Mehanske lastnosti umetnih snovi-prožnost

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Mehanske lastnosti umetnih snovi-prožnost"

Transcript

1 Univerza v Ljubljani Pedagoška fakulteta Mehanske lastnosti umetnih snoviprožnost Sara Matko Seminarska naloga pri predmetu Didaktika tehnike s seminarjem I Mentor: dr. Janez Jamšek, doc. Ljubljana, 2009

2 Povzetek Namen seminarske naloge je izvesti preskus trdote umetnih snovi z meritvami, ki je ciljno namenjene učiteljem pri pouku Tehnike in Tehnologije v osnovni šoli. Seminarska naloga zajema opis značilnosti umetnih snovi in podroben opis na kakšen način se ugotavlja njihova mehanska lastnost prožnost. Podrobno je opisan model za preskus, kjer so podani kriteriji, ki naj bi jih preskus dosegal in dobljene meritve. Na koncu so podana navodila učitelju, na kaj mora biti pazljiv pri izvajanju preskusa, kjer bi učenci ugotavljali prožnost v okviru pouka Tehnike in Tehnologije.

3 Kazalo 1 Uvod Navezava na učni načrt Pregled obstoječega gradiva Umetne snovi Tehnološka delitev umetnih snovi Termoplasti Duroplasti Elastomeri Lastnosti umetnih snovi Mehanske lastnosti umetnih snovi Prožnost umetnih mas Natezni preskus Tlačni preskus Upogibni preskus Prožnost pri pouku Tehnike in tehnologije Preskus prožnosti umetnih mas Določitev kriterijev preskusa Zasnova modela Preskusni vzorci Meritve Prožnost umetnih mas pri pouku Sklep Literatura Priloge Učni list Učni list z rešitvami... 12

4 1 Uvod Učenci osnovnih šol v 7. razredu spoznavajo lastnosti umetnih snovi, med njimi tudi prožnost. Razumevanje lastnosti gradiv je zelo pomembno že samo zaradi same uporabe gradiv v različnih tehnoloških postopkih in še bolj pri sintezi rešitev za raznovrstne tehnične probleme. Za dosego čim večjega efektivnega znanja učencev se nekateri učitelji poslužujejo demonstracije. V praksi se pojavlja veliko različic načinov demonstriranja mehanskih lastnosti umetnih snovi. Velikokrat pa demonstracije niso niti strokovno niti nazorno zasnovane. V tej seminarski nalogi je opisan način preskušanja prožnosti umetnih snovi, ki je lahko uporaben pri pouku Tehnike in Tehnologije, saj je namenjen tako učiteljem kot učencem. 2 Navezava na učni načrt Seminarska naloga je namenjena tako učiteljem kot učencem osnovnih šol in je vezana na letni učni program 7. razreda osnovnih šol, kjer imajo predpisanih 35 ure tehnike in tehnologije na leto. V sklopu teh ur obravnavajo tudi umetne snovi ter njihovo obdelavo. Pomembno je, kako učitelj podaja snov in vključuje aktivnost učencev, saj morajo le ti s poskusom ugotoviti lastnosti gradiv in izbrati ustrezno gradivo za določen izdelek. Pri pisanju seminarske naloge bom izhajala iz učnega načrta za predmet Tehnika in tehnologija [1]. S pomočjo preskusa bom kot učiteljica lažje dosegla naslednja izobraževalna cilja: učenec primerja prožnost najpogostejših umetnih snovi, učenec izbere primerno gradivo za določen izdelek. 3 Pregled obstoječega gradiva Z uporabo umetnih snovi se je moral uvesti nek način, s katerim je bilo mogoče določiti njihovo kvaliteto in raznolikost med posameznimi vrstami. Uveljavil se je način opisovanja umetnih snovi z lastnostmi. Ko omenjam lastnosti umetnih snovi, mislim na njihove fizikalne, kemične in mehanske lastnosti. Izmed mehanskih lastnosti umetnih snovi poznamo njihovo trdnost, taljenje, toplotno prevodnost, trdoto in prožnost [24]. Prožnost v znanosti pomeni lastnost trdnih teles, da zaradi delovanja zunanjih sil spremenijo obliko in se po prenehanju delovanja sil povrnejo v prvotno obliko. Najpogostejši načini za določanje prožnosti umetnih snovi so opisani v [11]. O umetnih masah in njihovih lastnostih je najbolj obrazloženo v [24]. 4 Umetne snovi Umetne snovi so organski polimeri, to so makromolekule, ki nastajajo iz manjših molekul enostavnih snovi, monomerov. Polimerizacija pa je proces, v katerem se monomeri združujejo v polimere [12]: Monomer ETEN polimerizacija polimer POLIETILEN (PE) Poznamo naravne in umetne polimere. Med naravne polimere spadajo celuloza, protein in škrob, med umetne polimere pa prištevamo umetne snovi. Umetne polimere imenujemo tudi sintetični polimeri, ki so kemično spremenjeni naravni polimeri, kot sta nafta in celuloza [25]. V nadaljevanju podajam tehnološko delitev umetnih snovi: 4.1 Tehnološka delitev umetnih snovi Umetne snovi glede na zgradbo delimo v: termoplaste, duroplaste in

5 elastomere. Njihova struktura je razvidna na sliki 4.1 [23]. Slika 4.1: Oblike verig polimerov [23] Termoplasti Termoplasti ali termoplastične snovi so linearni ali razvejani polimeri, Slika 4.1[6], ki se največkrat predelujejo pri povišani temperaturi; takrat se zmehčajo in stalijo. Po ohlajanju se termoplasti strdijo in obdržijo obliko. Ta proces lahko teoretično ponavljamo neskončno dolgo, kar pomeni, da jih lahko recikliramo. Ravno zaradi možne reciklaže so termoplasti najbolj razširjeni polimerni materiali. Primeri termoplastov [23]: ABS (akrilonitril butadien stiren), PS (polistiren), PVC (polivinilklorid), PMMA (polimetilmetakrilat), PC (polikarbonat), PBT (polibutilen tereftalat), PET (polietilen tereftalat), POM (poliacetal), PP (polipropilen), PA (poliamid, nylon). Topni so v nekaterih razredčilih in jih lahko varimo [11]. Slaba lastnost termoplastov pa je v tem, da se s povečano temperaturo mehčajo, postanejo elastični in nato tekoči, pri še višjih temperaturah pa razpadejo Duroplasti Duroplasti vsebujejo močno zamrežene makromolekule, ki tvorijo eno veliko prostorsko zamreženo makromolekulo, slika 4.1 [6]. Vezi, nastale med makromolekulami s segrevanjem ne popustijo, ampak pri določeni temperaturi razpadejo. To daje boljšo temperaturno obstojnost in večjo trdnost, vendar pa duroplastov ne moremo reciklirati, zato vedno več duroplastov nadomeščajo s termoplasti. Duroplaste delimo na: PF (fenolne smole, bakelit), UF (urea smole), MF (melanin smole), UP (nenasičene poliestrske smole), EP (epoksi smole), PUR (poliureatane) [raziskovalna naloga ] Duroplasti niso topni v topilih, v njih kvečjemu nabreknejo. Regeneracija in varjenje nista možna [11]. Ker se s segrevanjem ne mehčajo, z njim ponavadi oblepijo kuhinjske pulte, sestavljajo pa tudi ohišja električnih naprav, saj se le te med delovanjem segrejejo [14]. 5

6 4.1.3 Elastomeri Elastoplasti oziroma elastomeri so materiali, ki se po definiciji vrnejo v prvotno obliko. Sestavljeni so iz šibko zamreženih verig, katerih stopnja zamreženosti je nižja kot pri duroplastih, slika 4.1 [23]. Pri normalni temperaturi prostora so elastični, z dodatnim pregrevanjem pa ne postanejo mehki, temveč pričnejo razpadati [11]. 4.2 Lastnosti umetnih snovi Umetne snovi lahko plastično preoblikujemo, barvamo, predelujemo v vlakna in folije, primerne pa so tudi za velikoserijsko izdelavo. Zaradi kemijske sestave so odporne proti lugom in kislinam. Neobčutljivost proti organskim topilom pa je pri posameznih umetnih snoveh zelo različna in je odvisna od molekularne zgradbe. Umetne snovi so tudi zelo dobri izolatorji [12]. Umetne snovi imajo torej določene fizikalne, kemične in mehanske lastnosti. V nadaljevanju seminarske naloge bom opisovala mehansko lastnost in sicer prožnost Mehanske lastnosti umetnih snovi Izmed mehanskih lastnosti umetnih snovi poznamo njihovo prožnost, trdnost, taljenje, toplotno prevodnost in trdoto. Odvisne so od molekularne zgradbe materiala, od oblike izdelka, načinov preoblikovanja in od dodatkov, ki jih z različnimi nameni primešamo umetni snovi. Molekularna zgradba vpliva tudi na kemično in toplotno obstojnost snovi [12]. V moji seminarski nalogi se bom osredotočila na prožnost umetnih mas. 4.3 Prožnost umetnih mas Prožnost je lastnost trdnih teles, da zaradi delovanja zunanjih sil spremenijo obliko in se po prenehanju delovanja sil povrnejo v prvotno stanje. To lastnost imajo trdna telesa, dokler ni prekoračena meja prožnosti. Dokler je sila na enoto preseka manjša od meje linearnosti, ki se sklada z mejo prožnosti ali je manjša, je podaljšek pri natezanju ali skrček pri stiskanju sorazmeren s silo (Hookov zakon) [18]. Poznamo tri postopke za določanje prožnosti: natezni, tlačni in pa upogibni preizkus. 4.4 Natezni preskus Pri nateznem preskusu se lastnosti materiala določajo z enotno natezno obremenitvijo preizkušanca na vlečnem stroju z nastavljivo hitrostjo in napravo za risanje krivulje, kar je razvidno na sliki 5.1 in sliki 5.2 [11]. Slika 5.1: Natezni preskus [11]. 6

