Απαντητικό Έντυπο. Πιστοποίηση Επάρκειας της Ελληνομάθειας για Επαγγελματικούς Σκοπούς 18 Ιανουαρίου Βαθμολογία
|
|
- Χρύσηίς Βασιλόπουλος
- 6 χρόνια πριν
- Προβολές:
Transcript
1 Υπουρείο Πιείς κι Θρησκευμάτων, Πολιτισμού κι Αθλητισμού Κέντρο Ελληνικής Γλώσσς Πιστοποίηση Επάρκεις της Ελληνομάθεις ι Επελμτικούς Σκοπούς 18 Ινουρίου 2013 A2 Διάρκει Εξέτσης 55 λεπτά 1 Κτνόηση ρπτού λόου. Διάρκει 30 λεπτά. 2 Κτνόηση προφορικού λόου. Διάρκει 25 λεπτά. Απντητικό Έντυπο Όνομ Εξετστικού Κέντρου Κωικός Αριθμός Κέντρου Ονομτεπώνυμο Υποψήφιου/ς Κωικός Άριθμός Υποψήφιου/ς Οηίες Ν συμπληρώσετε το όνομ κι τον κωικό ριθμό του εξετστικού κέντρου. Ν ράψετε το όνομά σς με κεφλί ράμμτ κι ν συμπληρώσετε τον κωικό σς ριθμό. Ν προσπθήσετε ν πντήσετε σε όλες τις ερωτήσεις. Ν ράψετε όλες τις πντήσεις με μπλε ή μύρο στιλό. Ν ράφετε κθρά. Ν ιράψετε ό,τι ράψετε πρόχειρ στο εξετστικό τετράιο. Πληροφορίες προς τους εξετζόμενους Αυτό το τετράιο περιέχει: 1 Κτνόηση ρπτού λόου. Διάρκει 30 λεπτά. 2 Κτνόηση προφορικού λόου. Διάρκει 25 λεπτά (σ υτό το μέρος θ κούσετε έν CD). Οι μονάες του κάθε ερωτήμτος ίνοντι μέσ σε πρενθέσεις ίπλ στην εκφώνηση του κάθε θέμτος. Βθμολοί Κωικός Α Βθμολοητή Κωικός Β Βθμολοητή Επιτροπή Ανθμολόησης 1ο 2o 3o 4o Σύνολο 1ο 2o 3o 4o Σύνολο Βθμός Κτνόηση ρπτού λόου Κτνόηση προφορικού λόου
2 Υπουρείο Πιείς κι Θρησκευμάτων, Πολιτισμού κι Αθλητισμού Κέντρο Ελληνικής Γλώσσς Πιστοποίηση Επάρκεις της Ελληνομάθεις Ινουάριος 2013 ι Επελμτικούς Σκοπούς Κτνόηση ρπτού λόου (25 μονάες) Διάρκει Εξέτσης 30 λεπτά Ερώτημ 1 (7 μονάες) Προσέξτε: πρέπει ν άλετε επτά ( 7 ) χωρίς το πράειμ. 0 Μόνο στην εξοχή μπορούμε ν κάνουμε ποήλτο. (πράειμ) Σωστό Λάθος 1 Είνι ευχάριστο ν πηίνεις στη ουλειά με το ποήλτο. 2 Είνι οικονομικό ν πηίνεις στη ουλειά με το ποήλτο. 3 Δεν πρέπει ν κάνουμε συχνά ποήλτο, ιτί μολύνουμε το περιάλλον. 4 Ότν πηίνουμε στη ουλειά με το ποήλτο, τ ρούχ μς είνι πάντ κθρά. 5 Είνι ύσκολο ν κάνουμε ποήλτο, ότν έχει πολλά υτοκίνητ στον ρόμο. 6 Λί ιλί μιλάνε ι την οήηση με ποήλτο. 7 Είνι ισκεστικό ν κάνουμε χιλιόμετρ με χλσμένο ποήλτο. 1
3 Υπουρείο Πιείς κι Θρησκευμάτων, Πολιτισμού κι Αθλητισμού Κέντρο Ελληνικής Γλώσσς Πιστοποίηση Επάρκεις της Ελληνομάθεις Ινουάριος 2013 ι Επελμτικούς Σκοπούς Κτνόηση ρπτού λόου (25 μονάες) Ερώτημ 2 (6 μονάες) Προσέξτε: οι πντήσεις είνι έξι ( 6 ) χωρίς το πράειμ. Υπάρχουν ύο φράσεις στον εύτερο πίνκ που εν πρέπει ν χρησιμοποιήσετε. 0 Η ζωή είνι πιο ωρί, ότν (πράειμ) 0 ίνεις άπη σε ένν σκύλο. (πράειμ) 1 Ότν ζουν μόνοι τους, οι άνθρωποι ώσεις έν ικό του σπιτάκι. 2 Αν έχεις σκύλο, συχνά προτίμησε ν το κάνεις την άνοιξη. 3 Αν έχεις σκύλο, μιλάς πιο εύκολ έχουν προλήμτ υείς. 4 Αν θέλεις ν πάρεις σκύλο, θ πίζεις τον χειμών. 5 Πρέπει ν περάσουν λίοι μήνες, με άλλους νθρώπους στο πάρκο. 6 Αν πάρεις σκύλο, πρέπει ν του εν φοούντι. πηίνεις όλτ στο πάρκο. ι ν ίνεις φίλος με ένν σκύλο. 2
4 Υπουρείο Πιείς κι Θρησκευμάτων, Πολιτισμού κι Αθλητισμού Κέντρο Ελληνικής Γλώσσς Πιστοποίηση Επάρκεις της Ελληνομάθεις Ινουάριος 2013 ι Επελμτικούς Σκοπούς Κτνόηση ρπτού λόου (25 μονάες) Ερώτημ 3 (6 μονάες) Προσέξτε: οι πντήσεις είνι έξι ( 6 ) χωρίς το πράειμ. Κάθε πρότση έχει μόνο μί σωστή πάντηση. 0 Στον ιάλοο 0 το εστιτόριο (πράειμ) 3 Στον ιάλοο 3 ο Γιάννης άνοιξε πριν ένν χρόνο. έχει κλό φητό. έχει κλή μουσική. έλε ωρίες φωτορφίες το κλοκίρι. πήε τξίι τον χειμών. θ στείλει στην Ειρήνη μι τινί. εν έχει κνένν πελάτη. όρσε έν ιλίο ι τη Σντορίνη. 1 Στον ιάλοο 1 η Μρί 4 Στον ιάλοο 4 η Εύ κοιμάτι νωρίς. έχει πονοκέφλο. κρυώνει το ράυ. έχει ρίπη. πίνει πολύ κφέ. εν μπορεί ν πάει στο σχολείο. πίνει πολύ άλ. εν μπορεί ν μιλήσει. 2 Στον ιάλοο 2 η Άνν 5 Στον ιάλοο 5 η Αντωνί εν θ πάει στη ιορτή του ερφού της. εν θ πάει το ράυ στο σινεμά. ψάχνει ι έν κριό ώρο. εν θέλει ν ει κωμωί. προτιμά ν οράσει έν πουλόερ. θ πάει στο σπίτι του Σωτήρη. θ οράσει έν φθηνό πουκάμισο. κλεί τον Σωτήρη στο σπίτι της. 6 Στον ιάλοο 6 ο Λευτέρης 3 είνι χοντρός. είνι θλητής. έχσε κιλά με τη υμνστική. στμάτησε ν τρώει το ράυ.
