Prednáška Fourierove rady. Matematická analýza pre fyzikov IV. Jozef Kise lák
|
|
- Ευρώπη Βουρδουμπάς
- 6 χρόνια πριν
- Προβολές:
Transcript
1 Prednáška Fourierove rady Základná myšlienka: Nech x Haφ 1,φ 2,...,φ n,... je ortonormálny systém v H, dá sa tento prvok rozvinút do radu x=c 1 φ 1 + c 2 φ ,c n φ n +...? Ako nájdeme c i, i=1, 2,...? Vynásobme obe strany skalárne funkciouφ i, potom x,φ i =c 1 φ 1,φ i +c 2 φ 2,φ i +...,c n φ n,φ i + =c i, i=1, 2,... Pokial nepovieme inak, hovoríme o konvergencii v priestore H v klasickom zmysle, tj. o konvergencii v norme =,. Definícia Súčet prvých n členov Fourierovho radu prvku x podl a systému{x n } n N nazývame čiastočný súčet Fourierovho radu prvku x a označujeme ho S n (x). Teda S n (x) := n c k x k. k=1 Pri kovergencii Fourierovho radu prvku x budeme teda hovorit o konvergencii čiastočných súčtov tohto Fourierovho radu (v danej norme, teda S n (x) x 0). 97
2 Veta (O jednoznačnosti). Nech{x n } n N je ortogonálny systém v H. Ak rad c n x n konverguje k x, potom koeficienty c n sú určené vzt ahom c n = x,x n x n 2 Definícia nazývame n-tým Fou- Ak{x n } n N je ortogonálny systém v H, potom číslo c n = x,x n x n 2 rierovým koeficientom prvku x podl a tohto systému a rad nazývame Fourierovým radom prvku x. x, x n x n 2 x n Poznámka Z vety o jednoznačnosti vyplýva, že Fourierov rad l ubovol ného prvku x konverguje a je zároveň Fourierovým radom svojho súčtu y. Nedokázali sme ale, že tento Fourierovov rad prvku x konverguje práve k tomuto prvku. Vo všeobecnosti to ani nie je pravda, vid nasledujúci príklad, kde y x. Taktiež nie je každý rad c n x n Fourierovým radom nejakého prvku x. Príklad Systém{sin nx}, n N je ortogonálny v H=L 2 (0, 2π), ale Fourierov rad funkcie f (x)=cos x je podl a totho systému rad samých núl a teda k f nekonverguje. Zhrnieme si teda otvorené otázky. 1. Konverguje v H Fourierov rad každého prvku x H? 2. Kedy konverguje Fourierov rad prvku x Hk tomuto prvku? 3. Kedy pre každé x Hkonverguje Fourierov rad prvku x Hk tomuto prvku? 4. Aké musia byt koeficienty c n, aby rad c n x n konvergoval v H? 98
3 Najpr uvedieme tvrdenie, ktoré hovorí o vyjadrení blízkosti čiastočných súčtov Fourierovho radu daného prvku x. Veta (Besselova identita). Platí S n (x) x 2 = x 2 n c k 2 x k 2. k=1 Poznámka Ortogonálna množina funkcií{x 1,...,x n } generuje lineárny podpriestor priestoru H. Funkcia (prvok) x vo všeobecnosti v tomto podpriestore neleží. Ak uvážime Besselovmu identitu, je vidiet, že n-tý čiastočný súcet Fourierovho radu funkcie x je vlastne jej kolmým priemetom do podpriestoru tvoreného množinou funkcií{x 1,...,x n }. Nasledujúca veta hovorí, že zo všetkých možných čiastočných súčtov má najmenšiu odchýlku od daného prvku x práve čiastočný súčet jeho Fourierovho radu. Veta Pre l ubovol né T n = n a k x k a pre S n (x) z platí k=1 S n (x) x T n x, pričom rovnost nastáva práve pre T n = S n (x), 99
4 Veta (Besselova nerovnost ). Pre x Hplatí (i) x 2 c n 2 x n 2, (ii) rad (iii) rad c n 2 x n 2 konverguje, lim n c n x n =0, c n x n konverguje v H. Z vety o jednoznačnosti okamžite vyplýva nasledujúce tvrdenie. Veta (Parsevalova rovnost ). Fourierov rad prvku x konverguje k tomuto prvku práve vtedy, ak platí x 2 = c n 2 x n 2. Prečo vlastne neudávame len rovnost už vo vete 6.1.9? Lebo Besselova nerovnost platí všeobecnejšie v l ubovol nom Hilbertovom priestore, kde si zvolíme nejaký ortogonálny systém, podl a ktorého funkciu rozvíjame. V prípade, že tento systém je úplný, dostávame analogickú Parsevalovu rovnost. Uvedieme tvrdenie, ktoré nám dáva odpoved na otázky č. 1,4. Veta (Rieszova-Fisherova). Rad a n x n konverguje (v H) ak konverguje rad a n 2 x n 2. Ak je táto podmienka splnená, potom je rad a n x n Fourierovým radom svojho súčtu. Odpoved na otázku 3 súvisí s bohatost ou systému{x n, n N} - hovoríme o úplnosti daného systému. Odpoved na otázku č. 2 je zrejme tá, že prvok x musí byt z lineárneho obalu systému{x n } n N. 100
5 Veta Nasledujúce podmienky sú ekvivalentné: I.{x n } n N je úplný. II. Pre každé x Hplatí Parsevalova rovnost. III. Pre každé x Hjeho Fourierov rad podl a systému{x n } n N konverguje k x. IV. Množina všetkých lineárnych kombinácií konečne vel a prvkov zo systému {x n } n N je hustá v H. Veta Nech{x n } n N je úplný ortogonálny systém vl 2 w(a, b) a{y n } n N je úplný ortogonálny systém vl 2 w(c, d). Potom{x n y m } n,m N je úplný ortogonálny systém vl 2 w((a, b) (c, d)) Trigonometrické rady Myšlienka konštrukcie Fourierových trigonometrických radov je založená na snahe aproximovat reálne funkcie reálnej premennej pomocou trigonometrických funkcií sin a cos. Našim ciel om bude vyjasnenie podmienok pre funkciu f, definovanú na intervale ( π,π), ktoré zaručia jej rozvinutie do radu. a (a n cos nx+b n sin nx), (6.1) kde a n, b n C. Taktiež nás zaujíma charakter konvergencie takejto rady. Ak si označíme čiastočný súčet rozvoja funkcie f ako s 0 (x; f )= a 0 2, s p(x; f )= a p (a n cos nx+b n sin nx), p N, 101
