liberi Produs scalar Produs vectorial Produsul mixt. 1 Vectori liberi. 2 Produs scalar. 3 Produs vectorial. 4 Produsul mixt. liberi 1 liberi 2 3 4 Segment orientat liberi Fie S spaţiul geometric tridimensional cu axiomele lui Euclid. Orice pereche de puncte din S, notată (A, B) se numeşte segment orientat. Dacă A B, atunci direcţia

Διαβάστε περισσότερα

Toate subiectele sunt obligatorii. Timpul de lucru efectiv este de 3 ore. Se acordă din oficiu 10 puncte. SUBIECTUL I.

Toate subiectele sunt obligatorii. Timpul de lucru efectiv este de 3 ore. Se acordă din oficiu 10 puncte. SUBIECTUL I. Modelul 4 Se acordă din oficiu puncte.. Fie numărul complex z = i. Calculaţi (z ) 25. 2. Dacă x şi x 2 sunt rădăcinile ecuaţiei x 2 9x+8 =, atunci să se calculeze x2 +x2 2 x x 2. 3. Rezolvaţi în mulţimea

Διαβάστε περισσότερα

Seminariile 1 2 Capitolul I. Integrale improprii

Seminariile 1 2 Capitolul I. Integrale improprii Cpitolul I: Integrle improprii Lect. dr. Lucin Mticiuc Fcultte de Mtemtică Clcul integrl şi Aplicţii, Semestrul I Lector dr. Lucin MATICIUC Seminriile Cpitolul I. Integrle improprii. Să se studieze ntur

Διαβάστε περισσότερα

Curs 10 Funcţii reale de mai multe variabile reale. Limite şi continuitate.

Curs 10 Funcţii reale de mai multe variabile reale. Limite şi continuitate. Curs 10 Funcţii reale de mai multe variabile reale. Limite şi continuitate. Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Fie p, q N. Fie funcţia f : D R p R q. Avem următoarele

Διαβάστε περισσότερα

Integrale cu parametru

Integrale cu parametru 1 Integrle proprii cu prmetru 2 3 Integrle proprii cu prmetru Definiţi 1.1 Dcă f : [, b ] E R, E R este o funcţie cu propriette că pentru orice y E, funcţi de vribilă x x f (x, y) este integrbilă pe intervlul

Διαβάστε περισσότερα

CONCURSUL NAŢIONAL DE MATEMATICĂ APLICATĂ "ADOLF HAIMOVICI"

CONCURSUL NAŢIONAL DE MATEMATICĂ APLICATĂ ADOLF HAIMOVICI INSPECTORATUL ŞCOLAR JUDEŢEAN IAŞI CONCURSUL NAŢIONAL DE MATEMATICĂ APLICATĂ "ADOLF HAIMOVICI" ETAPA JUDEŢEANĂ 8 mrtie 04 Profil rel, specilizre ştiinţele nturii FACULTATEA CONSTRUCŢII DE MAŞINI ŞI MANAGEMENT

Διαβάστε περισσότερα

Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor X) functia f 1

Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor X) functia f 1 Functii definitie proprietati grafic functii elementare A. Definitii proprietatile functiilor. Fiind date doua multimi X si Y spunem ca am definit o functie (aplicatie) pe X cu valori in Y daca fiecarui

Διαβάστε περισσότερα

Geometrie analitică şi. asist. Ciprian Deliu Universitatea Tehnică Gh. Asachi Iaşi Facultatea de Hidrotehnică, Geodezie şi Ingineria Mediului

Geometrie analitică şi. asist. Ciprian Deliu Universitatea Tehnică Gh. Asachi Iaşi Facultatea de Hidrotehnică, Geodezie şi Ingineria Mediului Geometrie analitică şi diferenţială asist. Ciprian Deliu Universitatea Tehnică Gh. Asachi Iaşi Facultatea de Hidrotehnică, Geodezie şi Ingineria Mediului 014 Cuprins 1 Conice 3 1.1 Dreapta în plan............................

