ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΠΙΝΑΚΕΣ 1Δ-2Δ
|
|
- Σουσάννα Φωτόπουλος
- 6 χρόνια πριν
- Προβολές:
Transcript
1 ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΠΙΝΑΚΕΣ 1Δ-2Δ Άσκηση 1 Μί ετιρεί πσχολεί 30 υπλλήλους. Οι μηνιίες ποδοχές κάθε υπλλήλου κυμίνοντι πό 0 έως κι Α. Ν γράψετε λγόριθμο που γι κάθε υπάλληλο: 1. ν διβάζει το ονομτεπώνυμο κι τις μηνιίες ποδοχές κι ν ελέγχει την ορθότητ κτχώρησης των μηνιίων ποδοχών του, 2. ν υπολογίζει το ποσό του φόρου κλιμκωτά, σύμφων με τον πρκάτω πίνκ: Μηνιίες Αποδοχές Ποσοστό κράτησης φόρου Έως κι % Άνω των 700 έως κι % Άνω των έως κι % Άνω των % 3. ν εμφνίζει το ονομτεπώνυμο, τις μηνιίες ποδοχές, το φόρο κι τις κθρές μηνιίες ποδοχές, που προκύπτουν μετά την φίρεση του φόρου. Β. Τέλος, ο πρπάνω λγόριθμος ν υπολογίζει κι ν εμφνίζει: 1. το συνολικό ποσό που ντιστοιχεί στο φόρο όλων των υπλλήλων, 2. το συνολικό ποσό που ντιστοιχεί στις κθρές μηνιίες ποδοχές όλων των υπλλήλων. Άσκηση 2 Δίνετι πίνκς Α[Ν] θετικών ριθμών. Ν κτσκευσθεί λγόριθμος ο οποίος θ ελέγχει ν ο πίνκς Α είνι πίνκς κερίων. Σε περίπτωση που είνι πίνκς κερίων, θ ελέγχει ν είνι επιπλέον κι πίνκς ρτίων. Σημείωση: Μί μετβλητή Χ έχει κέρι τιμή ότν ισχύει η σχέση Χ=Α_Μ(Χ).Ο κέριος Χ είνι άρτιος ότν ισχύει η σχέση Χ MOD 2 = 0. Άσκηση 3 Ν νπτύξετε ένν λγόριθμο, ο οποίος Α. ν διβάζει το πλήθος των σθενών ενός νοσοκομείου, το οποίο δεν μπορεί ν δεχτεί περισσότερους πό 500 σθενείς, Β. γι κάθε σθενή ν διβάζει τις ημέρες νοσηλείς του, τον κωδικό του σφλιστικού του τμείου κι τη θέση νοσηλείς. Ν ελέγχει την ορθότητ εισγωγής των δεδομένων σύμφων με τ πρκάτω: - οι ημέρες νοσηλείς είνι κέριος μεγλύτερος ή ίσος του 1, - τ σφλιστικά τμεί είνι 10 με κωδικούς πό 1 μέχρι κι 10, - οι θέσεις νοσηλείς είνι Α ή Β ή Γ, Γ. ν υπολογίζει κι ν εμφνίζει το μέσο όρο ημερών νοσηλείς των σθενών στο νοσοκομείο, Δ. ν υπολογίζει κι ν εμφνίζει γι κάθε σθενή το κόστος πρμονής που πρέπει ν κτβάλει στο νοσοκομείο το σφλιστικό του τμείο σύμφων με τις ημέρες κι τη θέση νοσηλείς. Το κόστος πρμονής στο νοσοκομείο νά ημέρ κι θέση νοσηλείς γι κάθε σθενή φίνετι στον κόλουθο πίνκ: Θέση Νοσηλείς Κόστος πρμονής νά ημέρ νοσηλείς γι κάθε σθενή Α 125 Β 90 Γ 60
2 Ε. ν υπολογίζει κι ν εμφνίζει με τη χρήση πίνκ το συνολικό κόστος που θ κτβάλει το κάθε σφλιστικό τμείο στο νοσοκομείο, ΣΤ. ν υπολογίζει κι ν εμφνίζει το συνολικό ποσό που οφείλουν όλ τ σφλιστικά τμεί στο νοσοκομείο. Άσκηση 4 Ομάδ πό 10 εφοπλιστές κάνει δωρεά σε 40 φιλνθρωπικές οργνώσεις. Ν γράψετε πρόγρμμ το οποίο: ) Εισάγει σε μονοδιάσττο πίνκ το όνομ κάθε εφοπλιστή, κι σε άλλον μονοδιάσττο πίνκ το όνομ κάθε οργάνωσης. β) Εισάγει σε πίνκ δύο διστάσεων, σε ποιες οργνώσεις κάνει δωρεά ο κάθε εφοπλιστής. (κτχωρείτι η λέξη «ΝΑΙ» στην περίπτωση που ο εφοπλιστής κάνει δωρεά στην συγκεκριμένη περίπτωση κι «ΟΧΙ» σε ντίθετη περίπτωση. γ) Εμφνίζει το όνομ κάθε εφοπλιστή κι στη συνέχει σε πόσες οργνώσεις κάνει δωρεά. δ) Εμφνίζει το όνομ ή τ ονόμτ των οργνώσεων που έχουν λάβει τις λιγότερες δωρεές Άσκηση 5 Ν γρφεί πρόγρμμ το οποίο: ) θ διβάζει ένν κέριο θετικό ριθμό Ν μικρότερο ή ίσο του 10, β) θ υπολογίζει τις τιμές των στοιχείων του τριγώνου Pascal μέχρι τη Νιοστή γρμμή, γ) θ δημιουργεί ένν δισδιάσττο πίνκ Nx(N+1), ο οποίος θ έχει ως στοιχεί τις τιμές του πρπάνω τριγώνου Pascal. Το τρίγωνο Pascal συμπληρώνετι ως εξής: Το πρώτο κι το τελευτίο στοιχείο κάθε γρμμής είνι το 1. Κάθε ενδιάμεσο στοιχείο είνι το άθροισμ του στοιχείου που βρίσκετι στην προηγούμενη γρμμή, κριβώς πάνω πό υτό, κι υτού που βρίσκετι στην μέσως ριστερή θέση. Γι πράδειγμ το τρίγωνο Pascal 5 γρμμών έχει ως εξής: K=1 1 1 K= Κ= Κ= Κ= Άσκηση 6 Μι εροπορική ετιρί τξιδεύει σε 15 προορισμούς του εσωτερικού. Στ πλίσι της οικονομικής πολιτικής που πρόκειτι ν εφρμόσει, κτέγρψε το ποσοστό πληρότητς των πτήσεων γι κάθε μήν του προηγούμενου ημερολογικού έτους. Η πολιτική έχει ως εξής: - Δεν θ γίνει κμί περικοπή σε προορισμούς, στους οποίους το μέσο ετήσιο ποσοστό πληρότητς των πτήσεων είνι μεγλύτερο του Θ γίνουν περικοπές πτήσεων σε προορισμούς, στους οποίους το μέσο ετήσιο ποσοστό πληρότητς των πτήσεων κυμίνετι πό 40 έως κι 65. Οι περικοπές θ γίνουν μόνο σε εκείνους τους μήνες που το ποσοστό πληρότητάς τους είνι μικρότερο του Θ κτργηθούν οι προορισμοί, στους οποίους το μέσο ετήσιο ποσοστό πληρότητς των πτήσεων είνι μικρότερο του 40. Ν γρφεί λγόριθμος ο οποίος:. Ν διβάζει τ ονόμτ των 15 προορισμών κι ν τ ποθηκεύει σε έν μονοδιάσττο πίνκ. β. Ν διβάζει τ ποσοστά πληρότητς των πτήσεων των 15 προορισμών γι κάθε μήν κι ν τ ποθηκεύει σε δισδιάσττο πίνκ κάνοντς έλεγχο στην κτχώριση των δεδομένων, ώστε ν κτχωρούντι μόνο οι τιμές που είνι πό 0 έως κι 100.