6 potom môžeme (pomocou známych vzorcov) čiastočný súčet zapísat pomocou pričom p c n e inx, p N 0, n= p Rad teda formálne zapisujeme aj v tvare c 0 = a 0 2, c n= a n ib n, c n = a n+ ib n, n N. 2 2 Poznámka n= c n e inx. (6.2) V niektorej literatúre sa stretávame s Fourierovým radom (polynómom) v tvare P 0 n 2 + P k cos (kωx+φ k ), k=1 kdeω>0 aφ k ( π,π], k=1,...,n. Je to kvôli fyzikálnej interpretácii zložiek, tj. číslo P 0 2 je stacionárna a P k cos (kωx+φ k ) je k-ta harmonická zložka rozloženého signálu, kde P k, resp.φ k je amplitúda, resp. počiatočná fáza k-tej harmonickej zložky. Veta (O jednoznačnosti). Nech f L 1 ( π,π) a nech rad (6.1) resp. (6.2) konverguje rovnomerne na [ π,π] k f. Potom platí: a n = 1 π b n = 1 π π π π π f (x) cos nx dx, n N 0, f (x) sin nx dx, n N, (6.3) resp. (6.4) c n = 1 2π π π f (x)e inx dx, n Z. (6.5) 102
7 Poznámka Ked že pre čísla a n, b n a c n z predchádzajúcej vety platia vzájomné vzt ahy, tak čiastočné súčty oboch radov sú rovnaké. Fourierove koeficienty rozvoja funkcie f L 1 ( π,π) nezávisia na hodnotách funkcie f na množine nulovej miery. Ked že systém goniometrických funkcií, podl a ktorého rozvíjame danú funkciu, sú 2π periodické, sú také aj čiastočné súčty radu a ak existuje aj súčet tohto radu. Preto sa možno obmedzit na skúmanie takýchto funkcií. Prejdeme k skúmaniu bodovej resp. rovnomernej konvergencie Fourierových radoch. V praxi sa často stretávame s funkciami (a ich deriváciami), ktoré tvoria nasledujúcu triedu funkcií. Definícia Hovoríme, že funkcia f je po častiach spojité na intervale [a, b], akk existujú body a= x 0 < x 1 < < x n 1 < x n = b tak, že na intervaloch (x i 1, x i ), i=1,...,n je f spojitá a v týchto bodoch existujú vlastné jednostranné limity. Symbolom C a 2π budeme označovat množinu 2π periodických funkcií (na R), ktoré sú na intervale [a, a+2π], a Rpo častiach spojité. Problém Prečo platí, že ak f, f C a 2π potom je f aj zl1 (a, a+2π) L 2 (a, a+2π)? Označme si Fourierov rad funkcie f ako s(x; f ) podl a systému goniometrických funkcií. Potom platí nasledujúce tvrdenie o bodovej konvergencii, ktoré hovorí, že pre rozmuné funkcie konverguje Fourierov rad danej funkcie v každom bode a v bodoch spojitosti k funkčnej hodnote tejto funkcie. 103
8 Veta Nech je f, f C a 2π, potom pre každé x Rje s(x; f )= 1 2 ( lim t x 0 f (t)+ lim t x + 0 ) f (t). Navyše je táto konvergencia rovnomerná na uzavretých podintervaloch intervalu, kde je f spojitá a ak je f C(R), tak aj na celomr. Dôsledok Ak je f, f C π 2π f na [ π,π] a f ( π)= f (π), potom jej Fourierov rad konverguje rovnomerne k Ak chceme rady derivovat po členoch ( napr. pri riešení rovníc matematickej fyziky), potrebujeme vo všeobecnosti rovnomernú konvergenciu a príslušnú hladkost danej funkcie. V tomto prípade nám stačí hladkost derivácií funkcie f po častiach. Veta (Derivovanie po členoch). Nech f (k 1) C(R) je 2π periodická a f (k), f (k+1) C a 2π, k 0 nar, potom pre s=0, 1,...,k rady n s ( a n + b n ), n= n s c n, konvergujú. Navyše Fourierov rad funkcie f k nej konverguje rovnomerne na R a je možné ho k-krát derivovat po členoch, pričom tieto rady kovergujú rovnomerne na R. Poznámka Je dobré si uvedomit, že rady vytvorené z derivácií členov Fourierovho radu funkcie f sú Fourierovými radmi derivácií tejto funkcie, lebo z periodičnosti f je c 0 = 0 pre f (s), s>0. 104
9 (a) Periodické predĺženie funkcie f (x)=sgn x (def. na intervale π,π.) (b) f (x)= 4 π n=0 sin (2n+1)x 2n+1 Obr. 6.1: Fourierov rad periodickej funkcie. Veta (Integrovanie po členoch). Nech je f C π 2π a π f (x) dx=0, potom je funkcia F(x)= x f (x) dx aj jej derivácia π 0 z C π 2π a je spojitá nar. Navyše Fourierov rad funkcie f k nej konverguje rovnomerne naraje rovný radu, ktorý dostaneme integráciou po členoch od 0 do x. Poznámka Podmienka π f (x) dx=0 nám zaručí, že aj F je 2π periodická. Ak nie je splnená π táto podmienka, potom F(x) := x f (t) dt a 0 x už je 2π periodická. 0 2 Definícia Periodickým predĺžením funkcie f C a 2π, a Rbudeme nazývat funkciu f (x)= f (x), f (x 2kπ), 1 ( 2 ) lim f (t)+ lim f (t) t a t a + ak x (a, a+2π), ak x (a+2kπ, a+2(k+1)π), k Z,, ak x=a+2kπ, k Z. Podobne sa dá definovat periodické predĺženie na intervale inej dĺžky. Zavedieme si aj nové typy predĺžení, ktoré majú dobré vlastnosti. 105