5 Υπουρείο Πιείς κι Θρησκευμάτων, Πολιτισμού κι Αθλητισμού Κέντρο Ελληνικής Γλώσσς Πιστοποίηση Επάρκεις της Ελληνομάθεις Ινουάριος 2013 ι Επελμτικούς Σκοπούς Κτνόηση ρπτού λόου (25 μονάες) Ερώτημ 4 (6 μονάες) Προσέξτε: οι ριθμοί που πρέπει ν συμπληρώσετε είνι έξι ( 6 ) χωρίς το πράειμ. Υπάρχουν τρεις λέξεις που εν τιριάζουν σε κνέν κενό. πράστση (πράειμ) 0 μζί μκριά οήθει πντήσεις φτάνει μιλάει ρουν ήσυχ χρούμεν Τέλος της εξέτσης της Κτνόησης Γρπτού Λόου. Προχωρήστε στην εξέτση της Κτνόησης Προφορικού Λόου. 4
6 Υπουρείο Πιείς κι Θρησκευμάτων, Πολιτισμού κι Αθλητισμού Κέντρο Ελληνικής Γλώσσς Πιστοποίηση Επάρκεις της Ελληνομάθεις Ινουάριος 2013 ι Επελμτικούς Σκοπούς Κτνόηση προφορικού λόου (25 μονάες) Διάρκει Εξέτσης 25 λεπτά Ερώτημ 1 (6 μονάες) Θ κούσετε ύο ( 2 ) φορές την Άνν ν περιράφει το κινούριο της σπίτι. Έχετε μπροστά σς εικόνες πό ιάφορ ωμάτι. Κθώς κούτε τις περιρφές, σημειώνετε στο κουτάκι της κάθε εικόνς τον ριθμό της περιρφής που τιριάζει σε υτήν, όπως στο πράειμ. Προσέξτε: πρέπει ν σημειώσετε ριθμούς σε έξι ( 6 ) εικόνες χωρίς το πράειμ. Υπάρχουν ύο ( 2 ) εικόνες που εν τιριάζουν σε κμί περιρφή. 0 (πράειμ) 5
7 Υπουρείο Πιείς κι Θρησκευμάτων, Πολιτισμού κι Αθλητισμού Κέντρο Ελληνικής Γλώσσς Πιστοποίηση Επάρκεις της Ελληνομάθεις Ινουάριος 2013 ι Επελμτικούς Σκοπούς Κτνόηση προφορικού λόου Ερώτημ 2 ( 6 μονάες ) Θ κούσετε ύο ( 2 ) φορές τη ριοφωνική εκπομπή «Η μεί του θεάτρου». Η ημοσιοράφος πίρνει συνέντευξη πό ένν ηθοποιό. Κθώς κούτε τις ερωτήσεις, σημειώνετε με έν στο ερωτημτολόιο που έχετε μπροστά σς τις πντήσεις που ίνει ο ηθοποιός, όπως στο πράειμ. Προσέξτε: οι σωστές πντήσεις είνι έξι ( 6 ) χωρίς το πράειμ. Γι κάθε ερώτηση υπάρχει μόνο μί σωστή πάντηση. 0 Το έρο ονομάζετι (πράειμ) 3 Οι ύο ηθοποιοί του έρου χάνουν «Περιπέτειες στην Ελετί». «Περιπέτειες στην Ελλά». «Περιπέτειες στην Αμερική». το εροπλάνο. τις ικοπές τους. τις λίτσες τους. 1 Η πράστση είνι 4 Ο Τζον είνι κωμωί. έξυπνος. στυνομική περιπέτει. λυπημένος. ράμ. όμορφος. 2 Πίζουν 5 Το έρο πίζετι ύο υνίκες. πό Τετάρτη μέχρι Σάτο. ύο φίλοι. πό Τετάρτη μέχρι Κυρική. ύο ζευάρι. πό Πέμπτη μέχρι Κυρική. 6 Το έρο πίζετι το πόευμ κι το ράυ στις 6 κι στις 9. στις 7 κι στις 10. στις 6 κι στις 10. 6
8 Υπουρείο Πιείς κι Θρησκευμάτων, Πολιτισμού κι Αθλητισμού Κέντρο Ελληνικής Γλώσσς Πιστοποίηση Επάρκεις της Ελληνομάθεις Ινουάριος 2013 ι Επελμτικούς Σκοπούς Κτνόηση προφορικού λόου Ερώτημ 3 ( 6 μονάες ) Θ κούσετε ύο ( 2 ) φορές μί ιστορί ι ένν πρίκιπ. Κθώς την κούτε, σημειώνετε έν κάτω πό το Σωστό ίπλ στις προτάσεις που συμφωνούν με υτά που κούτε ή κάτω πό το Λάθος ίπλ σε υτές που εν συμφωνούν, όπως στο πράειμ. Προσέξτε: πρέπει ν άλετε συνολικά έξι ( 6 ) χωρίς το πράειμ. 0 Το κείμενο μιλά ι ένν πλούσιο πρίκιπ. (πράειμ) Σωστό Λάθος 1 Ο πρίκιπς είνι έρος κι χρούμενος. 2 Το πλάτι είνι ίπλ στη θάλσσ. 3 Ο πρίκιπς λέπει πό το πράθυρο τον ουρνό. 4 Ο πρίκιπς θέλει ν ίνει ελφίνι, ι ν νιώθει ελεύθερος. 5 Ο πρίκιπς είνι στενοχωρημένος, ιτί εν έχει φίλους. 6 Στο τέλος, ο πρίκιπς εν ίνετι ευτυχισμένος. 7
9 Υπουρείο Πιείς κι Θρησκευμάτων, Πολιτισμού κι Αθλητισμού Κέντρο Ελληνικής Γλώσσς Πιστοποίηση Επάρκεις της Ελληνομάθεις Ινουάριος 2013 ι Επελμτικούς Σκοπούς Κτνόηση προφορικού λόου Ερώτημ 4 ( 7 μονάες ) Θ κούσετε ύο ( 2 ) φορές ένν ιάλοο νάμεσ στον Πνιώτη κι μι φίλη του. Ακούστε προσεκτικά κι κρτήστε σύντομες σημειώσεις ( 1 2 λέξεις ), όπως στο πράειμ. Προσέξτε: τ κενά που πρέπει ν συμπληρώσετε είνι επτά ( 7 ) χωρίς το πράειμ. 0 Ο Πνιώτης μιλάει με την Αλεξάνρ. (πράειμ) 1 Η πρέ θ πίξει. 2 Ημέρ που θ ίνει το πιχνίι: 3 Ώρ: 4 Ο Πνιώτης πρέπει ν φέρει κι. 5 Ο Πνιώτης πρέπει ν φορέσει. 6 Κιρός: 7 Θερμοκρσί: 8
ΓΙΑ ΠΑΙΔΙΑ 8-12 ΕΤΩΝ Π Ι Σ Τ Ο Π Ο Ι Η Σ Η Ε Π Α Ρ Κ Ε Ι Α Σ Τ Η Σ ΕΛΛΗΝΟΜΑΘΕΙΑΣ Κ Α Τ Α Ν Ο Η Σ Η Π Ρ Ο Φ Ο Ρ Ι Κ Ο Υ Λ Ο Γ Ο Υ Π Ρ Ω Τ Η Σ Ε Ι Ρ Α
ΓΙΑ ΠΑΙΔΙΑ 8-12 ΕΤΩΝ Π Ι Σ Τ Ο Π Ο Ι Η Σ Η Ε Π Α Ρ Κ Ε Ι Α Σ Τ Η Σ ΕΛΛΗΝΟΜΑΘΕΙΑΣ Κ Α Τ Α Ν Ο Η Σ Η Π Ρ Ο Φ Ο Ρ Ι Κ Ο Υ Λ Ο Γ Ο Υ Π Ρ Ω Τ Η Σ Ε Ι Ρ Α Δ Ε Ι Γ Μ Α Τ Ω Ν 2 5 Μ 0 Ν Α Δ Ε Σ 1 Y Π Ο Υ Ρ Γ Ε
Διαβάστε περισσότεραΠ Ι Σ Τ Ο Π Ο Ι Η Σ Η Ε Π Α Ρ Κ Ε Ι Α Σ Τ Η Σ ΕΛΛΗΝΟΜΑΘΕΙΑΣ Κ Α Τ Α Ν Ο Η Σ Η Γ Ρ Α Π Τ Ο Υ Λ Ο Γ Ο Υ Π Ρ Ω Τ Η Σ Ε Ι Ρ Α Δ Ε Ι Γ Μ Α Τ Ω Ν
Ε Π Α Ρ Κ Ε Ι Α Σ Τ Η Σ ΕΛΛΗΝΟΜΑΘΕΙΑΣ Κ Α Τ Α Ν Ο Η Σ Η Γ Ρ Α Π Τ Ο Υ Λ Ο Γ Ο Υ Π Ρ Ω Τ Η Σ Ε Ι Ρ Α Δ Ε Ι Γ Μ Α Τ Ω Ν Μ Ν Α Δ Ε Σ Y Π Ο Υ Ρ Γ Ε Ι Ο Π Α Ι Δ Ε Ι Α Σ Κ Α Ι Θ Ρ Η Σ Κ Ε Υ Μ Α Τ Ω Ν Κ Ε Ν Τ
Διαβάστε περισσότεραΚΑΤΑΝΟΗΣΗ ΓΡΑΠΤΟΥ ΛΟΓΟΥ
ΕΛΛΗΝΟΓΛΩΣΣΗ ΠΡΩΤΟΒΑΘΜΙΑ ΚΑΙ ΔΕΥΤΕΡΟΒΑΘΜΙΑ ΔΙΑΠΟΛΙΤΙΣΜΙΚΗ ΕΚΠΑΙΔΕΥΣΗ ΣΤΗ ΔΙΑΣΠΟΡΑ ΚΑΤΑΝΟΗΣΗ ΓΡΑΠΤΟΥ ΛΟΓΟΥ ΜΟΝΑΔΕΣ 25 ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ, Ε.ΔΙΑ.Μ.ΜΕ. Ρέθυμνο, 2014 1 ΚΑΤΑΝΟΗΣΗ ΓΡΑΠΤΟΥ ΛΟΓΟΥ Άσκηση 1 (6
Διαβάστε περισσότεραΓΙΑ ΠΑΙΔΙΑ 8-12 ΕΤΩΝ Π Ι Σ Τ Ο Π Ο Ι Η Σ Η Ε Π Α Ρ Κ Ε Ι Α Σ Τ Η Σ ΕΛΛΗΝΟΜΑΘΕΙΑΣ Κ Α Τ Α Ν Ο Η Σ Η Π Ρ Ο Φ Ο Ρ Ι Κ Ο Υ Λ Ο Γ Ο Υ ΔΕΥΤΕΡΗ ΣΕΙΡΑ
ΓΙΑ ΠΑΙΔΙΑ 8-12 ΕΤΩΝ Π Ι Σ Τ Ο Π Ο Ι Η Σ Η Ε Π Α Ρ Κ Ε Ι Α Σ Τ Η Σ ΕΛΛΗΝΟΜΑΘΕΙΑΣ Κ Α Τ Α Ν Ο Η Σ Η Π Ρ Ο Φ Ο Ρ Ι Κ Ο Υ Λ Ο Γ Ο Υ ΔΕΥΤΕΡΗ ΣΕΙΡΑ Δ Ε Ι Γ Μ Α Τ Ω Ν 2 5 Μ 0 Ν Α Δ Ε Σ 1 Y Π Ο Υ Ρ Γ Ε Ι Ο Π
Διαβάστε περισσότεραΠ Ι Σ Τ Ο Π Ο Ι Η Σ Η Ε Π Α Ρ Κ Ε Ι Α Σ Τ Η Σ ΕΛΛΗΝΟΜΑΘΕΙΑΣ Κ Α Τ Α Ν Ο Η Σ Η Γ Ρ Α Π Τ Ο Υ Λ Ο Γ Ο Υ ΔΕΥΤΕΡΗ ΣΕΙΡΑ Δ Ε Ι Γ Μ Α Τ Ω Ν 02
Ε Π Α Ρ Κ Ε Ι Α Σ Τ Η Σ ΕΛΛΗΝΟΜΑΘΕΙΑΣ Κ Α Τ Α Ν Ο Η Σ Η Γ Ρ Α Π Τ Ο Υ Λ Ο Γ Ο Υ ΔΕΥΤΕΡΗ ΣΕΙΡΑ Δ Ε Ι Γ Μ Α Τ Ω Ν 2 0 Μ 0 Ν Α Δ Ε Σ 1 Y Π Ο Υ Ρ Γ Ε Ι Ο Π Α Ι Δ Ε Ι Α Σ Κ Α Ι Θ Ρ Η Σ Κ Ε Υ Μ Α Τ Ω Ν Κ Ε Ν
Διαβάστε περισσότεραΠ Ι Σ Τ Ο Π Ο Ι Η Σ Η Ε Π Α Ρ Κ Ε Ι Α Σ Τ Η Σ ΕΛΛΗΝΟΜΑΘΕΙΑΣ Χ Ρ Η Σ Η Γ Λ Ω Σ Σ Α Σ Π Ρ Ω Τ Η Σ Ε Ι Ρ Α Δ Ε Ι Γ Μ Α Τ Ω Ν 2 0 Μ 0 Ν Α Δ Ε Σ