3 γ. Ν βρίσκει κι ν τυπώνει τ ονόμτ των προορισμών που δεν θ γίνει κμί περικοπή πτήσεων. δ. Ν βρίσκει κι ν τυπώνει τ ονόμτ των προορισμών που θ κτργηθούν. ε. Ν βρίσκει κι ν τυπώνει τ ονόμτ των προορισμών, στους οποίους θ γίνουν περικοπές πτήσεων, κθώς κι τους μήνες (ύξοντ ριθμό μήν) που θ γίνουν οι περικοπές. Άσκηση 7 Ν κτσκευάσετε πρόγρμμ το οποίο θ κάνει τ κόλουθ: i. Θ διβάζει τ ονόμτ 30 μθητών κι θ τ ποθηκεύει σε κτάλληλο μονοδιάσττο πίνκ ΟΝ. ii. Θ διβάζει τις πντήσεις όλων των μθητών σε 20 ερωτήσεις Σωστού-Λάθους κι θ τις κτχωρεί σε κτάλληλο δισδιάσττο πίνκ ΑΠ. iii. Θ διβάζει ένν πίνκ Γ ο οποίος περιέχει τις σωστές πντήσεις των ερωτήσεων. iv. Με την βοήθει του πίνκ Γ θ κτσκευάζει ένν μονοδιάσττο πίνκ Β ο οποίος θ περιέχει τον βθμό κάθε μθητή ν γνωρίζουμε ότι κάθε Σωστή πάντηση πίρνει 5 μόρι κι κάθε Λάθος φιρεί πό τον μθητή 2 μόρι. v. Ν υπολογίζει τον μέσο όρο της τάξης κι ν εμφνίζει το όνομ του μθητή του οποίου ο βθμός είνι πιο κοντά στο μέσο όρο της τάξης vi. Ν εμφνίζει μήνυμ γι το ν υπάρχει ή όχι μθητής ή μθητές που ν έπισε το άριστ (100) κθώς κι το όνομά ή τ ονόμτά τους. Άσκηση 8 Τ ποτελέσμτ των γώνων του Eurobasket (νίκη ή ήττ) κθώς κι η διφορά πόντων γι τον όμιλο που ήτν κι η Εθνική μς περιέχοντι στους πρκάτω πίνκες: Τ ονόμτ των ομάδων σε μονοδιάσττο πίνκ ΟΝ[6] Τον χρκτηρισμό κάθε γών ( Ν ή Η ) σε δισδιάσττο πίνκ Α[6,6] Τη διφορά πόντων κάθε γών σε δισδιάσττο πίνκ Π[6,6] Ν γρφεί πρόγρμμ που διβάζει τ δεδομέν στους πρπάνω πίνκες κι εκτυπώνει τη τελική βθμολογί του ομίλου (ονόμτ κι βθμούς) ξεκινώντς πό τον κλύτερο. Γι κάθε γών η νικήτρι ομάδ πίρνει 2 βθμούς κι η ηττημένη 1 βθμό. Σημείωση: Σε περίπτωση ισοβθμίς προηγείτι η ομάδ που έχει την κλύτερη διφορά πόντων πό τις ισόβθμες. Αν έχουν την ίδι διφορά πόντων, τότε η κτάτξη γίνετι ονομστικά. Γι πράδειγμ οι πίνκες θ έχουν τη μορφή ΠΙΝΑΚΑΣ Α Γερμνί Ελλάδ Σερβί Ιτλί Ρωσί Γλλί Γερμνί Ελλάδ Ν Σερβί Η Η Ιτλί Ν Ν Η Ρωσί Η Η Η Ν Γλλί Ν Ν Ν Ν Η ΠΙΝΑΚΑΣ Π Γερμνί Ελλάδ Σερβί Ιτλί Ρωσί Γλλί Γερμνί Ελλάδ 5 Σερβί 6 7 Ιτλί Ρωσί Γλλί
4 ΠΙΝΑΚΑΣ ΟΝ Γερμνί Ελλάδ Σερβί Ιτλί Ρωσί Γλλί Κάθε κελί ντιστοιχεί σε ένν γών μετξύ της ομάδς που ντιστοιχεί στη γρμμή κι της ομάδς που ντιστοιχεί στη στήλη. Το ποτέλεσμ Ν ή Η σημίνει ότι η ομάδ που ντιστοιχεί στη γρμμή νίκησε ή ντίστοιχ έχσε πό την ομάδ που ντιστοιχεί στη στήλη. Ο ριθμός δείχνει τη διφορά πόντων. Π.χ. η Ελλάδ νίκησε τη Γερμνί με 5 πόντους διφορά ενώ η Σερβί ηττήθηκε πό την Ελλάδ με 7 πόντους διφορά. Τ στοιχεί της κύρις διγωνίου δεν περιέχουν κμί πληροφορί φού κμί ομάδ δεν πίζει με τον ευτό της. Ο πίνκς περιέχει στοιχεί μόνο κάτω πό τη διγώνιό του. Άσκηση 9 Στο πρωτάθλημ μπάσκετ της Α1 κτηγορίς νδρών μι ομάδ συμμετέχει με 10 πίκτες δίνοντς συνολικά 30 γώνες (15 γώνες στ πλίσι του γύρου του πρωτθλήμτος κι ντίστοιχ 15 γώνες στ πλίσι του β γύρου). Γράψτε έν πρόγρμμ που ν: 1. κτχωρεί σ έν πίνκ ΠΟΝΤΟΙ[10,30] του πόντους που πέτυχε ο κάθε πίκτης σε κάθε γών του πρωτθλήμτος με τους πρκάτω κνόνες:. ότν ένς πίκτης δε συμμετείχε σ έν γών τότε κτχωρείτι η τιμή -1 στον πίνκ. β. ν πληκτρολογηθεί τιμή πάνω πό 30 ν ρωτάει γι επιβεβίωση ν η τιμή είνι σωστή οπότε κι την κτχωρεί, λλιώς ν ζητάει ν την επνκτχώρηση της. 2. κτχωρεί σ έν πίνκ ΟΝ[10] τ ονομτεπώνυμ των πικτών της ομάδς. 3. δημιουργεί έν πίνκ ΑΠΟΤ[10,2] ο οποίος θ περιέχει στην πρώτη του στήλη το σύνολο των πόντων που πέτυχε ο κάθε πίκτης στον γύρο του πρωτθλήμτος ενώ στη δεύτερη στήλη ντίστοιχ το σύνολο των πόντων στον β γύρο του πρωτθλήμτος. 4. εμφνίζει μι λίστ με τ ονόμτ των πικτών που πέτυχν περισσότερους πόντους στον β γύρο του πρωτθλήμτος πό ότι στον γύρο. 5. εμφνίζει τ ονόμτ των πικτών που δεν έχσν κνέν γών στο πρωτάθλημ. Άσκηση 10 Μι ετιρί με έδρ την Θεσσλονίκη, η οποί εκδίδει κι πουλάει μι μεγάλη εγκυκλοπίδει, έχει 20 πωλητές που δικινούν την εγκυκλοπίδει πό σπίτι σε σπίτι. Η ετιρεί υτή χρειάζετι έν πρόγρμμ στο οποίο ν μπορεί ν εισάγει το ονομτεπώνυμο του κάθε πωλητή κι στο τέλος κάθε μήν κι γι τους 12 μήνες του χρόνου τις συνολικές πωλήσεις του κάθε πωλητή. Ν κτσκευσθεί το πρόγρμμ υτό σε «ΓΛΩΣΣΑ» το οποίο: ) Θ διβάζει το ονομτεπώνυμο του κάθε πωλητή κι θ το ποθηκεύει σε μονοδιάσττο πίνκ. β) Γι κάθε πωλητή κι γι κάθε μήν θ διβάζει τις πωλήσεις του μέχρι ν εισχθεί ρνητικός ριθμός ή το 0. Το σύνολο των πωλήσεων του πωλητή θ ποθηκεύετι σε δισδιάσττο πίνκ. Το πρόγρμμ θ υπολογίζει κι εμφνίζει: γ) Τις συγκεντρωτικές πωλήσεις της ετιρίς τη χρονιά που πέρσε. δ) Τον μέσο όρο μηνιίων πωλήσεων της ετιρίς. ε) Το μήν που η ετιρί είχε τις μεγλύτερες πωλήσεις. στ) Το ονομτεπώνυμο του κλύτερου πωλητή κι την διφορά πόδοσης που έχει με το μέσο όρο πόδοσης των 5 χειρότερων πωλητών. Άσκηση 11 i. Ένς πίνκς χρκτηρίζετι ως άνω τριγωνικός ότν όλ τ στοιχεί που βρίσκοντι κάτω της κυρίς διγωνίου είνι μηδέν. Τ στοιχεί υτά είνι τ περιεχόμεν των κελιών Α[i, j], όπου i > j ii. Ένς πίνκς χρκτηρίζετι ως κάτω τριγωνικός ότν όλ τ στοιχεί που βρίσκοντι άνω της κυρίς διγωνίου είνι μηδέν. Τ στοιχεί υτά είνι τ περιεχόμεν των κελιών Α[i, j], όπου i < j
5 Πρτήρηση: έχει γίνει ντιληπτό ότι τ κελιά Α[i, j], όπου i = j νήκουν στην κύρι διγώνιο iii. Ένς πίνκς χρκτηρίζετι ως διγώνιος ν είνι τυτόχρον άνω κι κάτω τριγωνικός. Ν κτσκευστεί λγόριθμος ο οποίος με δεδομένο έν τετργωνικό πίνκ Π nxn θ εξετάζει ν είνι άνω ή κάτω τριγωνικός ή διγώνιος. Άσκηση 12 Στ συστήμτ τηλεπικοινωνιών πολλές φορές γι ν στείλουμε μεγάλ κείμεν πρέπει πρώτ ν τ συμπιέσουμε, ν μειώσουμε δηλδή το μέγεθος τους, χωρίς όμως ν χάσουμε πληροφορί. Ένς τρόπος που μπορεί ν γίνει υτό είνι η μέθοδος RLE (Run Length Encoding), σύμφων με την οποί ντί ν στείλουμε χρκτήρ προς χρκτήρ το μήνυμ, στέλνουμε το πλήθος συνεχόμενων εμφνίσεων κάθε χρκτήρ, κολουθούμενη πό τον ίδιο τον χρκτήρ. Δηλδή ντί γι το μήνυμ «ββββγ» η μέθοδος RLE θ στείλει «44β1γ3». Α. Ν κτσκευάσετε πρόγρμμ το οποίο: 1. θ διβάζει το πλήθος χρκτήρων Ν που περιέχει το μήνυμ (0 Ν 1000) 2. θ διβάζει το μήνυμ κι θ το ποθηκεύει σε έν μονοδιάσττο πίνκ ΤΕΧΤ[Ν] - ένς χρκτήρς νά θέση του πίνκ. 3. θ εφρμόζει την μέθοδο RLE στον πίνκ ΤΕΧΤ. Το ποτέλεσμ (συμπιεσμένο μήνυμ) θ εμφνίζετι στην οθόνη του υπολογιστή. 4. θ εμφνίζει το επί τις εκτό ποσοστό κτά το οποίο η μέθοδος συμπίεσε το ρχικό μήνυμ. Β. Έστω ότι στον πίνκ Π έχουμε το πλήθος συνεχόμενων εμφνίσεων των χρκτήρων ενός μηνύμτος που συμπιέσθηκε με τη μέθοδο RLE κι στον πίνκ Χ έχουμε τους χρκτήρες. Σύμφων με το πράδειγμ που δόθηκε στην περιγρφή της άσκησης, οι πίνκες Π κι Χ θ ήτν οι: Π=[4,4,1,3] κι Χ=['','β','γ','']. Δεδομένων των πινάκων Π κι Χ μεγέθους Μ (στο πράδειγμ Μ=4), ν κτσκευάσετε λγόριθμο ο οποίος: 1. θ ποσυμπιέζει στην οθόνη του υπολογιστή το συμπιεσμένο μήνυμ που βρίσκετι ποθηκευμένο στους πίνκες Π κι Χ. 2. θ υπολογίζει κι εμφνίζει το μήκος (πλήθος χρκτήρων) του ποσυμπιεσμένου μηνύμτος. Άσκηση 13 Ένς τετργωνικός πίνκς n n ποτελεί Λτινικό Τετράγωνο ότν είνι γεμάτος με n διφορετικούς ριθμούς πό το 1 μέχρι το n με τέτοιο τρόπο ώστε κάθε ριθμός ν εμφνίζετι κριβώς μί φορά σε κάθε γρμμή κι κριβώς μί φορά σε κάθε στήλη. Γι πράδειγμ ο πρκάτω πίνκς 3x3 ποτελεί λτινικό τετράγωνο διότι έχει κριβώς 3 διφορετικούς ριθμούς πό το 1 έως κι το 3 κι ο κάθε ριθμός εμφνίζετι μί μόνο φορά σε κάθε γρμμή κι μί φορά σε κάθε στήλη: Ν κτσκευάσετε λγόριθμο ο οποίος δεδομένου ενός τετργωνικού πίνκ n n με n 100 θ ελέγχει ν ο πίνκς είνι λτινικό τετράγωνο ή όχι.