7 Slika 5.2: Napetostno razteznostni diagram [11]. 4.5 Tlačni preskus Preskušanje poteka na specialnem tlačnem stroju ali na univerzalnem stroju za merjenje mehanskih lastnosti, ki je opremljen z napravo za posnemanje diagrama. Preizkušanec leži med poliranimi in utrjenimi tlačnimi ploščami. Tlačna sila mora delovati enakomerno na površino preizkušanca. Hitrost preizkušanja je hitrost potovanja obeh plošč ene proti drugi [11]. 4.6 Upogibni preskus Pri upogibnem preskusu določamo trdnostne lastnosti in oblikovne spremembe plastičnih mas v treh upogibnih točkah. Preizkus poteka na posebni upogibni merilni napravi ali na nateznem stroju, ki je opremljen z merilci sile F in upogiba f, kar je razvidno na sliki 5.3 [18]. Preizkušanci ne smejo vsebovati lunkerjev, por ali zarez. Rezultat dobimo iz slike 5.4 [11]. Slika 5.3: Upogibni preskus [18]. 7

8 Slika 5.4: Diagram [11]. 4.7 Modul elastičnosti Modul elastičnosti je definiran kot razmerje med napetostjo σ in raztezkom ε v linearnem elastičnem območju pri počasnem preoblikovanju. Leta se lahko izvaja z različnimi obremenitvami, kot so natezna, tlačna in upogibna. Za linearno elastično območje velja Hookov zakon E= σ / ε. Merimo ga v enotah N/mm 2 =MPa [11]. Ta nam pove, kako prožna je snov. 4.8 Prožnost pri pouku Tehnike in tehnologije Pri pregledu učbenikov in delovnih zvezkov, sem o prožnosti umetnih snovi zasledila le v dveh učbenikih in sicer v [14] in [15], ter v delovnem zvezku [16]. Definicije o prožnosti nisem našla. Kako prožnost preskušamo, je opisano v učbeniku [15]. 5 Preskus prožnosti umetnih mas Glede na cilje iz učnega načrta Tehnike in tehnologije ter primernost izvedbe pri pouku v naprej določimo kriterije, ki naj bi jih predlagani preskus dosegal. Preskus je v nadaljevanju podrobno opisan. 5.1 Določitev kriterijev preskusa Kriteriji, katerim mora ustrezati preskus, so naslednji: natančnost in nazornost, z njim moram jasno pokazati razliko v preskušanju različnega materiala, ponovljivost, to pomeni da mora preskus pod enakimi pogoji tudi kasneje dati enake rezultate, primerljivost, saj morajo biti dobljeni rezultati v okvirju splošno znanih, enostavnost, izvesti ga mora vsak učitelj Tehnike in Tehnologije, po možnosti pa tudi povprečen učenec, 8

9 dostopnost, saj mora biti potrebno gradivo za izvedbo preskusa splošno dostopno in čim cenejše. Postopki za pripravo preskusa pa morajo biti v mejah možnosti tipične delavnice za Tehniko in Tehnologijo. 5.2 Zasnova modela Pri praktičnem pouku sem si zadala nalogo, da bom izdelala model za prikaz preskusa prožnosti umetnih snovi. Izhajala sem iz upogibnega preskusa. Najprej sem si model skicirala in določila mere za izdelavo modela. Nato sem začela s praktično izdelavo. Oblika modela je razvidna na sliki 6.1. Slika 6.1: Model Model ni razstavljiv, saj je dovolj majhen, da ga pospravimo v majhno škatlo. Njegove dimenzije so 350mm 320 mm 320mm, katere sem izbrala glede na velikost preskušancev. Podstavek je iz vezane ploščebukev, vpenjalna naprava je iz bukve, skala za očitanje odklona pa iz vezane ploščebreza. 5.3 Preskusni vzorci Preskušala bom različne umetne snovi. To so akrilno steklo (PMMA), stiropor (Polistiren) in vekaplan plošča (PVC). Dimenzija preizkušancev: PMMA: , 0 mm PS: , 0 mm PVC: , 0 mm Te preskušance sem si izbrala zato, ker so najbolj poznani učencem, enostavni za obdelavo in najbolj dobljivi. Dobljene rezultate bom primerjala z rezultati iz preglednice 5.1, katere sem našla v priročniku [11]. Preglednica 5.1: Mejna upogibna napetost [3]. Umetna snov σ / [28] PMMA 140 Polistiren 100 PVC Meritve Opis preskusa: Najprej izmerimo površino prereza preskušanca z enačbo S= d s. V zarezo na modelu damo preizkušanec. S pomočjo silomera, preizkušanec vlečemo v pravokotni smeri. Nas zanima sila F pri meji prožnosti, v tej točki pa izračunamo napetost z enačbo σ = F / S. To ponovimo za vse preizkušance. Rezultate zapišemo v tabelo, preglednica

10 Preglednica 5.2: Rezultati preskusa prožnosti umetnih snovi. Umetna snov F / N S / mm 2 σ / N/ mm 2 PMMA 6,0 75,0 0,08 Polistiren 1,3 225,0 0,006 PVC 3,5 75,0 0,05 Ker velikost preskušancev ni enaka tistim iz [3], so rezultati zelo različni. Prav tako, meritve niso primerljive, saj s silomerom ne moremo odčitati natančne sile. S silomerom merimo večje sile. 6 Prožnost umetnih mas pri pouku Preskus prožnosti umetnih snovi bi lahko učenci pri pouku tehnike in tehnologije opravili kar sami na začetku ure, a na drugačen bolj enostaven način, svoje ugotovitve pa bi sproti zapisovali v zvezek. Za preskus prožnosti umetnih snovi pri pouku bomo potrebovali mizo, primež ter različna gradiva iz umetnih snovi, poglavje. O prožnosti bodo sklepali po tem, koliko se bo umetna snov upognila in nato prišla v začetni položaj. Snov bo ostala prožna, dokler je ne upognemo toliko, da se na mestu upogiba malenkostno obeli. Takrat so presegli mejo prožnosti in snov ostane upognjena. To je tudi znak, da bo ob nadaljnjem upogibanju počila ali se odlomila. Nato pa bi učitelj lahko ta preskus izvedel med poukom Tehnike in tehnologije. Vendar pa preskus zahteva veliko časa. Sama priprava vzorcev (žaganje) nam lahko vzame nekaj ur. Za izvedbo preskusa pa bo učitelj potreboval okvirno 20 min. Predhodno je potrebno zelo natančno nažagati vzorce. Predhodno je potrebno tudi pregledati, da nima umetna snov kakšnih nepravilnosti. Menim, da bi bilo zelo dobro dati učencem predhodno liste z razpredelnicami, kamor bi vpisovali rezultate meritev. 7 Sklep V seminarski nalogi sem na kratko predstavila umetne snovi in njihovo grobo razdelitev. Ker je bila moja naloga, da predstavim prožnost umetnih snovi in kako jo preskušamo, sem za boljše razumevanje opisala postopke. Namen seminarske naloge je tudi ta, da si učenci čim več zapomnijo in razumejo. Zato sem v nadaljevanju predstavila preskus, ki ga lahko predstavimo za demonstracijo prožnosti. Pri praktičnem pouku pa sem izdelala model, na katerem lahko preskušamo prožnost različnih materialov. Ta pomaga, da si učenci snov bolje zapomnijo in lažje predstavljajo. Če bi si ta preskus izbrala še enkrat, bi ga izboljšala tako, da bi vzela več različnih preskušancev in sicer bi poleg termoplastov uporabila še duroplaste, napravo bi naredila še enkrat večjo, saj bi bila tako bolj nazorna, silo ne bi merila s silomerom, ampak bi jo z utežjo, saj je z njo lažje odčitati rezultat. Spoznali smo torej, da je pomembno, da učenci poznajo lastnosti umetnih mas, med njimi tudi prožnost. Na osnovi usvojenega znanja, bodo lahko učenci primerno izbrali vrsto umetnih mas za izdelavo izdelka. 8 Literatura [1] A. Papotnik in ostali, Učni načrt Tehnika in tehnologija (Ljubljana, Ministrstvo za šolstvo, znanost in šport, Zavod RS za šolstvo, 2002). [2] Umetne snovi [ [3] J. Navodnik in M. Klopčič, Plastik Orodjar, priročnik (Velenje, Založba Navodnik d.o.o., 1998). [4] L. Oldenburg, Enciklopedija Tehnike (Ljubljana, Cankarjeva založba, 1983). [5] Polimeri [ [6] Raziskovalna naloga delitev polimerov: [ [7] Guštin in ostali, Fizika, leksikon (Ljubljana, Cankarjeva založba, 2008). [8] J. Bezjak, Materiali v tehniki (Ljubljana, TZS, 1997). [9] J. Bezjak, Tehnologija materiala (Ljubljana, TZS, 1997). [10] J. Bezjak, Preiskava materiala (Ljubljana, TZS, 1993). [11] J. Navodnik in M. Klopčič, Plastik Orodjar, priročnik (Velenje, Založba Navodnik d.o.o., 1998). [12] L. Oldenburg, Enciklopedija Tehnike (Ljubljana, Cankarjeva založba, 1983). 10