10 Definícia (Ne)párnym periodickým predĺžením funkcie f C 0 π budeme nazývat funkciu f, ktorá vznikne tak, že najprv predĺžime f na [ π,π] : f ( x)= f (x), x [ π, 0],tj. (ne)párne, a potom túto funkciu rozšírime periodicky na celér. 106
Príklady na precvičovanie Fourierove rady
Príklady na precvičovanie Fourierove rady Ďalším významným typom funkcionálnych radov sú trigonometrické rady, pri ktorých sú jednotlivé členy trigonometrickými funkciami. Konkrétne, jedná sa o rady tvaru
Matematika Funkcia viac premenných, Parciálne derivácie
Matematika 2-01 Funkcia viac premenných, Parciálne derivácie Euklidovská metrika na množine R n všetkých usporiadaných n-íc reálnych čísel je reálna funkcia ρ: R n R n R definovaná nasledovne: Ak X = x
Matematika prednáška 4 Postupnosti a rady 4.5 Funkcionálne rady - mocninové rady - Taylorov rad, MacLaurinov rad
Matematika 3-13. prednáška 4 Postupnosti a rady 4.5 Funkcionálne rady - mocninové rady - Taylorov rad, MacLaurinov rad Erika Škrabul áková F BERG, TU Košice 15. 12. 2015 Erika Škrabul áková (TUKE) Taylorov
1. Limita, spojitost a diferenciálny počet funkcie jednej premennej
. Limita, spojitost a diferenciálny počet funkcie jednej premennej Definícia.: Hromadný bod a R množiny A R: v každom jeho okolí leží aspoň jeden bod z množiny A, ktorý je rôzny od bodu a Zadanie množiny
Cvičenie č. 4,5 Limita funkcie
Cvičenie č. 4,5 Limita funkcie Definícia ity Limita funkcie (vlastná vo vlastnom bode) Nech funkcia f je definovaná na nejakom okolí U( ) bodu. Hovoríme, že funkcia f má v bode itu rovnú A, ak ( ε > )(
Goniometrické rovnice a nerovnice. Základné goniometrické rovnice
Goniometrické rovnice a nerovnice Definícia: Rovnice (nerovnice) obsahujúce neznámu x alebo výrazy s neznámou x ako argumenty jednej alebo niekoľkých goniometrických funkcií nazývame goniometrickými rovnicami
6 Limita funkcie. 6.1 Myšlienka limity, interval bez bodu
6 Limita funkcie 6 Myšlienka ity, interval bez bodu Intuitívna myšlienka ity je prirodzená, ale definovať presne pojem ity je značne obtiažne Nech f je funkcia a nech a je reálne číslo Čo znamená zápis
Ekvačná a kvantifikačná logika
a kvantifikačná 3. prednáška (6. 10. 004) Prehľad 1 1 (dokončenie) ekvačných tabliel Formula A je ekvačne dokázateľná z množiny axióm T (T i A) práve vtedy, keď existuje uzavreté tablo pre cieľ A ekvačných
Motivácia Denícia determinantu Výpo et determinantov Determinant sú inu matíc Vyuºitie determinantov. Determinanty. 14. decembra 2010.
14. decembra 2010 Rie²enie sústav Plocha rovnobeºníka Objem rovnobeºnostena Rie²enie sústav Príklad a 11 x 1 + a 12 x 2 = c 1 a 21 x 1 + a 22 x 2 = c 2 Dostaneme: x 1 = c 1a 22 c 2 a 12 a 11 a 22 a 12
Motivácia pojmu derivácia
Derivácia funkcie Motivácia pojmu derivácia Zaujíma nás priemerná intenzita zmeny nejakej veličiny (dráhy, rastu populácie, veľkosti elektrického náboja, hmotnosti), vzhľadom na inú veličinu (čas, dĺžka)
7. FUNKCIE POJEM FUNKCIE
7. FUNKCIE POJEM FUNKCIE Funkcia f reálnej premennej je : - každé zobrazenie f v množine všetkých reálnych čísel; - množina f všetkých usporiadaných dvojíc[,y] R R pre ktorú platí: ku každému R eistuje
Komplexné čísla, Diskrétna Fourierova transformácia 1
Komplexné čísla, Diskrétna Fourierova transformácia Komplexné čísla C - množina všetkých komplexných čísel komplexné číslo: z = a + bi, kde a, b R, i - imaginárna jednotka i =, t.j. i =. komplexne združené
Reálna funkcia reálnej premennej
(ÚMV/MAN3a/10) RNDr. Ivan Mojsej, PhD ivan.mojsej@upjs.sk 18.10.2012 Úvod V každodennom živote, hlavne pri skúmaní prírodných javov, procesov sa stretávame so závislosťou veľkosti niektorých veličín od
7 Derivácia funkcie. 7.1 Motivácia k derivácii
Híc, P Pokorný, M: Matematika pre informatikov a prírodné vedy 7 Derivácia funkcie 7 Motivácia k derivácii S využitím derivácií sa stretávame veľmi často v matematike, geometrii, fyzike, či v rôznych technických
(IP3) (f, g) = (g, f) (symetria), (IP4) (f, f) > 0 pre f 0 (kladná definitnosť). Z podmienok (IP1) (IP4) sa ľahko dokážu rovnosti:
Hilbertove priestory Veľké množstvo aplikácií majú lineárne normované priestory, v ktorých norma je odvodená od skalárneho (vnútorného) súčinu, podobne ako v bežnom trojrozmernom euklidovskom priestore.