Ε Π Α Ρ Κ Ε Ι Α Σ Τ Η Σ ΕΛΛΗΝΟΜΑΘΕΙΑΣ Χ Ρ Η Σ Η Γ Λ Ω Σ Σ Α Σ Π Ρ Ω Τ Η Σ Ε Ι Ρ Α Δ Ε Ι Γ Μ Α Τ Ω Ν 2 0 Μ 0 Ν Α Δ Ε Σ 1 Y Π Ο Υ Ρ Γ Ε Ι Ο Π Α Ι Δ Ε Ι Α Σ Κ Α Ι Θ Ρ Η Σ Κ Ε Υ Μ Α Τ Ω Ν Κ Ε Ν Τ Ρ Ο Ε Λ Λ
Διαβάστε περισσότεραΤΕΛΟΣ 1ΗΣ ΑΠΟ 4 ΣΕΛΙ ΕΣ
ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ HMEΡΗΣΙΩΝ ΚΑΙ ΕΣΠΕΡΙΝΩΝ ΕΠΑΓΓΕΛΜΑΤΙΚΩΝ ΛΥΚΕΙΩΝ (ΟΜΑ Α A ) ΚΑΙ ΜΑΘΗΜΑΤΩΝ ΕΙ ΙΚΟΤΗΤΑΣ ΕΠΑΓΓΕΛΜΑΤΙΚΩΝ ΛΥΚΕΙΩΝ (ΟΜΑ Α Β ) ΠΕΜΠΤΗ 4 ΜΑΪΟΥ 01 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ:
Διαβάστε περισσότεραΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ. Α.3 Πότε η ευθεία y = λέγεται οριζόντια ασύμπτωτη της γραφικής παράστασης της f στο + ; Μονάδες 3
ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 4 ΜΑΪΟΥ 7 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΠΕΝΤΕ (5) ΘΕΜΑ 1 o A.1 Αν z
Διαβάστε περισσότεραΔιάλογος 1: Στο μπάνιο
Ενότητ 2 - Σελίδ 1 Διάλοος 1: Στο μπάνιο Διάλοος 2: Ρντεού στο κομμωτήριο Διάλοος 3: Μεσημερινό Διάλοος 4: Ψυχωί δισκέδση Διάλοος 5: Ένς ένοικος έχει πράπονο B1 A2 A2 B1 B2 Διάλοος 1: Στο μπάνιο Συνομιλί
Διαβάστε περισσότεραΘΕΜΑ Α Α1. Έστω συνεχής συνάρτηση f:[ α, β ] με παράγουσα συνάρτηση F. Τι ονομάζεται ορισμένο ολοκλήρωμα της συνάρτησης f από το α έως το β;
Ανκτήθηκε πό την Εκπιδευτική Κλίμκ ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ HMEΡΗΣΙΩΝ ΚΑΙ ΕΣΠΕΡΙΝΩΝ ΕΠΑΓΓΕΛΜΑΤΙΚΩΝ ΛΥΚΕΙΩΝ (ΟΜΑ Α A ) ΚΑΙ ΜΑΘΗΜΑΤΩΝ ΕΙ ΙΚΟΤΗΤΑΣ ΕΠΑΓΓΕΛΜΑΤΙΚΩΝ ΛΥΚΕΙΩΝ (ΟΜΑ Α Β
Διαβάστε περισσότεραΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ. 1 x. Μονάδες 10 Α.2 Πότε μια συνάρτηση f λέμε ότι είναι συνεχής σε ένα κλειστό διάστημα [α,β]; Μονάδες 5
ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΣΑΒΒΑΤΟ 24 ΜΑΪΟΥ 2008 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΠΕΝΤΕ (5) ΘΕΜΑ 1 o A.1
Διαβάστε περισσότεραΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ
ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΑ ΙΚΕΣ ΕΞΕΤΑΣΕΙΣ HMEΡΗΣΙΩΝ ΚΑΙ ΕΣΠΕΡΙΝΩΝ ΕΠΑΓΓΕΛΜΑΤΙΚΩΝ ΛΥΚΕΙΩΝ (ΟΜΑ Α A ) ΚΑΙ ΜΑΘΗΜΑΤΩΝ ΕΙ ΙΚΟΤΗΤΑΣ ΕΠΑΓΓΕΛΜΑΤΙΚΩΝ ΛΥΚΕΙΩΝ (ΟΜΑ Α Β ) ΤΡΙΤΗ 3 IOYNIOY 014 ΕΞΕΤΑΖΟΜΕΝΟ
Διαβάστε περισσότεραΠ Ι Σ Τ Ο Π Ο Ι Η Σ Η Ε Π Α Ρ Κ Ε Ι Α Σ Τ Η Σ ΕΛΛΗΝΟΜΑΘΕΙΑΣ Κ Α Τ Α Ν Ο Η Σ Η Γ Ρ Α Π Τ Ο Υ Λ Ο Γ Ο Υ Π Ρ Ω Τ Η Σ Ε Ι Ρ Α Δ Ε Ι Γ Μ Α Τ Ω Ν
Ε Π Α Ρ Κ Ε Ι Α Σ Τ Η Σ ΕΛΛΗΝΟΜΑΘΕΙΑΣ Κ Α Τ Α Ν Ο Η Σ Η Γ Ρ Α Π Τ Ο Υ Λ Ο Γ Ο Υ Π Ρ Ω Τ Η Σ Ε Ι Ρ Α Δ Ε Ι Γ Μ Α Τ Ω Ν Μ Ν Α Δ Ε Σ Y Π Ο Υ Ρ Γ Ε Ι Ο Π Α Ι Δ Ε Ι Α Σ Κ Α Ι Θ Ρ Η Σ Κ Ε Υ Μ Α Τ Ω Ν Κ Ε Ν Τ
Διαβάστε περισσότεραΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ
ΑΡΧΗ ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΑ ΙΚΕΣ ΕΞΕΤΑΣΕΙΣ HMEΡΗΣΙΩΝ ΚΑΙ ΕΣΠΕΡΙΝΩΝ ΕΠΑΓΓΕΛΜΑΤΙΚΩΝ ΛΥΚΕΙΩΝ ΟΜΑ Α A ΚΑΙ ΜΑΘΗΜΑΤΩΝ ΕΙ ΙΚΟΤΗΤΑΣ ΕΠΑΓΓΕΛΜΑΤΙΚΩΝ ΛΥΚΕΙΩΝ ΟΜΑ Α Β ΤΡΙΤΗ 3 IOYNIOY 4 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ:
Διαβάστε περισσότεραΠ Ι Σ Τ Ο Π Ο Ι Η Σ Η Ε Π Α Ρ Κ Ε Ι Α Σ Τ Η Σ ΕΛΛΗΝΟΜΑΘΕΙΑΣ Κ Α Τ Α Ν Ο Η Σ Η Γ Ρ Α Π Τ Ο Υ Λ Ο Γ Ο Υ ΔΕΥΤΕΡΗ ΣΕΙΡΑ Δ Ε Ι Γ Μ Α Τ Ω Ν 02
Ε Π Α Ρ Κ Ε Ι Α Σ Τ Η Σ ΕΛΛΗΝΟΜΑΘΕΙΑΣ Κ Α Τ Α Ν Ο Η Σ Η Γ Ρ Α Π Τ Ο Υ Λ Ο Γ Ο Υ ΔΕΥΤΕΡΗ ΣΕΙΡΑ Δ Ε Ι Γ Μ Α Τ Ω Ν 2 Μ Ν Α Δ Ε Σ Y Π Ο Υ Ρ Γ Ε Ι Ο Π Α Ι Δ Ε Ι Α Σ Κ Α Ι Θ Ρ Η Σ Κ Ε Υ Μ Α Τ Ω Ν Κ Ε Ν Τ Ρ Ο
Διαβάστε περισσότεραΤΕΛΟΣ 1ΗΣ ΑΠΟ 4 ΣΕΛΙ ΕΣ
ΑΡΧΗ ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ HMEΡΗΣΙΩΝ ΚΑΙ ΕΣΠΕΡΙΝΩΝ ΕΠΑΓΓΕΛΜΑΤΙΚΩΝ ΛΥΚΕΙΩΝ (ΟΜΑ Α A ) ΚΑΙ ΜΑΘΗΜΑΤΩΝ ΕΙ ΙΚΟΤΗΤΑΣ ΕΠΑΓΓΕΛΜΑΤΙΚΩΝ ΛΥΚΕΙΩΝ (ΟΜΑ Α Β ) ΠΕΜΠΤΗ 24 ΜΑΪΟΥ 202 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ:
Διαβάστε περισσότεραΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ
ΑΡΧΗ ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΑ ΙΚΕΣ ΕΞΕΤΑΣΕΙΣ HMEΡΗΣΙΩΝ ΚΑΙ ΕΣΠΕΡΙΝΩΝ ΕΠΑΓΓΕΛΜΑΤΙΚΩΝ ΛΥΚΕΙΩΝ (ΟΜΑ Α A ) ΚΑΙ ΜΑΘΗΜΑΤΩΝ ΕΙ ΙΚΟΤΗΤΑΣ ΕΠΑΓΓΕΛΜΑΤΙΚΩΝ ΛΥΚΕΙΩΝ (ΟΜΑ Α Β ) ΤΡΙΤΗ 3 IOYNIOY 04 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ:
Διαβάστε περισσότεραΘΕΜΑ Α Α1. Έστω συνεχής συνάρτηση f:[ α, β ] με παράγουσα συνάρτηση F. Τι ονομάζεται ορισμένο ολοκλήρωμα της συνάρτησης f από το α έως το β;
ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ HMEΡΗΣΙΩΝ ΚΑΙ ΕΣΠΕΡΙΝΩΝ ΕΠΑΓΓΕΛΜΑΤΙΚΩΝ ΛΥΚΕΙΩΝ (ΟΜΑ Α A ) ΚΑΙ ΜΑΘΗΜΑΤΩΝ ΕΙ ΙΚΟΤΗΤΑΣ ΕΠΑΓΓΕΛΜΑΤΙΚΩΝ ΛΥΚΕΙΩΝ (ΟΜΑ Α Β ) ΠΕΜΠΤΗ 3 ΜΑΪΟΥ 013 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ:
Διαβάστε περισσότεραΚείμενα Κατανόησης Γραπτού Λόγου
Κέντρο Ελληνικής Γλώσσας Πιστοποίηση Επάρκειας της Ελληνομάθειας 18 Ιανουαρίου 2013 A2 Κείμενα Κατανόησης Γραπτού Λόγου Διάρκεια Εξέτασης 30 λεπτά Διάρκεια Εξέτασης 30 λεπτά Ερώτημα 1 (7 μονάδες) Διαβάζετε
Διαβάστε περισσότεραείναι μιγαδικοί αριθμοί, τότε ισχύει , z 2 Μονάδες 2 β. Μία συνάρτηση f με πεδίο ορισμού Α λέμε ότι παρουσιάζει (ολικό) ελάχιστο στο x 0
ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΤΕΤΑΡΤΗ ΜΑΪΟΥ 9 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ:
Διαβάστε περισσότεραΠ Ι Σ Τ Ο Π Ο Ι Η Σ Η Ε Π Α Ρ Κ Ε Ι Α Σ Τ Η Σ ΕΛΛΗΝΟΜΑΘΕΙΑΣ Κ Α Τ Α Ν Ο Η Σ Η Π Ρ Ο Φ Ο Ρ Ι Κ Ο Υ Λ Ο Γ Ο Υ ΔΕΥΤΕΡΗ ΣΕΙΡΑ Δ Ε Ι Γ Μ Α Τ Ω Ν 02
Ε Π Α Ρ Κ Ε Ι Α Σ Τ Η Σ ΕΛΛΗΝΟΜΑΘΕΙΑΣ Κ Α Τ Α Ν Ο Η Σ Η Π Ρ Ο Φ Ο Ρ Ι Κ Ο Υ Λ Ο Γ Ο Υ ΔΕΥΤΕΡΗ ΣΕΙΡΑ Δ Ε Ι Γ Μ Α Τ Ω Ν 2 0 Μ 0 Ν Α Δ Ε Σ 1 Y Π Ο Υ Ρ Γ Ε Ι Ο Π Α Ι Δ Ε Ι Α Σ Κ Α Ι Θ Ρ Η Σ Κ Ε Υ Μ Α Τ Ω Ν
Διαβάστε περισσότεραΕρωτήσεις πολλαπλής επιλογής. 1. * Αν η γραφική παράσταση µιας συνάρτησης f είναι αυτή που φαίνεται στο σχήµα, τότε λάθος είναι
Ερωτήσεις πολλπλής επιλογής 1. * Αν η γρφική πράστση µις συνάρτησης f είνι υτή που φίνετι στο σχήµ, τότε λάθος είνι Α. lim f () = 4 B. lim f () = 1 1 1 Γ. lim f () =. f ( 1) = 1 4 0 1 1 1 E. f (1) = 4.