11 [13] D. Slukan, J. Virtič, Obdelava gradiv umetne snovi (Limbuš, Izotech, 2005). [14] S. Kocijančič in ostali, Tehnika in tehnologija, učbenik za 7. razred devetletne osnovne šole (Ljubljana, TZS, 1999). [15] B. Aberšek, Tehnika 7 Učbenik (Ljubljana, DZS, 2000). [16] B. Aberšek, Tehnika 7 Delovni zvezek (Ljubljana, DZS, 2000). [17] F. Florjančič idr., Tehniški dnevi od 6. do 9. razreda v devetletni osnovni šoli, priročnik za učitelje (Ljubljana, založba Zavoda RS za šolstvo, 2005). [18] A. Guštin in ostali, Fizika, leksikon (Ljubljana, Cankarjeva založba, 2008). [19] S. Koklič, Umetne mase (Celje, Aero copy Celje, 1999). [20] Umetne snovi polietilen [ [21] Umetne snovi embalažna plastika [ [22] Učni načrt za obdelavo gradivumetne mase [ [23] Raziskovalna naloga delitev polimerov: [ [24] Umetne snovi [ [25] Polimeri [ [26] Akrilno steklo [ [27] Stiropor [ [28] Jogurtov lonček [ [29] Plastenka [ 9 Priloge 9.1 Učni list 1. Poveži! AKRILNO STEKLO PLASTENKA LONČEK STIROPOR polistiren Polietilen polimetilmetakrilat PS PMMA PE 2. Kaj so vsi izdelki zgoraj našteti? (Obkroži) a) termoplasti b) duroplasti c) elastomeri 3. Naštej kriterije, katerim mora ustrezati preskus? 11

12 4. Katere tri preskuse lahko uporabljamo za ugotavljanje prožnosti? 9.2 Učni list z rešitvami 1. Poveži! AKRILNO STEKLO PLASTENKA LONČEK STIROPOR polistiren polietilen polimetilmetakrilat PS PMMA PE 2. Kaj so vsi izdelki zgoraj našteti? (Obkroži) d) termoplasti e) duroplasti f) elastomeri 3. Naštej kriterije, katerim mora ustrezati preskus? natančnost ponovljivost primerljivost enostavnost dostopnost 4. Katere tri preskuse lahko uporabljamo za ugotavljanje prožnosti? 12

13 tlačni preskus natezni preskus upogibni preskus 13

Funkcijske vrste. Matematika 2. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 2. april Gregor Dolinar Matematika 2

Funkcijske vrste. Matematika 2. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 2. april Gregor Dolinar Matematika 2 Matematika 2 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 2. april 2014 Funkcijske vrste Spomnimo se, kaj je to številska vrsta. Dano imamo neko zaporedje realnih števil a 1, a 2, a

Διαβάστε περισσότερα

Diferencialna enačba, v kateri nastopata neznana funkcija in njen odvod v prvi potenci

Diferencialna enačba, v kateri nastopata neznana funkcija in njen odvod v prvi potenci Linearna diferencialna enačba reda Diferencialna enačba v kateri nastopata neznana funkcija in njen odvod v prvi potenci d f + p= se imenuje linearna diferencialna enačba V primeru ko je f 0 se zgornja

Διαβάστε περισσότερα

Odvod. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 5. december Gregor Dolinar Matematika 1

Odvod. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 5. december Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 5. december 2013 Primer Odvajajmo funkcijo f(x) = x x. Diferencial funkcije Spomnimo se, da je funkcija f odvedljiva v točki

Διαβάστε περισσότερα

Zaporedja. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 22. oktober Gregor Dolinar Matematika 1

Zaporedja. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 22. oktober Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 22. oktober 2013 Kdaj je zaporedje {a n } konvergentno, smo definirali s pomočjo limite zaporedja. Večkrat pa je dobro vedeti,

Διαβάστε περισσότερα

Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 14. november Gregor Dolinar Matematika 1

Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 14. november Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 14. november 2013 Kvadratni koren polinoma Funkcijo oblike f(x) = p(x), kjer je p polinom, imenujemo kvadratni koren polinoma

Διαβάστε περισσότερα

Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 21. november Gregor Dolinar Matematika 1

Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 21. november Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 21. november 2013 Hiperbolične funkcije Hiperbolični sinus sinhx = ex e x 2 20 10 3 2 1 1 2 3 10 20 hiperbolični kosinus coshx

Διαβάστε περισσότερα

Tretja vaja iz matematike 1

Tretja vaja iz matematike 1 Tretja vaja iz matematike Andrej Perne Ljubljana, 00/07 kompleksna števila Polarni zapis kompleksnega števila z = x + iy): z = rcos ϕ + i sin ϕ) = re iϕ Opomba: Velja Eulerjeva formula: e iϕ = cos ϕ +

Διαβάστε περισσότερα

KODE ZA ODKRIVANJE IN ODPRAVLJANJE NAPAK

KODE ZA ODKRIVANJE IN ODPRAVLJANJE NAPAK 1 / 24 KODE ZA ODKRIVANJE IN ODPRAVLJANJE NAPAK Štefko Miklavič Univerza na Primorskem MARS, Avgust 2008 Phoenix 2 / 24 Phoenix 3 / 24 Phoenix 4 / 24 Črtna koda 5 / 24 Črtna koda - kontrolni bit 6 / 24

Διαβάστε περισσότερα

1. Trikotniki hitrosti

1. Trikotniki hitrosti . Trikotniki hitrosti. Z radialno črpalko želimo črpati vodo pri pogojih okolice z nazivnim pretokom 0 m 3 /h. Notranji premer rotorja je 4 cm, zunanji premer 8 cm, širina rotorja pa je,5 cm. Frekvenca

Διαβάστε περισσότερα

Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 12. november Gregor Dolinar Matematika 1

Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 12. november Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 12. november 2013 Graf funkcije f : D R, D R, je množica Γ(f) = {(x,f(x)) : x D} R R, torej podmnožica ravnine R 2. Grafi funkcij,

Διαβάστε περισσότερα

Zaporedja. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 15. oktober Gregor Dolinar Matematika 1

Zaporedja. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 15. oktober Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 15. oktober 2013 Oglejmo si, kako množimo dve kompleksni števili, dani v polarni obliki. Naj bo z 1 = r 1 (cosϕ 1 +isinϕ 1 )

Διαβάστε περισσότερα

Delovna točka in napajalna vezja bipolarnih tranzistorjev

Delovna točka in napajalna vezja bipolarnih tranzistorjev KOM L: - Komnikacijska elektronika Delovna točka in napajalna vezja bipolarnih tranzistorjev. Določite izraz za kolektorski tok in napetost napajalnega vezja z enim virom in napetostnim delilnikom na vhod.

Διαβάστε περισσότερα

Tabele termodinamskih lastnosti vode in vodne pare

Tabele termodinamskih lastnosti vode in vodne pare Univerza v Ljubljani Fakulteta za strojništvo Laboratorij za termoenergetiko Tabele termodinamskih lastnosti vode in vodne pare po modelu IAPWS IF-97 izračunano z XSteam Excel v2.6 Magnus Holmgren, xsteam.sourceforge.net

Διαβάστε περισσότερα

Osnove elektrotehnike uvod

Osnove elektrotehnike uvod Osnove elektrotehnike uvod Uvod V nadaljevanju navedena vprašanja so prevod testnih vprašanj, ki sem jih našel na omenjeni spletni strani. Vprašanja zajemajo temeljna znanja opredeljenega strokovnega področja.

