Archaea. Common ancestors
|
|
- Κωνσταντίνος Καραμανλής
- 7 χρόνια πριν
- Προβολές:
Transcript
1
2 ZAŠTO? Bacteria Archaea Fungi Animals Plants Common ancestors
3 Najduži život ~ 5000 god. Najveći organizni (> 100m) Najveći cvet ~ 1m CO2 O2 CVEĆE NAS ČINI SREĆNIMA!!!! Dokazano je da cveće na radnom mestu pozitivno utiče na produktivnost
4 BILJKE: - Autotrofi (svaraju organsku materiju iz neorganske) - sedentaran nač KOMPARATIVNI PRISTUP - kontinuiran rast Ć Ćelije biljaka Poseduju VĆM Poseduju ćelijski zid Mogu da menjaju oblik i da se kreću Ne mogu da menjaju oblik niti da se kreću / Poseduju plastide / Poseduju vakuolu Centrozom / Citokineza - ubor Citokineza ćelijska ploča Depo glukoze - glikogen Depo glukoze - skrob KOMPARTMENTI ANALOGIJA PLASTIDI CENTROZOM
5 BILJNA TKIVA I ĆELIJE Tvorna tkiva - meristemi Meristemske ćelije: - nediferencirane, sitne, izodijametrične sa tankim ćelijskim zidom - TEM: krupan, centralno postavljen nukleus, citoplazma bogata ribozomima, plastidima i brojnim sitnim vakuolama. G kompleks je dobro razvijen - sinteza komponenti ćelijskog zida - Totipotentne - dele se mitotski i daju različite tipove diferenciranih ćelija
6 BILJNA TKIVA I ĆELIJE Trajna tkiva Parenhim Potporna tkiva Kolenhim Sklerenhim Provodna tkiva Ksilem Floem Pokrovna tkiva Epidermis z
7 Parenhimska ćelija tipična ćelija biljaka Parenhimske ćelije: ćelije sa tankim primarnim ćelijskim zidovima z z različite funkcije (fotosintezu, deponovanje sintezu hranljivih materija, regeneraciju tkiva...). slabo diferencirane i mogu da se dediferenciraju postajući totipotentne. Sreću se u različitim biljnim organima
8 Ćelijski zid Okoloćelijska sredina biljne ćelije U potpunosti obavija i čvrsto povezuje susedne ćelije Znatno čvršći, rigidniji i izdržljiviji od VĆM ćelija životinja Drugačiji sastav od VĆM prvenstveno polisaharidi) FUNKCIJE: - povezuje biljne ćelije u tkiva, - štiti ćeliju, - određuje oblik ćelije, - šalje signale neophodne za deobu i rast - odupire se snažnom hidrostatičkom (turgorovom) pritisku Sastav ćelijskog zida kontroliše sama ćelija razlikujemo: - Primarni ćelijski zid tanak i fleksibilan meristemske ćelije, ćelije u toku rasta, parenhimske...) - Sekundarni ćelijski zid rigidan, nastaje deponovanjem novih slojeva materijala
9 Sastav i struktura primarnog ćelijskog zida SREDIŠNJA LAMELA specijalizovan region ĆZ izgrađen od pektina, zadužen za cementiranje susednih ćelija =adhezivna međućelijska veza biljnih ćelija 1. Celuloza: -Linearni polimer glukoze molekula celuloze bočno se povezuje celulozni mikrofibril -Mikrofibrili se organizuju u slojeve (lamele) -Svi mikrofibrili jedne lamele su paralelno postavljeni 3. Pektin: - Heterogena grupa granatih polisaharida sa neg. Naelektrisanjima - Gradi hidratisan gel matriks u koji su uronjeni mikrofibrili 2. Povezujući glikani (hemiceluloza) -Granati polisaharidi -Povezuju susedne celulozne mikrofibrile u kompleksnu mrežu -Više klasa 4. Proteini - Svega 5% suve mase ĆZ
10 Sinteza i deponovanje komponenti ćelijskog zida Pektini, vezujući glikani i proteini ER i GK, sekrecija Celuloza sinteza van ćelije enzimski kompleksi u formi rozete celulozo-sintaza: Supstrat: UDP-glukoza iz citoplazme Distalni kraj rastućeg mikrofibrila se vezuje za stariju lamelu a rozeta se pomera u suprotnom smeru kroz ĆM lateralna difuzija Smer kretanja rozeta kroz ĆM određuju submembranske mikrotubule vezuju se za integrisane proteine ĆM koji grade mikrodomene ĆM kojima se reguliše trasa kretanja rozeta i samim tim rast celuloznih mikrofibrila Značaj regulacija smera rasta ćelije i samim tim cele biljke SEKUNDARNI ĆELIJSKI ZID Bliže ćeliji u odnosu na primarni Sadrži više celuloznih mikrofibrila veća rigidnost i dodatne materije koje povećavaju čvrstinu i vodonepropusnost lignin
11 G kompleks vezikule celuloza ramnogalakturonan I hemiceluloza homogalakturonan I ksilogalakturonan I arabnan ramnogalakturonan II
12 Plazmodezme Međućelijske komunikacijske veze biljaka gler primarni ćelijski zid središnja lamela - - dezmotubula anulus - Biljne ćelije komuniciraju zahvaljujući citoplazmatskim kanalima koji se kroz ĆZ susednih ćelija (analog pukotinastih veza) U nivou plazmodezme ćelijske membrane susednih ćelija su u kontinuitetu gradeći cevast kanal Samim tim, i citoplazme susednih ćelija su u kontinuitetu - simplast U centru plazmodezme, cevasta struktura dezmotubula (kontinuitet gler susednih ćelija) Oko dezmotubule, na poprečnom preseku kroz plazmodezmu uočava se prsten citoplazme anulus Transport malih molekula i jona, NK, virusi Aktivna regulacija otvorenosti Formiranje tokom citokineze (ređe de novo) Moguće uklanjanje nepotrebnih plazmodezmi
13 Vakuola 1 ili š (obično krupnih) izuzetak meristemske ćelije Zauzimaju i do 95% zapremine diferencirane ćelije Poseduju jednu membranu tonoplast (sa akvaporinima, pumpama, različitim transporterima) Ispunjene vodom sa rastvorenim solima i ostalim materijama FUNKCIJE: O turgorovog pritiska Rast ćelije O ph ćelije Deponovanje nutrijenata, Deponovanje produkata metabolizma Deponovanje različitih (specifičnih) materija: pigmenata, toksina... Hidrolitička razgradnja analog lizozoma kod ćelija Depozicione vakuole Litičke vakuole - Npr. semena poseduju oba tipa vakuola pri klijanju - fuzija