Διαβάστε περισσότεραΕίναι ένα πιστοποιητικό που επιτρέπει τη μεταφορά επικίνδυνων εμπορευμάτων ακόμα και εάν η μονάδα μεταφοράς δεν είναι κατάλληλη.
ΚΕΦΑΑΙΟ 1: ΝΟΜΟΘΕΤΙΚΟ ΠΑΙΙΟ - ΤΑΞΙΝΟΜΗΗ ΕΠΙΚΙΝΔΥΝΩΝ ΕΜΠΟΡΕΥΜΑΤΩΝ 1 Ποιος έχει την υποχρέωση ν πρδώσει στον οδηό τις ρπτές οδηίες σχετικές με τη μετφερόμενη επικίνδυνη ύλη; Ο πρλήπτης. Η τροχί. Ο ποστολές.
Διαβάστε περισσότεραΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ
ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑ ο Ν γράψετε στο τετράδιό σς τον ριθμό κθεμιάς πό τις πρκάτω ερωτήσεις - 4 κι δίπλ το γράμμ που ντιστοιχεί στη σωστή πάντηση.. Η ρχή της επλληλίς
Διαβάστε περισσότερααριθμών Ιδιότητες της διάταξης
Ανισότητες Διάτξη πργμτικών ριθμών Ιδιότητες της διάτξης Διάτξη (σύγκριση) δύο ριθμών. Πώς μπορούμε ν συγκρίνουμε δύο ριθμούς κι ; Απάντηση Ο ριθμός είνι μεγλύτερος του (συμολικά > ), ότν η διφορά είνι
Διαβάστε περισσότερα2.1 Πολυώνυμα. 1 η Μορφή Ασκήσεων: Ασκήσεις στις βασικές έννοιες του πολυωνύμου. 1. Ποιες από τις παρακάτω παραστάσεις είναι πολυώνυμα του x i.
. Πολυώνυμ η Μορφή Ασκήσεων: Ασκήσεις στις βσικές έννοιες του πολυωνύμου. Ποιες πό τις πρκάτω πρστάσεις είνι πολυώνυμ του i. ii. iii. iv. v. vi. 5 Σύμφων με τον ορισμό πολυώνυμ του είνι οι πρστάσεις i,
Διαβάστε περισσότεραΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΤΑΞΗ
ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Σ ΗΜΕΡΗΣΙΟΥ ΕΝΙΑΙΟΥ ΛΥΕΙΟΥ ΠΕΜΠΤΗ 9 ΙΟΥΝΙΟΥ 2005 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΧΗΜΕΙΑ ΘΕΤΙΗΣ ΑΤΕΥΘΥΝΣΗΣ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΕΞΙ (6) ΘΕΜΑ 1ο Γι τις ερωτήσεις 1.1-1.4 ν γράψετε στο
Διαβάστε περισσότεραΠ Ι Σ Τ Ο Π Ο Ι Η Σ Η Ε Π Α Ρ Κ Ε Ι Α Σ Τ Η Σ ΕΛΛΗΝΟΜΑΘΕΙΑΣ Κ Α Τ Α Ν Ο Η Σ Η Π Ρ Ο Φ Ο Ρ Ι Κ Ο Υ Λ Ο Γ Ο Υ Π Ρ Ω Τ Η Σ Ε Ι Ρ Α Δ Ε Ι Γ Μ Α Τ Ω Ν
Ε Π Α Ρ Κ Ε Ι Α Σ Τ Η Σ ΕΛΛΗΝΟΜΑΘΕΙΑΣ Κ Α Τ Α Ν Ο Η Σ Η Π Ρ Ο Φ Ο Ρ Ι Κ Ο Υ Λ Ο Γ Ο Υ Π Ρ Ω Τ Η Σ Ε Ι Ρ Α Δ Ε Ι Γ Μ Α Τ Ω Ν 2 0 Μ 0 Ν Α Δ Ε Σ 1 Y Π Ο Υ Ρ Γ Ε Ι Ο Π Α Ι Δ Ε Ι Α Σ Κ Α Ι Θ Ρ Η Σ Κ Ε Υ Μ Α
Διαβάστε περισσότεραΑΛΓΕΒΡΑ KAI ΣΤΟΙΧΕΙΑ ΠΙΘΑΝΟΤΗΤΩΝ Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ( ) ΛΥΣΕΙΣ ΤΩΝ ΑΣΚΗΣΕΩΝ
ΑΛΓΕΒΡΑ KAI ΣΤΟΙΧΕΙΑ ΠΙΘΑΝΟΤΗΤΩΝ Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ (011-01) ΛΥΣΕΙΣ ΤΩΝ ΑΣΚΗΣΕΩΝ ΣΤΟΙΧΕΙΑ ΕΠΑΝΕΚ ΟΣΗΣ Η επνέκδοση του πρόντος βιβλίου πργμτοποιήθηκε πό το Ινστιτούτο Τεχνολογίς Υπολογιστών & Εκδόσεων «Διόφντος»
Διαβάστε περισσότεραΚΟΛΛΕΓΙΟ. Έτσι για να διευκολυνθούµε στις πράξεις µας εισάγουµε τους κλασµατικούς αριθµούς. ΑΡΙΘΜΗΤΗΣ ν
ΑΡΙΣΤΟΤΕΛΕΙΟ. ΤΑ ΚΛΑΣΜΑΤΑ. Ορισµοί Όπως έχουµε ήη µάθει το σύνολο των φυσικών ριθµών είνι το εξής: ΙΝ {...} Ακόµη ξέρουµε ότι πολλές φορές το πηλίκο ύο φυσικών ριθµών εν είνι πάντ φυσικός. Πράειµ: Το πηλίκο
Διαβάστε περισσότεραιακριτά Μαθηµατικά και Μαθηµατική Λογική ΠΛΗ20 Ε ρ γ α σ ί α 4η Θεωρία Γραφηµάτων
ικριτά Μηµτικά κι Μηµτική Λογική ΠΛΗ Ε ρ γ σ ί 4η Θεωρί Γρφηµάτων Α π ν τ ή σ ε ι ς Ε ρ ω τ η µ ά τ ω ν Ερώτηµ. ίετι το ένρο του πρκάτω σχήµτος. e d f b l i a k m p c g h n o Θεωρώντς σν ρίζ του ένρου
Διαβάστε περισσότερα2.1 ΤΕΤΡΑΓΩΝΙΚΗ ΡΙΖΑ ΘΕΤΙΚΟΥ ΑΡΙΘΜΟΥ
ΜΕΡΟΣ Α. ΤΕΤΡΑΓΩΝΙΚΗ ΡΙΖΑ ΘΕΤΙΚΟΥ ΑΡΙΘΜΟΥ 7. ΤΕΤΡΑΓΩΝΙΚΗ ΡΙΖΑ ΘΕΤΙΚΟΥ ΑΡΙΘΜΟΥ ΟΡΙΣΜΟΣ Ονομάζουμε τετργωνική ρίζ ενός θετικού ριθμού τον θετικό ριθμό (ΣΥΜΒΟΛΙΣΜΟΣ: ) που ότν υψωθεί στο τετράγωνο μς δίνει
Διαβάστε περισσότεραΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2017 A ΦΑΣΗ. Ηµεροµηνία: Σάββατο 7 Ιανουαρίου 2017 ιάρκεια Εξέτασης: 2 ώρες ΕΚΦΩΝΗΣΕΙΣ
ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 07 Ε_3.ΜλΑ(ε) ΤΑΞΗ: ΜΑΘΗΜΑ: A ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΑΛΓΕΒΡΑ Ηµεροµηνί: Σάββτο 7 Ινουρίου 07 ιάρκει Εξέτσης: ώρες ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α Α. Ν συµπληρώσετε τους τύπους: i. ii....,... =...,... β
Διαβάστε περισσότεραΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ
ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΑ ΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΤΕΤΑΡΤΗ 7 ΜΑΪΟΥ 015 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΧΗΜΕΙΑ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΤΕΣΣΕΡΙΣ (4) ΘΕΜΑ Α Γι τις προτάσεις
Διαβάστε περισσότεραΟδηγίες, στήριξη από ICT.:
Τίτλος: Ώσμωση Θέμτ: Όσμωση, γρμμομόρι, συλλογή δεδομένων κι γρφική πράστση. Διάρκει: 120λεπτά Ηλικί: 14-16 Διφοροποίηση: Διφορετικά επίπεδ βοήθεις κι διφορετικές δρστηριότητες. Οδηγίες, στήριξη πό ICT.:
Διαβάστε περισσότεραΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΣΑΒΒΑΤΟ 5 ΙΟΥΝΙΟΥ 2004 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΧΗΜΕΙΑ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΕΞΙ (6)
ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Σ ΗΜΕΡΗΣΙΟΥ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΣΑΒΒΑΤΟ 5 ΙΟΥΝΙΟΥ 2004 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΧΗΜΕΙΑ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΕΞΙ (6) ΘΕΜΑ 1ο Γι τις ερωτήσεις 1.1-1.4 ν γράψετε
Διαβάστε περισσότεραΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ ΣΥΝΑΡΤΗΣΗΣ ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ ΣΥΝΑΡΤΗΣΗΣ ΑΠΟΣΤΑΣΗ ΥΟ ΣΗΜΕΙΩΝ ( ) = +. ( ) ( ) ( ) ( ) ( ) x x ( ) ( ) ΙΑΜΑΝΤΟΠΟΥΛΟΣ ΘΥΜΙΟΣ 1
ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ ΣΥΝΑΡΤΗΣΗΣ ΑΠΟΣΤΑΣΗ ΥΟ ΣΗΜΕΙΩΝ Υπενθυµίζουµε ότι ν στ σηµεί Α, Β ενός άξον ντιστοιχίζοντι οι πργµτικοί ριθµοί, ντίστοιχ τότε: ( ΑΒ) = Β Α Α Β Σχετικά µε την πόστση δύο σηµείων στο κρτεσινό
Διαβάστε περισσότερα1. * Το σηµείο Μ (- 2, 3) ανήκει στη γραµµή µε εξίσωση Α. x = 3 Β. x = - 2 Γ. x 2 + y 2 = 1. (x + 2) 2 + (x - 3) 2 = 1 Ε.