ΑΠΑΝΤΗΣΕΙΣ. (Μονάδες 7) α) Να παραγοντοποιήσετε την παράσταση 5x 3 20x. (Μονάδες 3) β) Να λύσετε την εξίσωση 7x 3 = 2(10x + x 3 ) (Μονάδες 6,5)
θ) (5 + ) + 5 = (...).(...) ι) + (5 ) 5 = (...).(...) (Μονάδες 7) Θέμ ο ) Ν πργοντοποιήσετε την πράστση 5 0 (Μονάδες ) β) Ν λύσετε την εξίσωση 7 = (0 + ) (Μονάδες,5) Θέμ ο Ν πργοντοποιήσετε τις πρστάσεις
2.1 Πολυώνυμα. 1 η Μορφή Ασκήσεων: Ασκήσεις στις βασικές έννοιες του πολυωνύμου. 1. Ποιες από τις παρακάτω παραστάσεις είναι πολυώνυμα του x i.
. Πολυώνυμ η Μορφή Ασκήσεων: Ασκήσεις στις βσικές έννοιες του πολυωνύμου. Ποιες πό τις πρκάτω πρστάσεις είνι πολυώνυμ του i. ii. iii. iv. v. vi. 5 Σύμφων με τον ορισμό πολυώνυμ του είνι οι πρστάσεις i,
2.1 ΤΕΤΡΑΓΩΝΙΚΗ ΡΙΖΑ ΘΕΤΙΚΟΥ ΑΡΙΘΜΟΥ
ΜΕΡΟΣ Α. ΤΕΤΡΑΓΩΝΙΚΗ ΡΙΖΑ ΘΕΤΙΚΟΥ ΑΡΙΘΜΟΥ 7. ΤΕΤΡΑΓΩΝΙΚΗ ΡΙΖΑ ΘΕΤΙΚΟΥ ΑΡΙΘΜΟΥ ΟΡΙΣΜΟΣ Ονομάζουμε τετργωνική ρίζ ενός θετικού ριθμού τον θετικό ριθμό (ΣΥΜΒΟΛΙΣΜΟΣ: ) που ότν υψωθεί στο τετράγωνο μς δίνει
ν = 2, από τους οποίους όμως γνωρίζουμε μόνο 5, αυτούς που προκύπτουν για
165 4.5 ΠΡΩΤΟΙ ΑΡΙΘΜΟΙ Εισγωγή Δύο πό τ σημντικότερ ποτελέσμτ σχετικά με τους πρώτους ριθμούς ήτν γνωστά ήδη πό την ρχιότητ. Το γεγονός ότι κάθε κέριος νλύετι με μονδικό τρόπο ως γινόμενο πρώτων εμφνίζετι
Άτομα μεταβλητή Χ μεταβλητή Y... Ν XN YN
Ν6_(6)_Σττιστική στη Φυσική Αγωγή 08_Πλινδρόμηση κι συσχέτιση Γούργουλης Βσίλειος Κθηγητής Τ.Ε.Φ.Α.Α. Σ.Ε.Φ.Α.Α. Δ.Π.Θ. Σε ορισμένες περιπτώσεις πιτείτι η νίχνευση της σχέσης μετξύ δύο ποσοτικών μετβλητών
ΑΠΑΝΤΗΣΕΙΣ. (Μονάδες 7) α) Να παραγοντοποιήσετε την παράσταση 5x 3 20x. (Μονάδες 3) β) Να λύσετε την εξίσωση 7x 3 = 2(10x + x 3 ) (Μονάδες 6,5)
θ) x (5 + 3)x + 5 3 = (...).(...) ι) x + (5 3)x 5 3 = (...).(...) (Μονάδες 7) Θέμ ο ) Ν πργοντοποιήσετε την πράστση 3 0x (Μονάδες 3) β) Ν λύσετε την εξίσωση 7x 3 = (10x + x 3 ) (Μονάδες 3,5) Θέμ 3ο Ν πργοντοποιήσετε
α β γ δ β γ α α α α α α Α = α α α = α α + α α α α α α α α α D Α
ΟΡΙΖΟΥΣΕΣ β Έστω πίνκς Α Χ = γ δ Σε κάθε τετργωνικό πίνκα ντιστοιχίζοµε ένν πργµτικό ριθµό τον οποίο ονοµάζοµε ορίζουσ του πίνκ κι ορίζετι ως β Α = = δ β γ Η έννοι της ορίζουσς είνι νγκί προκειµένου ν
Μέρος Α - Kεφάλαιο 7ο - Θετικοί και Αρνητικοί Αριθμοί Α.7.8. Δυνάμεις ρητών αριθμών με εκθέτη φυσικό
Μέρος Α - Kεφάλιο 7ο - Θετικοί κι Αρνητικοί Αριθμοί - 37 - Α.7.8. Δυνάμεις ρητών ριθμών με εκθέτη φυσικό ΔΡΑΣΤΗΡΙΟΤΗΤΑ Ένς υπολογιστής μολύνθηκε πό κάποιο ιό, ο οποίος είχε την ιδιότητ ν κτστρέφει τ ηλεκτρονικά
ΠΙΝΑΚΕΣ 1.1. ΓΕΝΙΚΑ ΠΕΡΙ ΠΙΝΑΚΩΝ - ΟΡΙΣΜΟΙ. Ονοµάζουµε πίνακα Α n m µία διάταξη n m αριθµών και j = 1, 2,, m, σε n γραµµές και m στήλες.
ΓΕΝΙΚΑ ΠΕΡΙ ΠΙΝΑΚΩΝ - ΟΡΙΣΜΟΙ Ονοµάζουµε πίνκ Α n m µί διάτξη n m ριθµών κι j,,, m, σε n γρµµές κι m στήλες ηλδή: Α ( σµβ ij ) ορσ n n m m nm a ij όπου i,,, n Έτσι όπως γράφετι ο πίνκς Α, ο ριθµός a ij,
ΘΕΜΑΤΑ ΦΥΣΙΚΗΣ Β ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ- ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ÑÏÌÂÏÓ
ΘΕΜ 1ο ΘΕΜΤ ΦΥΣΙΚΗΣ Β ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ- ΤΕΧΝΟΛΟΙΚΗΣ ΚΤΕΥΘΥΝΣΗΣ - 000 Στις ερωτήσεις 1-4 ν γράψετε στο τετράδιό σς τον ριθµό της ερώτησης κι δίπλ το γράµµ που ντιστοιχεί στη σωστή πάντηση. 1. Ένς νεµιστήρς
ΜΕΘΟΔΟΛΟΓΙΑ ΑΣΚΗΣΕΩΝ
ΚΩΝΙΚΕΣ ΤΟΜΕΣ ΜΕΘΟΔΟΛΟΓΙΑ ΑΣΚΗΣΕΩΝ ΜΕΘΟΔΟΛΟΓΙΑ ΑΣΚΗΣΕΩΝ η ΜΟΡΦΗ ΑΣΚΗΣΕΩΝ: Μς ζητούν ν βρούμε την εξίσωση ενός κύκλου Ν βρεθεί η εξίσωση του κύκλου που έχει κέντρο το σημείο: Κ (3, 3) κι τέμνει πό την ευθεί
Τ Ο Λ Ε Ξ Ι Λ Ο Γ Ι Ο Τ Η Σ Λ Ο Γ Ι Κ Η Σ
Τ Ο Λ Ε Ξ Ι Λ Ο Γ Ι Ο Τ Η Σ Λ Ο Γ Ι Κ Η Σ Εισγωγή: Όπως στη κθημερινή μς ζωή, γι ν συνεννοηθούμε χρησιμοποιούμε προτάσεις, έτσι κι στ Μθημτικά χρησιμοποιούμε «Μθημτικές» προτάσεις. Γι πράδειγμ στη κθημερινή
4.3 ΛΟΓΑΡΙΘΜΙΚΗ ΣΥΝΑΡΤΗΣΗ
ΕΚΘΕΤΙΚΗ ΚΑΙ ΛΟΓΑΡΙΘΜΙΚΗ ΣΥΝΑΡΤΗΣΗ - ΑΣΚΗΣΕΙΣ. ΛΟΓΑΡΙΘΜΙΚΗ ΣΥΝΑΡΤΗΣΗ η ΜΟΡΦΗ ΑΣΚΗΣΕΩΝ: Μς ζητούν ν κάνουμε την μελέτη ή την γρφική πράστση μις συνάρτησης ΜΕΘΟΔΟΛΟΓΙΑ Ότν μς ζητούν κάνουμε την γρφική πράστση
Πραγματικοί αριθμοί Οι πράξεις & οι ιδιότητες τους
0 Πργμτικοί ριθμοί Οι πράξεις & οι ιιότητες τους Βρέντζου Τίν Φυσικός Μετπτυχικός τίτλος ΜEd: «Σπουές στην εκπίευση» 0 1 Πργμτικοί ριθμοί : Αποτελούντι πό τους ρητούς ριθμούς κι τους άρρητους ριθμούς.