Διαβάστε περισσότερα

Capitolul 9. Geometrie analitică. 9.1 Repere

Capitolul 9. Geometrie analitică. 9.1 Repere Capitolul 9 Geometrie analitică 9.1 Repere Vom considera spaţiile liniare (X, +,, R)în careelementelespaţiului X sunt vectorii de pe odreaptă, V 1, dintr-un plan, V sau din spaţiu, V 3 (adică X V 1 sau

Διαβάστε περισσότερα

Conice şi cercuri tangente

Conice şi cercuri tangente Conice şi cercuri tangente Ioan POP 1 Abstract It proves how to obtain the non-degenerate conics, ellipse, hyperbola and parabola, of some basic tangent problems Keywords: circle, ellipse, hyperbola, parabola

Διαβάστε περισσότερα

Curs 1 Şiruri de numere reale

Curs 1 Şiruri de numere reale Bibliografie G. Chiorescu, Analiză matematică. Teorie şi probleme. Calcul diferenţial, Editura PIM, Iaşi, 2006. R. Luca-Tudorache, Analiză matematică, Editura Tehnopress, Iaşi, 2005. M. Nicolescu, N. Roşculeţ,

Διαβάστε περισσότερα

Integrala nedefinită (primitive)

Integrala nedefinită (primitive) nedefinita nedefinită (primitive) nedefinita 2 nedefinita februarie 20 nedefinita.tabelul primitivelor Definiţia Fie f : J R, J R un interval. Funcţia F : J R se numeşte primitivă sau antiderivată a funcţiei

Διαβάστε περισσότερα

CINEMATICA RIGIDULUI

CINEMATICA RIGIDULUI CNEMATCA GDULU CNEMATCA CPULU GD CNEMATCA CPULU GD 8.. Elementele generle le mişcării corpului rigid 8.. Problemele cinemticii corpului rigid Corpul rigid este un element importnt în tehnică şi semnifică

Διαβάστε περισσότερα

Curs 14 Funcţii implicite. Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi"

Curs 14 Funcţii implicite. Facultatea de Hidrotehnică Universitatea Tehnică Gh. Asachi Curs 14 Funcţii implicite Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Fie F : D R 2 R o funcţie de două variabile şi fie ecuaţia F (x, y) = 0. (1) Problemă În ce condiţii ecuaţia

Διαβάστε περισσότερα

Cum folosim cazuri particulare în rezolvarea unor probleme

Cum folosim cazuri particulare în rezolvarea unor probleme Cum folosim cazuri particulare în rezolvarea unor probleme GHEORGHE ECKSTEIN 1 Atunci când întâlnim o problemă pe care nu ştim s-o abordăm, adesea este bine să considerăm cazuri particulare ale acesteia.

Διαβάστε περισσότερα

RĂSPUNS Modulul de rezistenţă este o caracteristică geometrică a secţiunii transversale, scrisă faţă de una dintre axele de inerţie principale:,

RĂSPUNS Modulul de rezistenţă este o caracteristică geometrică a secţiunii transversale, scrisă faţă de una dintre axele de inerţie principale:, REZISTENTA MATERIALELOR 1. Ce este modulul de rezistenţă? Exemplificaţi pentru o secţiune dreptunghiulară, respectiv dublu T. RĂSPUNS Modulul de rezistenţă este o caracteristică geometrică a secţiunii

Διαβάστε περισσότερα

Seminar 3. Serii. Probleme rezolvate. 1 n . 7. Problema 3.2. Să se studieze natura seriei n 1. Soluţie 3.1. Avem inegalitatea. u n = 1 n 7. = v n.