Ερωτήσεις πολλπλής επιλογής 1. * Το σηµείο Μ (-, ) νήκει στη γρµµή µε εξίσωση Α. = Β. = - Γ. = 1. ( ) ( - ) = 1 Ε. = -. * Το κέντρο του κύκλου που έχει διάµετρο ΑΒ µε Α (1, -) κι Β (7, ), έχει συντετγµένες
Διαβάστε περισσότεραΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΠΙΝΑΚΕΣ 1Δ-2Δ
ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΠΙΝΑΚΕΣ 1Δ-2Δ Άσκηση 1 Μί ετιρεί πσχολεί 30 υπλλήλους. Οι μηνιίες ποδοχές κάθε υπλλήλου κυμίνοντι πό 0 έως κι 3.000. Α. Ν γράψετε λγόριθμο που γι κάθε
Διαβάστε περισσότεραf (x) = g(x) p(x) = q(x). ΕΞΙΣΩΣΕΙΣ ΠΡΩΤΟΥ ΒΑΘΜΟΥ
ΕΞΙΣΩΣΕΙΣ Α ΒΑΘΜΟΥ ΓΕΝΙΚΑ ΠΕΡΙ ΕΞΙΣΩΣΕΩΝ ΜΕ ΕΝΑΝ ΑΓΝΩΣΤΟ Έστω f (x), g(x) είνι δύο πρστάσεις µις µετβλητής x πού πίρνει τιµές στο σύνολο Α. Εξίσωση µε ένν άγνωστο λέγετι κάθε ισότητ της µορφής f (x) =
Διαβάστε περισσότεραγραπτή εξέταση στo μάθημα ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ
ΦΡΟΝΤΙΣΤΗΡΙΑ δυδικό η εξετστική περίοδος πό 9/0/5 έως 9/04/5 γρπτή εξέτση στo μάθημ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ Τάξη: Γ ΛΥΚΕΙΟΥ Τμήμ: Βθμός: Ονομτεπώνυμο: Κθηγητές: Θ Ε Μ Α Α Α. Έστω μι συνάρτηση
Διαβάστε περισσότεραΑΠΑΝΤΗΣΕΙΣ. (Μονάδες 7) α) Να παραγοντοποιήσετε την παράσταση 5x 3 20x. (Μονάδες 3) β) Να λύσετε την εξίσωση 7x 3 = 2(10x + x 3 ) (Μονάδες 6,5)
θ) x (5 + 3)x + 5 3 = (...).(...) ι) x + (5 3)x 5 3 = (...).(...) (Μονάδες 7) Θέμ ο ) Ν πργοντοποιήσετε την πράστση 3 0x (Μονάδες 3) β) Ν λύσετε την εξίσωση 7x 3 = (10x + x 3 ) (Μονάδες 3,5) Θέμ 3ο Ν πργοντοποιήσετε
Διαβάστε περισσότεραΠ Ι Σ Τ Ο Π Ο Ι Η Σ Η Ε Π Α Ρ Κ Ε Ι Α Σ Τ Η Σ ΕΛΛΗΝΟΜΑΘΕΙΑΣ Κ Α Τ Α Ν Ο Η Σ Η Γ Ρ Α Π Τ Ο Υ Λ Ο Γ Ο Υ ΔΕΥΤΕΡΗ ΣΕΙΡΑ Δ Ε Ι Γ Μ Α Τ Ω Ν 02
Π Ι Σ Τ Ο Π Ο Ι Η Σ Η Ε Π Α Ρ Κ Ε Ι Α Σ Τ Η Σ ΕΛΛΗΝΟΜΑΘΕΙΑΣ Κ Α Τ Α Ν Ο Η Σ Η Γ Ρ Α Π Τ Ο Υ Λ Ο Γ Ο Υ ΔΕΥΤΕΡΗ ΣΕΙΡΑ Δ Ε Ι Γ Μ Α Τ Ω Ν 0 Μ 0 Ν Α Δ Ε Σ 1 Y Π Ο Υ Ρ Γ Ε Ι Ο Π Α Ι Δ Ε Ι Α Σ Κ Α Ι Θ Ρ Η Σ Κ
Διαβάστε περισσότεραΜελέτη συνάρτησης f(x) = α x. α f(x) είναι περιττή α 0 x. Να μελετηθεί ως προς την μονοτονία η συνάρτηση f με f(x),α 0
Z. 7. Μελέτη συνάρτησης f() = Απρίτητες γνώσεις Θεωρίς Θεωρί 4. Ν ποδείξετε ότι η συνάρτηση: f() είνι περιττή 0 Απόδειξη: Το πεδίο ορισμού της f είνι το R* R 0 Γι κάθε R*, R* κι f(-) f() ( ) Επομένως η
Διαβάστε περισσότεραΠραγματικοί αριθμοί Οι πράξεις & οι ιδιότητες τους
0 Πργμτικοί ριθμοί Οι πράξεις & οι ιιότητες τους Βρέντζου Τίν Φυσικός Μετπτυχικός τίτλος ΜEd: «Σπουές στην εκπίευση» 0 1 Πργμτικοί ριθμοί : Αποτελούντι πό τους ρητούς ριθμούς κι τους άρρητους ριθμούς.
Διαβάστε περισσότεραΑΝΑΛΟΓΙΕΣ ΑΣΚΗΣΕΙΣ. α) του αριθμού των αγοριών προς τον αριθμό των κοριτσιών:... β) του αριθμού των κοριτσιών προς τον αριθμό των αγοριών:...
ΑΝΑΛΟΓΙΕΣ Μι νθοδέσμη έχει 5 λευκά κι 15 κόκκιν γρύφλλ. Τι μπορούμε ν πρτηρήσουμε; ότι τ κόκκιν είνι κτά δέκ περισσότερ πό τ λευκά, λλά κι ότι τ κόκκιν γρύφλλ είνι τρεις φορές περισσότερ πό τ λευκά Η μέτρηση
Διαβάστε περισσότεραμε x1 x2 , τότε η f είναι γνησίως αύξουσα στο Α. β) Αν για μια συνάρτηση f: ισχύει ότι f x , τότε το σύνολο τιμών της δεν μπορεί να είναι της μορφής,
Μθημτικά κτεύθυνσης Γ Λυκείου ο Διγώνισμ διάρκεις ωρών στις Συνρτήσεις κι τ Όρι Οκτώβριος Θέμ Α Α. Ν χρκτηρίσετε τις προτάσεις που κολουθούν, γράφοντς στο τετράδιό σς την ένδειξη Σωστό ή Λάθος δίπλ στο
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 3 ΚΩΝΙΚΕΣ ΤΟΜΕΣ ΕΡΩΤΗΣΕΙΣ ΤΥΠΟΥ ΠΟΛΛΑΠΛΗΣ ΕΠΙΛΟΓΗΣ Πηγή: KEE
ΚΕΦΑΛΑΙΟ ΚΩΝΙΚΕΣ ΤΟΜΕΣ ΕΡΩΤΗΣΕΙΣ ΤΥΠΟΥ ΠΟΛΛΑΠΛΗΣ ΕΠΙΛΟΓΗΣ Πηγή: KEE 1. Το σηµείο Μ (-, ) νήκει στη γρµµή µε εξίσωση Α. = = - Γ. = 1. ( ) ( - ) = 1 Ε. = -. Το κέντρο του κύκλου που έχει διάµετρο ΑΒ µε Α
Διαβάστε περισσότεραΕΠΑΝΑΛΗΠΤΙΚΟ ΙΑΓΩΝΙΣΜΑ ΜΑΘΗΜΑΤΙΚΩΝ (Οµάδα Α) Θέµα1.Α κυκλώστε το Σ αν η πρόταση είναι σωστή και το Λ αν είναι λάθος
ΕΠΑΝΑΛΗΠΤΙΚΟ ΙΑΓΩΝΙΣΜΑ ΜΑΘΗΜΑΤΙΚΩΝ (Οµάδ Α) Θέµ.Α κυκλώστε το Σ ν η πρότση είνι σωστή κι το Λ ν είνι λάθος ) σχετική συχνότητ v = v ) Η µέση τιµή µις µετλητής εξρτάτι πο τις κριες τιµές γ) Η διάµεσος νφέρετι
Διαβάστε περισσότεραΕ π ι μ έ λ ε ι α Κ Ο Λ Λ Α Σ Α Ν Τ Ω Ν Η Σ
Ε π ι μ έ λ ε ι Κ Ο Λ Λ Α Σ Α Ν Τ Ω Ν Η Σ Κεφάλιο ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ Ο Ρ Ι Σ Μ Ο Σ Τι ονομάζετι ορισμένο ολοκλήρωμ μις συνεχούς συνάρτησης f: [, ] πό το έως κι το κι πώς συμολίζετι ; Αν F είνι πράγουσ