Goniometrické substitúcie
Goniometrické substitúcie Marta Kossaczká S goniometrickými funkciami ste sa už určite stretli, pravdepodobne predovšetkým v geometrii. Ich použitie tam ale zďaleka nekončí. Nazačiatoksizhrňme,čoonichvieme.Funkciesínusakosínussadajúdefinovať
ARMA modely čast 2: moving average modely (MA)
ARMA modely čast 2: moving average modely (MA) Beáta Stehlíková Časové rady, FMFI UK, 2014/2015 ARMA modely časť 2: moving average modely(ma) p.1/24 V. Moving average proces prvého rádu - MA(1) ARMA modely
Tomáš Madaras Prvočísla
Prvočísla Tomáš Madaras 2011 Definícia Nech a Z. Čísla 1, 1, a, a sa nazývajú triviálne delitele čísla a. Cele číslo a / {0, 1, 1} sa nazýva prvočíslo, ak má iba triviálne delitele; ak má aj iné delitele,
Matematika 2. časť: Funkcia viac premenných Letný semester 2013/2014
Matematika 2 časť: Funkcia viac premenných Letný semester 2013/2014 RNDr. Jana Pócsová, PhD. Ústav riadenia a informatizácie výrobných procesov Fakulta BERG Technická univerzita v Košiciach e-mail: jana.pocsova@tuke.sk
FUNKCIE N REÁLNYCH PREMENNÝCH
FAKULTA MATEMATIKY, FYZIKY A INFORMATIKY UNIVERZITY KOMENSKÉHO V BRATISLAVE FUNKCIE N REÁLNYCH PREMENNÝCH RNDr. Kristína Rostás, PhD. PREDMET: Matematická analýza ) 2010/2011 1. DEFINÍCIA REÁLNEJ FUNKCIE
Funkcie - základné pojmy
Funkcie - základné pojmy DEFINÍCIA FUNKCIE Nech A, B sú dve neprázdne číselné množiny. Ak každému prvku x A je priradený najviac jeden prvok y B, tak hovoríme, že je daná funkcia z množiny A do množiny
KATEDRA INFORMATIKY FAKULTA MATEMATIKY, FYZIKY A INFORMATIKY UNIVERZITA KOMENSKÉHO, BRATISLAVA FOURIEROVA TRANSFORMÁCIA
KATEDRA INFORMATIKY FAKULTA MATEMATIKY, FYZIKY A INFORMATIKY UNIVERZITA KOMENSKÉHO, BRATISLAVA FOURIEROVA TRANSFORMÁCIA A JEJ POUŽITIE (bakalárska práca) PETER PEREŠÍNI Vedúci: RNDr. Michal Forišek Bratislava,
Lineárna algebra I - pole skalárov, lineárny priestor, lineárna závislosť, dimenzia, podpriestor, suma podpriestorov, izomorfizmus
1. prednáška Lineárna algebra I - pole skalárov, lineárny priestor, lineárna závislosť, dimenzia, podpriestor, suma podpriestorov, izomorfizmus Matematickým základom kvantovej mechaniky je teória Hilbertových
x x x2 n
Reálne symetrické matice Skalárny súčin v R n. Pripomeniem, že pre vektory u = u, u, u, v = v, v, v R platí. dĺžka vektora u je u = u + u + u,. ak sú oba vektory nenulové a zvierajú neorientovaný uhol
ARMA modely čast 2: moving average modely (MA)
ARMA modely čast 2: moving average modely (MA) Beáta Stehlíková Časové rady, FMFI UK, 2011/2012 ARMA modely časť 2: moving average modely(ma) p.1/25 V. Moving average proces prvého rádu - MA(1) ARMA modely
VLASTNÉ ČÍSLA A JORDANOV KANONICKÝ TVAR. Michal Zajac. 3 T b 1 = T b 2 = = = 2b
VLASTNÉ ČÍSLA A JORDANOV KANONICKÝ TVAR Michal Zajac Vlastné čísla a vlastné vektory Pripomeňme najprv, že lineárny operátor T : L L je vzhl adom na bázu B = {b 1, b 2,, b n } lineárneho priestoru L určený
Technická univerzita v Košiciach Fakulta elektrotechniky a informatiky MATEMATIKA II. Zbierka riešených a neriešených úloh
Technická univerzita v Košiciach Fakulta elektrotechniky a informatiky MATEMATIKA II Zbierka riešených a neriešených úloh Anna Grinčová Jana Petrillová Košice 06 Technická univerzita v Košiciach Fakulta
Integrovanie racionálnych funkcií
Integrovanie racionálnych funkcií Tomáš Madaras 2009-20 Z teórie funkcií už vieme, že každá racionálna funkcia (t.j. podiel dvoch polynomických funkcií) sa dá zapísať ako súčet polynomickej funkcie a funkcie
Definícia parciálna derivácia funkcie podľa premennej x. Definícia parciálna derivácia funkcie podľa premennej y. Ak existuje limita.