Seminar 3. Serii. Probleme rezolvate. 1 n . 7. Problema 3.2. Să se studieze natura seriei n 1. Soluţie 3.1. Avem inegalitatea. u n = 1 n 7. = v n. Semir 3 Serii Probleme rezolvte Problem 3 Să se studieze tur seriei Soluţie 3 Avem ieglitte = ) u = ) ) = v, Seri = v este covergetă fiid o serie geometrică cu rţi q = < Pe bz criteriului de comprţie cu

Διαβάστε περισσότερα

Asupra unei metode pentru calculul unor integrale definite din functii trigonometrice

Asupra unei metode pentru calculul unor integrale definite din functii trigonometrice Educţi Mtemtică Vol. 1, Nr. (5), 59 68 Asupr unei metode pentru clculul unor integrle definite din functii trigonometrice Ion Alemn Astrct In this pper is presented one method of clcultion for the trigonometricl

Διαβάστε περισσότερα

GEOMETRIE PLANĂ TEOREME IMPORTANTE ARII. bh lh 2. abc. abc. formula înălţimii

GEOMETRIE PLANĂ TEOREME IMPORTANTE ARII. bh lh 2. abc. abc. formula înălţimii GEOMETRIE PLNĂ TEOREME IMPORTNTE suma unghiurilor unui triunghi este 8º suma unghiurilor unui patrulater este 6º unghiurile de la baza unui triunghi isoscel sunt congruente într-un triunghi isoscel liniile

Διαβάστε περισσότερα

CAPITOLUL 6 FORME LINIARE, BILINIARE ŞI PĂTRATICE. 6.1 Forme liniare

CAPITOLUL 6 FORME LINIARE, BILINIARE ŞI PĂTRATICE. 6.1 Forme liniare Algebră liniră CAPITOLUL 6 FORME LINIARE, BILINIARE ŞI PĂTRATICE 6 Forme linire Fie V un spţiu vectoril peste un corp K Definiţi 6 Se numeşte formă liniră su funcţionlă liniră o plicţie f : V K cre stisfce

Διαβάστε περισσότερα

Capitolul 10 CONICE ŞI CUADRICE Conice pe ecuaţii reduse Elipsa

Capitolul 10 CONICE ŞI CUADRICE Conice pe ecuaţii reduse Elipsa Capitolul 1 CONICE ŞI CUADRICE 1.1 Conice pe ecuaţii reduse 1.1.1 Elipsa Definiţia 1.1 Elipsa este locul geometric al punctelor din plan cu proprietatea că suma distanţelor la două puncte fie, F şi F (numite

Διαβάστε περισσότερα

7. Fie ABCD un patrulater inscriptibil. Un cerc care trece prin A şi B intersectează

7. Fie ABCD un patrulater inscriptibil. Un cerc care trece prin A şi B intersectează TEMĂ 1 1. În triunghiul ABC, fie D (BC) astfel încât AB + BD = AC + CD. Demonstraţi că dacă punctele B, C şi centrele de greutate ale triunghiurilor ABD şi ACD sunt conciclice, atunci AB = AC. India 2014

Διαβάστε περισσότερα

Lucian Maticiuc SEMINAR Conf. dr. Lucian Maticiuc. Capitolul VI. Integrala triplă. Teoria:

Lucian Maticiuc SEMINAR Conf. dr. Lucian Maticiuc. Capitolul VI. Integrala triplă. Teoria: Capitolul I: Integrala triplă Conf. dr. Facultatea de Hidrotehnică, Geodezie şi Ingineria Mediului Analiza Matematică II, Semestrul II Conf. dr. Lucian MATICIUC Teoria: SEMINAR 3 Capitolul I. Integrala

Διαβάστε περισσότερα

Seminariile Capitolul IX. Integrale curbilinii

Seminariile Capitolul IX. Integrale curbilinii Facultatea de Matematică Calcul Integral şi Elemente de Analiă Complexă, Semestrul I Lector dr. Lucian MATICIUC Seminariile 7 8 Capitolul IX. Integrale curbilinii. Să se calculee Im ) d, unde este segmentul

Διαβάστε περισσότερα

Sunt variabile aleatoare care iau o infinitate numărabilă de valori. Diagrama unei variabile aleatoare discrete are forma... f. ,... pn.