14 Plastidi
15 Hloroplast Krupne organele 5-10 µm Tri membrane: S š membrana hloroplasta - Poseduje porine visokopropustljiva za jone i male molekule U š membrana hloroplasta - Specifični transporteri U š membranski sistem tilakoidna membrana - gradi diskoidalnih cisterni tilakoidi - Mesto lokacije fotokompleksa, kompleksa elektron-transportnog lanca, ATP sinteze Tri odeljka: Intermembranski prostor Stroma: - hpdnk cirkularna, š kopija - Ribozomi (prokariotskog tipa) - Plastoglobule lipidna tela - Skrobne granule - Metabolički enzimi Lumen tilakoida - Odeljak u koji se upumpavaju protoni tokom elektron-transporta
16
17 HLOROPLAST VS. MITOHONDRIJA
18 HLOROPLASTNI GENOM IMPORT PROTEINA U HLOROPLAST Ipak, 95% proteina hloroplasta je kodirano od strane nukleusnog genoma i moraju se transportovati iz citoplazme u hloroplast Većina proteina se unosi putem specifičnih translokona spoljašnje i unutrašnje membrane TOC i TIC kompleksi Da bi bili uneti moraju sadržati tranzitnu sekvencu na N-kraju i biti nesavijeni prepoznaje ih vodeći kompleks sa šaperonom Hsp70 i vodi do TOC Nakon unosa u stromu, iseca se tranzitna sekvenca i protein se savija šaperoni strome) ako je stroma njegova finalna destinacija Proteini tilakoida poseduju dodatnu signalnu sekvencu i posebnim translokonima se unose u tilakoide
19
20 OSNOVNA FUNKCIJA HLOROPLASTA - FOTOSINTEZA SVETLA FAZA FOTOSINTEZE (fotohemijska): Odvija se u membrani tilakoida Fotosintetski pigmenti (hlorofili) apsorbuju foton Sunčeve svetlosti i prenose elektrone na druge komplekse u membrani tilakoida (elektrontransportni lanac) To dovodi do upumpavanja protona iz strome u lumen tilakoida protonski gradijent koji koristi ATP sintaza da bi sintetisala ATP Takođe, transport elektrona se koristi za redukciju koenzima NADP+ do NADH u stromi NADH i ATP su neophodni za tamnu fazu fotosinteze TAMNA FAZA FOTOSINTEZE (termohemijska): Odvija se u stromi Kalvinov ciklus Brojni enzimi uključeni u sintezu gliceraldehid 3fosfata od CO2 uz upotrebu ATP i NADH Gliceraldehid 3-fosfat se koristi za produkciju z š ćera u citoplazmi ili u hloroplastu gde mogu da se deponuju u formi skrobnih granula
21 Peroksizomi biljne ćelije Peroksizom lista pozicioniran uz hloroplaste čime je omogućena razmena materija tokom fotorespiracije. Metabolizam sporednih produkata fotosinteze i prevođenje u oblik koji ponovo može da uđe u Kalvinov ciklus. Faktori koji povećavaju fotorespiraciju
22 Peroksizomi biljne ćelije (glioksizomi) Peroksizom semena (glioksizom) blisko pozicioniran uz lipidna tela čime je omogućena mobilizacija lipida i glukoneogeneza tokom klijanja. Konverzija lipida u ugljene hidrate kroz seriju reakcija u glioksilatnom ciklusu
23 Citoskelet biljne ćelije AKTINSKI FILAMENTI: G, se od nukleusa do submembranskog regiona i kroz plazmodezme FUNKCIJE: - citoplazmatsko strujanje kretanje organela i ostalih citoplazmatskih komponenti kroz tanak sloj citoplazme (zahvaljujući miozinu) - Organizacija organela kod rastućih ćelija organizuju G š vezikula sa komponentama ćelijskog zida do ĆM CITOPLAZMA (BILJNE ĆELIJE SA KRUPNOM VAKUOLOM) tanak submembranski sloj, oko nukleusa i povezujući slojevi od nukleusa do submembranskog regiona MIKROTUBULE: Submembranski - vidu pojasa ili paralelno sa celuloznim mikrofibrilima i/ili zrakasto od nukleusa (retke MT) Biljne ćelije nemaju centrozome ali imaju γ-turc decentralizovana nukleacija MT (submembranski, bočno na postojećim MT) FUNKCIJA regulacija rasta ćelije putem usmeravanja sinteze celuloznih mikrofibrila INTERMEDIJARNI FILAMENTI ne postoje Nukleusna lamina nemaju proteine IF - lamine već laminima-slične proteine sa istovetnom funkcijom kao kod ć
24 FISIJA (DEOBA) PLASTIDA Plastidi se dele sa ciljem: - Pravilne segregacije organela tokom deobe proplastidi meristemskih ćelija - Povećanja broja organela u ćeliji tokom diferencijacije (npr. hloroplasti mezofila lista) Kompleksan proces š koja uključuje proteine prokariotskog i eukariotskog porekla koji dovode do konstrikcije u centru organele i podele na dve nove: - FtsZ prsten š - Protein iz familije dinamina (ARC3) na š
Organele života i smrti
MITOHONDRIJE Organele života i smrti OTKRIĆE MITOHONDRIJA 1857. Albert Kolliker uređeni nizovi granula u mišićnim ćelijama 1893. Richard Altman bioblasti vrsta bakterija? 1. menjaju oblik 2. umnožavaju
ORGANIZACIJA BILJNE STANICE
NEŢIVI DIO STANICE ORGANIZACIJA BILJNE STANICE A. PROTOPLAST HIJALOPLAZMA (MATRIKS, CITOSOL) STANIČNI ORGANELI PLAZMALEMA LIZOSOMI ENDOPLAZMATSKI RETIKULUM GOLGIJEV APARAT RIBOSOMI SFEROSOMI CITOPLAZMA
CITO T SKE K L E ET E
CITOSKELET ULOGE CITOSKELETNIH ELEMENATA ćelije gajene u kulturi aktinski filamenti mikrotubule intermedijarni filamenti enterocit specifičnost organizacija STRUKTURA -PRATEĆI PROTEINI FUNKCIJA debljina
dinamična mreža proteinskih filamenata građeni od proteina koji mogu spontano da polimerišu u citoskeletne filamente FUNKCIJE: Oblik ćelije Funkciona
CITOSKELET dinamična mreža proteinskih filamenata građeni od proteina koji mogu spontano da polimerišu u citoskeletne filamente FUNKCIJE: Oblik ćelije Funkciona polarnost Pozicioniranje organela Transport
numeričkih deskriptivnih mera.