Teória prednáška č. 9 Deinícia parciálna deriácia nkcie podľa premennej Nech nkcia Ak eistje limita je deinoaná okolí bod [ ] lim. tak túto limit nazýame parciálno deriácio nkcie podľa premennej bode [
4 Reálna funkcia reálnej premennej a jej vlastnosti
Reálna unkcia reálnej premennej a jej vlastnosti Táto kapitola je venovaná štúdiu reálnej unkcie jednej reálnej premennej. Pojem unkcie patrí medzi základné pojmy v matematike. Je to vlastne matematický
Matematika 2. časť: Analytická geometria
Matematika 2 časť: Analytická geometria RNDr. Jana Pócsová, PhD. Ústav riadenia a informatizácie výrobných procesov Fakulta BERG Technická univerzita v Košiciach e-mail: jana.pocsova@tuke.sk Súradnicové
BANACHOVE A HILBERTOVE PRIESTORY
BANACHOVE A HILBERTOVE PRIESTORY 1. ZÁKLADNÉ POJMY Normovaným lineárnym priestorom (NLP) nazývame lineárny (= vektorový) priestor X nad telesom IK, na ktorom je daná nezáporná reálna funkcia : X IR + (norma)
Start. Vstup r. O = 2*π*r S = π*r*r. Vystup O, S. Stop. Start. Vstup P, C V = P*C*1,19. Vystup V. Stop
1) Vytvorte algoritmus (vývojový diagram) na výpočet obvodu kruhu. O=2xπxr ; S=πxrxr Vstup r O = 2*π*r S = π*r*r Vystup O, S 2) Vytvorte algoritmus (vývojový diagram) na výpočet celkovej ceny výrobku s
Obyčajné diferenciálne rovnice
(ÚMV/MAN3b/10) RNDr. Ivan Mojsej, PhD ivan.mojsej@upjs.sk 14.3.2013 Úvod patria k najdôležitejším a najviac prepracovaným matematickým disciplínam. Nielen v minulosti, ale aj v súčastnosti predstavujú
Obvod a obsah štvoruholníka
Obvod a štvoruholníka D. Štyri body roviny z ktorých žiadne tri nie sú kolineárne (neležia na jednej priamke) tvoria jeden štvoruholník. Tie body (A, B, C, D) sú vrcholy štvoruholníka. strany štvoruholníka
Vektorový priestor V : Množina prvkov (vektory), na ktorej je definované ich sčítanie a ich
Tuesday 15 th January, 2013, 19:53 Základy tenzorového počtu M.Gintner Vektorový priestor V : Množina prvkov (vektory), na ktorej je definované ich sčítanie a ich násobenie reálnym číslom tak, že platí:
Jednotkový koreň (unit root), diferencovanie časového radu, unit root testy
Jednotkový koreň (unit root), diferencovanie časového radu, unit root testy Beáta Stehlíková Časové rady, FMFI UK, 2012/2013 Jednotkový koreň(unit root),diferencovanie časového radu, unit root testy p.1/18
MIDTERM (A) riešenia a bodovanie
MIDTERM (A) riešenia a bodovanie 1. (7b) Nech vzhl adom na štandardnú karteziánsku sústavu súradníc S 1 := O, e 1, e 2 majú bod P a vektory u, v súradnice P = [0, 1], u = e 1, v = 2 e 2. Aký predpis bude
Deliteľnosť a znaky deliteľnosti
Deliteľnosť a znaky deliteľnosti Medzi základné pojmy v aritmetike celých čísel patrí aj pojem deliteľnosť. Najprv si povieme, čo znamená, že celé číslo a delí celé číslo b a ako to zapisujeme. Nech a
Spojité rozdelenia pravdepodobnosti. Pomôcka k predmetu PaŠ. RNDr. Aleš Kozubík, PhD. 26. marca Domovská stránka. Titulná strana.
Spojité rozdelenia pravdepodobnosti Pomôcka k predmetu PaŠ Strana z 7 RNDr. Aleš Kozubík, PhD. 6. marca 3 Zoznam obrázkov Rovnomerné rozdelenie Ro (a, b). Definícia.........................................
Planárne a rovinné grafy
Planárne a rovinné grafy Definícia Graf G sa nazýva planárny, ak existuje jeho nakreslenie D, v ktorom sa žiadne dve hrany nepretínajú. D sa potom nazýva rovinný graf. Planárne a rovinné grafy Definícia
1 Úvod Predhovor Sylaby a literatúra Základné označenia... 3
Obsah 1 Úvod 3 1.1 Predhovor...................................... 3 1.2 Sylaby a literatúra................................. 3 1.3 Základné označenia................................. 3 2 Množiny a zobrazenia
viacrozmerných a nekonečnorozmerných priestoroch. A ako nasvedčuje jej názov, pôjde o rovnice nelineárne.
Nelineárna analýza 1. Úvod Na začiatok by bolo načim ako-tak vymedzit, čím sa nelineárna analýza zaoberá. Čitatel by už mal však mat dostatok skúseností, aby vedel, že je to dost t ažké u l ubovol nej
4. Výrokové funkcie (formy), ich definičný obor a obor pravdivosti
4. Výrokové funkcie (formy), ich definičný obor a obor pravdivosti Výroková funkcia (forma) ϕ ( x) je formálny výraz (formula), ktorý obsahuje znak x, pričom x berieme z nejakej množiny M. Ak za x zvolíme
NUMERICKÁ MATEMATIKA. Moderné vzdelávanie pre vedomostnú spoločnosť/ Projekt je spolufinancovaný zo zdrojov EÚ. Fakulta elektrotechniky a informatiky
Moderné vzdelávanie pre vedomostnú spoločnosť/ Projekt je spolufinancovaný zo zdrojov EÚ NUMERICKÁ MATEMATIKA Fakulta elektrotechniky a informatiky Štefan Berežný Táto publikácia vznikla za finančnej podpory
Úvod do lineárnej algebry. Monika Molnárová Prednášky
Úvod do lineárnej algebry Monika Molnárová Prednášky 2006 Prednášky: 3 17 marca 2006 4 24 marca 2006 c RNDr Monika Molnárová, PhD Obsah 2 Sústavy lineárnych rovníc 25 21 Riešenie sústavy lineárnych rovníc
M6: Model Hydraulický systém dvoch zásobníkov kvapaliny s interakciou