Sunt variabile aleatoare care iau o infinitate numărabilă de valori. Diagrama unei variabile aleatoare discrete are forma... f. ,... pn. 86 ECUAŢII 55 Vriile letore discrete Sut vriile letore cre iu o ifiitte umărilă de vlori Digrm uei vriile letore discrete re form f, p p p ude p = = Distriuţi Poisso Are digrm 0 e e e e!!! Se costtă că

Διαβάστε περισσότερα

GEOMETRIE PLANĂ TEOREME IMPORTANTE ARII. = înălţimea triunghiului echilateral h =, R =, r = R = bh lh 2 A D ++ D. abc. abc =

GEOMETRIE PLANĂ TEOREME IMPORTANTE ARII. = înălţimea triunghiului echilateral h =, R =, r = R = bh lh 2 A D ++ D. abc. abc = GEOMETRIE PLNĂ TEOREME IMPORTNTE suma unghiurilor unui triunghi este 8º suma unghiurilor unui patrulater este 6º unghiurile de la baza unui triunghi isoscel sunt congruente într-un triunghi isoscel liniile

Διαβάστε περισσότερα

CERCUL LUI EULER ŞI DREAPTA LUI SIMSON

CERCUL LUI EULER ŞI DREAPTA LUI SIMSON CERCUL LUI EULER ŞI DREAPTA LUI SIMSON ABSTRACT. Articolul prezintă două rezultate deosebite legate de patrulaterul inscriptibil şi câteva consecinţe ce decurg din aceste rezultate. Lecţia se adresează

Διαβάστε περισσότερα

Subiecte Clasa a VII-a

Subiecte Clasa a VII-a lasa a VII Lumina Math Intrebari Subiecte lasa a VII-a (40 de intrebari) Puteti folosi spatiile goale ca ciorna. Nu este de ajuns sa alegeti raspunsul corect pe brosura de subiecte, ele trebuie completate

Διαβάστε περισσότερα

DRUMURI, ARCE ŞI LUNGIMILE LOR

DRUMURI, ARCE ŞI LUNGIMILE LOR Drumuri, rce, lugimi Virgil-Mihil Zhri DRUMURI, ARCE ŞI LUNGIMILE LOR FucŃiile cu vrińie mărgiită u fost itroduse de Jord Cmille (88-9) şi utilizte de el cu oczi studiului prolemei rectificilităńii curelor,

Διαβάστε περισσότερα

Algebra si Geometrie Seminar 9

Algebra si Geometrie Seminar 9 Algebra si Geometrie Seminar 9 Decembrie 017 ii Equations are just the boring part of mathematics. I attempt to see things in terms of geometry. Stephen Hawking 9 Dreapta si planul in spatiu 1 Notiuni

Διαβάστε περισσότερα

Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor

Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor. Fiind date doua multimi si spunem ca am definit o functie (aplicatie) pe cu valori in daca fiecarui element

Διαβάστε περισσότερα

Laborator 11. Mulţimi Julia. Temă

Laborator 11. Mulţimi Julia. Temă Laborator 11 Mulţimi Julia. Temă 1. Clasa JuliaGreen. Să considerăm clasa JuliaGreen dată de exemplu la curs pentru metoda locului final şi să schimbăm numărul de iteraţii nriter = 100 în nriter = 101.

Διαβάστε περισσότερα

Dreapta in plan. = y y 0

Dreapta in plan. = y y 0 Dreapta in plan 1 Dreapta in plan i) Presupunem ca planul este inzestrat cu un reper ortonormat de dreapta (O, i, j). Fiecarui punct M al planului ii corespunde vectorul OM numit vector de pozitie al punctului

Διαβάστε περισσότερα

Aplicaţii ale numerelor complexe în geometrie, utilizând Geogebra

Aplicaţii ale numerelor complexe în geometrie, utilizând Geogebra ale numerelor complexe în geometrie, utilizând Geogebra Adevărul matematic, indiferent unde, la Paris sau la Toulouse, este unul şi acelaşi (Blaise Pascal) Diana-Florina Haliţă grupa 331 dianahalita@gmailcom

Διαβάστε περισσότερα

Lectia VII Dreapta si planul

Lectia VII Dreapta si planul Planul. Ecuatii, pozitii relative Dreapta. Ecuatii, pozitii relative Aplicatii Lectia VII Dreapta si planul Oana Constantinescu Oana Constantinescu Lectia VII Planul. Ecuatii, pozitii relative Dreapta.