DESKRIPTIVNA STATISTIKA Numeričku seriju podataka opisujemo pomoću Numeričku seriju podataka opisujemo pomoću numeričkih deskriptivnih mera. Pokazatelji centralne tendencije Aritmetička sredina, Medijana,
3.1 Granična vrednost funkcije u tački
3 Granična vrednost i neprekidnost funkcija 2 3 Granična vrednost i neprekidnost funkcija 3. Granična vrednost funkcije u tački Neka je funkcija f(x) definisana u tačkama x za koje je 0 < x x 0 < r, ili
UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka
UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET Goran Stančić SIGNALI I SISTEMI Zbirka zadataka NIŠ, 014. Sadržaj 1 Konvolucija Literatura 11 Indeks pojmova 11 3 4 Sadržaj 1 Konvolucija Zadatak 1. Odrediti konvoluciju
ELEKTROTEHNIČKI ODJEL
MATEMATIKA. Neka je S skup svih živućih državljana Republike Hrvatske..04., a f preslikavanje koje svakom elementu skupa S pridružuje njegov horoskopski znak (bez podznaka). a) Pokažite da je f funkcija,
Biologija ćelije CITOSKELET
Biologija ćelije CITOSKELET Kompleksna mreža proteinskih filamenata 3 osnovna elementa: 1. Mikrofilamenti (prečnika oko 7 nm) od proteina aktina 2. Intermedijarni filamenti (oko 8-11 nm) - od 6 glavnih
SEKUNDARNE VEZE međumolekulske veze
PRIMARNE VEZE hemijske veze među atomima SEKUNDARNE VEZE međumolekulske veze - Slabije od primarnih - Elektrostatičkog karaktera - Imaju veliki uticaj na svojstva supstanci: - agregatno stanje - temperatura
Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju
RAČUN OSTATAKA 1 1 Prsten celih brojeva Z := N + {} N + = {, 3, 2, 1,, 1, 2, 3,...} Osnovni primer. (Z, +,,,, 1) je komutativan prsten sa jedinicom: sabiranje (S1) asocijativnost x + (y + z) = (x + y)
Kloroplasti. Fotosinteza Mitohondriji Stanično disanje
Kloroplasti Fotosinteza Mitohondriji Stanično disanje http://en.wikipedia.org/wiki/plas tid PLASTIDI Organeli biljnih stanica i stanica algi Proizvodnja i pohranjivanje šećera i drugih molekula Pigmenti
Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A
Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A Ime i prezime: 1. Prikazane su tačke A, B i C i prave a,b i c. Upiši simbole Î, Ï, Ì ili Ë tako da dobijeni iskazi
Svetlosna energija absorbuje se hlorofilima u biljnim ćelijama. Hloroplast
Svetlosna energija absorbuje se hlorofilima u biljnim ćelijama Hloroplast Procesom ćelijskog disanja deponovana energija u šećerima erima prevodi se u ATP i druge energetske metabolite. Istovremeno se
Elementi spektralne teorije matrica
Elementi spektralne teorije matrica Neka je X konačno dimenzionalan vektorski prostor nad poljem K i neka je A : X X linearni operator. Definicija. Skalar λ K i nenula vektor u X se nazivaju sopstvena
Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama.
Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. a b Verovatno a da sluqajna promenljiva X uzima vrednost iz intervala
STUDENT: Šk. godina:
STUDENT: Broj indeksa: Šk. godina: datum overa 1. vežba 2. vežba 3. vežba 4. vežba 5. vežba 6. vežba 7. vežba 8. vežba 9. vežba 10. vežba 11. vežba 12. vežba 13. vežba 14. vežba 15. vežba Vežba broj 1:
TRANSPORT JONA I ORGANSKIH JEDINJENJA KROZ MEMBRANE
TRANSPORT JONA I ORGANSKIH JEDINJENJA KROZ MEMBRANE Transportni mehanizmi na membranama Prema potrebi za energijom i specifičnim učesnicima u transportu postoji 5 načina transporta kroz biološke membrane:
41. Jednačine koje se svode na kvadratne
. Jednačine koje se svode na kvadrane Simerične recipročne) jednačine Jednačine oblika a n b n c n... c b a nazivamo simerične jednačine, zbog simeričnosi koeficijenaa koeficijeni uz jednaki). k i n k
DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović
DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović Novi Sad April 17, 2018 1 / 22 Teorija grafova April 17, 2018 2 / 22 Definicija Graf je ure dena trojka G = (V, G, ψ), gde je (i) V konačan skup čvorova,
Ispitivanje toka i skiciranje grafika funkcija
Ispitivanje toka i skiciranje grafika funkcija Za skiciranje grafika funkcije potrebno je ispitati svako od sledećih svojstava: Oblast definisanosti: D f = { R f R}. Parnost, neparnost, periodičnost. 3
Disanje (Respiracija)
Disanje (Respiracija) Osim fotosinteze, deo primarnog metabolizma biljaka je i proces ćelijskog disanja (respiracija). Dok se u fotosintezi procesima redukcije iz CO2 i vode sintetišu organska jedinjenja,
OM2 V3 Ime i prezime: Index br: I SAVIJANJE SILAMA TANKOZIDNIH ŠTAPOVA
OM V me i preime: nde br: 1.0.01. 0.0.01. SAVJANJE SLAMA TANKOZDNH ŠTAPOVA A. TANKOZDN ŠTAPOV PROZVOLJNOG OTVORENOG POPREČNOG PRESEKA Preposavka: Smičući napon je konsanan po debljini ida (duž pravca upravnog
Kaskadna kompenzacija SAU
Kaskadna kompenzacija SAU U inženjerskoj praksi, naročito u sistemima regulacije elektromotornih pogona i tehnoloških procesa, veoma često se primenjuje metoda kaskadne kompenzacije, u čijoj osnovi su
PRAVA. Prava je u prostoru određena jednom svojom tačkom i vektorom paralelnim sa tom pravom ( vektor paralelnosti).
PRAVA Prava je kao i ravan osnovni geometrijski ojam i ne definiše se. Prava je u rostoru određena jednom svojom tačkom i vektorom aralelnim sa tom ravom ( vektor aralelnosti). M ( x, y, z ) 3 Posmatrajmo
FTN Novi Sad Katedra za motore i vozila. Teorija kretanja drumskih vozila Vučno-dinamičke performanse vozila: MAKSIMALNA BRZINA
: MAKSIMALNA BRZINA Maksimalna brzina kretanja F O (N) F OI i m =i I i m =i II F Oid Princip određivanja v MAX : Drugi Njutnov zakon Dokle god je: F O > ΣF otp vozilo ubrzava Kada postane: F O = ΣF otp
IZRAČUNAVANJE POKAZATELJA NAČINA RADA NAČINA RADA (ISKORIŠĆENOSTI KAPACITETA, STEPENA OTVORENOSTI RADNIH MESTA I NIVOA ORGANIZOVANOSTI)
IZRAČUNAVANJE POKAZATELJA NAČINA RADA NAČINA RADA (ISKORIŠĆENOSTI KAPACITETA, STEPENA OTVORENOSTI RADNIH MESTA I NIVOA ORGANIZOVANOSTI) Izračunavanje pokazatelja načina rada OTVORENOG RM RASPOLOŽIVO RADNO
Računarska grafika. Rasterizacija linije
Računarska grafika Osnovni inkrementalni algoritam Drugi naziv u literaturi digitalni diferencijalni analizator (DDA) Pretpostavke (privremena ograničenja koja se mogu otkloniti jednostavnim uopštavanjem
Pismeni ispit iz matematike Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: ( ) + 1.
Pismeni ispit iz matematike 0 008 GRUPA A Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: λ + z = Ispitati funkciju i nacrtati njen grafik: + ( λ ) + z = e Izračunati
ТЕМПЕРАТУРА СВЕЖЕГ БЕТОНА
ТЕМПЕРАТУРА СВЕЖЕГ БЕТОНА empertur sežeg beton menj se tokom remen i zisi od ećeg broj utijnih prmetr: Početne temperture mešine (n izsku iz mešie), emperture sredine, opote hidrtije ement, Rzmene topote
18. listopada listopada / 13
18. listopada 2016. 18. listopada 2016. 1 / 13 Neprekidne funkcije Važnu klasu funkcija tvore neprekidne funkcije. To su funkcije f kod kojih mala promjena u nezavisnoj varijabli x uzrokuje malu promjenu
OBRTNA TELA. Vladimir Marinkov OBRTNA TELA VALJAK
OBRTNA TELA VALJAK P = 2B + M B = r 2 π M = 2rπH V = BH 1. Zapremina pravog valjka je 240π, a njegova visina 15. Izračunati površinu valjka. Rešenje: P = 152π 2. Površina valjka je 112π, a odnos poluprečnika
lat: nucleus = jezgra
JEZGRA lat: nucleus = jezgra glavna karakteristika koja označava razliku između eukariotskih i prokariotskih stanica je prisutnost jezgre kod eukariota. U njemu se nalazi DNK, u kojoj su uskladištene informacije
Eliminacijski zadatak iz Matematike 1 za kemičare
Za mnoge reakcije vrijedi Arrheniusova jednadžba, koja opisuje vezu koeficijenta brzine reakcije i temperature: K = Ae Ea/(RT ). - T termodinamička temperatura (u K), - R = 8, 3145 J K 1 mol 1 opća plinska
10. STABILNOST KOSINA
MEHANIKA TLA: Stabilnot koina 101 10. STABILNOST KOSINA 10.1 Metode proračuna koina Problem analize tabilnoti zemljanih maa vodi e na određivanje odnoa između rapoložive mičuće čvrtoće i proečnog mičućeg