Διαβάστε περισσότερα

IZPIT IZ ANALIZE II Maribor,

IZPIT IZ ANALIZE II Maribor, Maribor, 05. 02. 200. (a) Naj bo f : [0, 2] R odvedljiva funkcija z lastnostjo f() = f(2). Dokaži, da obstaja tak c (0, ), da je f (c) = 2f (2c). (b) Naj bo f(x) = 3x 3 4x 2 + 2x +. Poišči tak c (0, ),

Διαβάστε περισσότερα

Odvod. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 10. december Gregor Dolinar Matematika 1

Odvod. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 10. december Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 10. december 2013 Izrek (Rolleov izrek) Naj bo f : [a,b] R odvedljiva funkcija in naj bo f(a) = f(b). Potem obstaja vsaj ena

Διαβάστε περισσότερα

Numerično reševanje. diferencialnih enačb II

Numerično reševanje. diferencialnih enačb II Numerčno reševanje dferencaln enačb I Dferencalne enačbe al ssteme dferencaln enačb rešujemo numerčno z več razlogov:. Ne znamo j rešt analtčno.. Posamezn del dferencalne enačbe podan tabelarčno. 3. Podatke

Διαβάστε περισσότερα

Kontrolne karte uporabljamo za sprotno spremljanje kakovosti izdelka, ki ga izdelujemo v proizvodnem procesu.

Kontrolne karte uporabljamo za sprotno spremljanje kakovosti izdelka, ki ga izdelujemo v proizvodnem procesu. Kontrolne karte KONTROLNE KARTE Kontrolne karte uporablamo za sprotno spremlane kakovosti izdelka, ki ga izdeluemo v proizvodnem procesu. Izvaamo stalno vzorčene izdelkov, npr. vsako uro, vsake 4 ure.

Διαβάστε περισσότερα

Integralni račun. Nedoločeni integral in integracijske metrode. 1. Izračunaj naslednje nedoločene integrale: (a) dx. (b) x 3 +3+x 2 dx, (c) (d)

Integralni račun. Nedoločeni integral in integracijske metrode. 1. Izračunaj naslednje nedoločene integrale: (a) dx. (b) x 3 +3+x 2 dx, (c) (d) Integralni račun Nedoločeni integral in integracijske metrode. Izračunaj naslednje nedoločene integrale: d 3 +3+ 2 d, (f) (g) (h) (i) (j) (k) (l) + 3 4d, 3 +e +3d, 2 +4+4 d, 3 2 2 + 4 d, d, 6 2 +4 d, 2

Διαβάστε περισσότερα

SKUPNE PORAZDELITVE VEČ SLUČAJNIH SPREMENLJIVK

SKUPNE PORAZDELITVE VEČ SLUČAJNIH SPREMENLJIVK SKUPNE PORAZDELITVE SKUPNE PORAZDELITVE VEČ SLUČAJNIH SPREMENLJIVK Kovaec vržemo trikrat. Z ozačimo število grbov ri rvem metu ( ali ), z Y a skuo število grbov (,, ali 3). Kako sta sremelivki i Y odvisi

Διαβάστε περισσότερα

POROČILO. št.: P 1100/ Preskus jeklenih profilov za spuščen strop po točki 5.2 standarda SIST EN 13964:2004

POROČILO. št.: P 1100/ Preskus jeklenih profilov za spuščen strop po točki 5.2 standarda SIST EN 13964:2004 Oddelek za konstrkcije Laboratorij za konstrkcije Ljbljana, 12.11.2012 POROČILO št.: P 1100/12 680 01 Presks jeklenih profilov za spščen strop po točki 5.2 standarda SIST EN 13964:2004 Naročnik: STEEL

Διαβάστε περισσότερα

IZRAČUN MEHANSKIH LASTNOSTI IN DEFORMACIJ ENOSTRANSKO IN DVOSTRANSKO VPETEGA NOSILCA

IZRAČUN MEHANSKIH LASTNOSTI IN DEFORMACIJ ENOSTRANSKO IN DVOSTRANSKO VPETEGA NOSILCA Univerza v Ljubljani Fakulteta za elektrotehniko IZRAČUN MEHANSKIH LASTNOSTI IN DEFORMACIJ ENOSTRANSKO IN DVOSTRANSKO VPETEGA NOSILCA Seminarska naloga pri predmetu Razdelilna in industrijska omrežja Maks

Διαβάστε περισσότερα

OSNOVE POLIMERNEGA INŽENIRSTVA. Izr. prof. dr. Urška Šebenik

OSNOVE POLIMERNEGA INŽENIRSTVA. Izr. prof. dr. Urška Šebenik OSNOVE POLIMERNEGA INŽENIRSTVA Izr. prof. dr. Urška Šebenik urska.sebenik@fkkt.uni-lj.si VSEBINA PREDAVANJ Uvod v polimere (zgodovina, lastnosti, uporabnost) Porazdelitev molekulskih mas in povprečja molekulskih

Διαβάστε περισσότερα

PONOVITEV SNOVI ZA 4. TEST

PONOVITEV SNOVI ZA 4. TEST PONOVITEV SNOVI ZA 4. TEST 1. * 2. *Galvanski člen z napetostjo 1,5 V požene naboj 40 As. Koliko električnega dela opravi? 3. ** Na uporniku je padec napetosti 25 V. Upornik prejme 750 J dela v 5 minutah.

Διαβάστε περισσότερα

p 1 ENTROPIJSKI ZAKON

p 1 ENTROPIJSKI ZAKON ENROPIJSKI ZAKON REERZIBILNA srememba: moža je obrjea srememba reko eakih vmesih staj kot rvota srememba. Po obeh sremembah e sme biti obeih trajih srememb v bližji i dalji okolici. IREERZIBILNA srememba:

Διαβάστε περισσότερα

1. Έντυπα αιτήσεων αποζημίωσης... 2 1.1. Αξίωση αποζημίωσης... 2 1.1.1. Έντυπο... 2 1.1.2. Πίνακας μεταφράσεων των όρων του εντύπου...

1. Έντυπα αιτήσεων αποζημίωσης... 2 1.1. Αξίωση αποζημίωσης... 2 1.1.1. Έντυπο... 2 1.1.2. Πίνακας μεταφράσεων των όρων του εντύπου... ΑΠΟΖΗΜΙΩΣΗ ΘΥΜΑΤΩΝ ΕΓΚΛΗΜΑΤΙΚΩΝ ΠΡΑΞΕΩΝ ΣΛΟΒΕΝΙΑ 1. Έντυπα αιτήσεων αποζημίωσης... 2 1.1. Αξίωση αποζημίωσης... 2 1.1.1. Έντυπο... 2 1.1.2. Πίνακας μεταφράσεων των όρων του εντύπου... 3 1 1. Έντυπα αιτήσεων

Διαβάστε περισσότερα

Booleova algebra. Izjave in Booleove spremenljivke

Booleova algebra. Izjave in Booleove spremenljivke Izjave in Booleove spremenljivke vsako izjavo obravnavamo kot spremenljivko če je izjava resnična (pravilna), ima ta spremenljivka vrednost 1, če je neresnična (nepravilna), pa vrednost 0 pravimo, da gre

Διαβάστε περισσότερα

13. Jacobijeva metoda za računanje singularnega razcepa

13. Jacobijeva metoda za računanje singularnega razcepa 13. Jacobijeva metoda za računanje singularnega razcepa Bor Plestenjak NLA 25. maj 2010 Bor Plestenjak (NLA) 13. Jacobijeva metoda za računanje singularnega razcepa 25. maj 2010 1 / 12 Enostranska Jacobijeva

Διαβάστε περισσότερα

8. Diskretni LTI sistemi

8. Diskretni LTI sistemi 8. Diskreti LI sistemi. Naloga Določite odziv diskretega LI sistema s podaim odzivom a eoti impulz, a podai vhodi sigal. h[] x[] - - 5 6 7 - - 5 6 7 LI sistem se a vsak eoti impulz δ[] a vhodu odzove z

Διαβάστε περισσότερα

Transformator. Delovanje transformatorja I. Delovanje transformatorja II

Transformator. Delovanje transformatorja I. Delovanje transformatorja II Transformator Transformator je naprava, ki v osnovi pretvarja napetost iz enega nivoja v drugega. Poznamo vrsto različnih izvedb transformatorjev, glede na njihovo specifičnost uporabe:. Energetski transformator.