αριθμών Ιδιότητες της διάταξης
Ανισότητες Διάτξη πργμτικών ριθμών Ιδιότητες της διάτξης Διάτξη (σύγκριση) δύο ριθμών. Πώς μπορούμε ν συγκρίνουμε δύο ριθμούς κι ; Απάντηση Ο ριθμός είνι μεγλύτερος του (συμολικά > ), ότν η διφορά είνι
ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ ΣΤΗΝ ΑΛΓΕΒΡΑ ΤΗΣ Α ΛΥΚΕΙΟΥ
ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ ΣΤΗΝ ΑΛΓΕΒΡΑ ΤΗΣ Α ΛΥΚΕΙΟΥ 1. Ν χρκτηρίσετε τις πρκάτω προτάσεις με Σωστό ( Σ ) ή Λάθος ( Λ ) i. ( - ) =- ii. ( 1- ) =1- iii. Αν χ < 1 τότε χ -χ + 1 = χ - 1 iv. Ισχύει: χ = Û χ = v.
ΕΦΑΡΜΟΓΕΣ. είναι ακέραιος.
ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ ΕΥΚΛΕΙΔΕΙΑ ΔΙΑΙΡΕΣΗ ΕΦΑΡΜΟΓΕΣ Αν ο είνι κέριος κι ο ( ) είνι κέριος ΑΠΟΔΕΙΞΗ Επειδή τ δυντά υπόλοιπ του με τον είνι 0,,, ο κέριος έχει μί πό τις μορφές κ ή κ, κ Z Αν κ, κ Z ) κ (κ ) κ(9κ
που έχει αρχή την αρχική θέση του κινητού και τέλος την τελική θέση.
. Εθύγρµµη κίνηση - - ο ΓΕΛ Πετρούπολης. Χρονική στιγμή t κι χρονική διάρκει Δt Χρονική στιγμή t είνι η μέτρηση το χρόνο κι δείχνει πότε σμβίνει έν γεγονός. Χρονική διάρκει Δt είνι η διφορά δύο χρονικών
ΓΕΝΙΚΕΥΜΕΝΑ ΟΛΟΚΛΗΡΩΜΑΤΑ - ΣΕΙΡΕΣ
ΓΕΝΙΚΕΥΜΕΝΑ ΟΛΟΚΛΗΡΩΜΑΤΑ - ΣΕΙΡΕΣ Το ορισμένο ολοκλήρωμ ή ολοκλήρωμ Riema μις πργμτικής συνάρτησης f με διάστημ ολοκλήρωσης το πεπερσμένο διάστημ [, ], υπάρχει ότν: η f είνι συνεχής στο διάστημ υτό, κθώς
Τα παρακάτω είναι τα κυριότερα θεωρήματα και ορισμοί από το σχολικό βιβλίο ακολουθούμενα από δικά μας σχόλια. 1 ο ΠΡΩΤΟ. www.1proto.gr. www.1proto.
1 Τ πρκάτω είνι τ κυριότερ θεωρήμτ κι ορισμοί πό το σχολικό βιβλίο κολουθούμεν πό δικά μς σχόλι. 1 ο ΠΡΩΤΟ 2 Συνρτήσεις Γνησίως μονότονη συνάρτηση Μι γνησίως ύξουσ ή γνησίως φθίνουσ συνάρτηση λέμε ότι
Ιόνιο Πανεπιστήμιο - Τμήμα Πληροφορικής. Μαθηματικός Λογισμός. Ενότητα: ΣΥΝΑΡΤΗΣΕΙΣ ΠΟΛΛΩΝ ΜΕΤΑΒΛΗΤΩΝ- ΠΑΡΑΔΕΙΓΜΑΤΑ.
Ιόνιο Πνεπιστήμιο - Τμήμ Πληροορικής Μθημτικός Λογισμός Ενότητ: ΣΥΝΑΡΤΗΣΕΙΣ ΠΟΛΛΩΝ ΜΕΤΑΒΛΗΤΩΝ- ΠΑΡΑΔΕΙΓΜΑΤΑ Πνγιώτης Βλάμος Αδειες Χρήσης Το πρόν εκπιδευτικό υλικό υπόκειτι σε άδειες χρήσης Cativ Commo
ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ Γ ΓΥΜΝΑΣΙΟΥ
ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ Γ ΓΥΜΝΑΣΙΟΥ ΟΙ ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ. Ν κάνετε ένν άξον Ο κι ν τοποθετήσετε πάνω σ υτόν τους ριθμούς: 0,, -, π, -π,,, Ν υπολογίσετε τις πόλυτες τιμές των πρπάνω ριθμών γ Ν υπολογίσετε
γ. ποιο πρέπει ν είνι το περιεχόµενο της πρεχόµενης γνώσης (<< >>) γι ν ποκτήσουν ρετή γι ν ζουν κλύτερ. δ. Ποιοι πρέπει ν είνι οι στόχοι της πιδείς :
Α) Μετάφρση Έγινε, λοιπόν, φνερό ότι πρέπει ν ορίσουµε νόµους γι την πιδεί κι ότι πρέπει ν την κάνουµε ίδι γι όλους. Ποιος όµως θ είνι ο χρκτήρς υτής της πιδείς κι µε ποιον τρόπο θ πρέπει ν διφύγουν την
Α. ΕΠΊΛΥΣΗ ΕΞΙΣΩΣΕΩΝ 2 ου ΒΑΘΜΟΥ ΜΕ ΤΗ ΧΡΗΣΗ ΠΑΡΑΓΟΝΤΟΠΟΙΗΣΗΣ
ΜΑΘΗΜΑ 13 Κεφάλιο o : Αλγερικές Πρστάσεις Υποενότητ.: Εξισώσεις ου Βθµού ( γ, ). Θεµτικές Ενότητες: 1. Επίλυση εξισώσεων ου θµού µε τη οήθει της πργοντοποίησης.. Επίλυση εξισώσεων ου θµού µε τη οήθει τύπου.
Ε π ι μ έ λ ε ι α Κ Ο Λ Λ Α Σ Α Ν Τ Ω Ν Η Σ
Ε π ι μ έ λ ε ι Κ Ο Λ Λ Α Σ Α Ν Τ Ω Ν Η Σ Κεφάλιο ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ Ο Ρ Ι Σ Μ Ο Σ Τι ονομάζετι ορισμένο ολοκλήρωμ μις συνεχούς συνάρτησης f: [, ] πό το έως κι το κι πώς συμολίζετι ; Αν F είνι πράγουσ
Η έννοια της συνάρτησης
Η έννοι της συνάρτησης Τι ονομάζουμε πργμτική συνάρτηση; Έστω Α έν υποσύνολο του R Ονομάζουμε πργμτική συνάρτηση με πεδίο ορισμού το Α μι διδικσί (κνόν), με την οποί κάθε στοιχείο A ντιστοιχίζετι σε έν
Στοιχεία εισαγωγής για τη Φυσική Α Λυκείου
Στοιχεί εισγωγής γι τη Φυσική Α Λυκείου Οι πρκάτω σημειώσεις δινέμοντι υπό την άδει: Creative Commons Ανφορά Δημιουργού - Μη Εμπορική Χρήση - Πρόμοι Δινομή 4.0 Διεθνές. 1 ΑΛΓΕΒΡΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ ΚΑΙ ΠΡΟΤΕΡΑΙΟΤΗΤΑ
ΣΧΕΤΙΚΑ ΜΕ ΤΙΣ ΚΑΜΠΥΛΕΣ ΖΗΤΗΣΗΣ ΚΑΙ ΤΑ ΑΠΟΤΕΛΕΣΜΑΤΑ ΥΠΟΚΑΤΑΣΤΑΣΗΣ ΚΑΙ ΕΙΣΟ ΗΜΑΤΟΣ
ΠΝΕΠΙΣΤΗΜΙΟ ΜΚΕ ΟΝΙΣ ΤΜΗΜ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΚΘΗΗΤΗΣ ΚΩΣΤΣ ΕΛΕΝΤΖΣ ΣΧΕΤΙΚ ΜΕ ΤΙΣ ΚΜΠΥΛΕΣ ΖΗΤΗΣΗΣ ΚΙ Τ ΠΟΤΕΛΕΣΜΤ ΥΠΟΚΤΣΤΣΗΣ ΚΙ ΕΙΣΟ ΗΜΤΟΣ ΠΕΡΙΠΤΩΣΗ η: Συνρτήσεις ζήτησης κτά arshall Υπόθεση: Το χρηµτικό
ΑΛΓΕΒΡΑ KAI ΣΤΟΙΧΕΙΑ ΠΙΘΑΝΟΤΗΤΩΝ Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ( ) ΛΥΣΕΙΣ ΤΩΝ ΑΣΚΗΣΕΩΝ
ΑΛΓΕΒΡΑ KAI ΣΤΟΙΧΕΙΑ ΠΙΘΑΝΟΤΗΤΩΝ Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ (011-01) ΛΥΣΕΙΣ ΤΩΝ ΑΣΚΗΣΕΩΝ ΣΤΟΙΧΕΙΑ ΕΠΑΝΕΚ ΟΣΗΣ Η επνέκδοση του πρόντος βιβλίου πργμτοποιήθηκε πό το Ινστιτούτο Τεχνολογίς Υπολογιστών & Εκδόσεων «Διόφντος»
ΑΛΓΕΒΡΑ KAI ΣΤΟΙΧΕΙΑ ΠΙΘΑΝΟΤΗΤΩΝ Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ( ) ΛΥΣΕΙΣ ΤΩΝ ΑΣΚΗΣΕΩΝ
ΑΛΓΕΒΡΑ KAI ΣΤΟΙΧΕΙΑ ΠΙΘΑΝΟΤΗΤΩΝ Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ (011-01) ΛΥΣΕΙΣ ΤΩΝ ΑΣΚΗΣΕΩΝ ΣΤΟΙΧΕΙΑ ΕΠΑΝΕΚ ΟΣΗΣ Η επνέκδοση του πρόντος βιβλίου πργμτοποιήθηκε πό το Ινστιτούτο Τεχνολογίς Υπολογιστών & Εκδόσεων «Διόφντος»
ΚΕΦΑΛΑΙΟ 4ο: ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 3: Η ΣΥΝΑΡΤΗΣΗ. F(x) = f(t)dt Μέρος Β του σχολικού βιβλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β
ΚΕΦΑΛΑΙΟ 4ο: ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ : Η ΣΥΝΑΡΤΗΣΗ F( = (d [Kεφ:.5 H Συνάρτηση F( = (d Μέρος Β του σχολικού βιβλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β Πράδειγμ. lim e d. Ν υπολογίσετε το όριο: ( Έχουμε ( e d
ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΑΠΟ ΤΟ 1 Ο ΚΕΦΑΛΑΙΟ
ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ ΑΛΓΕΒΡΑ ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΑΠΟ ΤΟ Ο ΚΕΦΑΛΑΙΟ Μονώ νυμ - Πολυώ νυμ Λέμε λγερική πράστση κάθε πράστση που περιέχει μετλητές. π.χ., +, 5, ( + ), +. Λέμε ριθμητική τιμή ( ή πλά τιμή )
Επαναληπτικό Διαγώνισµα Μαθηµατικών Γ Λυκείου ΕΠΑΛ
ΘΕΜΑ Α Επνληπτικό Διγώνισµ Μθηµτικών Γ Λυκείου ΕΠΑΛ Α. Ν δώσετε τον ορισµό της συχνότητς κι της σχετικής συχνότητς µις πρτήρησης x i. (7 Μονάδες) Α. Ν χρκτηρίσετε τις προτάσεις που κολουθούν, γράφοντς
Βιολογία Προσανατολισμού ΣΥΝΔΕΔΕΜΕΝΑ ΓΟΝΙΔΙΑ
ΣΥΝΔΕΔΕΜΕΝ ΓΟΝΙΔΙ Σημείωση: Τ συνδεδεμέν γονίδι νφέροντι στο ιλίο σε έγχρωμο πράθεμ στη σελίδ 80 του σχολικού ιλίου κι άσει του Φ.Ε.Κ. που νφέρει την εξετστέ ύλη, τ έγχρωμ πρθέμτ είνι εκτός εξετστές ύλης.