Fotosinteza. Fotosinteza. Biljke. Autotrofi. Izv. prof. dr. sc. Lidija Šver. fotoautotrofi
Fotosinteza Izv. prof. dr. sc. Lidija Šver Fotosinteza Pretvara sunčevu energiju u kemijsku Autotrofi koriste anorganske tvari i energiju da bi proizveli organske molekule; proizvođači kemoautotrofi (neke
Fotosinteza. Fotosinteza. Biljke. Autotrofi. Izv. prof. dr. sc. Lidija Šver. fotoautotrofi
Fotosinteza Izv. prof. dr. sc. Lidija Šver Fotosinteza Pretvara sunčevu energiju u kemijsku Autotrofi koriste anorganske tvari i energiju da bi proizveli organske molekule; proizvođači kemoautotrofi (neke
PREDNAPETI BETON Primjer nadvožnjaka preko autoceste
PREDNAPETI BETON Primjer nadvožnjaka preko autoceste 7. VJEŽBE PLAN ARMATURE PREDNAPETOG Dominik Skokandić, mag.ing.aedif. PLAN ARMATURE PREDNAPETOG 1. Rekapitulacija odabrane armature 2. Određivanje duljina
( ) ( ) 2 UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET. Zadaci za pripremu polaganja kvalifikacionog ispita iz Matematike. 1. Riješiti jednačine: 4
UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET Riješiti jednačine: a) 5 = b) ( ) 3 = c) + 3+ = 7 log3 č) = 8 + 5 ć) sin cos = d) 5cos 6cos + 3 = dž) = đ) + = 3 e) 6 log + log + log = 7 f) ( ) ( ) g) ( ) log
SEMINAR IZ KOLEGIJA ANALITIČKA KEMIJA I. Studij Primijenjena kemija
SEMINAR IZ OLEGIJA ANALITIČA EMIJA I Studij Primijenjena kemija 1. 0,1 mola NaOH je dodano 1 litri čiste vode. Izračunajte ph tako nastale otopine. NaOH 0,1 M NaOH Na OH Jak elektrolit!!! Disoira potpuno!!!
Bioenergetski i globalni značaj
Bioenergetski i globalni značaj aj Transformacija energije: svetlosna električna hemijska (energija makroenergetskih jedinjenja) sinteza organskih materija. FOTOSINTEZA VODA+SVETLOST HEMIJSKA ENERG HLOROFIL
Mitohondriji i kloroplasti Stanično disanje Fotosinteza Evolucija metaboličkih reakcija
Mitohondriji i kloroplasti Stanično disanje Fotosinteza Evolucija metaboličkih reakcija MITOHONDRIJI -u svim eukariotskim stanicama -njihov broj ovisi o metaboličkoj aktivnosti stanice (nekoliko stotina
Trigonometrija 2. Adicijske formule. Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto
Trigonometrija Adicijske formule Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto Razumijevanje postupka izrade složenijeg matematičkog problema iz osnova trigonometrije
SISTEMI NELINEARNIH JEDNAČINA
SISTEMI NELINEARNIH JEDNAČINA April, 2013 Razni zapisi sistema Skalarni oblik: Vektorski oblik: F = f 1 f n f 1 (x 1,, x n ) = 0 f n (x 1,, x n ) = 0, x = (1) F(x) = 0, (2) x 1 0, 0 = x n 0 Definicije
Strukture podataka i algoritmi 1. kolokvij 16. studenog Zadatak 1
Strukture podataka i algoritmi 1. kolokvij Na kolokviju je dozvoljeno koristiti samo pribor za pisanje i službeni šalabahter. Predajete samo papire koje ste dobili. Rezultati i uvid u kolokvije: ponedjeljak,
Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011.
Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika Monotonost i ekstremi Katica Jurasić Rijeka, 2011. Ishodi učenja - predavanja Na kraju ovog predavanja moći ćete:,
METABOLIZAM UGLJENIH HIDRATA
METABOLIZAM UGLJENIH HIDRATA 14.02.2018. Zbirni pregled glikolize i ciklusa trikarboksilnih kiselina Glikoliza omogućava oksidaciju glukoze u uslovima sa ili bez O 2. U uslovima prisustva O 2,
XI dvoqas veжbi dr Vladimir Balti. 4. Stabla
XI dvoqas veжbi dr Vladimir Balti 4. Stabla Teorijski uvod Teorijski uvod Definicija 5.7.1. Stablo je povezan graf bez kontura. Definicija 5.7.1. Stablo je povezan graf bez kontura. Primer 5.7.1. Sva stabla
PARCIJALNI IZVODI I DIFERENCIJALI. Sama definicija parcijalnog izvoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je,
PARCIJALNI IZVODI I DIFERENCIJALI Sama definicija parcijalnog ivoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je, naravno, naučiti onako kako vaš profesor ahteva. Mi ćemo probati
Teorijske osnove informatike 1
Teorijske osnove informatike 1 9. oktobar 2014. () Teorijske osnove informatike 1 9. oktobar 2014. 1 / 17 Funkcije Veze me du skupovima uspostavljamo skupovima koje nazivamo funkcijama. Neformalno, funkcija
Konstruisanje. Dobro došli na... SREDNJA MAŠINSKA ŠKOLA NOVI SAD DEPARTMAN ZA PROJEKTOVANJE I KONSTRUISANJE
Dobro došli na... Konstruisanje GRANIČNI I KRITIČNI NAPON slajd 2 Kritični naponi Izazivaju kritične promene oblika Delovi ne mogu ispravno da vrše funkciju Izazivaju plastične deformacije Može doći i
S t r a n a 1. 1.Povezati jonsku jačinu rastvora: a) MgCl 2 b) Al 2 (SO 4 ) 3 sa njihovim molalitetima, m. za so tipa: M p X q. pa je jonska jačina:
S t r a n a 1 1.Povezati jonsku jačinu rastvora: a MgCl b Al (SO 4 3 sa njihovim molalitetima, m za so tipa: M p X q pa je jonska jačina:. Izračunati mase; akno 3 bba(no 3 koje bi trebalo dodati, 0,110
3. razred gimnazije- opšti i prirodno-matematički smer ALKENI. Aciklični nezasićeni ugljovodonici koji imaju jednu dvostruku vezu.