Διαβάστε περισσότερα

Na pregledni skici napišite/označite ustrezne točke in paraboli. A) 12 B) 8 C) 4 D) 4 E) 8 F) 12

Na pregledni skici napišite/označite ustrezne točke in paraboli. A) 12 B) 8 C) 4 D) 4 E) 8 F) 12 Predizpit, Proseminar A, 15.10.2015 1. Točki A(1, 2) in B(2, b) ležita na paraboli y = ax 2. Točka H leži na y osi in BH je pravokotna na y os. Točka C H leži na nosilki BH tako, da je HB = BC. Parabola

Διαβάστε περισσότερα

Kotne in krožne funkcije

Kotne in krožne funkcije Kotne in krožne funkcije Kotne funkcije v pravokotnem trikotniku Avtor: Rok Kralj, 4.a Gimnazija Vič, 009/10 β a c γ b α sin = a c cos= b c tan = a b cot = b a Sinus kota je razmerje kotu nasprotne katete

Διαβάστε περισσότερα

MEHANSKE LASTNOSTI 1

MEHANSKE LASTNOSTI 1 MEHANSKE LASTNOSTI 1 MEHANSKE LASTNOSTI Mehanske lastnosti so tiste lastnosti snovi, ki določajo, kako se snov odzove na mehansko obremenitev. 4 najpogostejši poskusi za določanje mehanskih lastnosti snovi

Διαβάστε περισσότερα

Splošno o interpolaciji

Splošno o interpolaciji Splošno o interpolaciji J.Kozak Numerične metode II (FM) 2011-2012 1 / 18 O funkciji f poznamo ali hočemo uporabiti le posamezne podatke, na primer vrednosti r i = f (x i ) v danih točkah x i Izberemo

Διαβάστε περισσότερα

1. Definicijsko območje, zaloga vrednosti. 2. Naraščanje in padanje, ekstremi. 3. Ukrivljenost. 4. Trend na robu definicijskega območja

1. Definicijsko območje, zaloga vrednosti. 2. Naraščanje in padanje, ekstremi. 3. Ukrivljenost. 4. Trend na robu definicijskega območja ZNAČILNOSTI FUNKCIJ ZNAČILNOSTI FUNKCIJE, KI SO RAZVIDNE IZ GRAFA. Deinicijsko območje, zaloga vrednosti. Naraščanje in padanje, ekstremi 3. Ukrivljenost 4. Trend na robu deinicijskega območja 5. Periodičnost

Διαβάστε περισσότερα

Enačba, v kateri poleg neznane funkcije neodvisnih spremenljivk ter konstant nastopajo tudi njeni odvodi, se imenuje diferencialna enačba.

Enačba, v kateri poleg neznane funkcije neodvisnih spremenljivk ter konstant nastopajo tudi njeni odvodi, se imenuje diferencialna enačba. 1. Osnovni pojmi Enačba, v kateri poleg neznane funkcije neodvisnih spremenljivk ter konstant nastopajo tudi njeni odvodi, se imenuje diferencialna enačba. Primer 1.1: Diferencialne enačbe so izrazi: y

Διαβάστε περισσότερα

NEPARAMETRIČNI TESTI. pregledovanje tabel hi-kvadrat test. as. dr. Nino RODE

NEPARAMETRIČNI TESTI. pregledovanje tabel hi-kvadrat test. as. dr. Nino RODE NEPARAMETRIČNI TESTI pregledovanje tabel hi-kvadrat test as. dr. Nino RODE Parametrični in neparametrični testi S pomočjo z-testa in t-testa preizkušamo domneve o parametrih na vzorcih izračunamo statistike,

Διαβάστε περισσότερα

Poglavje 7. Poglavje 7. Poglavje 7. Regulacijski sistemi. Regulacijski sistemi. Slika 7. 1: Normirana blokovna shema regulacije EM

Poglavje 7. Poglavje 7. Poglavje 7. Regulacijski sistemi. Regulacijski sistemi. Slika 7. 1: Normirana blokovna shema regulacije EM Slika 7. 1: Normirana blokovna shema regulacije EM Fakulteta za elektrotehniko 1 Slika 7. 2: Principielna shema regulacije AM v KSP Fakulteta za elektrotehniko 2 Slika 7. 3: Merjenje komponent fluksa s

Διαβάστε περισσότερα

matrike A = [a ij ] m,n αa 11 αa 12 αa 1n αa 21 αa 22 αa 2n αa m1 αa m2 αa mn se števanje po komponentah (matriki morata biti enakih dimenzij):

matrike A = [a ij ] m,n αa 11 αa 12 αa 1n αa 21 αa 22 αa 2n αa m1 αa m2 αa mn se števanje po komponentah (matriki morata biti enakih dimenzij): 4 vaja iz Matematike 2 (VSŠ) avtorica: Melita Hajdinjak datum: Ljubljana, 2009 matrike Matrika dimenzije m n je pravokotna tabela m n števil, ki ima m vrstic in n stolpcev: a 11 a 12 a 1n a 21 a 22 a 2n

Διαβάστε περισσότερα

MATEMATIČNI IZRAZI V MAFIRA WIKIJU

MATEMATIČNI IZRAZI V MAFIRA WIKIJU I FAKULTETA ZA MATEMATIKO IN FIZIKO Jadranska cesta 19 1000 Ljubljan Ljubljana, 25. marec 2011 MATEMATIČNI IZRAZI V MAFIRA WIKIJU KOMUNICIRANJE V MATEMATIKI Darja Celcer II KAZALO: 1 VSTAVLJANJE MATEMATIČNIH

Διαβάστε περισσότερα

PROCESIRANJE SIGNALOV

PROCESIRANJE SIGNALOV Rešive pisega izpia PROCESIRANJE SIGNALOV Daum: 7... aloga Kolikša je ampliuda reje harmoske kompoee arisaega periodičega sigala? f() - -3 - - 3 Rešiev: Časova fukcija a iervalu ( /,/) je lieara fukcija:

Διαβάστε περισσότερα

Frekvenčna analiza neperiodičnih signalov. Analiza signalov prof. France Mihelič

Frekvenčna analiza neperiodičnih signalov. Analiza signalov prof. France Mihelič Frekvenčna analiza neperiodičnih signalov Analiza signalov prof. France Mihelič Vpliv postopka daljšanja periode na spekter periodičnega signala Opazujmo družino sodih periodičnih pravokotnih impulzov

Διαβάστε περισσότερα

+105 C (plošče in trakovi +85 C) -50 C ( C)* * Za temperature pod C se posvetujte z našo tehnično službo. ϑ m *20 *40 +70

+105 C (plošče in trakovi +85 C) -50 C ( C)* * Za temperature pod C se posvetujte z našo tehnično službo. ϑ m *20 *40 +70 KAIFLEX ST Tehnični podatki Material Izjemno fleksibilna zaprtocelična izolacija, fleksibilna elastomerna pena (FEF) Opis Uporaba Temperaturno območje Toplotna prevodnost W/(m K ) pri različnih srednjih

Διαβάστε περισσότερα

MATERIALI IN TEHNOLOGIJE

MATERIALI IN TEHNOLOGIJE UNIVERZA V LJUBLJANI FAKULTETA ZA ELEKTROTEHNIKO D. VONČINA MATERIALI IN TEHNOLOGIJE (ZAPISKI PREDAVANJ) Podiplomski študijski program 2. stopnje Elektrotehnika 1. letnik MEHATRONIKA Izbirni modul F Uvod

Διαβάστε περισσότερα

POROČILO 3.VAJA DOLOČANJE REZULTANTE SIL

POROČILO 3.VAJA DOLOČANJE REZULTANTE SIL POROČILO 3.VAJA DOLOČANJE REZULTANTE SIL Izdba aje: Ljubjana, 11. 1. 007, 10.00 Jan OMAHNE, 1.M Namen: 1.Preeri paraeogramsko praio za doočanje rezutante nezporedni si s skupnim prijemaiščem (grafično)..dooči

Διαβάστε περισσότερα

*M * Osnovna in višja raven MATEMATIKA NAVODILA ZA OCENJEVANJE. Sobota, 4. junij 2011 SPOMLADANSKI IZPITNI ROK. Državni izpitni center

*M * Osnovna in višja raven MATEMATIKA NAVODILA ZA OCENJEVANJE. Sobota, 4. junij 2011 SPOMLADANSKI IZPITNI ROK. Državni izpitni center Državni izpitni center *M40* Osnovna in višja raven MATEMATIKA SPOMLADANSKI IZPITNI ROK NAVODILA ZA OCENJEVANJE Sobota, 4. junij 0 SPLOŠNA MATURA RIC 0 M-40-- IZPITNA POLA OSNOVNA IN VIŠJA RAVEN 0. Skupaj:

Διαβάστε περισσότερα

diferencialne enačbe - nadaljevanje

diferencialne enačbe - nadaljevanje 12. vaja iz Matematike 2 (VSŠ) avtorica: Melita Hajdinjak datum: Ljubljana, 2009 diferencialne enačbe - nadaljevanje Ortogonalne trajektorije Dana je 1-parametrična družina krivulj F(x, y, C) = 0. Ortogonalne

Διαβάστε περισσότερα

Tema 1 Osnove navadnih diferencialnih enačb (NDE)