Ο Ρ Ι Ζ Ο Υ Σ Ε Σ. το σύνολο των μεταθέσεων (βλέπε σελ. 19) Ν. Την μετάθεση p [permutation] την συμβολίζουν ως εξής:
III Ο Ρ Ι Ζ Ο Υ Σ Ε Σ Μετθέσεις Θεωρούμε έν σύνολο Ν με πεπερσμένο το πλήθος ντικείμεν Τ ριθμούμε υτά κτά κάποιο τρόπο, κι στη συνέχει, νφερόμεθ σ υτά με τον ριθμό τους Εστω, λοιπόν, Ν {,,, } το δοσμένο
ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ
ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑ ο Ν γράψετε στο τετράδιό σς τον ριθμό κθεμιάς πό τις πρκάτω ερωτήσεις - 4 κι δίπλ το γράμμ που ντιστοιχεί στη σωστή πάντηση.. Η ρχή της επλληλίς
ΑΠΑΝΤΗΣΕΙΣ ΣΤΑ ΘΕΜΑΤΑ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 2009.
ΑΠΑΝΤΗΣΕΙΣ ΣΤΑ ΘΕΜΑΤΑ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 9. ΘΕΜΑ ο Α. Έστω, Δ. Δικρίνουμε τις περιπτώσεις: Αν =, τότε f( ) = f( ). Αν
Εργαστήριο Φυσικής Τμήματος Πληροφορικής και Τεχνολογίας Υπολογιστών Τ.Ε.Ι. Λαμίας
Εργστήριο Φυσικής Τμήμτος Πληροφορικής κι Τεχνολογίς Υπολογιστών Τ.Ε.Ι. Λμίς Ηλεκτρικό φορτίο Εισγωγή στην έννοι του Ηλεκτρικού Φορτίου Κάθε σώμ περιέχει στην φυσική του κτάστση ένν πάρ πολύ μεγάλο ριθμό
Μέθοδος Ελαχίστων Τετραγώνων & Φωτογραµµετρία
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΟΛΥΤΕΧΝΕΙΟ Σχολή Αγρονόµων κι Τοπογράφων Μηχ. Τοµές Τοπογρφίς Μέθοδος Ελχίστων Τετργώνων & Φωτογρµµετρί Φωτογρµµετρική Οπισθοτοµί Υποδειγµτικά λυµένη άσκηση εδοµέν Ν συvτχθεί πρόγρµµ Η/Υ
Θέματα Εξετάσεων Φεβρουαρίου 2011:
ο ΕΞΑΜΗΝΟ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΕΜΠ ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ: ΦΕΒΡΟΥΑΡΙΟΣ Θέμτ Εξετάσεων Φεβρουρίου : ΘΕΜΑ μονάδες Πρέπει με κυβικές b-splnes ν πρεμβάλετε, κτά σειρά, τ εξής σημεί:,,,,,,,8, 7, κι,. Ας είνι
f (x) = g(x) p(x) = q(x). ΕΞΙΣΩΣΕΙΣ ΠΡΩΤΟΥ ΒΑΘΜΟΥ
ΕΞΙΣΩΣΕΙΣ Α ΒΑΘΜΟΥ ΓΕΝΙΚΑ ΠΕΡΙ ΕΞΙΣΩΣΕΩΝ ΜΕ ΕΝΑΝ ΑΓΝΩΣΤΟ Έστω f (x), g(x) είνι δύο πρστάσεις µις µετβλητής x πού πίρνει τιµές στο σύνολο Α. Εξίσωση µε ένν άγνωστο λέγετι κάθε ισότητ της µορφής f (x) =
«Ανάλυση χρονολογικών σειρών»
Διτμημτικό Πρόγρμμ Μετπτυχικών Σπουδών των Τμημάτων Μθημτικών κι Μηχνικών Η/Υ & Πληροφορικής «Μθημτικά των Υπολογιστών κι των Αποφάσεων». (Κτεύθυνση: Σττιστική Θεωρί Αποφάσεων κι Εφρμογές). Διπλωμτική
Physics by Chris Simopoulos
ΕΠΙΤΑΧΥΝΟΜΕΝΗ ΚΙΝΗΣΗ Α) Προβλήμτ ευθύγρμμης ομλά επιτχυνόμενης κίνησης. ) Απλής εφρμογής τύπων Ακολουθούμε τ εξής βήμτ: i) Συμβολίζουμε τ δεδομέν κι ζητούμεν με τ ντίστοιχ σύμβολ που θ χρησιμοποιούμε.
Α. ΤΕΤΡΑΓΩΝΙΚΗ ΡΙΖΑ ΘΕΤΙΚΟΥ ΑΡΙΘΜΟΥ
Κεφάλιο o : Πργµτικοί Αριθµοί ΜΑΘΗΜΑ 6 Υποενότητ.1: Τετργωνική Ρίζ Θετικού Αριθµού Θεµτικές Ενότητες: 1. Τετργωνική ρίζ θετικού ριθµού.. Ιδιότητες της τετργωνικής ρίζς. Α. ΤΕΤΡΑΓΩΝΙΚΗ ΡΙΖΑ ΘΕΤΙΚΟΥ ΑΡΙΘΜΟΥ
η οποία ονομάζεται εκθετική συνάρτηση με βάση α. Αν α 1, τότε έχουμε τη σταθερή συνάρτηση f x 1.