ALKENI Acikliči ezasićei ugljovodoici koji imaju jedu dvostruku vezu. 2 4 2 2 2 (etile) viil grupa 3 6 2 3 2 2 prope (propile) alil grupa 4 8 2 2 3 3 3 2 3 3 1-bute 2-bute 2-metilprope 5 10 2 2 2 2 3 2
Mašinsko učenje. Regresija.
Mašinsko učenje. Regresija. Danijela Petrović May 17, 2016 Uvod Problem predviđanja vrednosti neprekidnog atributa neke instance na osnovu vrednosti njenih drugih atributa. Uvod Problem predviđanja vrednosti
Operacije s matricama
Linearna algebra I Operacije s matricama Korolar 3.1.5. Množenje matrica u vektorskom prostoru M n (F) ima sljedeća svojstva: (1) A(B + C) = AB + AC, A, B, C M n (F); (2) (A + B)C = AC + BC, A, B, C M
Cauchyjev teorem. Postoji više dokaza ovog teorema, a najjednostvniji je uz pomoć Greenove formule: dxdy. int C i Cauchy Riemannovih uvjeta.
auchyjev teorem Neka je f-ja f (z) analitička u jednostruko (prosto) povezanoj oblasti G, i neka je zatvorena kontura koja čitava leži u toj oblasti. Tada je f (z)dz = 0. Postoji više dokaza ovog teorema,
TRANSLACIJA. Doc. dr Snežana Marković
TRANSLACIJA Doc. dr Snežana Marković Institut za biologiju i ekologiju Prirodno-matematički fakultet Univerzitet u Kragujevcu BIOSINTEZA PROTEINA - TRANSLACIJA U toku translacije dolazi do specifičnog
HEMIJSKA VEZA TEORIJA VALENTNE VEZE
TEORIJA VALENTNE VEZE Kovalentna veza nastaje preklapanjem atomskih orbitala valentnih elektrona, pri čemu je region preklapanja između dva jezgra okupiran parom elektrona. - Nastalu kovalentnu vezu opisuje
Matematika 1 - vježbe. 11. prosinca 2015.
Matematika - vježbe. prosinca 5. Stupnjevi i radijani Ako je kut φ jednak i rad, tada je veza između i 6 = Zadatak.. Izrazite u stupnjevima: a) 5 b) 7 9 c). d) 7. a) 5 9 b) 7 6 6 = = 5 c). 6 8.5 d) 7.
RIJEŠENI ZADACI I TEORIJA IZ
RIJEŠENI ZADACI I TEORIJA IZ LOGARITAMSKA FUNKCIJA SVOJSTVA LOGARITAMSKE FUNKCIJE OSNOVE TRIGONOMETRIJE PRAVOKUTNOG TROKUTA - DEFINICIJA TRIGONOMETRIJSKIH FUNKCIJA - VRIJEDNOSTI TRIGONOMETRIJSKIH FUNKCIJA
Pismeni ispit iz matematike GRUPA A 1. Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj, zatim naći 4 z.
Pismeni ispit iz matematike 06 007 Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj z = + i, zatim naći z Ispitati funkciju i nacrtati grafik : = ( ) y e + 6 Izračunati integral:
STVARANJE VEZE C-C POMO]U ORGANOBORANA
STVAAJE VEZE C-C PM]U GAAA 2 6 rojne i raznovrsne reakcije * idroborovanje alkena i reakcije alkil-borana 3, Et 2 (ili TF ili diglim) Ar δ δ 2 2 3 * cis-adicija "suprotno" Markovnikov-ljevom pravilu *
M086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost
M086 LA 1 M106 GRP Tema: CSB nejednakost. 19. 10. 2017. predavač: Rudolf Scitovski, Darija Marković asistent: Darija Brajković, Katarina Vincetić P 1 www.fizika.unios.hr/grpua/ 1 Baza vektorskog prostora.
HORMONSKA REGULACIJA METABOLIZMA
HORMONSKA REGULACIJA METABOLIZMA HORMONSKA REGULACIJA METABOLIZMA - Definicija - Bazalni metabolizam - Faktori od uticaja: METABOLIZAM - Zastupljenost skeletnih mišića u ukupnoj telesnoj masi - Uzrast
Prvi kolokvijum. y 4 dy = 0. Drugi kolokvijum. Treći kolokvijum
27. septembar 205.. Izračunati neodredjeni integral cos 3 x (sin 2 x 4)(sin 2 x + 3). 2. Izračunati zapreminu tela koje nastaje rotacijom dela površi ograničene krivama y = 3 x 2, y = x + oko x ose. 3.
Program za tablično računanje Microsoft Excel
Program za tablično računanje Microsoft Excel Teme Formule i funkcije Zbrajanje Oduzimanje Množenje Dijeljenje Izračun najveće vrijednosti Izračun najmanje vrijednosti 2 Formule i funkcije Naravno da je
SINTEZA SAHAROZE IN ŠKROBA
SINTEZA SAHAROZE IN ŠKROBA Univerza v Ljubljani Biotehniška fakulteta Oddelek za agronomijo Stroma kloroplasta Škrob (primarni ali asimilacijski) Calvinov cikel Sladkor (trioza) Sladkor (trioza) Pi Sladkor
Dvanaesti praktikum iz Analize 1
Dvaaesti praktikum iz Aalize Zlatko Lazovi 20. decembar 206.. Dokazati da fukcija f = 5 l tg + 5 ima bar jedu realu ulu. Ree e. Oblast defiisaosti fukcije je D f = k Z da postoji ula fukcije a 0, π 2.