Tema 1 Osnove navadnih diferencialnih enačb (NDE) Matematične metode v fiziki II 2013/14 Tema 1 Osnove navadnih diferencialnih enačb (NDE Diferencialne enačbe v fiziki Večina osnovnih enačb v fiziki je zapisana v obliki diferencialne enačbe. Za primer

Διαβάστε περισσότερα

Vaje: Električni tokovi

Vaje: Električni tokovi Barbara Rovšek, Bojan Golli, Ana Gostinčar Blagotinšek Vaje: Električni tokovi 1 Merjenje toka in napetosti Naloga: Izmerite tok, ki teče skozi žarnico, ter napetost na žarnici Za izvedbo vaje potrebujete

Διαβάστε περισσότερα

CM707. GR Οδηγός χρήσης... 2-7. SLO Uporabniški priročnik... 8-13. CR Korisnički priručnik... 14-19. TR Kullanım Kılavuzu... 20-25

CM707. GR Οδηγός χρήσης... 2-7. SLO Uporabniški priročnik... 8-13. CR Korisnički priručnik... 14-19. TR Kullanım Kılavuzu... 20-25 1 2 3 4 5 6 7 OFFMANAUTO CM707 GR Οδηγός χρήσης... 2-7 SLO Uporabniški priročnik... 8-13 CR Korisnički priručnik... 14-19 TR Kullanım Kılavuzu... 20-25 ENG User Guide... 26-31 GR CM707 ΟΔΗΓΟΣ ΧΡΗΣΗΣ Περιγραφή

Διαβάστε περισσότερα

Logatherm WPL 14 AR T A ++ A + A B C D E F G A B C D E F G. kw kw /2013

Logatherm WPL 14 AR T A ++ A + A B C D E F G A B C D E F G. kw kw /2013 WP 14 R T d 9 10 11 53 d 2015 811/2013 WP 14 R T 2015 811/2013 WP 14 R T Naslednji podatki o izdelku izpolnjujejo zahteve uredb U 811/2013, 812/2013, 813/2013 in 814/2013 o dopolnitvi smernice 2010/30/U.

Διαβάστε περισσότερα

primer reševanja volumskega mehanskega problema z MKE

primer reševanja volumskega mehanskega problema z MKE Reševanje mehanskih problemov z MKE primer reševanja volumskega mehanskega problema z MKE p p RAK: P-XII//74 Reševanje mehanskih problemov z MKE primer reševanja volumskega mehanskega problema z MKE L

Διαβάστε περισσότερα

MERITVE LABORATORIJSKE VAJE. Študij. leto: 2011/2012 UNIVERZA V MARIBORU. Skupina: 9

MERITVE LABORATORIJSKE VAJE. Študij. leto: 2011/2012 UNIVERZA V MARIBORU. Skupina: 9 .cwww.grgor nik ol i c NVERZA V MARBOR FAKTETA ZA EEKTROTEHNKO, RAČNANŠTVO N NFORMATKO 2000 Maribor, Smtanova ul. 17 Študij. lto: 2011/2012 Skupina: 9 MERTVE ABORATORJSKE VAJE Vaja št.: 4.1 Določanj induktivnosti

Διαβάστε περισσότερα

Zajemanje merilnih vrednosti z vf digitalnim spominskim osciloskopom

Zajemanje merilnih vrednosti z vf digitalnim spominskim osciloskopom VSŠ Velenje ELEKTRIČNE MERITVE Laboratorijske vaje Zajemanje merilnih vrednosti z vf digitalnim spominskim osciloskopom Vaja št.2 M. D. Skupina A PREGLEDAL:. OCENA:.. Velenje, 22.12.2006 1. Besedilo naloge

Διαβάστε περισσότερα

Univerza v Ljubljani FS & FKKT. Varnost v strojništvu

Univerza v Ljubljani FS & FKKT. Varnost v strojništvu Univerza v Ljubljani FS & FKKT Varnost v strojništvu doc.dr. Boris Jerman, univ.dipl.inž.str. Govorilne ure: pisarna: FS - 414 telefon: 01/4771-414 boris.jerman@fs.uni-lj.si, (Tema/Subject: VDPN -...)

Διαβάστε περισσότερα

The Thermal Comfort Properties of Reusable and Disposable Surgical Gown Fabrics Original Scientific Paper

The Thermal Comfort Properties of Reusable and Disposable Surgical Gown Fabrics Original Scientific Paper 24 The Thermal Comfort Properties of Surgical Gown Fabrics 1 1 2 1 2 Termofiziološke lastnosti udobnosti kirurških oblačil za enkratno in večkratno uporabo december 2008 marec 2009 Izvleček Kirurška oblačila

Διαβάστε περισσότερα

Podobnost matrik. Matematika II (FKKT Kemijsko inženirstvo) Diagonalizacija matrik

Podobnost matrik. Matematika II (FKKT Kemijsko inženirstvo) Diagonalizacija matrik Podobnost matrik Matematika II (FKKT Kemijsko inženirstvo) Matjaž Željko FKKT Kemijsko inženirstvo 14 teden (Zadnja sprememba: 23 maj 213) Matrika A R n n je podobna matriki B R n n, če obstaja obrnljiva

Διαβάστε περισσότερα

IZRAČUN MEHANSKIH PARAMETROV NADZEMNEGA VODA

IZRAČUN MEHANSKIH PARAMETROV NADZEMNEGA VODA Univerza v Ljubljani Fakulteta za elektrotehniko IZRAČUN MEHANSKIH PARAMETROV NADZEMNEGA VODA Seminar pri predmetu Razdelilna in industrijska omrežja Maja Mikec Profesor: dr. Grega Bizjak Študijsko leto

Διαβάστε περισσότερα

SEMINARSKA NALOGA Funkciji sin(x) in cos(x)

SEMINARSKA NALOGA Funkciji sin(x) in cos(x) FAKULTETA ZA MATEMATIKO IN FIZIKO Praktična Matematika-VSŠ(BO) Komuniciranje v matematiki SEMINARSKA NALOGA Funkciji sin(x) in cos(x) Avtorica: Špela Marinčič Ljubljana, maj 2011 KAZALO: 1.Uvod...1 2.

Διαβάστε περισσότερα

K U P M Metka Jemec. Konferenca o učenju in poučevanju matematike, M a r i b o r, 2 3. i n 2 4. avgusta

K U P M Metka Jemec. Konferenca o učenju in poučevanju matematike, M a r i b o r, 2 3. i n 2 4. avgusta U K 20 P K U P M 2 0 1 2 ROZETA 12 M Metka Jemec Konferenca o učenju in poučevanju matematike, M a r i b o r, 2 3. i n 2 4. avgusta 2 0 1 2 Kaj je rozeta? Rozeta je oblika vzorca, narejena v obliki simetrične

Διαβάστε περισσότερα

Kotni funkciji sinus in kosinus

Kotni funkciji sinus in kosinus Kotni funkciji sinus in kosinus Oznake: sinus kota x označujemo z oznako sin x, kosinus kota x označujemo z oznako cos x, DEFINICIJA V PRAVOKOTNEM TRIKOTNIKU: Kotna funkcija sinus je definirana kot razmerje

Διαβάστε περισσότερα

Varjenje polimerov s polprevodniškim laserjem

Varjenje polimerov s polprevodniškim laserjem Laboratorijska vaja št. 5: Varjenje polimerov s polprevodniškim laserjem Laserski sistemi - Laboratorijske vaje 1 Namen vaje Spoznati polprevodniške laserje visokih moči Osvojiti osnove laserskega varjenja

Διαβάστε περισσότερα

Državni izpitni center SPOMLADANSKI IZPITNI ROK *M * NAVODILA ZA OCENJEVANJE. Sreda, 3. junij 2015 SPLOŠNA MATURA

Državni izpitni center SPOMLADANSKI IZPITNI ROK *M * NAVODILA ZA OCENJEVANJE. Sreda, 3. junij 2015 SPLOŠNA MATURA Državni izpitni center *M15143113* SPOMLADANSKI IZPITNI ROK NAVODILA ZA OCENJEVANJE Sreda, 3. junij 2015 SPLOŠNA MATURA RIC 2015 M151-431-1-3 2 IZPITNA POLA 1 Naloga Odgovor Naloga Odgovor Naloga Odgovor

Διαβάστε περισσότερα

Fazni diagram binarne tekočine

Fazni diagram binarne tekočine Fazni diagram binarne tekočine Žiga Kos 5. junij 203 Binarno tekočino predstavljajo delci A in B. Ti se med seboj lahko mešajo v različnih razmerjih. V nalogi želimo izračunati fazni diagram take tekočine,

Διαβάστε περισσότερα

Vaja: Odbojnostni senzor z optičnimi vlakni. Namen vaje

Vaja: Odbojnostni senzor z optičnimi vlakni. Namen vaje Namen vaje Spoznavanje osnovnih fiber-optičnih in optomehanskih komponent Spoznavanje načela delovanja in praktične uporabe odbojnostnega senzorja z optičnimi vlakni, Delo z merilnimi instrumenti (signal-generator,