Εκθετική συνάρτηση Αν θετικός πργμτικός ριθμός, σε κάθε ντιστοιχεί η δύνμη. Έτσι ορίζετι η συνάρτηση : f : με f, 0 η οποί ονομάζετι εκθετική συνάρτηση με βάση. Αν, τότε έχουμε τη στθερή συνάρτηση f. Ας
1. Κάθε πολυώνυµο που µετά από αναγωγή οµοίων όρων και διάταξη κατά τις φθίνουσες
Εξίσωση ο υ βθµού Σελ. 8 Ορισµοί - πρτηρήσεις. Κάθε πολυώνυµο που µετά πό νγωγή οµοίων όρων κι διάτξη κτά τις φθίνουσες δυνάµεις του έχει πάρει την µορφή βγ όπου,β,γ πργµτικοί ριθµοί κι λέγετι τριώνυµο
3 η δεκάδα θεµάτων επανάληψης
1 η δεκάδ θεµάτων επνάληψης 1. Ν ποδείξετε ότι το εµβδόν κάθε τριγώνου δίνετι πό τον τύπο Ε τρ, όπου τ η ηµιπερίµετρος του τριγώνου κι ρ η κτίν του εγγεγρµµένου κύκλου Ν χρκτηρίσετε τις πρκάτω προτάσεις
ΣΥΝΘΗΚΕΣ ΑΝΤΙΣΤΡΟΦΗΣ ΕΝΟΣ ΠΙΝΑΚΑ
ΣΥΝΘΗΚΕΣ ΑΝΤΙΣΤΡΟΦΗΣ ΕΝΟΣ ΠΙΝΑΚΑ Ένς Πίνκς συντελεστών Α µπορεί ν έχει ντίστροφο δηλδή, µπορεί ν είνι «µηιδιάζων» µόνο εάν είνι τετργωνικός Η συνθήκη τετργωνικότητς είνι νγκί λλά όχι κι ικνή γι την ύπρξη
τριγώνου ΑΒΓ είναι κυκλώστε το γράµµα της σωστής απάντησης και αιτιολογήστε την απάντηση σας. Με βάση την τριγωνική ανισότητα για
3.0 3. σκήσεις σχολικού βιβλίου σελίδς 57-58 Ερωτήσεις Κτνόησης. Χρκτηρίστε ( Σ ) σωστή ή λάθος ( ) κάθε µί πό τις επόµενες προτάσεις i) Η εξωτερική γωνί ˆ εξ τριγώνου είνι µεγλύτερη πό την ˆ ii) Η εξωτερική
Σταυρινού Γιώργος. Δεκέμβριος 2007. ΕΠΟΠΤΗΣ ΚΑΘΗΓΗΤΗΣ Βασίλειος Χατζής
ΤΕΙ ΚΑΒΑΛΑΣ ΣΧΟΛΗ ΔΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΔΙΑΧΕΙΡΙΣΗΣ ΠΛΗΡΟΦΟΡΙΩΝ ΣΧΕΔΙΑΣΜΟΣ ΚΑΙ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΗΣ ΗΛΕΚΤΡΟΝΙΚΗΣ ΔΙΑΚΥΒΕΡΝΗΣΗΣ ΓΙΑ ΤΗΝ ΔΙΑΔΙΚΤΥΑΚΗ ΣΥΝΕΔΡΙΑΣΗ ΣΥΛΛΟΓΙΚΩΝ ΟΡΓΑΝΩΝ, ΜΕ ΧΡΗΣΗ ΤΟΥ ΣΥΣΤΗΜΑΤΟΣ
* ' 4. Σώµ εκτελεί γ..τ µε συχνότητ f. H συχνότητ µε την οποί µεγιστοποιείτι η δυνµική ενέργει τλάντωσης είνι. f =2f β. f =f/2 γ. f =f δ. f =4f Β. Στη
* '! " # $ # # " % $ " ' " % $ ' " ( # " ' ) % $ THΛ: 270727 222594 THΛ: 919113 949422 ' " % +, Α. Γι τις πρκάτω προτάσεις 1-4 ν γράψετε το γράµµ, β, γ ή δ, που ντιστοιχεί στην σωστή πάντηση 1. Κύκλωµ
Η θεωρία στα μαθηματικά της
Η θεωρί στ μθημτικά της Γ γυμνσίου ΕΡΩΤΗΣΕΙΙΣ ΘΕΩΡΙΙΑΣ ΑΠΟ ΤΗΝ ΥΛΗ ΤΗΣ Γ ΤΑΞΗΣ ((ΑΛΓΕΒΡΑ)) ο ΚΕΦΑΛΑΙΙΟ 1 Αλγγεεριικέέςς Πρσττάσεειιςς Α. 1. 1 1. Τι ονομάζετε δύνμη ν με άση τον πργμτικό κι εκθέτη το φυσικό
Παρουσίαση 1 ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ ΣΤΑ ΤΡΙΓΩΝΑ
Προυσίση ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ ΣΤΑ ΤΡΙΓΩΝΑ Προυσίση. Μετρικές σχέσεις στ τρίγων Α Μετρικές σχέσεις σε ορθογώνιο τρίγωνο Α Προβολή σηµείου σε ευθεί Ορθή προβολή Α ονοµάζετι το ίχνος της κάθετης που φέρνουµε
Συστήματα Αυτομάτου Ελέγχου II
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώττο Εκπιδευτικό Ίδρυμ Πειριά Τεχνολογικού Τομέ Συστήμτ Αυτομάτου Ελέγχου II Ενότητ #3: Ευστάθει Συστημάτων - Αλγεβρικό Κριτήριο Routh Δημήτριος Δημογιννόπουλος Τμήμ Μηχνικών Αυτομτισμού
ΣΕΙΡΕΣ 1. ΒΑΣΙΚΟΙ ΟΡΙΣΜΟΙ. n 1 2 n. Για τη σύγκλιση της σειράς διακρίνουμε τις παρακάτω περιπτώσεις: (i) Αν υπάρχει το lim σ n
ΣΕΙΡΕΣ Έστω. ΒΑΣΙΚΟΙ ΟΡΙΣΜΟΙ μι κολουθί πργμτικών ριθμών. Η κολουθί ( σ ) με γενικό όρο: σ + + + i ονομάζετι κολουθί μερικών θροισμάτων της κολουθίς ( ), ή σειρά των ριθμών,,,, κι σημειώνετι με i + + +
Ερωτήσεις θεωρίας βασισμένες στο βιβλίο των μαθηματικών της Γ τάξης
Ερωτήσεις θεωρίς βσισμένες στο βιβλίο των μθημτικών της Γ τάξης 1ο ΕΠΑΛ ΣΑΛΑΜΙΝΑΣ 27 Απριλίου 29 2 Μθημτικά Γ Τάξης 1. Τι είνι πληθυσμός, άτομο κι μέγεθος ενός πληθυσμού; Πληθυσμός ονομάζετι το σύνολο
ΑΝΑΛΟΓΙΕΣ ΑΣΚΗΣΕΙΣ. α) του αριθμού των αγοριών προς τον αριθμό των κοριτσιών:... β) του αριθμού των κοριτσιών προς τον αριθμό των αγοριών:...
ΑΝΑΛΟΓΙΕΣ Μι νθοδέσμη έχει 5 λευκά κι 15 κόκκιν γρύφλλ. Τι μπορούμε ν πρτηρήσουμε; ότι τ κόκκιν είνι κτά δέκ περισσότερ πό τ λευκά, λλά κι ότι τ κόκκιν γρύφλλ είνι τρεις φορές περισσότερ πό τ λευκά Η μέτρηση
ΕΡΩΤΗΣΕΙΣ ΚΑΤΑΝΟΗΣΗΣ στο ΔΙΑΦΟΡΙΚΟ ΛΟΓΙΣΜΟ
ΕΡΩΤΗΣΕΙΣ ΚΑΤΑΝΟΗΣΗΣ στο ΔΙΑΦΟΡΙΚΟ ΛΟΓΙΣΜΟ Ι. Σε κθεμιά πό τις πρκάτω περιπτώσεις ν κυκλώσετε το γράμμ Α, ν ο ισχυρισμός είνι ληθής κι το γράμμ Ψ, ν ο ισχυρισμός είνι ψευδής δικιολογώντς συγχρόνως την
ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΠΑΡΑΡΤΗΜΑ Ν. ΗΜΑΘΙΑΣ. Α Γυµνασίου
ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΠΑΡΑΡΤΗΜΑ Ν. ΗΜΑΘΙΑΣ ος Ηµθιώτικος Μθητικός ιγωνισµός στ Μθηµτικά «Η ΥΠΑΤΙΑ» Θέµ 1ο Σάτο 1 Νοεµρίου 009 Α Γυµνσίου Ο ρίσκετι σε έν κινηµτογράφο όπου όλες οι σειρές έχουν κριώς
ΑΚΟΛΟΥΘΙΕΣ 1. ΒΑΣΙΚΟΙ ΟΡΙΣΜΟΙ. α,α,,α, ή συνοπτικά με. * n. α α λ, για κάθε. n και υπάρχει. (αντ. αn αn 1
ΑΚΟΛΟΥΘΙΕΣ ΒΑΣΙΚΟΙ ΟΡΙΣΜΟΙ Ακολουθί στοιχείων ενός συνόλου Ε ονομάζετι κάθε πεικόνιση : Ε Στην πεικόνιση υτή η εικόν του θ σηιώνετι κι θ ονομάζετι γενικός ή -οστός όρος της κολουθίς Η κολουθί υτή θ σηιώνετι
Αλγόριθµοι Άµεσης Απόκρισης
Αλγόριθµοι Άµεσης Απόκρισης Εγχειρίδιο Φροντιστηρικών Ασκήσεων Ιωάννης Κργιάννης Ιούνιος 008 Το πρόν εγχειρίδιο περιέχει σκήσεις κι νοιχτά προβλήµτ σχετικά µε το ντικείµενο του µθήµτος Αλγόριθµοι Άµεσης
ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 4: ΕΜΒΑΔΟΝ ΕΠΙΠΕΔΟΥ ΧΩΡΙΟΥ
ΚΕΦΑΛΑΙΟ 4ο: ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 4: ΕΜΒΑΔΟΝ ΕΠΙΠΕΔΟΥ ΧΩΡΙΟΥ [Κεφ..7 Μέρος Β του σχολικού ιλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β Πράδειγμ. Ν ρεθεί το εμδόν του χωρίου Ω που περικλείετι πό τη γρφική πράστση
Σχήµα 1. ιατάξεις πρισµάτων που προσοµοιώνουν τη λειτουργία των φακών. (α) Συγκλίνων. (β) Αποκλίνων
Ο3 Γενικά περί φκών. Γενικά Φκός ονοµάζετι κάθε οµογενές, ισότροπο κι διφνές οπτικό µέσο που διµορφώνετι πό δυο σφιρικές επιφάνειες (ή πό µι σφιρική κι µι επίπεδη). Βσική () () Σχήµ. ιτάξεις πρισµάτων
Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος ΜEd: «Σπουδές στην εκπαίδευση»
Η συνάρτηση f() =, 0 Υπερβολή Δύο ποσά λέγοντι ντιστρόφως νάλογ, εάν μετβάλλοντι με τέτοιο τρόπο, που ότν οι τιμές του ενός πολλπλσιάζοντι με ένν ριθμό, τότε κι οι ντίστοιχες τιμές του άλλου ν διιρούντι
Επαναληπτικές Έννοιες
Επιμέλει: Ροκίδης Μιχάλης Μθημτικός M.Sc ) ΣΥΝΟΛΑ 0,,,, Φυσικοί,,,0,,, Ακέριοι,, 0 Ρητοί \ Άρρητοι Πργμτικοί ) ΔΥΝΑΜΕΙΣ Ορισμοί Επνληπτικές Έννοιες, ν 0. ν, ν, ν, ν πράγοντες.., 0 Ιδιότητες Κοινής Βάσης
Γ. Ε. ΛΥΚΕΙΟ 2008 ΑΛΓΕΒΡΑ ΤΑΞΗ Β