M6: Model Hydraulický ytém dvoch záobníkov kvapaliny interakciou Úlohy:. Zotavte matematický popi modelu Hydraulický ytém. Vytvorte imulačný model v jazyku: a. Matlab b. imulink 3. Linearizujte nelineárny
Spojitosť a limity trochu inak
Spojitosť a limity trochu inak Štefan Tkačik Abstrakt Spojitosť funkcie alebo oblastí je základným stavebným kameňom matematickej analýzy. Pochopenie jej podstaty uľahčí chápanie diferenciálneho a integrálneho
G. Monoszová, Analytická geometria 2 - Kapitola III
text obsahuje znenia viet, ktoré budeme dokazovat na prednáškach text je doplnený aj o množstvo poznámok, ich ciel om je dopomôct študentom k lepšiemu pochopeniu pojmov aj súvislostí medzi nimi text je
Moderné vzdelávanie pre vedomostnú spoločnosť Projekt je spolufinancovaný zo zdrojov EÚ M A T E M A T I K A
M A T E M A T I K A PRACOVNÝ ZOŠIT II. ROČNÍK Mgr. Agnesa Balážová Obchodná akadémia, Akademika Hronca 8, Rožňava PRACOVNÝ LIST 1 Urč typ kvadratickej rovnice : 1. x 2 3x = 0... 2. 3x 2 = - 2... 3. -4x
Prechod z 2D do 3D. Martin Florek 3. marca 2009
Počítačová grafika 2 Prechod z 2D do 3D Martin Florek florek@sccg.sk FMFI UK 3. marca 2009 Prechod z 2D do 3D Čo to znamená? Ako zobraziť? Súradnicové systémy Čo to znamená? Ako zobraziť? tretia súradnica
MATEMATICKÁ ANALÝZA 1
UNIVERZITA PAVLA JOZEFA ŠAFÁRIKA V KOŠICIACH Prírodovedecká fakulta Ústav matematických vied Božena Mihalíková, Ján Ohriska MATEMATICKÁ ANALÝZA Vysokoškolský učebný text Košice, 202 202 doc. RNDr. Božena
primitívnoufunkcioukfukncii f(x)=xnamnožinereálnychčísel.avšakaj 2 +1 = x, tedaajfunkcia x2
Neurčitý integrál. Primitívna funkcia a neurčitý integrál Funkcia F(x)sanazývaprimitívnoufunkcioukfunkcii f(x)naintervale(a,b),akpre každé x (a,b)platí F (x)=f(x). Z definície vidíme, že pojem primitívnej
TECHNICKÁ UNIVERZITA V KOŠICIACH STROJNÍCKA FAKULTA MATEMATIKA 1. Funkcia jednej premennej a jej diferenciálny počet
TECHNICKÁ UNIVERZITA V KOŠICIACH STROJNÍCKA FAKULTA MATEMATIKA časťa Funkcia jednej premennej a jej diferenciáln počet Dušan Knežo, Miriam Andrejiová, Zuzana Kimáková 200 RECENZOVALI: prof. RNDr. Jozef
Obsah. 1.1 Reálne čísla a ich základné vlastnosti... 7 1.1.1 Komplexné čísla... 8
Obsah 1 Číselné obory 7 1.1 Reálne čísla a ich základné vlastnosti............................ 7 1.1.1 Komplexné čísla................................... 8 1.2 Číselné množiny.......................................
3. prednáška. Komplexné čísla
3. predáška Komplexé čísla Úvodé pozámky Vieme, že existujú také kvadratické rovice, ktoré emajú riešeie v obore reálych čísel. Študujme kvadratickú rovicu x x + 5 = 0 Použitím štadardej formule pre výpočet
Ján Buša Štefan Schrötter
Ján Buša Štefan Schrötter 1 KOMPLEXNÉ ČÍSLA 1 1.1 Pojem komplexného čísla Väčšine z nás je známe, že druhá mocnina ľubovoľného reálneho čísla nemôže byť záporná (ináč povedané: pre každé x R je x 0). Ako
1-MAT-220 Algebra februára 2012
1-MAT-220 Algebra 1 12. februára 2012 Obsah 1 Grupy 3 1.1 Binárne operácie.................................. 3 1.2 Cayleyho veta.................................... 3 2 Faktorizácia 5 2.1 Relácie ekvivalencie
Diferenciálny a integrálny počet funkcií viac premenných v príkladoch
Univerzita Komenského v Bratislave Fakulta matematiky, fyziky a informatiky Diferenciálny a integrálny počet funkcií viac premenných v príkladoch Martin Kollár, L ubica Kossaczká a Daniel Ševčovič Vysokoškolský
Numerické metódy, pravdepodobnosť a matematická štatistika
Numerické metódy, pravdepodobnosť a matematická štatistika Ján BUŠA Viktor PIRČ Štefan SCHRÖTTER Strana 1 z 262 Košice 2006 RECENZOVALI: Prof. RNDr. Jozef Doboš, CSc. Doc. RNDr. Vladimír Penjak, CSc. Strana
Numerické metódy Učebný text pre bakalárske štúdium
Imrich Pokorný Numerické metódy Učebný text pre bakalárske štúdium Strana 1 z 48 1 Nepresnosť numerického riešenia úloh 4 1.1 Zdroje chýb a ich klasifikácia................... 4 1.2 Základné pojmy odhadu
Metódy vol nej optimalizácie
Metódy vol nej optimalizácie Metódy vol nej optimalizácie p. 1/28 Motivácia k metódam vol nej optimalizácie APLIKÁCIE p. 2/28 II 1. PRÍKLAD: Lineárna regresia - metóda najmenších štvorcov Na základe dostupných
Funkcie komplexnej premennej
(prezentácia k prednáške FKP/10) doc. RNDr., PhD. 1 1 ondrej.hutnik@upjs.sk umv.science.upjs.sk/analyza Prednáška 1 16. februára 2016 Podmienky Obsah nepovinná účast (!prelínanie prednášok a cvičení!)
Prirodzené čísla. Kardinálne čísla
Prirodzené čísla Doteraz sme sa vždy uspokojili s tým, že sme pod množinou prirodzených čísel rozumeli množinu N = { 1, 2,3, 4,5, 6, 7,8,9,10,11,12, } Túto množinu sme chápali intuitívne a presne sme ju
Numerické metódy, pravdepodobnosť a matematická štatistika. Ján BUŠA Viktor PIRČ Štefan SCHRÖTTER
Numerické metódy, pravdepodobnosť a matematická štatistika Ján BUŠA Viktor PIRČ Štefan SCHRÖTTER Košice 2006 RECENZOVALI: Prof. RNDr. Jozef Doboš, CSc. Doc. RNDr. Vladimír Penjak, CSc. Prvé vydanie Za
Matematická analýza pre fyzikov IV.