Program testirati pomoću podataka iz sledeće tabele:
Deo 2: Rešeni zadaci 135 Vrednost integrala je I = 2.40407 42. Napisati program za izračunavanje koeficijenta proste linearne korelacije (Pearsonovog koeficijenta) slučajnih veličina X = (x 1,..., x n
IZVODI ZADACI ( IV deo) Rešenje: Najpre ćemo logaritmovati ovu jednakost sa ln ( to beše prirodni logaritam za osnovu e) a zatim ćemo
IZVODI ZADACI ( IV deo) LOGARITAMSKI IZVOD Logariamskim izvodom funkcije f(), gde je >0 i, nazivamo izvod logarima e funkcije, o jes: (ln ) f ( ) f ( ) Primer. Nadji izvod funkcije Najpre ćemo logarimovai
NUKLEUS. 1) STRUKTURA (hromozomske teritorije, nukleusne organele) 2) FUNKCIJA (formiranje nukleusnih prekursora za sintezu proteina u citoplazmi)
NUKLEUS 1) STRUKTURA (hromozomske teritorije, nukleusne organele) 2) FUNKCIJA (formiranje nukleusnih prekursora za sintezu proteina u citoplazmi) Saznanja o ćelijama do kojih se došlo posredstvom novih
FTN Novi Sad Katedra za motore i vozila. Teorija kretanja drumskih vozila Vučno-dinamičke performanse vozila: MAKSIMALNA BRZINA
: MAKSIMALNA BRZINA Maksimalna brzina kretanja F O (N) F OI i m =i I i m =i II F Oid Princip određivanja v MAX : Drugi Njutnov zakon Dokle god je: F O > ΣF otp vozilo ubrzava Kada postane: F O = ΣF otp
METABOLIZAM I REGULACIJA HISTONSKIH IRNK "ŽIVOT
METABOLIZAM I REGULACIJA HISTONSKIH IRNK "ŽIVOT BEZ POLI-A REPA" Histoni su primarne proteinske komponente hromatina. Na početku se smatralo da su uglavnom uključeni u pakovanje DNK, odnosno da su važni
REGIONALNO-METAMORFNE STENE ( ºC; 2-10 kbar)
REGIONALNO-METAMORFNE STENE (200-800ºC; 2-10 kbar) PODELA PREMA TEKSTURI 1. ŠKRILJAVE I 2. MASIVNE METAMORFNE STENE PODELA PREMA STEPENU KRISTALINITETA (NE ZAVISI OD STEPENA METAMORFIZMA) 1. STENE VISOKOG
5. Karakteristične funkcije
5. Karakteristične funkcije Profesor Milan Merkle emerkle@etf.rs milanmerkle.etf.rs Verovatnoća i Statistika-proleće 2018 Milan Merkle Karakteristične funkcije ETF Beograd 1 / 10 Definicija Karakteristična
Stanični kostur CITOSKELET. Uloge citoskeleta. Citoskelet. Mikrotubuli (mikrocjevčice) Citoskelet Međustanične veze Stanična stijenka
Citoskelet Međustanične veze Stanična CITOSKELET (grč. kytos + skeleton, osušeno tijelo, kostur) Stanični kostur Izv. prof. dr. sc. Lidija Šver Citoskelet Mreža vlakana, niti koja se proteže kroz citoplazmu
Betonske konstrukcije 1 - vežbe 3 - Veliki ekscentricitet -Dodatni primeri
Betonske konstrukcije 1 - vežbe 3 - Veliki ekscentricitet -Dodatni primeri 1 1 Zadatak 1b Čisto savijanje - vezano dimenzionisanje Odrediti potrebnu površinu armature za presek poznatih dimenzija, pravougaonog
Inženjerska grafika geometrijskih oblika (5. predavanje, tema1)
Inženjerska grafika geometrijskih oblika (5. predavanje, tema1) Prva godina studija Mašinskog fakulteta u Nišu Predavač: Dr Predrag Rajković Mart 19, 2013 5. predavanje, tema 1 Simetrija (Symmetry) Simetrija
Novi Sad god Broj 1 / 06 Veljko Milković Bulevar cara Lazara 56 Novi Sad. Izveštaj o merenju
Broj 1 / 06 Dana 2.06.2014. godine izmereno je vreme zaustavljanja elektromotora koji je radio u praznom hodu. Iz gradske mreže 230 V, 50 Hz napajan je monofazni asinhroni motor sa dva brusna kamena. Kada
Iskazna logika 3. Matematička logika u računarstvu. novembar 2012
Iskazna logika 3 Matematička logika u računarstvu Department of Mathematics and Informatics, Faculty of Science,, Serbia novembar 2012 Deduktivni sistemi 1 Definicija Deduktivni sistem (ili formalna teorija)
( , 2. kolokvij)
A MATEMATIKA (0..20., 2. kolokvij). Zadana je funkcija y = cos 3 () 2e 2. (a) Odredite dy. (b) Koliki je nagib grafa te funkcije za = 0. (a) zadanu implicitno s 3 + 2 y = sin y, (b) zadanu parametarski
PRIMJER 3. MATLAB filtdemo
PRIMJER 3. MATLAB filtdemo Prijenosna funkcija (IIR) Hz () =, 6 +, 3 z +, 78 z +, 3 z +, 53 z +, 3 z +, 78 z +, 3 z +, 6 z, 95 z +, 74 z +, z +, 9 z +, 4 z +, 5 z +, 3 z +, 4 z 3 4 5 6 7 8 3 4 5 6 7 8
PT ISPITIVANJE PENETRANTIMA
FSB Sveučilišta u Zagrebu Zavod za kvalitetu Katedra za nerazorna ispitivanja PT ISPITIVANJE PENETRANTIMA Josip Stepanić SADRŽAJ kapilarni učinak metoda ispitivanja penetrantima uvjeti promatranja SADRŽAJ
Funkcije dviju varjabli (zadaci za vježbu)
Funkcije dviju varjabli (zadaci za vježbu) Vidosava Šimić 22. prosinca 2009. Domena funkcije dvije varijable Ako je zadano pridruživanje (x, y) z = f(x, y), onda se skup D = {(x, y) ; f(x, y) R} R 2 naziva
Osnovni fiziološki procesi u biljkama
Modul: Osnove agroekologije Tematska cjelina: Ekofiziologija bilja prof. dr. sc. Irena Jug Osnovni fiziološki procesi u biljkama FOTOSINTEZA Fotosinteza je u živom svijetu jedinstveni fizikalno kemijski
(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k.