Γ. Ε. ΛΥΚΕΙΟ 008 81 Γ. Ε. ΛΥΚΕΙΟ 008 8 Α. Ν ποδείξετε ότι ν συν( + β) 0, συν 0 κι συνβ 0 ισχύει: εφ + εφβ εφ( + β) = 1 εφ εφβ Β. Ν χρκτηρίσετε με Σ(σωστό) ή Λ(λάθος)κάθε μι πό τις πρκάτω προτάσεις:. Αν
είναι n ανεξάρτητες τυποποιημένες κανονικές τυχαίες μεταβλητές, δηλαδή, αν Z i
Οι Κτνομές χ, t κι F Οι Κτνομές χ, t κι F Σε υτή την ενότητ προυσιάζουμε συνοπτικά τρεις συνεχείς κτνομές οι οποίες, όπως κι η κνονική κτνομή, είνι πολύ χρήσιμες στη Σττιστική Συμπερσμτολογί Είνι ξιοσημείωτο,
ΕΚΘΕΤΙΚΗ ΚΑΙ ΛΟΓΑΡΙΘΜΙΚΗ ΣΥΝΑΡΤΗΣΗ ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ
ΕΚΘΕΤΙΚΗ ΚΑΙ ΛΟΓΑΡΙΘΜΙΚΗ ΣΥΝΑΡΤΗΣΗ ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ. ΕΚΘΕΤΙΚΗ ΣΥΝΑΡΤΗΣΗ. Δίνετι η εκθετική συνάρτηση: f a Γι ποιες τιμές του η ) γνησίως ύξουσ; β) γνησίως φθίνουσ; ( ) είνι:. Δίνοντι οι
f(x) dx ή f(x) dx f(x) dx
ΓΕΝΙΚΕΥΜΕΝΑ ΟΛΟΚΛΗΡΩΜΑΤΑ Ορισμός. Αν η f είνι ολοκληρώσιμη στο διάστημ [ a, ) ή στο διάστημ (,], τότε ονομάζουμε γενικευμένο ολοκλήρωμ είδους το ολοκλήρωμ της μορφής f() d ή - f() d Ορισμός. Το σημείο
, οπότε α γ. y x. y y άξονες. τα σημεία της υπερβολής C βρίσκονται έξω από την ταινία των ευθειών x α
YΠΡΒΛΗ ρισμός: Υπερολή με εστίες κι λέγετι ο γεωμ. τόπος των σημείων του επιπέδου των οποίων η πόλυτη τιμή της διφοράς των ποστάσεων πό τ κι είνι στθερή κι μικρότερη του Έ. Τη στθερή υτή διφορά τη συμολίζουμε
Προτεινόµενες Ασκήσεις στα Στοιχεία δύο Ακροδεκτών
Προτεινόµενες Ασκήσεις στ Στοιχεί δύο Ακροδεκτών πό το βιβλίο «Ανάλυση Ηλεκτρικών Κυκλωµάτων», Ν. Μάργρη Πρόβληµ. Σ' έν πηνίο µε υτεπγωγή =5H το ρεύµ έχει τη µορφή του Σχ.. Σχεδιάστε την τάση στ άκρ του
ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ ΣΥΝΑΡΤΗΣΗΣ ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ ΣΥΝΑΡΤΗΣΗΣ ΑΠΟΣΤΑΣΗ ΥΟ ΣΗΜΕΙΩΝ ( ) = +. ( ) ( ) ( ) ( ) ( ) x x ( ) ( ) ΙΑΜΑΝΤΟΠΟΥΛΟΣ ΘΥΜΙΟΣ 1
ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ ΣΥΝΑΡΤΗΣΗΣ ΑΠΟΣΤΑΣΗ ΥΟ ΣΗΜΕΙΩΝ Υπενθυµίζουµε ότι ν στ σηµεί Α, Β ενός άξον ντιστοιχίζοντι οι πργµτικοί ριθµοί, ντίστοιχ τότε: ( ΑΒ) = Β Α Α Β Σχετικά µε την πόστση δύο σηµείων στο κρτεσινό
ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2015
ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 05 ΘΕΜΑ Α. Γι μι συνεχή συνάρτηση f ν γράψετε τις τρείς κτηγορίες σημείων, τ οποί εινι πιθνές θέσεις τοπικών κροτάτων. (6 Μονάδες). Ν χρκτηρίσετε τις προτάσεις
1. Να σημειώσετε το Σωστό ( ) ή το Λάθος ( ) στους παρακάτω ισχυρισμούς:
1. Ν σημειώσετε το Σωστό ( ) ή το Λάθος ( ) στους πρκάτω ισχυρισμούς: 1. Αν γι την συνεχή στο συνάρτηση f ισχύουν: f(0) f(2) 0 κι f(0) f(5) 0 τότε η εξίσωση ( ) 0 f έχει τουλάχιστον δύο ρίζες. 2. Αν ισχύει
Τάξη Β Θετική και Τεχνολογική Κατεύθυνση Ερωτήσεις Θεωρίας και απαντήσεις από το σχολικό βιβλίο Καθηγητής: Ν.Σ. Μαυρογιάννης
Τάξη Β Θετική κι Τεχνολογική Κτεύθυνση Ερωτήσεις Θεωρίς κι πντήσεις πό το σχολικό ιλίο Κθηγητής: ΝΣ Μυρογιάννης Πότε δύο µη µηδενικά δινύσµτ AB κι Γ λέγοντι πράλληλ ή συγγρµµικά; Απάντηση: Ότν έχουν τον
Ανάλυση Ηλεκτρικών Κυκλωμάτων
Ανάλυση Ηλεκτρικών Κυκλωμάτων Κεφάλιο 5: Θεωρήμτ κυκλωμάτων Οι διφάνειες κολουθούν το ιλίο του Κων/νου Ππδόπουλου «Ανάλυση Ηλεκτρικών Κυκλωμάτων» ISN: 9789609371100 κωδ. ΕΥΔΟΞΟΣ: 50657177 5 Θεωρήμτ κυκλωμάτων
Η έννοια του διανύσματος
Η έννοι του δινύσμτος Από τη γεωμετρί είμστε εξοικειωμένοι με την έννοι του ευθυγράμμου τμήμτος: δύο διφορετικά σημεί Α κι Β μις ευθείς (ε), ορίζουν το ευθύγρμμο τμήμ ΑΒ Έν ευθύγρμμο τμήμ λέγετι προσντολισμένο,
ΓΡΑΦΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ ΣΥΝΑΡΤΗΣΕΩΝ
Γι μθητές Β & Γ Λυκείου ΓΡΑΦΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ ΣΥΝΑΡΤΗΣΕΩΝ ΧΩΡΙΣ ΤΗ ΧΡΗΣΗ ΤΗΣ ΠΑΡΑΓΩΓΟΥ ΓΡΑΦΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ ΣΥΝΑΡΤΗΣΕΩΝ ΧΩΡΙΣ ΤΗ ΧΡΗΣΗ ΤΗΣ ΠΑΡΑΓΩΓΟΥ Πολλές συνρτήσεις μπορούν ν πρστθούν γρφικά, χωρίς τη
Οδηγίες, στήριξη από ICT.:
Τίτλος: Ώσμωση Θέμτ: Όσμωση, γρμμομόρι, συλλογή δεδομένων κι γρφική πράστση. Διάρκει: 120λεπτά Ηλικί: 14-16 Διφοροποίηση: Διφορετικά επίπεδ βοήθεις κι διφορετικές δρστηριότητες. Οδηγίες, στήριξη πό ICT.:
ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ
ΑΡΧΗ ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΑ ΙΚΕΣ ΕΞΕΤΑΣΕΙΣ HMEΡΗΣΙΩΝ ΚΑΙ ΕΣΠΕΡΙΝΩΝ ΕΠΑΓΓΕΛΜΑΤΙΚΩΝ ΛΥΚΕΙΩΝ (ΟΜΑ Α A ) ΚΑΙ ΜΑΘΗΜΑΤΩΝ ΕΙ ΙΚΟΤΗΤΑΣ ΕΠΑΓΓΕΛΜΑΤΙΚΩΝ ΛΥΚΕΙΩΝ (ΟΜΑ Α Β ) ΤΡΙΤΗ 3 IOYNIOY 04 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ:
Μαθηματικά Γ Γυμνασίου AΣΚΗΣΕΙΣ ΣΤΙΣ ΙΣΟΤΗΤΕΣ ΤΡΙΓΩΝΩΝ
ε ω μ ε τ ρ ί AΣΚΗΣΕΙΣ ΣΤΙΣ ΙΣΟΤΗΤΕΣ ΤΡΙΩΝΩΝ 1. Σε ισοσκελές τρίγωνο ΑΒ (ΑΒ=Α) προεκτείνουμε τη βάση Β κτά ίσ τμήμτ Β=Ε. Ν δείξετε ότι το τρίγωνο ΑΕ είνι ισοσκελές. 2. Ν κτσκευάσετε σε ισοσκελές τρίγωνο
Λύσεις 1 ης Εργασίας 1. Γράψτε και σχεδιάστε ποιοτικά στο ίδιο διάγραµµα καθένα από τα επόµενα
Λύσεις ης Εργσίς. Γράψτε κι σχεδιάστε ποιοτικά στο ίδιο διάγρµµ κθέν πό τ επόµεν v δινύσµτ στη µορφή x y : () Το διάνυσµ που συνδέει την ρχή του συστήµτος συντετγµένων µε το σηµείο Ρ(,-). () Το διάνυσµ
( ) ( ) ( ) ( ) ( ) ( )
ΓΕΝΙΚΑ ΠΕΡΙ ΑΝΙΣΩΣΕΩΝ Έστω f( x ), ( ) σύνολο Α ΑΝΙΣΩΣΕΙΣ Α ΒΑΘΜΟΥ g x είνι δύο πρστάσεις µις µετλητής x πού πίρνει τιµές στο Ανίσωση µε ένν άγνωστο λέγετι κάθε σχέση της µορφής f( x) g( x) f( x) g( x)
1 και β = 0,001 να υπολογίσετε την παράσταση: 2 3(2α 3β) 4[ 3α + 2(α + 2β 1)]
Γι ποιες τιμές του ορίζοντι οι πρστάσεις ; δ 9 7 ε Ν υπολογιστούν οι πρκάτω πρστάσεις : Α = 7 Ν γίνουν οι πράξεις: Β = 7 γ στ [ ( ) ( ) ] [ ( ) ] [ ( ) ] [ ( ) ] Αν = 9 0 8 κι = 0,00 ν υπολογίσετε την
Α) Να επιλέξετε την σωστή απάντηση. Αν η επίδραση του αέρα είναι αμελητέα τότε το βάρος Β του σώματος θα έχει μέτρο: F α) F β) 3F γ) 3
ΑΠΑΝΤΗΣΕΙΣ ΤΡΑΠΕΖΑΣ ΘΕΜΑΤΩΝ Α ΛΥΚΕΙΟΥ ο ΚΕΦΑΛΑΙΟ ο ΘΕΜΑ 376/Β. Σε έν σώμ μάζς m που ρχικά ηρεμεί σε οριζόντιο επίπεδο σκούμε κτκόρυφη στθερή δύνμη μέτρου F, οπότε το σώμ κινείτι κτκόρυφ προς τ πάνω με
ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΣΥΝΕΧΕΙΑ ΕΠΙΜΕΛΕΙΑ: ΧΡΑΣ ΓΙΑΝΝΗΣ ΚΕΝΤΡΙΚΟ Ν. ΣΜΥΡΝΗΣ
Φ4 ΣΥΝΕΧΕΙΑ ΕΠΙΜΕΛΕΙΑ: ΧΡΑΣ ΓΙΑΝΝΗΣ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΛΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΥ ΚΕΝΤΡΙΚ 3ο ΓΕΝΙΚ ΛΥΚΕΙ Ν. ΣΜΥΡΝΗΣ ΘΕΩΡΙΑ ΣΩΣΤ-ΛΑΘΣ ΠΛΛΑΠΛΗΣ ΕΠΙΛΓΗΣ ΣΥΜΠΛΗΡΩΣΗΣ ΚΕΝΥ ΠΑΡΑΤΗΡΗΣΕΙΣ ΑΣΚΗΣΕΙΣ Α &
ΣΗΜΕΙΩΣΗ: Παρουσίασα τις αποδείξεις κάπως αναλυτικά ώστε να γίνουν πιο κατανοητές.εσείς μπορείτε να τις παρουσιάσετε πιο λιτά.