Διαβάστε περισσότεραΑΛΓΕΒΡΑ KAI ΣΤΟΙΧΕΙΑ ΠΙΘΑΝΟΤΗΤΩΝ Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ( ) ΛΥΣΕΙΣ ΤΩΝ ΑΣΚΗΣΕΩΝ
ΑΛΓΕΒΡΑ KAI ΣΤΟΙΧΕΙΑ ΠΙΘΑΝΟΤΗΤΩΝ Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ (011-01) ΛΥΣΕΙΣ ΤΩΝ ΑΣΚΗΣΕΩΝ ΣΤΟΙΧΕΙΑ ΕΠΑΝΕΚ ΟΣΗΣ Η επνέκδοση του πρόντος βιβλίου πργμτοποιήθηκε πό το Ινστιτούτο Τεχνολογίς Υπολογιστών & Εκδόσεων «Διόφντος»
Διαβάστε περισσότερα( ) ( ) ( ) ( ) ( ) ( )
ΓΕΝΙΚΑ ΠΕΡΙ ΑΝΙΣΩΣΕΩΝ Έστω f( x ), ( ) σύνολο Α ΑΝΙΣΩΣΕΙΣ Α ΒΑΘΜΟΥ g x είνι δύο πρστάσεις µις µετλητής x πού πίρνει τιµές στο Ανίσωση µε ένν άγνωστο λέγετι κάθε σχέση της µορφής f( x) g( x) f( x) g( x)
Διαβάστε περισσότεραρ3ρ ΑΠΑΝΤΗΣΕΙΣ Επιμέλεια: Τομέας Μαθηματικών της Ώθησης
ΕΘΝΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 5 ρρ ΑΠΑΝΤΗΣΕΙΣ Επιμέλει: Τομές Μθημτικών της Ώθησης ΕΘΝΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 5 ευτέρ, 5 Μ ου 5 Γ ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗΣ ΜΑΘΗΜΑΤΙΚΑ ΘΕΜΑ Α A. Έστω μι συνάρτηση, η οποί είνι ορισμένη σε έν κλειστό
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 2006 ΕΚΦΩΝΗΣΕΙΣ
ΘΕΜΑ o ΜΑΘΗΜΑΤΙΚΑ Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 006 ΕΚΦΩΝΗΣΕΙΣ A Έστω µι συνάρτηση, η οποί είνι συνεχς σε έν διάστηµ Ν ποδείξετε ότι: Αν >0 σε κάθε εσωτερικό σηµείο του, τότε η είνι γνησίως
Διαβάστε περισσότεραΘΕΜΑ Α Α1. Τι ονομάζεται διάμεσος δ ενός δείγματος ν παρατηρήσεων που έχουν διαταχθεί σε αύξουσα σειρά;
ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ HMEΡΗΣΙΩΝ ΚΑΙ ΕΣΠΕΡΙΝΩΝ ΕΠΑΓΓΕΛΜΑΤΙΚΩΝ ΛΥΚΕΙΩΝ (ΟΜΑΔΑ A ) ΚΑΙ ΜΑΘΗΜΑΤΩΝ ΕΙΔΙΚΟΤΗΤΑΣ ΕΠΑΓΓΕΛΜΑΤΙΚΩΝ ΛΥΚΕΙΩΝ (ΟΜΑΔΑ Β ) ΠΕΜΠΤΗ 4 ΜΑΪΟΥ 0 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ Ι ΗΜΕΡΗΣΙΑ ΘΕΜΑ
Διαβάστε περισσότεραΗ Υγεία σας - και - η Κατάστασή σας
Η Υγεί σς - κι - η Κτάστσή σς Kidney Disease and Quality of Life (KDQOL-SF ) Αυτή η έρευν σς ρωτά γι τις πόψεις σς γι την υγεί σς. Αυτές οι πληροφορίες θ µς βοηθήσουν ν δούµε πώς ισθάνεσθε κι πόσο κλά
Διαβάστε περισσότερα3.1. Ασκήσεις σχ. βιβλίου σελίδας 144 146 Α ΟΜΑ ΑΣ
1 3.1 σκήσεις σχ. ιλίου σελίδς 144 146 Ο Σ 1. Έν κουτί έχει τρεις µπάλες, µι άσπρη, µι µύρη κι µι κόκκινη. άνουµε το εξής πείρµ : πίρνουµε πό το κουτί µι µπάλ, κτγράφουµε το χρώµ της κι την ξνάζουµε στο
Διαβάστε περισσότεραΣΤΟΙΧΕΙΑ Τ Ρ Ι Γ Ω Ν Ω Ν
ΣΤΟΙΧΕΙ Τ Ρ Ι Ω Ν Ω Ν Θυμάμι ότι... ˆ + ˆ + ˆ = 180 ο ντί ν ράφουμε συνέχει «το τρίωνο» μπορούμε ν ράφουμε Δ. ΠΛΕΥΡΕΣ = = = ΩΝΙΕΣ = = = ν χωρίσουμε τ τρίων σε κτηορίες, με κριτήριο τ κύρι στοιχεί τους,
Διαβάστε περισσότεραΤετάρτη, 20 Μα ου 2009 Γ ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗΣ ΜΑΘΗΜΑΤΙΚΑ
Τετάρτη, Μ ου 9 Γ ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗΣ ΜΑΘΗΜΑΤΙΚΑ ΘΕΜΑ o Α. Έστω μί συνάρτηση f ορισμένη σε έν διάστημ Δ. Αν η f είνι συνεχής στο Δ κι γι κάθε εσωτερικό σημείο του Δ ισχύει f (), ν ποδείξετε ότι η f είνι
Διαβάστε περισσότεραΓΙΑ ΕΦΗΒΟΥΣ ΚΑΙ ΕΝΗΛΙΚΟΥΣ Π Ι Σ Τ Ο Π Ο Ι Η Σ Η Ε Π Α Ρ Κ Ε Ι Α Σ Τ Η Σ ΕΛΛΗΝΟΜΑΘΕΙΑΣ Κ Α Τ Α Ν Ο Η Σ Η Π Ρ Ο Φ Ο Ρ Ι Κ Ο Υ Λ Ο Γ Ο Υ ΔΕΥΤΕΡΗ ΣΕΙΡΑ
ΓΙΑ ΕΦΗΒΟΥΣ ΚΑΙ ΕΝΗΛΙΚΟΥΣ Ε Π Α Ρ Κ Ε Ι Α Σ Τ Η Σ ΕΛΛΗΝΟΜΑΘΕΙΑΣ Κ Α Τ Α Ν Ο Η Σ Η Π Ρ Ο Φ Ο Ρ Ι Κ Ο Υ Λ Ο Γ Ο Υ ΔΕΥΤΕΡΗ ΣΕΙΡΑ Δ Ε Ι Γ Μ Α Τ Ω Ν 2 5 Μ 0 Ν Α Δ Ε Σ 1 Y Π Ο Υ Ρ Γ Ε Ι Ο Π Α Ι Δ Ε Ι Α Σ Κ Α
Διαβάστε περισσότεραΡΑΔΙΕΝΕΡΓΕΣ ΥΛΕΣ ΚΛΑΣΗ 7
ΧΟΗ ΕΠΑΓΓΕΜΑΤΙΚΗ ΚΑΤΑΡΤΙΗ ΜΕΤΑΦΟΡΕΩΝ ΕΚOMEE (ΑDR) ΘΕΑΙΑ & ΚΕΝΤΡΙΚΗ ΕΑΔΟ ΓΡΑΦΕΙΑ & ΑΙΘΟΥΕ ΔΙΔΑΚΑΙΑ: ΚΟΥΤΑΡΕΙΑ 12 ΜΕΙΑOΝΟ (ΑΠΕΝΑΝΤΙ ΑΠΟ ΤΗΝ ΤΡΑΠΕΖΑ ΠΕΙΡΑΙΩ) Τ.Κ.: 38333 ΒΟΟ ΤΗ.: 24210 34944 / 6977 280182
Διαβάστε περισσότεραΑΞΙΟΣΗΜΕΙΩΤΕΣ ΤΑΥΤΟΤΗΤΕΣ Ι ΑΚΤΙΚΟΙ ΣΤΟΧΟΙ
«Αρχή σοφίς φόος Κυρίου» ( Ψλµός 110, 10.) ΓΥΜΝΑΣΙΟ: ΤΑΞΗ : Γ ΓΥΜΝΑΣΙΟΥ ΤΜΗΜΑ:... ΗΜΕΡΟΜΗΝΙΑ: ΟΝΟΜΑΤΕΠΩΝΥΜΟ ΜΑΘΗΤΗ: ΑΞΙΟΣΗΜΕΙΩΤΕΣ ΤΑΥΤΟΤΗΤΕΣ Ι ΑΚΤΙΚΟΙ ΣΤΟΧΟΙ ΟΙ ΜΑΘΗΤΕΣ ΠΡΕΠΕΙ: Ν γνωρίζουν πότε µι ισότητ
Διαβάστε περισσότεραΑ. ΕΠΊΛΥΣΗ ΕΞΙΣΩΣΕΩΝ 2 ου ΒΑΘΜΟΥ ΜΕ ΤΗ ΧΡΗΣΗ ΠΑΡΑΓΟΝΤΟΠΟΙΗΣΗΣ
ΜΑΘΗΜΑ 13 Κεφάλιο o : Αλγερικές Πρστάσεις Υποενότητ.: Εξισώσεις ου Βθµού ( γ, ). Θεµτικές Ενότητες: 1. Επίλυση εξισώσεων ου θµού µε τη οήθει της πργοντοποίησης.. Επίλυση εξισώσεων ου θµού µε τη οήθει τύπου.