Διαβάστε περισσότερα

Tema: şiruri de funcţii

Tema: şiruri de funcţii Tem: şiruri de fucţii. Clculţi limit (simplă) şirului de fucţii f : [ 0,], f ( ) R Avem lim f ( 0) = ir petru 0, vem lim f ( ) Î cocluzie, dcă otăm f: [ 0, ], f ( ) =, = 0 =, 0 + + = +, tuci lim f f =..

Διαβάστε περισσότερα

PROIECT DE TEHNOLOGIE DIDACTICĂ

PROIECT DE TEHNOLOGIE DIDACTICĂ PROIECT DE TEHNOLOGIE DIDACTICĂ Clasa a 8 a GEOMETRIE Prof. Unitatea de învăţare ARIILE ŞI VOLUMELE CORPURILOR ROTUNDE Tema lecţiei Cilindrul circular drept descriere, desfăşurare, secţiuni paralele cu

Διαβάστε περισσότερα

Tit Tihon CNRV Roman FISA DE EVALUARE A UNITATII DE INVATARE. Caracteristici vizibile observate PUNCTAJ ACORDAT

Tit Tihon CNRV Roman FISA DE EVALUARE A UNITATII DE INVATARE. Caracteristici vizibile observate PUNCTAJ ACORDAT Tit Tihon CNRV Romn FISA DE EVALUARE A UNITATII DE INVATARE Nr. crt 5 6 7 8 9 0 Nr. crt Nr. crt Crcteristici vizibile observte PUNCTAJ ACORDAT preciere D+ Nu Observţii privind preciere folosire mnulului

Διαβάστε περισσότερα

avem V ç,, unde D = b 4ac este discriminantul ecuaţiei de gradul al doilea ax 2 + bx +

avem V ç,, unde D = b 4ac este discriminantul ecuaţiei de gradul al doilea ax 2 + bx + Corina şi Cătălin Minescu 1 Determinarea funcţiei de gradul al doilea când se cunosc puncte de pe grafic, coordonatele vârfului, intersecţii cu axele de coordonate, puncte de extrem, etc. Probleme de arii.

Διαβάστε περισσότερα

CURS MECANICA CONSTRUCŢIILOR

CURS MECANICA CONSTRUCŢIILOR CURS 10+11 MECANICA CONSTRUCŢIILOR Conf. Dr. Ing. Viorel Ungureanu CINEMATICA SOLIDULUI RIGID In cadrul cinematicii punctului material s-a arătat ca a studia mişcarea unui punct înseamnă a determina la

Διαβάστε περισσότερα

Să se arate că n este număr par. Dan Nedeianu

Să se arate că n este număr par. Dan Nedeianu Primul test de selecție pentru juniori I. Să se determine numerele prime p, q, r cu proprietatea că 1 p + 1 q + 1 r 1. Fie ABCD un patrulater convex cu m( BCD) = 10, m( CBA) = 45, m( CBD) = 15 și m( CAB)

Διαβάστε περισσότερα

1. ŞIRURI ŞI SERII DE NUMERE REALE

1. ŞIRURI ŞI SERII DE NUMERE REALE . ŞIRURI ŞI SERII DE NUMERE REALE. Eerciţii rezolvte Eerciţiul Stbiliţi dcă următorele şiruri sut fudmetle: ), N 5 b) + + + +, N * c) + + +, N * cos(!) d), N ( ) e), N Soluţii p p ) +p - < şi mjortul este

Διαβάστε περισσότερα

DEFINITIVAT 1993 PROFESORI I. sinx. 0, dacă x = 0

DEFINITIVAT 1993 PROFESORI I. sinx. 0, dacă x = 0 DEFINITIVAT 1993 TIMIŞOARA PROFESORI I 1. a) Metodica predării noţiunii de derivată a unei funcţii. b) Să se reprezinte grafic funci a sinx, dacă x (0,2π] f : [0,2π] R, f(x) = x. 0, dacă x = 0 2. Fie G