1 3 Skupovi brojeva 3.1 Skup prirodnih brojeva - N N = {1, 2, 3,...} Aksiom matematičke indukcije Neka je N skup prirodnih brojeva i M podskup od N. Ako za M vrijede svojstva: 1) 1 M 2) n M (n + 1) M,
1.4 Tangenta i normala
28 1 DERIVACIJA 1.4 Tangenta i normala Ako funkcija f ima derivaciju u točki x 0, onda jednadžbe tangente i normale na graf funkcije f u točki (x 0 y 0 ) = (x 0 f(x 0 )) glase: t......... y y 0 = f (x
7 Algebarske jednadžbe
7 Algebarske jednadžbe 7.1 Nultočke polinoma Skup svih polinoma nad skupom kompleksnih brojeva označavamo sa C[x]. Definicija. Nultočka polinoma f C[x] je svaki kompleksni broj α takav da je f(α) = 0.
- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova)
MEHANIKA 1 1. KOLOKVIJ 04/2008. grupa I 1. Zadane su dvije sile F i. Sila F = 4i + 6j [ N]. Sila je zadana s veličinom = i leži na pravcu koji s koordinatnom osi x zatvara kut od 30 (sve komponente sile
Sistemi veštačke inteligencije primer 1
Sistemi veštačke inteligencije primer 1 1. Na jeziku predikatskog računa formalizovati rečenice: a) Miloš je slikar. b) Sava nije slikar. c) Svi slikari su umetnici. Uz pomoć metode rezolucije dokazati
Put pentoza fosfata. B. Mildner. Put pentoza fosfata
Put pentoza fosfata B. Mildner Put pentoza fosfata Svrha ovog puta je: A) da se stanici omogući dovoljno NADPH, koji služi kao reducens u biosintetskim reakcijama kao i u zaštiti stanica od kisikovih radikala.
APROKSIMACIJA FUNKCIJA
APROKSIMACIJA FUNKCIJA Osnovni koncepti Gradimir V. Milovanović MF, Beograd, 14. mart 2011. APROKSIMACIJA FUNKCIJA p.1/46 Osnovni problem u TA Kako za datu funkciju f iz velikog prostora X naći jednostavnu
Aminokiseline. Anabolizam azotnihjedinjenja: Biosinteza aminokiselina, glutationa i biološki aktivnih amina 22.12.2014
Anabolizam azotnihjedinjenja: Biosinteza aminokiselina, glutationa i biološki aktivnih amina Predavanja iz opšte biohemije Školska 2014/2015. godina Aminokiseline 1 Metabolizam aminokiselina Proteini iz
POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE
**** MLADEN SRAGA **** 011. UNIVERZALNA ZBIRKA POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE SKUP REALNIH BROJEVA α Autor: MLADEN SRAGA Grafički urednik: BESPLATNA - WEB-VARIJANTA Tisak: M.I.M.-SRAGA
CILJNA MESTA DEJSTVA LEKOVA
FARMACEUTSKA HEMIJA 1 CILJNA MESTA DEJSTVA LEKVA Predavač: Prof. dr Slavica Erić Ciljna mesta dejstva leka CILJNA MESTA NA MLEKULARNM NIVU: lipidi (lipidi ćelijske membrane) ugljeni hidrati (obeleživači
PP-talasi sa torzijom
PP-talasi sa torzijom u metrički-afinoj gravitaciji Vedad Pašić i Dmitri Vassiliev V.Pasic@bath.ac.uk D.Vassiliev@bath.ac.uk Department of Mathematics University of Bath PP-talasi sa torzijom p. 1/1 Matematički
Računarska grafika. Rasterizacija linije
Računarska grafika Osnovni inkrementalni algoritam Drugi naziv u literaturi digitalni diferencijalni analizator (DDA) Pretpostavke (privremena ograničenja koja se mogu otkloniti jednostavnim uopštavanjem
Ĉetverokut - DOMAĆA ZADAĆA. Nakon odgledanih videa trebali biste biti u stanju samostalno riješiti sljedeće zadatke.
Ĉetverokut - DOMAĆA ZADAĆA Nakon odgledanih videa trebali biste biti u stanju samostalno riješiti sljedeće zadatke. 1. Duljine dijagonala paralelograma jednake su 6,4 cm i 11 cm, a duljina jedne njegove
MIKOLOGIJA (ОА-БЕ7) Prof. dr Jelena Vukojević. Dr Jasmina Ćilerdžić Dr Aleksandar Knežević doktorant Milica Galić
MIKOLOGIJA (ОА-БЕ7) Prof. dr Jelena Vukojević Prof. dr Mirjana Stajić Dr Jasmina Ćilerdžić Dr Aleksandar Knežević doktorant Milica Galić OCENA ZNANJA Metode izvođenja nastave: teoretska nastava i praktične
Riješeni zadaci: Nizovi realnih brojeva
Riješei zadaci: Nizovi realih brojeva Nizovi, aritmetički iz, geometrijski iz Fukciju a : N R azivamo beskoači) iz realih brojeva i ozačavamo s a 1, a,..., a,... ili a ), pri čemu je a = a). Aritmetički