Διαβάστε περισσότεραΈνα εξαιρετικό υποψήφιο 3 ο ή 4 ο θέµα. Να µελετηθεί προσεκτικά. µιγαδικό επίπεδο είναι σηµεία του κύκλου. z z z z
Έν εξιρετικό υποψήφιο ο ή 4 ο θέµ Ν µελετηθεί προσεκτικά ίνοντι οι µη µηδενικοί µιγδικοί ριθµοί,, των οποίων οι εικόνες A, Β, Γ στο µιγδικό επίπεδο είνι σηµεί του κύκλου y ( ( ( Ν ποδείξετε ότι Ν ποδείξετε
Διαβάστε περισσότερα4.3 ΛΟΓΑΡΙΘΜΙΚΗ ΣΥΝΑΡΤΗΣΗ
ΕΚΘΕΤΙΚΗ ΚΑΙ ΛΟΓΑΡΙΘΜΙΚΗ ΣΥΝΑΡΤΗΣΗ - ΑΣΚΗΣΕΙΣ. ΛΟΓΑΡΙΘΜΙΚΗ ΣΥΝΑΡΤΗΣΗ η ΜΟΡΦΗ ΑΣΚΗΣΕΩΝ: Μς ζητούν ν κάνουμε την μελέτη ή την γρφική πράστση μις συνάρτησης ΜΕΘΟΔΟΛΟΓΙΑ Ότν μς ζητούν κάνουμε την γρφική πράστση
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ ΕΠΑ.Λ. Α ΟΜΑ ΑΣ 2011 ΕΚΦΩΝΗΣΕΙΣ
ΜΑΘΗΜΑΤΙΚΑ ΕΠΑ.Λ. Α ΟΜΑ ΑΣ 0 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α. Α. Τι ονοµάζετι εύρος µις µετβλητής; Α. Ν χρκτηρίσετε τις προτάσεις που κολουθούν, γράφοντς στο τετράδιό σς, δίπλ στο γράµµ που ντιστοιχεί σε κάθε πρότση,
Διαβάστε περισσότεραΚΛΑΔΟΣ 10 1 Ποιος θεωρείται "τρίτος" για την ασφάλιση αστικής ευθύνης οχημάτων. α Ο οδηγός. β Ο συμβαλλόμενος και οι νόμιμοι εκπρόσωποί του.
1 Ποιος θεωρείτι "τρίτος" ι την σφάλιση στικής ευθύνης οχημάτων. Ο οηός. Ο συμλλόμενος κι οι νόμιμοι εκπρόσωποί του. Το πρόσωπο του οποίου η ευθύνη κλύπτετι πό την σφλιστική σύμση. Εκείνος με τον οποίο
Διαβάστε περισσότεραΚατανόηση προφορικού λόγου
Α1 Κατανόηση προφορικού λόγου Διάρκεια: 25 λεπτά (25 μονάδες) Ερώτημα 1 (7 μονάδες) Ο Δημήτρης και ο φίλος του ο Πέτρος αυτό το σαββατοκύριακο θα πάνε εκδρομή στο βουνό. Θα ακούσετε δύο (2) φορές το Δημήτρη
Διαβάστε περισσότεραΕΡΓΑΣΤΗΡΙ ΑΛΓΕΒΡΑΣ ΙΑΤΑΞΗ ΠΡΑΓΜΑΤΙΚΩΝ ΑΡΙΘΜΩΝ ΑΣΚΗΣΕΙΣ Α. ΣΩΣΤΟ - ΛΑΘΟΣ
ΙΑΤΑΞΗ ΠΡΑΓΜΑΤΙΚΩΝ ΑΡΙΘΜΩΝ ΑΣΚΗΣΕΙΣ Α. ΣΩΣΤΟ - ΛΑΘΟΣ. Ν χρκτηρίσετε κθεµιά πό τις πρκάτω προτάσεις ως Σωστή (Σ) ή Λάθος (Λ).. Αν 0 κι > 0 τότε + > 0. Αν > > 0 τότε ² - ² > 0 γ. Αν τότε > 0 δ. Αν = τότε
Διαβάστε περισσότερα9.4. Ασκήσεις σχολικού βιβλίου σελίδας 194. Ερωτήσεις κατανόησης. Στο παρακάτω σχήµα να συµπληρώσετε τα κενά Λύση
1 9.4 σκήσεις σχολικού βιβλίου σελίδς 194 Ερωτήσεις κτνόησης 1. Στο πρκάτω σχήµ ν συµπληρώσετε τ κενά Ε i) = + +. ii) = + +.Ε. Ν βρεθεί το είδος των ωνιών του τριώνου ότν i) β = + ii) = β iii) β = i) β
Διαβάστε περισσότεραΑ Φ ΠΡΟ ΩΠΩΝ & ΑΝΣΑ Φ
1 Ποιες σφλίσεις περιλμάνει ο κλάος ζωής; Ασφλίσεις θνάτου, επιίωσης, μικτές κι ζωής με επιστροφή σφλίστρου Ασφλίσεις προσόων Ασφλίσεις σωμτικων λών, θνάτου ή νπηρίς,/σθένεις Ολ τ πρπάνω 2 Μόνιμη ολική
Διαβάστε περισσότεραΓ. Ε. ΛΥΚΕΙΟ 2008 ΑΛΓΕΒΡΑ ΤΑΞΗ Β
Γ. Ε. ΛΥΚΕΙΟ 008 81 Γ. Ε. ΛΥΚΕΙΟ 008 8 Α. Ν ποδείξετε ότι ν συν( + β) 0, συν 0 κι συνβ 0 ισχύει: εφ + εφβ εφ( + β) = 1 εφ εφβ Β. Ν χρκτηρίσετε με Σ(σωστό) ή Λ(λάθος)κάθε μι πό τις πρκάτω προτάσεις:. Αν
Διαβάστε περισσότεραΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Δ' ΤΑΞΗΣ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΧΗΜΕΙΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΕΠΤΑ (7)
ΑΡΧΗ lησ ΣΕΛΙΔΑΣ - Δ' ΕΣΠΕΡΙΝΩΝ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Δ' ΤΑΞΗΣ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΑΡΑΣΚΕΥΗ 15 ΙΟΥΝΙΟΥ 2018 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΧΗΜΕΙΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΕΠΤΑ (7) ΘΕΜΑΑ Γι τις προτάσεις
Διαβάστε περισσότεραΓ. Ε. ΛΥΚΕΙΟ 2008 ΑΛΓΕΒΡΑ ΤΑΞΗ Α
Γ. Ε. ΛΥΚΕΙΟ 008 193 Γ. Ε. ΛΥΚΕΙΟ 008 194 Θέμ 1 ο Α. Ν δώσετε τον ορισμό της πόλυτης τιμής ενός πργμτικού ριθμού Μονάδες 5 Β. Αν 0 κι μ, ν θετικοί κέριοι ν ποδείξετε ότι: μ μν ν = Γ. Ν χρκτηρίσετε τις
Διαβάστε περισσότεραΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2013
ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 13 Ε_3.ΦλΘΤ(ε) ΤΑΞΗ: Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ / ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΘΕΜΑ Α Ηµεροµηνί: Κυρική 8 Απριλίου 13 ιάρκει Εξέτσης: ώρες ΕΚΦΩΝΗΣΕΙΣ Στις ηµιτελείς προτάσεις Α1 Α4
Διαβάστε περισσότεραΘέματα Εξετάσεων Φεβρουαρίου 2011:
ο ΕΞΑΜΗΝΟ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΕΜΠ ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ: ΦΕΒΡΟΥΑΡΙΟΣ Θέμτ Εξετάσεων Φεβρουρίου : ΘΕΜΑ μονάδες Πρέπει με κυβικές b-splnes ν πρεμβάλετε, κτά σειρά, τ εξής σημεί:,,,,,,,8, 7, κι,. Ας είνι
Διαβάστε περισσότεραΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΒΙΟΛΟΓΙΑ ΚΑΤΕΥΘΥΝΣΗΣ
ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΒΙΟΛΟΓΙΑ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ Α Ν γράψετε στο τετράδιό σς τον ριθμό κθεμιάς πό τις πρκάτω ημιτελείς προτάσεις Α1 έως Α5 κι δίπλ το γράμμ που
Διαβάστε περισσότερα* ' 4. Σώµ εκτελεί γ..τ µε συχνότητ f. H συχνότητ µε την οποί µεγιστοποιείτι η δυνµική ενέργει τλάντωσης είνι. f =2f β. f =f/2 γ. f =f δ. f =4f Β. Στη
* '! " # $ # # " % $ " ' " % $ ' " ( # " ' ) % $ THΛ: 270727 222594 THΛ: 919113 949422 ' " % +, Α. Γι τις πρκάτω προτάσεις 1-4 ν γράψετε το γράµµ, β, γ ή δ, που ντιστοιχεί στην σωστή πάντηση 1. Κύκλωµ
Διαβάστε περισσότεραΠ Ι Σ Τ Ο Π Ο Ι Η Σ Η Ε Π Α Ρ Κ Ε Ι Α Σ Τ Η Σ ΕΛΛΗΝΟΜΑΘΕΙΑΣ Κ Α Τ Α Ν Ο Η Σ Η Π Ρ Ο Φ Ο Ρ Ι Κ Ο Υ Λ Ο Γ Ο Υ ΔΕΥΤΕΡΗ ΣΕΙΡΑ Δ Ε Ι Γ Μ Α Τ Ω Ν 02
Π Ι Σ Τ Ο Π Ο Ι Η Σ Η Ε Π Α Ρ Κ Ε Ι Α Σ Τ Η Σ ΕΛΛΗΝΟΜΑΘΕΙΑΣ Κ Α Τ Α Ν Ο Η Σ Η Π Ρ Ο Φ Ο Ρ Ι Κ Ο Υ Λ Ο Γ Ο Υ ΔΕΥΤΕΡΗ ΣΕΙΡΑ Δ Ε Ι Γ Μ Α Τ Ω Ν 2 5 Μ 0 Ν Α Δ Ε Σ 1 Y Π Ο Υ Ρ Γ Ε Ι Ο Π Α Ι Δ Ε Ι Α Σ Κ Α Ι Θ
Διαβάστε περισσότεραΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΠΑΡΑΡΤΗΜΑ Ν. ΗΜΑΘΙΑΣ. Α Γυµνασίου
ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΠΑΡΑΡΤΗΜΑ Ν. ΗΜΑΘΙΑΣ ος Ηµθιώτικος Μθητικός ιγωνισµός στ Μθηµτικά «Η ΥΠΑΤΙΑ» Θέµ 1ο Σάτο 1 Νοεµρίου 009 Α Γυµνσίου Ο ρίσκετι σε έν κινηµτογράφο όπου όλες οι σειρές έχουν κριώς
Διαβάστε περισσότερα10.4. Ασκήσεις σχολικού βιβλίου σελίδας Ερωτήσεις κατανόησης
0.4 σκήσεις σχολικού ιλίου σελίδς 0 Ερωτήσεις κτνόησης. Με την οήθει του τύπου Ε = ηµ, ν ποδείξετε ότι Ε Ε = ηµ = Η ισότητ ισχύει ότν ηµ =, δηλδή ˆ = 90 ο, δηλδή σε ορθοώνιο τρίωνο. Σε τρίωνο είνι () =
Διαβάστε περισσότεραΟ μαθητής που έχει μελετήσει το κεφάλαιο αυτό θα πρέπει να είναι σε θέση:
Ο μθητής που έχει μελετήσει το κεφάλιο υτό θ πρέπει ν είνι σε θέση:. Ν γνωρίζει τις έννοιες πράγουσ ή ρχική συνάρτηση, όριστο ολοκλήρωμ κι ν μπορεί ν υπολογίζει πλά όριστ ολοκληρώμτ με τη οήθει των μεθόδων
Διαβάστε περισσότεραΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ ΤΑΛΑΝΤΩΣΕΙΣ ΚΥΜΑΤΑ ΚΥΡΙΑΚΗ 19 ΝΟΕΜΒΡΙΟΥ 2017 ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ 4
ΑΡΧΗ 1 ΗΣ ΣΕΛΙΔΑΣ ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ ΤΑΛΑΝΤΩΣΕΙΣ ΚΥΜΑΤΑ ΚΥΡΙΑΚΗ 19 ΝΟΕΜΒΡΙΟΥ 017 ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ 4 ΘΕΜΑ A Ν γράψετε στο τετράδιό σς τον ριθμό κθεμιάς πό τις πρκάτω ερωτήσεις
Διαβάστε περισσότεραΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΛΥΚΕΙΟΥ ΤΕΤΑΡΤΗ 20 ΜΑΪΟΥ 2009 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ
1 ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΛΥΚΕΙΟΥ ΤΕΤΑΡΤΗ ΜΑΪΟΥ 9 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Θέµ 1ο Α. Έστω µι συνεχής συνάρτηση f ορισµένη σε έν διάστηµ.