Διαβάστε περισσότερα

Functii Breviar teoretic 8 ianuarie ianuarie 2011

Functii Breviar teoretic 8 ianuarie ianuarie 2011 Functii Breviar teoretic 8 ianuarie 011 15 ianuarie 011 I Fie I, interval si f : I 1) a) functia f este (strict) crescatoare pe I daca x, y I, x< y ( f( x) < f( y)), f( x) f( y) b) functia f este (strict)

Διαβάστε περισσότερα

Sisteme diferenţiale liniare de ordinul 1

Sisteme diferenţiale liniare de ordinul 1 1 Metoda eliminării 2 Cazul valorilor proprii reale Cazul valorilor proprii nereale 3 Catedra de Matematică 2011 Forma generală a unui sistem liniar Considerăm sistemul y 1 (x) = a 11y 1 (x) + a 12 y 2

Διαβάστε περισσότερα

z a + c 0 + c 1 (z a)

z a + c 0 + c 1 (z a) 1 Serii Laurent (continuare) Teorema 1.1 Fie D C un domeniu, a D şi f : D \ {a} C o funcţie olomorfă. Punctul a este pol multiplu de ordin p al lui f dacă şi numai dacă dezvoltarea în serie Laurent a funcţiei

Διαβάστε περισσότερα

Integrale generalizate (improprii)

Integrale generalizate (improprii) Integrle generlizte (improprii) Fie f : [, ] R, definită prin =, α > 0. Pentru u, funţi α f este integrilă pe intervlul [, u] şi u ln α+ α+ u u = ( α)u α α, α = ln u, α =. Dă treem l limită pentru u oţinem

Διαβάστε περισσότερα

1. CAPITOLUL 1. Elemente de calcul vectorial şi geometrie analitică. AB se poate face de la A spre B sau AB sunt definite două sensuri (opuse).

1. CAPITOLUL 1. Elemente de calcul vectorial şi geometrie analitică. AB se poate face de la A spre B sau AB sunt definite două sensuri (opuse). CPITOLUL Elemente de clcul vectoil şi geometie nlitică Vectoi în pln Definiţii O măime este sclă dcă pentu detemie ei este suficientă indice unui singu numă O măime este vectoilă dcă este detemintă de

Διαβάστε περισσότερα

CURS I II. Capitolul I: Integrala definită. Primitive. 1 Integrabilitate Riemann. Criterii de integrabilitate

CURS I II. Capitolul I: Integrala definită. Primitive. 1 Integrabilitate Riemann. Criterii de integrabilitate Cpitolul I: Integrl definită. Primitive Conf. dr. Lucin Mticiuc Fcultte de Hidrotehnică, Geodezie şi Ingineri Mediului Anliz Mtemtică II, Semestrul II Conf. dr. Lucin MATICIUC CURS I II Cpitolul I: Integrl

Διαβάστε περισσότερα

a) De câte cămări are nevoie hârciogul pentru a depozita toate semințele? b) După al câtelea drum a umplut complet a doua cămară?

a) De câte cămări are nevoie hârciogul pentru a depozita toate semințele? b) După al câtelea drum a umplut complet a doua cămară? CONCURSUL INTERJUDEȚEAN DE MATEMATICĂ TRAIAN LALESCU, 2009 Cls V- 1. Un hârciog cră semințe într-o glerie. L primul drum duce cu el o sămânță, l l doile duce 3 semințe, l l treile duce 5 semințe, etc.,

Διαβάστε περισσότερα

V.7. Condiţii necesare de optimalitate cazul funcţiilor diferenţiabile

V.7. Condiţii necesare de optimalitate cazul funcţiilor diferenţiabile Metode de Optimizare Curs V.7. Condiţii necesare de optimalitate cazul funcţiilor diferenţiabile Propoziţie 7. (Fritz-John). Fie X o submulţime deschisă a lui R n, f:x R o funcţie de clasă C şi ϕ = (ϕ,ϕ

Διαβάστε περισσότερα

MARCAREA REZISTOARELOR

MARCAREA REZISTOARELOR 1.2. MARCAREA REZISTOARELOR 1.2.1 MARCARE DIRECTĂ PRIN COD ALFANUMERIC. Acest cod este format din una sau mai multe cifre şi o literă. Litera poate fi plasată după grupul de cifre (situaţie în care valoarea