119 Dodatok - klasické riešenia PDR 8.1. Parciálne diferenciálne rovnice Príklady parciálnych diferenciálnych rovníc: Lalpaceova rovnica u = 0 Helmholtzova rovnica u = λu n Lineárna transportná rovnica
Mini minimaliz acia an BUˇ Koˇ sice 2011
Mini minimalizácia Ján BUŠA Košice 2011 RECENZOVALI: Prof. RNDr. Noname, CSc. Doc. RNDr. Emanname, PhD. Prvé vydanie Za odbornú stránku učebného textu zodpovedá autor. Rukopis neprešiel redakčnou ani jazykovou
PREHĽAD ZÁKLADNÝCH VZORCOV A VZŤAHOV ZO STREDOŠKOLSKEJ MATEMATIKY. Pomôcka pre prípravný kurz
KATEDRA APLIKOVANEJ MATEMATIKY A INFORMATIKY STROJNÍCKA FAKULTA TU KOŠICE PREHĽAD ZÁKLADNÝCH VZORCOV A VZŤAHOV ZO STREDOŠKOLSKEJ MATEMATIKY Pomôcka pre prípravný kurz 8 ZÁKLADNÉ ALGEBRAICKÉ VZORCE ) (a±b)
1 Polynómy a racionálne funkcie Základy Polynómy Cvičenia Racionálne funkcie... 17
Obsah 1 Polynómy a racionálne funkcie 3 11 Základy 3 1 Polynómy 7 11 Cvičenia 13 13 Racionálne funkcie 17 131 Cvičenia 19 Lineárna algebra 3 1 Matice 3 11 Matice - základné vlastnosti 3 1 Cvičenia 6 Sústavy
Matematika 1 Elementárny kalkulus
Matematika Elementárny kalkulus Úvod Prehl ad. Tieto poznámky obsahujú podklady k prednáške Matematika na špecializácii Aplikovaná informatika: jedná sa o 2 dvojhodinových prednášok doplnených dvojhodinovými
ALGEBRA. Číselné množiny a operácie s nimi. Úprava algebrických výrazov
ALGEBRA Číselné množiny a operácie s nimi. Úprava algebrických výrazov Definícia Množinu považujeme za určenú, ak vieme o ľubovoľnom objekte rozhodnúť, či je alebo nie je prvkom množiny. Množinu určujeme
1.1 Zobrazenia a funkcie
1 Teória vypočítateľnosti poznámky z prednášky #1 1.1 Zobrazenia a funkcie Definícia. Čiastočné (totálne) zobrazenie trojice (A, B, f) pre ktoré platí: f A B Ku každému vstupu a A existuje najviac jeden
Metódy vol nej optimalizácie
Metódy vol nej optimalizácie Metódy vol nej optimalizácie p. 1/52 Metódy minimalizácie funkcie jednej premennej Metódy minimalizácie funkcie jednej premennej p. 2/52 Metódy minimalizácie funkcie jednej
7. Dokážte, že z každej nekonečnej množiny môžeme vydeliť spočítateľnú podmnožinu.
Teória množín To, že medzi množinami A, B existuje bijektívne zobrazenie, budeme symbolicky označovať A B alebo A B. Vtedy hovoríme, že množiny A, B sú ekvivalentné. Hovoríme tiež, že také množiny A, B
zlomok poznatel nej časti skutočnosti. Robí tak prostredníctvom svojich pojmov (tento proces môžeme nazvat formalizácia), jej hlavnou úlohou je potom
0 Úvod 1 0 Úvod 0 Úvod 2 Matematika (a platí to vo všeobecnosti pre každú vedu) sa viac či menej úspešne pokúša zachytit istý zlomok poznatel nej časti skutočnosti. Robí tak prostredníctvom svojich pojmov
Obsah. 1.1 Základné pojmy a vzťahy Základné neurčité integrály Cvičenia Výsledky... 11
Obsah Neurčitý integrál 7. Základné pojmy a vzťahy.................................. 7.. Základné neurčité integrály............................. 9.. Cvičenia..........................................3
Teória pravdepodobnosti
2. Podmienená pravdepodobnosť Katedra Matematických metód Fakulta Riadenia a Informatiky Žilinská Univerzita v Žiline 23. februára 2015 1 Pojem podmienenej pravdepodobnosti 2 Nezávislosť náhodných udalostí
Derivácia funkcie. Pravidlá derivovania výrazov obsahujúcich operácie. Derivácie elementárnych funkcií
Derivácia funkcie Derivácia funkcie je jeden z najužitočnejších nástrojov, ktoré používame v matematike a jej aplikáciách v ďalších odboroch. Stručne zhrnieme základné informácie o deriváciách. Podrobnejšie
24. Základné spôsoby zobrazovania priestoru do roviny
24. Základné spôsoby zobrazovania priestoru do roviny Voľné rovnobežné premietanie Presné metódy zobrazenia trojrozmerného priestoru do dvojrozmernej roviny skúma samostatná matematická disciplína, ktorá
Technická univerzita v Košiciach. Zbierka riešených a neriešených úloh. z matematiky. pre uchádzačov o štúdium na TU v Košiciach
Technická univerzita v Košiciach Zbierka riešených a neriešených úloh z matematiky pre uchádzačov o štúdium na TU v Košiciach Martin Bača Ján Buša Andrea Feňovčíková Zuzana Kimáková Denisa Olekšáková Štefan
Symbolická logika. Stanislav Krajči. Prírodovedecká fakulta
Symbolická logika Stanislav Krajči Prírodovedecká fakulta UPJŠ Košice 2008 Názov diela: Symbolická logika Autor: Doc. RNDr. Stanislav Krajči, PhD. Vydala: c UPJŠ Košice, 2008 Recenzovali: Doc. RNDr. Miroslav
JKPo10-T List 1. Nekonečné rady. Mgr. Jana Králiková
JKPo0-T List Nekonečné rady Mgr. Jana Králiková U: Ernest Hemingway povedal: Najľahší spôsob ako stratiť dôveru a úctu mladých je dávať im nekonečné rady. Ž: Poskytnete mi nekonečné rady o nekonečných
DIFERENCÁLNE ROVNICE Matematická analýza (MAN 2c)
Prírodovedecká fakulta Univerzity P. J. Šafárika v Košiciach Božena Mihalíková, Ivan Mojsej Strana 1 z 43 DIFERENCÁLNE ROVNICE Matematická analýza (MAN 2c) 1 Obyčajné diferenciálne rovnice 3 1.1 Úlohy