Διαβάστε περισσότεραi) ΑΒ 2 + ΑΓ 2 = 2ΑΜ 2 + 2ΒΜ 2 ii) ΑΒ 2 + ΑΓ 2 = 2ΑΜ 2 + 2Α 2 iii) ΑΒ 2 + ΑΓ 2 = 2ΒΓ Μ iν) ΑΒ 2 ΑΓ 2 = 2ΑΜ 2 + 2ΒΜ 2 = 2ΑΜ 2 2 = 2ΑΜ 2 + 2ΒΜ 2
1 9.5 9.6 σκήσεις σχολικού βιβλίου σελίδς 198 199 Ερωτήσεις κτνόησης 1. Στο πρκάτω σχήµ η Μ είνι διάµεσος κι ύψος. Ποι πό τις πρκάτω σχέσεις είνι σωστή. ιτιολογήστε την πάντηση σς. A i) Μ Μ ii) Μ iii)
Διαβάστε περισσότεραΥλοποίηση εφαρμογής πολυμέσων
Ασκήσεις Πολυμέσων 47 8 η 9 η Διδκτική Ενότητ λοποίηση εφρμογής πολυμέσων Προλεπόμενες διδκτικές ώρες: 4 έξεις Κλειδιά Ασκήσεις νθεώρηση έργου εσωτερική ξιολόγηση ξιολόγηση τύπου "άλφ" κλείδωμ ξιολόγηση
Διαβάστε περισσότεραέλλειψη µε εστίες Ε (- γ, 0), Ε (γ, 0) και σταθερό άθροισµα 2α. 2. * Η εξίσωση
Γ. ΕΛΛΕΙΨΗ Ερωτήσεις του τύπου «Σωστό - Λάθος» 1. * Η εξίσωση x + y = µε = γ πριστάνει έλλειψη µε εστίες Ε (- γ, 0), Ε (γ, 0) κι στθερό άθροισµ.. * Η εξίσωση x + y = µε = γ πριστάνει έλλειψη µε εστίες
Διαβάστε περισσότεραΠασχαλινά παιχνίδια με το. κουνελάκι
Πσχλινά πιχνίδι με το Ιπτάμεν ζευγάρι Πσχλινό πάρτι με τσάι Αυτά τ πουλάκι έχουν ξεκινήσει γι την πσχλινή γιορτή. Μπορείς ν τιριάξεις τ πουλάκι που έχουν τ ίδι σχέδι κι χρώμτ στο φτέρωμά τους; Τ κάνουν
Διαβάστε περισσότεραΕΙΣΑΓΩΓΗ ΣΤΑ ΣΥΣΤΗΜΑΤΑ
Μθηµτικά Γ Γυµνσίου ** Άρης Νικολΐδης ΕΙΣΑΓΩΓΗ ΣΤΑ ΣΥΣΤΗΜΑΤΑ. ίνετι η εξίσση Πόσες λύσεις έχει η εξίσση υτή; Σε ποι σηµεί η ευθεί, τέµνει τους άξονες; Ν κάνετε τη ρφική πράστση της προηούµενης ευθείς..
Διαβάστε περισσότεραΑ. ΤΕΤΡΑΓΩΝΙΚΗ ΡΙΖΑ ΘΕΤΙΚΟΥ ΑΡΙΘΜΟΥ
Κεφάλιο o : Πργµτικοί Αριθµοί ΜΑΘΗΜΑ 6 Υποενότητ.1: Τετργωνική Ρίζ Θετικού Αριθµού Θεµτικές Ενότητες: 1. Τετργωνική ρίζ θετικού ριθµού.. Ιδιότητες της τετργωνικής ρίζς. Α. ΤΕΤΡΑΓΩΝΙΚΗ ΡΙΖΑ ΘΕΤΙΚΟΥ ΑΡΙΘΜΟΥ
Διαβάστε περισσότερα1. Να σημειώσετε το Σωστό ( ) ή το Λάθος ( ) στους παρακάτω ισχυρισμούς:
1. Ν σημειώσετε το Σωστό ( ) ή το Λάθος ( ) στους πρκάτω ισχυρισμούς: 1. Αν γι την συνεχή στο συνάρτηση f ισχύουν: f(0) f(2) 0 κι f(0) f(5) 0 τότε η εξίσωση ( ) 0 f έχει τουλάχιστον δύο ρίζες. 2. Αν ισχύει
Διαβάστε περισσότεραΑΠΑΝΤΗΣΕΙΣ. (Μονάδες 7) α) Να παραγοντοποιήσετε την παράσταση 5x 3 20x. (Μονάδες 3) β) Να λύσετε την εξίσωση 7x 3 = 2(10x + x 3 ) (Μονάδες 6,5)
θ) (5 + ) + 5 = (...).(...) ι) + (5 ) 5 = (...).(...) (Μονάδες 7) Θέμ ο ) Ν πργοντοποιήσετε την πράστση 5 0 (Μονάδες ) β) Ν λύσετε την εξίσωση 7 = (0 + ) (Μονάδες,5) Θέμ ο Ν πργοντοποιήσετε τις πρστάσεις
Διαβάστε περισσότεραΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ ΣΤΗΝ ΑΛΓΕΒΡΑ ΤΗΣ Α ΛΥΚΕΙΟΥ
ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ ΣΤΗΝ ΑΛΓΕΒΡΑ ΤΗΣ Α ΛΥΚΕΙΟΥ 1. Ν χρκτηρίσετε τις πρκάτω προτάσεις με Σωστό ( Σ ) ή Λάθος ( Λ ) i. ( - ) =- ii. ( 1- ) =1- iii. Αν χ < 1 τότε χ -χ + 1 = χ - 1 iv. Ισχύει: χ = Û χ = v.
Διαβάστε περισσότεραΓ.3. Εξισώσεις 2ου βαθμού. Απαραίτητες γνώσεις Θεωρίας 3.3. Θεωρία 5. θεωρία 6.
Γ.3 3.3 Εξισώσεις ου θμού Απρίτητες νώσεις Θεωρίς Θεωρί 5. Τι ονομάζουμε εξίσωση δευτέρου θμού (ή δευτεροάθμι εξίσωση) μ ένν άνωστο κι τι δικρινουσά της; Ονομάζουμε εξίσωση δευτέρου θμού μ ένν άνωστο κάθε
Διαβάστε περισσότεραΆτομα μεταβλητή Χ μεταβλητή Y... Ν XN YN
Ν6_(6)_Σττιστική στη Φυσική Αγωγή 08_Πλινδρόμηση κι συσχέτιση Γούργουλης Βσίλειος Κθηγητής Τ.Ε.Φ.Α.Α. Σ.Ε.Φ.Α.Α. Δ.Π.Θ. Σε ορισμένες περιπτώσεις πιτείτι η νίχνευση της σχέσης μετξύ δύο ποσοτικών μετβλητών
Διαβάστε περισσότεραÊáëÞ áñ Þ, êáëþ ñïíéü!
2 Eíüôçôá 1 ÊáëÞ áñ Þ, êáëþ ñïíéü! introduce myself speak about holiday activities speak about the past (1) sing a song introduce myself to someone older ôá åëëçíéêü êé åìåßò... Κλημέρ, πιδιά! Κλημέρ,
Διαβάστε περισσότεραΕπαναληπτικό Διαγώνισμα Μαθηματικών Γενικής Παιδείας Γ Λυκείου
Επνληπτικό Διγώνισμ Μθημτικών Γενικής Πιδείς Γ Λυκείου Θέμ A Α. Ν ποδείξετε ότι η πράγωγος της συνάρτησης f(x)=x ισούτι με x, δηλδή(x ) =x. (6 μονάδες) A. Ν δώσετε τον ορισμό:. του ξιωμτικού ορισμού της
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 2004
ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 4 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑο Α Έστω µι συνάρτηση f ορισµένη σ' έν διάστηµ κι έν εσωτερικό σηµείο του Αν η f προυσιάζει τοπικό κρόττο στο κι είνι πργωγίσιµη
Διαβάστε περισσότεραΕπαναληπτικό Διαγώνισµα Μαθηµατικών Γ Λυκείου ΕΠΑΛ
ΘΕΜΑ Α Επνληπτικό Διγώνισµ Μθηµτικών Γ Λυκείου ΕΠΑΛ Α. Ν δώσετε τον ορισµό της συχνότητς κι της σχετικής συχνότητς µις πρτήρησης x i. (7 Μονάδες) Α. Ν χρκτηρίσετε τις προτάσεις που κολουθούν, γράφοντς
Διαβάστε περισσότεραΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ Γ ΓΥΜΝΑΣΙΟΥ
ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ Γ ΓΥΜΝΑΣΙΟΥ ΟΙ ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ. Ν κάνετε ένν άξον Ο κι ν τοποθετήσετε πάνω σ υτόν τους ριθμούς: 0,, -, π, -π,,, Ν υπολογίσετε τις πόλυτες τιμές των πρπάνω ριθμών γ Ν υπολογίσετε
Διαβάστε περισσότερα