ΣΗΜΕΙΩΣΗ: Προυσίσ τις ποδείξεις κάπως νλυτικά ώστε ν γίνουν πιο κτνοητές.εσείς μπορείτε ν τις προυσιάσετε πιο λιτά. Δίνετι τυχόν ορθογώνιο τρίγωνο ΑΒΓ( ˆΑ=1 =1 ορθή) κι Δ η προβολή της κορυφής Α στην υποτείνουσ.ν
ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΒΙΟΛΟΓΙΑ ΚΑΤΕΥΘΥΝΣΗΣ
ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΒΙΟΛΟΓΙΑ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ Α Ν γράψετε στο τετράδιό σς τον ριθμό κθεμιάς πό τις πρκάτω ημιτελείς προτάσεις Α1 έως Α5 κι δίπλ το γράμμ που
ENA ΣΧΗΜΑ ΜΕ ΕΝΔΙΑΦΕΡΟΥΣΕΣ ΠΡΟΕΚΤΑΣΕΙΣ. Κόσυβας Γιώργος. 1ο Πειραματικό Γυμνάσιο Αθηνών
Σ ENA ΣΧΗΜ ΜΕ ΕΝΙΦΕΡΟΥΣΕΣ ΠΡΟΕΚΤΣΕΙΣ Κόσυβς ιώργος ο Πειρμτικό υμνάσιο θηνών ε υτή την εργσί προυσιάζοντι ορισμένες ξιοσημείωτες πρτηρήσεις πάνω σε έν πλούσιο σχήμ, το οποίο επιτρέπει ποικίλες προσεγγίσεις
3.4 Η ΥΠΕΡΒΟΛΗ. Ορισμός Υπερβολής
6 3. Η ΥΠΕΡΒΟΛΗ Ορισμός Υπερολής Έστω E κι Ε δύο σημεί ενός επιπέδου. Ονομάζετι υπερολή με εστίες τ σημεί E κι Ε ο εωμετρικός τόπος C των σημείων του επιπέδου των οποίων η πόλυτη τιμή της διφοράς των ποστάσεων
sin x F(x) x 2 3 x παραγουσών προσθέτοντας σταθερές. Το καλούμε αόριστο ολοκλήρωμα της f(x) και το παριστάνουμε με: f(x)dx
I. ΟΛΟΚΛΗΡΩΜΑ.Ορισμένο ολοκλήρωμ.πράγουσ.θεμελιώδες Θεώρημ.Βσικά ολοκληρώμτ 5.Γρμμικότητ 6.Ολοκλήρωση με λλγή μετλητής ή με ντικτάστση 7.Ολοκλήρωση κτά μέρη 8.Ολοκληρώμτ ρητών 9.Ολοκληρώμτ τριγωνομετρικών.γενικευμένο
Οι Νέες Τεχνολογίες ως Εργαλείο κατανόησης βασικών εννοιών στο Γυµνάσιο
Οι Νέες Τεχνολογίες ως Εργλείο κτνόησης σικών εννοιών στο Γυµνάσιο ΗΜΗΤΡΙΟΣ ΚΟΝΤΟΓΕΩΡΓΟΣ Μθηµτικός-Υπεύθυνος του Μθηµτικού Εργστηρίου του Λυκείου Ελληνικού kontod@yahoo.gr ΚΩΝ/ΝΟΣ ΜΑΡΑΓΚΟΣ Μθηµτικός -Κθ.
Γιώργος Νάνος Φυσικός MSc ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΑΣΚΗΣΕΙΣ & ΠΡΟΒΛΗΜΑΤΑ. Άλγεβρα. Ενιαίου Λυκείου
Φυσικός MSc ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΑΣΚΗΣΕΙΣ & ΠΡΟΒΛΗΜΑΤΑ Άλγεβρ Α Ενιίου Λυκείου Άλγεβρ Α Λυκείου Περιεχόμεν ΚΕΦΑΛΑΙΟ : Οι Πργμτικοί Αριθμοί Εξισώσεις ου Βθμού Διάτξη Η θεωρί με Ερωτήσεις Ασκήσεις & Προβλήμτ
ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2017 A ΦΑΣΗ. Ηµεροµηνία: Σάββατο 7 Ιανουαρίου 2017 ιάρκεια Εξέτασης: 2 ώρες ΕΚΦΩΝΗΣΕΙΣ
ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 07 Ε_3.ΜλΑ(ε) ΤΑΞΗ: ΜΑΘΗΜΑ: A ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΑΛΓΕΒΡΑ Ηµεροµηνί: Σάββτο 7 Ινουρίου 07 ιάρκει Εξέτσης: ώρες ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α Α. Ν συµπληρώσετε τους τύπους: i. ii....,... =...,... β
Θέρµανση Ψύξη ΚλιµατισµόςΙΙ
Θέρµνση Ψύξη ΚλιµτισµόςΙΙ Ψυχροµετρί Εργστήριο Αιολικής Ενέργεις Τ.Ε.Ι. Κρήτης ηµήτρης Αλ. Κτσπρκάκης Ξηρόςκιυγρός τµοσφιρικόςέρς Ξηρόςκιυγρόςτµοσφιρικός έρς Ξηρός τµοσφιρικός έρς: ο πλλγµένος πό τους
ΣΤΡΑΤΗΣ ΑΝΤΩΝΕΑΣ. Περιέχει την ύλη που διδάσκεται στα Μαθηματικά της Κατεύθυνσης στη Γ Λυκείου
ΣΤΡΑΤΗΣ ΑΝΤΩΝΕΑΣ Περιέχει την ύλη που διδάσκετι στ Μθημτικά της Κτεύθυνσης στη Γ Λυκείου Στους δσκάλους μου με ευγνωμοσύνη Στους μθητές μου με ελπίδ Κάθε γνήσιο ντίτυπο έχει την ιδιόχειρη υπογρφή του συγγρφέ
ΣΤΟΙΧΕΙΑ ΙΑΝΥΣΜΑΤΙΚΗΣ ΑΝΑΛΥΣΗΣ
ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ ΠΦ ΜΟΙΡΑ 693 946778 ΣΤΟΙΧΕΙΑ ΙΑΝΥΣΜΑΤΙΚΗΣ ΑΝΑΛΥΣΗΣ Συγγρφή Επιµέλει: Πνγιώτης Φ Μοίρς ΣΟΛΩΜΟΥ 9 - ΑΘΗΝΑ 693 946778 wwwpmoiasweelcom ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ ΠΦ ΜΟΙΡΑ
Γ.3. Εξισώσεις 2ου βαθμού. Απαραίτητες γνώσεις Θεωρίας 3.3. Θεωρία 5. θεωρία 6.
Γ.3 3.3 Εξισώσεις ου θμού Απρίτητες νώσεις Θεωρίς Θεωρί 5. Τι ονομάζουμε εξίσωση δευτέρου θμού (ή δευτεροάθμι εξίσωση) μ ένν άνωστο κι τι δικρινουσά της; Ονομάζουμε εξίσωση δευτέρου θμού μ ένν άνωστο κάθε
Μ' ένα καλά µελετηµένο κτύπηµα, σκότωσε τον κύκλο, την εφαπτόµενη
255 ΕΡΩΤΗΣΕΙΣ ΑΠΟ ΤΗΝ ΥΛΗ ΤΗΣΣ Α! ΤΑΞΗΣΣ Ο Ρωµίος που µχίρωσσε ε τον Αρχιµήδη Μ' έν κλά µελετηµένο κτύπηµ, σκότωσε τον κύκλο, την εφπτόµενη κι το σηµείο τοµής στο άπειρο. "'Επί ποινή" διµελισµού εξόρισε
2. 4 ΚΛΑΣΜΑΤΙΚΕΣ ΕΞΙΣΩΣΕΙΣ
ΜΕΡΟΣ Α. ΚΛΑΣΜΑΤΙΚΕΣ ΕΞΙΣΩΣΕΙΣ 0. ΚΛΑΣΜΑΤΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΟΡΙΣΜΟΣ Ονομάζουμε κλσμτική εξίσση κάθε εξίσση που έχει άγνστο στον προνομστή. 7 6 Γι πράδειγμ οι εξισώσεις + 5, + είνι κλσμτικές ενώ οι εξισώσεις