Διαβάστε περισσότερα

GEOMETRIE PENTRU GIMNAZIU Partea I (cls. a V a, a VI a, a VII a) Geometrie pentru pregătirea Evaluării Naționale la Matematică

GEOMETRIE PENTRU GIMNAZIU Partea I (cls. a V a, a VI a, a VII a) Geometrie pentru pregătirea Evaluării Naționale la Matematică Geometrie pentru pregătirea Evaluării Naționale la Matematică (Cls. a V a, a VI a, a VII a) UNITĂȚI DE MĂSURĂ Lungime rie Volum Capacitate DE REȚINUT! Masă 1hm 1ha 1dam 1ar 1dm 1l 1q 1kg 1t 1kg 1v 1kg

Διαβάστε περισσότερα

Concurs MATE-INFO UBB, 1 aprilie 2017 Proba scrisă la MATEMATICĂ

Concurs MATE-INFO UBB, 1 aprilie 2017 Proba scrisă la MATEMATICĂ UNIVERSITATEA BABEŞ-BOLYAI CLUJ-NAPOCA FACULTATEA DE MATEMATICĂ ŞI INFORMATICĂ Concurs MATE-INFO UBB, aprilie 7 Proba scrisă la MATEMATICĂ SUBIECTUL I (3 puncte) ) (5 puncte) Fie matricele A = 3 4 9 8

Διαβάστε περισσότερα

CURS XI XII SINTEZĂ. 1 Algebra vectorială a vectorilor liberi

CURS XI XII SINTEZĂ. 1 Algebra vectorială a vectorilor liberi Lect. dr. Facultatea de Electronică, Telecomunicaţii şi Tehnologia Informaţiei Algebră, Semestrul I, Lector dr. Lucian MATICIUC http://math.etti.tuiasi.ro/maticiuc/ CURS XI XII SINTEZĂ 1 Algebra vectorială

Διαβάστε περισσότερα

GHEORGHE PROCOPIUC ANALIZĂ MATEMATICĂ

GHEORGHE PROCOPIUC ANALIZĂ MATEMATICĂ GHEORGHE PROCOPIUC ANALIZĂ MATEMATICĂ IAŞI, 2002 Cuprins 1 ELEMENTE DE TEORIA SPAŢIILOR METRICE 6 1.1 Introducere................................... 6 1.1.1 Elemente de teori teori mulţimilor.................

Διαβάστε περισσότερα

a carei ecuatie matriceala este data in raport cu R.

a carei ecuatie matriceala este data in raport cu R. POZITIA RELATIVA A UNEI DREPTE FATA DE O HIPERCUADRICA AFINA REALA. TANGENTE SI ASIMPTOTE. OANA CONSTANTINESCU Pentru studiul pozitiei relative a unei drepte fata de o hipercuadrica, remarcam ca nu mai

Διαβάστε περισσότερα

CAPITOLUL 7 CONICE SI CUADRICE

CAPITOLUL 7 CONICE SI CUADRICE Conie şi udrie CAPITOLUL 7 CONICE SI CUADRICE Definiţie Mulţime H {(,,, n ) R n n n j i, ij, b i, R, ij ji, n n j i ij ij n i b i i } se numeşte ij hiperudriă (su hipersuprfţă) în R n. În zul n hiperudri

Διαβάστε περισσότερα

LUCRARE DE DIPLOMĂ CENTRE REMARCABILE ÎN TRIUNGHI

LUCRARE DE DIPLOMĂ CENTRE REMARCABILE ÎN TRIUNGHI UNIVERSITATEA BABEŞ-BOLYAI CLUJ-NAPOCA FACULTATEA DE MATEMATICĂ ŞI INFORMATICĂ SPECIALIZAREA MATEMATICI APLICATE LUCRARE DE DIPLOMĂ CENTRE REMARCABILE ÎN TRIUNGHI Conducător Ştiinţific: Lect. Dr. VĂCĂREŢU

Διαβάστε περισσότερα