FUNKCIE. Funkcia základné pojmy. Graf funkcie
FUNKCIE Funkcia základné pojm. Graf funkcie V prai sa často stretávame so skúmaním závislosti veľkosti niektorých veličín od veľkosti iných veličín, napríklad dĺžka kružnice l závisí od jej priemeru d
Polynómy. Hornerova schéma. Algebrické rovnice
Polynómy. Hornerova schéma. Algebrické rovnice Teoretické základy Definícia 1 Nech (koeficienty) a 0, a 1,..., a n sú komplexné čísla a nech n je nezáporné celé číslo. Výraz P n (x) = a n x n + a n 1 x
Úvod 2 Predhovor... 2 Sylaby a literatúra... 2 Označenia... 2
Obsah Úvod Predhovor Sylaby a literatúra Označenia Euklidovské vektorové priestory 3 Skalárny súčin 3 Gram-Schmidtov ortogonalizačný proces 8 Kvadratické formy 6 Definícia a základné vlastnosti 6 Kanonický
3. Striedavé prúdy. Sínusoida
. Striedavé prúdy VZNIK: Striedavý elektrický prúd prechádza obvodom, ktorý je pripojený na zdroj striedavého napätia. Striedavé napätie vyrába synchrónny generátor, kde na koncoch rotorového vinutia sa
Fakulta matematiky, fyziky a informatiky. Univerzita Komenského. Contents I. Úvod do problematiky numeriky 2
NUMERICKÁ MATEMATIKA ročník Fakulta matematiky, fyziky a informatiky Univerzita Komenského Contents I Úvod do problematiky numeriky II Počítačová realizácia reálnych čísel 3 III Diferenčný počet 5 IV CORDIC
Základy matematickej štatistiky
1. Náhodný výber, výberové momenty a odhad parametrov Katedra Matematických metód Fakulta Riadenia a Informatiky Žilinská Univerzita v Žiline 6. mája 2015 1 Náhodný výber 2 Výberové momenty 3 Odhady parametrov
DAI01 GUNČAGA, J: Limitné procesy v školskej matematike. Dizertačná práca, FPV UKF Nitra, 2004
DAI0 GUNČAGA, J: Limitné procesy v školskej matematike. Dizertačná práca, FPV UKF Nitra, 2004 Obhájená na FPV UKF Nitra.. 2004 2 Obsah Súčasný stav problematiky v školskej matematike 5. Pedagogické východiská.........................
Jednotkový koreň (unit root), diferencovanie časového radu, unit root testy
Jednotkový koreň (unit root), diferencovanie časového radu, unit root testy Beáta Stehlíková Časové rady, FMFI UK, 2013/2014 Jednotkový koreň(unit root),diferencovanie časového radu, unit root testy p.1/27
XVIII. ročník BRKOS 2011/2012. Pomocný text. Kde by bola matematika bez čísel? Čísla predstavujú jednu z prvých abstrakcií, ktorú
Pomocný text Číselné obory Číselné obory Kde by bola matematika bez čísel? Čísla predstavujú jednu z prvých abstrakcií, ktorú ľudia začali vnímať. Abstrakcia spočívala v tom, že množstvo, ktoré sa snažili
Gramatická indukcia a jej využitie
a jej využitie KAI FMFI UK 29. Marec 2010 a jej využitie Prehľad Teória formálnych jazykov 1 Teória formálnych jazykov 2 3 a jej využitie Na počiatku bolo slovo. A slovo... a jej využitie Definícia (Slovo)
Diferenciálne rovnice
Diferenciálne rovnice Juraj Tekel Katedra teoretickej fyziky a didaktiky fyziky FMFI UK Mlynska Dolina 842 48 Bratislava juraj(a)tekel(b)gmail(c)com http://fks.sk/~juro/phys_teaching.html Aktualizované
ZÁPISKY Z MATEMATICKEJ ANALÝZY 1
UNIVERZITA PAVLA JOZEFA ŠAFÁRIKA V KOŠICIACH Prírodovedecká fakulta Ústav matematických vied 4 3 4 n 6 4 3 2 3 2 4 3 6 5 6 7 3 4 2 3 3/5 /2 2/5 /3 /4 /5 /0 d 0/ /0 /5 /4 /3 2/5 6 3 2 3 2 6 5 6 7 3 4 2
Zložené funkcie a substitúcia
3. kapitola Zložené funkcie a substitúcia Doteraz sme sa pri funkciách stretli len so závislosťami medzi dvoma premennými. Napríklad vzťah y=x 2 nám hovoril, ako závisí premenná y od premennej x. V praxi
MATEMATICKÁ OLYMPIÁDA
S MATEMATICÁ OLYMPIÁDA skmo.sk 2008/2009 58. ročník Matematickej olympiády Riešenia úloh IMO. Nech n je kladné celé číslo a a,..., a k (k 2) sú navzájom rôzne celé čísla z množiny {,..., n} také, že n
Priamkové plochy. Ak každým bodom plochy Φ prechádza aspoň jedna priamka, ktorá (celá) na nej leží potom plocha Φ je priamková. Santiago Calatrava
Priamkové plochy Priamkové plochy Ak každým bodom plochy Φ prechádza aspoň jedna priamka, ktorá (celá) na nej leží potom plocha Φ je priamková. Santiago Calatrava Priamkové plochy rozdeľujeme na: Rozvinuteľné
Úvod. Na čo nám je numerická matematika? Poskytuje nástroje na matematické riešenie problémov reálneho sveta (fyzika, biológia, ekonómia,...
Úvod Na čo nám je numerická matematika? Poskytuje nástroje na matematické riešenie problémov reálneho sveta (fyzika, biológia, ekonómia,...) Postup pri riešení problémov: 1. formulácia problému 2. formulácia
2. prednáška. Teória množín I. množina operácie nad množinami množinová algebra mohutnosť a enumerácia karteziánsky súčin
2. prednáška Teória množín I množina operácie nad množinami množinová algebra mohutnosť a enumerácia karteziánsky súčin Verzia: 27. 9. 2009 Priesvtika: 1 Definícia množiny Koncepcia množiny patrí medzi