Διαβάστε περισσότερα

IZDELAVA UČILA ZA PRIKAZ ENERGIJSKIH PRETVORB PRI POUKU FIZIKE

IZDELAVA UČILA ZA PRIKAZ ENERGIJSKIH PRETVORB PRI POUKU FIZIKE RAZISKOVALNA NALOGA IZDELAVA UČILA ZA PRIKAZ ENERGIJSKIH PRETVORB PRI POUKU FIZIKE Avtorji: Jan KOKALJ, 8. b Dejan RAMOVŠ, 8. b Denis ŽALIG, 8. b Mentor: Jože BERK, prof. fiz. in mat. Mestna občina Celje

Διαβάστε περισσότερα

Gimnazija Krˇsko. vektorji - naloge

Gimnazija Krˇsko. vektorji - naloge Vektorji Naloge 1. V koordinatnem sistemu so podane točke A(3, 4), B(0, 2), C( 3, 2). a) Izračunaj dolžino krajevnega vektorja točke A. (2) b) Izračunaj kot med vektorjema r A in r C. (4) c) Izrazi vektor

Διαβάστε περισσότερα

V tem poglavju bomo vpeljali pojem determinante matrike, spoznali bomo njene lastnosti in nekaj metod za računanje determinant.

V tem poglavju bomo vpeljali pojem determinante matrike, spoznali bomo njene lastnosti in nekaj metod za računanje determinant. Poglavje IV Determinanta matrike V tem poglavju bomo vpeljali pojem determinante matrike, spoznali bomo njene lastnosti in nekaj metod za računanje determinant 1 Definicija Preden definiramo determinanto,

Διαβάστε περισσότερα

VEKTORJI. Operacije z vektorji

VEKTORJI. Operacije z vektorji VEKTORJI Vektorji so matematični objekti, s katerimi opisujemo določene fizikalne količine. V tisku jih označujemo s krepko natisnjenimi črkami (npr. a), pri pisanju pa s puščico ( a). Fizikalne količine,

Διαβάστε περισσότερα

FAKULTETA ZA STROJNIŠTVO Matematika 4 Pisni izpit 22. junij Navodila

FAKULTETA ZA STROJNIŠTVO Matematika 4 Pisni izpit 22. junij Navodila FAKULTETA ZA STROJNIŠTVO Matematika 4 Pisni izpit 22 junij 212 Ime in priimek: Vpisna št: Navodila Pazljivo preberite besedilo naloge, preden se lotite reševanja Veljale bodo samo rešitve na papirju, kjer

Διαβάστε περισσότερα

Reševanje sistema linearnih

Reševanje sistema linearnih Poglavje III Reševanje sistema linearnih enačb V tem kratkem poglavju bomo obravnavali zelo uporabno in zato pomembno temo linearne algebre eševanje sistemov linearnih enačb. Spoznali bomo Gaussovo (natančneje

Διαβάστε περισσότερα

Matematika 1. Gregor Dolinar. 2. januar Fakulteta za elektrotehniko Univerza v Ljubljani. Gregor Dolinar Matematika 1

Matematika 1. Gregor Dolinar. 2. januar Fakulteta za elektrotehniko Univerza v Ljubljani. Gregor Dolinar Matematika 1 Mtemtik 1 Gregor Dolinr Fkultet z elektrotehniko Univerz v Ljubljni 2. jnur 2014 Gregor Dolinr Mtemtik 1 Izrek (Izrek o povprečni vrednosti) Nj bo m ntnčn spodnj mej in M ntnčn zgornj mej integrbilne funkcije

Διαβάστε περισσότερα

vaja Kvan*ta*vno določanje proteinov. 6. vaja Kvan*ta*vno določanje proteinov. 6. vaja Kvan*ta*vno določanje proteinov

vaja Kvan*ta*vno določanje proteinov. 6. vaja Kvan*ta*vno določanje proteinov. 6. vaja Kvan*ta*vno določanje proteinov 28. 3. 11 UV- spektrofotometrija Biuretska metoda Absorbanca pri λ=28 nm (A28) UV- spektrofotometrija Biuretska metoda vstopni žarek intenziteta I Lowrijeva metoda Bradfordova metoda Bradfordova metoda

Διαβάστε περισσότερα

Izpeljava Jensenove in Hölderjeve neenakosti ter neenakosti Minkowskega

Izpeljava Jensenove in Hölderjeve neenakosti ter neenakosti Minkowskega Izeljava Jensenove in Hölderjeve neenakosti ter neenakosti Minkowskega 1. Najosnovnejše o konveksnih funkcijah Definicija. Naj bo X vektorski rostor in D X konveksna množica. Funkcija ϕ: D R je konveksna,

Διαβάστε περισσότερα

vezani ekstremi funkcij

vezani ekstremi funkcij 11. vaja iz Matematike 2 (UNI) avtorica: Melita Hajdinjak datum: Ljubljana, 2009 ekstremi funkcij več spremenljivk nadaljevanje vezani ekstremi funkcij Dana je funkcija f(x, y). Zanimajo nas ekstremi nad

Διαβάστε περισσότερα

Linearne preslikave. Poglavje VII. 1 Definicija linearne preslikave in osnovne lastnosti

Linearne preslikave. Poglavje VII. 1 Definicija linearne preslikave in osnovne lastnosti Poglavje VII Linearne preslikave V tem poglavju bomo vektorske prostore označevali z U,V,W,... Vsi vektorski prostori bodo končnorazsežni. Zaradi enostavnosti bomo privzeli, da je pripadajoči obseg realnih

Διαβάστε περισσότερα

DISKRETNA FOURIERJEVA TRANSFORMACIJA

DISKRETNA FOURIERJEVA TRANSFORMACIJA 29.03.2004 Definicija DFT Outline DFT je linearna transformacija nekega vektorskega prostora dimenzije n nad obsegom K, ki ga označujemo z V K, pri čemer ima slednji lastnost, da vsebuje nek poseben element,

Διαβάστε περισσότερα

TRDNOST (VSŠ) - 1. KOLOKVIJ ( )

TRDNOST (VSŠ) - 1. KOLOKVIJ ( ) TRDNOST (VSŠ) - 1. KOLOKVIJ (17. 12. 03) Pazljivo preberite besedilo vsake naloge! Naloge so točkovane enakovredno (vsaka 25%)! Pišite čitljivo! Uspešno reševanje! 1. Deformiranje telesa je podano s poljem

Διαβάστε περισσότερα

386 4 Virtualni pomiki in virtualne sile. A 2 x E 2 = 0. (4.99)

386 4 Virtualni pomiki in virtualne sile. A 2 x E 2 = 0. (4.99) 386 4 Virtualni pomiki in virtualne sile oziroma Ker je virtualna sila δf L poljubna, je enačba 4.99) izpolnjena le, če je δf L u L F ) L A x E =. 4.99) u L = F L A x E. Iz prikazanega primera sledi, da

Διαβάστε περισσότερα

Matematika 1. Gabrijel Tomšič Bojan Orel Neža Mramor Kosta

Matematika 1. Gabrijel Tomšič Bojan Orel Neža Mramor Kosta Matematika Gabrijel Tomšič Bojan Orel Neža Mramor Kosta 6. november 200 Poglavje 2 Zaporedja in številske vrste 2. Zaporedja 2.. Uvod Definicija 2... Zaporedje (a n ) = a, a 2,..., a n,... je predpis,

Διαβάστε περισσότερα

IZZIVI DRUŽINSKE MEDICINE. U no gradivo zbornik seminarjev

IZZIVI DRUŽINSKE MEDICINE. U no gradivo zbornik seminarjev IZZIVI DRUŽINSKE MEDICINE Uno gradivo zbornik seminarjev študentov Medicinske fakultete Univerze v Mariboru 4. letnik 2008/2009 Uredniki: Alenka Bizjak, Viktorija Janar, Maša Krajnc, Jasmina Rehar, Mateja

Διαβάστε περισσότερα

Univerza v Ljubljani Fakulteta za računalništvo in informatiko MATEMATIKA. Polona Oblak

Univerza v Ljubljani Fakulteta za računalništvo in informatiko MATEMATIKA. Polona Oblak Univerza v Ljubljani Fakulteta za računalništvo in informatiko MATEMATIKA Polona Oblak Ljubljana, 04 CIP - Kataložni zapis o publikaciji Narodna in univerzitetna knjižnica, Ljubljana 5(075.8)(0.034.) OBLAK,

Διαβάστε περισσότερα

Kvantni delec na potencialnem skoku

Kvantni delec na potencialnem skoku Kvantni delec na potencialnem skoku Delec, ki se giblje premo enakomerno, pride na mejo, kjer potencial naraste s potenciala 0 na potencial. Takšno potencialno funkcijo zapišemo kot 0, 0 0,0. Slika 1:

Διαβάστε περισσότερα

II. LIMITA IN ZVEZNOST FUNKCIJ

II. LIMITA IN ZVEZNOST FUNKCIJ II. LIMITA IN ZVEZNOST FUNKCIJ. Preslikave med množicami Funkcija ali preslikava med dvema množicama A in B je predpis f, ki vsakemu elementu x množice A priredi natanko določen element y množice B. Važno

Διαβάστε περισσότερα

Funkcije več spremenljivk

Funkcije več spremenljivk DODATEK C Funkcije več spremenljivk C.1. Osnovni pojmi Funkcija n spremenljivk je predpis: f : D f R, (x 1, x 2,..., x n ) u = f (x 1, x 2,..., x n ) kjer D f R n imenujemo definicijsko območje funkcije

Διαβάστε περισσότερα

Navadne diferencialne enačbe

Navadne diferencialne enačbe Navadne diferencialne enačbe Navadne diferencialne enačbe prvega reda V celotnem poglavju bo y = dy dx. Diferencialne enačbe z ločljivima spremeljivkama Diferencialna enačba z ločljivima spremeljivkama

Διαβάστε περισσότερα

ΠΡΙΤΣΙΝΑΔΟΡΟΣ ΛΑΔΙΟΥ ΑΕΡΟΣ ΓΙΑ ΠΡΙΤΣΙΝΙΑ M4/M12 ΟΔΗΓΙΕΣ ΧΡΗΣΗΣ - ΑΝΤΑΛΛΑΚΤΙΚΑ

ΠΡΙΤΣΙΝΑΔΟΡΟΣ ΛΑΔΙΟΥ ΑΕΡΟΣ ΓΙΑ ΠΡΙΤΣΙΝΙΑ M4/M12 ΟΔΗΓΙΕΣ ΧΡΗΣΗΣ - ΑΝΤΑΛΛΑΚΤΙΚΑ GR ΠΡΙΤΣΙΝΑΔΟΡΟΣ ΛΑΔΙΟΥ ΑΕΡΟΣ ΓΙΑ ΠΡΙΤΣΙΝΙΑ M4/M12 ΟΔΗΓΙΕΣ ΧΡΗΣΗΣ - ΑΝΤΑΛΛΑΚΤΙΚΑ H OLJLAJNYOMÁSÚ SZEGECSELŐ M4/M12 SZEGECSEKHEZ HASZNÁLATI UTASÍTÁS - ALKATRÉSZEK SLO OLJNO-PNEVMATSKI KOVIČAR ZA ZAKOVICE

Διαβάστε περισσότερα

ARHITEKTURA DETAJL 1, 1:10

ARHITEKTURA DETAJL 1, 1:10 0.15 0.25 3.56 0.02 0.10 0.12 0.10 SESTV S2 polimer-bitumenska,dvoslojna(po),... 1.0 cm po zahtevah SIST DIN 52133 in nadstandardno, (glej opis v tehn.poročilu), npr.: PHOENIX STR/Super 5 M * GEMINI P

Διαβάστε περισσότερα

Najprej zapišemo 2. Newtonov zakon za cel sistem v vektorski obliki:

Najprej zapišemo 2. Newtonov zakon za cel sistem v vektorski obliki: NALOGA: Po cesi vozi ovornjak z hirosjo 8 km/h. Tovornjak je dolg 8 m, širok 2 m in visok 4 m in ima maso 4 on. S srani začne pihai veer z hirosjo 5 km/h. Ob nekem času voznik zaspi in ne upravlja več

Διαβάστε περισσότερα

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET Goran Stančić SIGNALI I SISTEMI Zbirka zadataka NIŠ, 014. Sadržaj 1 Konvolucija Literatura 11 Indeks pojmova 11 3 4 Sadržaj 1 Konvolucija Zadatak 1. Odrediti konvoluciju

Διαβάστε περισσότερα

Iterativno reševanje sistemov linearnih enačb. Numerične metode, sistemi linearnih enačb. Numerične metode FE, 2. december 2013

Iterativno reševanje sistemov linearnih enačb. Numerične metode, sistemi linearnih enačb. Numerične metode FE, 2. december 2013 Numerične metode, sistemi linearnih enačb B. Jurčič Zlobec Numerične metode FE, 2. december 2013 1 Vsebina 1 z n neznankami. a i1 x 1 + a i2 x 2 + + a in = b i i = 1,..., n V matrični obliki zapišemo:

Διαβάστε περισσότερα

Spoznajmo sedaj definicijo in nekaj osnovnih primerov zaporedij števil.

Spoznajmo sedaj definicijo in nekaj osnovnih primerov zaporedij števil. Zaporedja števil V matematiki in fiziki pogosto operiramo s približnimi vrednostmi neke količine. Pri numeričnemu računanju lahko npr. število π aproksimiramo s števili, ki imajo samo končno mnogo neničelnih

Διαβάστε περισσότερα

REˇSITVE. Naloga a. b. c. d Skupaj. FAKULTETA ZA MATEMATIKO IN FIZIKO Oddelek za matematiko Verjetnost 2. kolokvij 23.

REˇSITVE. Naloga a. b. c. d Skupaj. FAKULTETA ZA MATEMATIKO IN FIZIKO Oddelek za matematiko Verjetnost 2. kolokvij 23. Ime in priimek: Vpisna št: FAKULTETA ZA MATEMATIKO IN FIZIKO Oddelek za matematiko Verjetnost. kolokvij 3. januar 08 Navodila Pazljivo preberite besedilo naloge, preden se lotite reševanja. Nalog je 6,

Διαβάστε περισσότερα

IZVODI ZADACI (I deo)

IZVODI ZADACI (I deo) IZVODI ZADACI (I deo) Najpre da se podsetimo tablice i osnovnih pravila:. C`=0. `=. ( )`= 4. ( n )`=n n-. (a )`=a lna 6. (e )`=e 7. (log a )`= 8. (ln)`= ` ln a (>0) 9. = ( 0) 0. `= (>0) (ovde je >0 i a

Διαβάστε περισσότερα

Bočna zvrnitev upogibno obremenjenih elementov s konstantnim prečnim prerezom

Bočna zvrnitev upogibno obremenjenih elementov s konstantnim prečnim prerezom D. Beg, študijsko gradivo za JK, april 006 KK FGG UL Bočna zvrnitev upogibno obremenjenih elementov s konstantnim prečnim prerezom Nosilnost na bočno zvrnitev () Elemente, ki niso bočno podprti in so upogibno

Διαβάστε περισσότερα

Definicija. definiramo skalarni produkt. x i y i. in razdaljo. d(x, y) = x y = < x y, x y > = n (x i y i ) 2. i=1. i=1

Definicija. definiramo skalarni produkt. x i y i. in razdaljo. d(x, y) = x y = < x y, x y > = n (x i y i ) 2. i=1. i=1 Funkcije več realnih spremenljivk Osnovne definicije Limita in zveznost funkcije več spremenljivk Parcialni odvodi funkcije več spremenljivk Gradient in odvod funkcije več spremenljivk v dani smeri Parcialni

Διαβάστε περισσότερα

Slika 5: Sile na svetilko, ki je obešena na žici.

Slika 5: Sile na svetilko, ki je obešena na žici. 4. poglavje: Sile 5. Cestna svetilka visi na sredi 10 m dolge žice, ki je napeta čez cesto. Zaradi teže svetilke (30 N) se žica za toliko povesi, da pride sredina za 30 cm niže kot oba konca. Kako močno

Διαβάστε περισσότερα

- Učenci rešijo odprte probleme, razčlenijo problemsko situacijo in postavljajo raziskovalna vprašanja.

- Učenci rešijo odprte probleme, razčlenijo problemsko situacijo in postavljajo raziskovalna vprašanja. NAVODILA ZA UČITELJE Pogoji za uporabo učnega lista: Učni list je namenjen med obravnavo enakostraničnega trikotnika. Učenci v programu GeoGebra ugotavljajo lastnosti enakostraničnega trikotnika ob predpostavki,

Διαβάστε περισσότερα

Kvadratne forme. Poglavje XI. 1 Definicija in osnovne lastnosti

Kvadratne forme. Poglavje XI. 1 Definicija in osnovne lastnosti Poglavje XI Kvadratne forme V zadnjem poglavju si bomo ogledali še eno vrsto preslikav, ki jih tudi lahko podamo z matrikami. To so tako imenovane kvadratne forme, ki niso več linearne preslikave. Kvadratne

Διαβάστε περισσότερα

Poliedri Ines Pogačar 27. oktober 2009

Poliedri Ines Pogačar 27. oktober 2009 Poliedri Ines Pogačar 27. oktober 2009 Pri linearnem programiranju imamo opravka s končnim sistemom neenakosti in končno spremenljivkami, torej je množica dopustnih rešitev presek končno mnogo polprostorov.

Διαβάστε περισσότερα