Kvantitativne metode u Industrijskom inženjerstvu

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Kvantitativne metode u Industrijskom inženjerstvu"

Transcript

1 Kvantitativne metode u Industrijskom inženjerstvu

2 sastavna područja Industrijskog inženjerstva (Gavriel Salvendy):

3 Neka područja obuhvaćena pojmom kvantitativnih metoda: Snimanje postojećeg stanja (VSM) Rudarenje podacima (Data mining) Analiza prikupljenih informacija o procesima Statističke metode: Probabilistički modeli Testiranje statističkih hipoteza (potpora odlučivanju) Korelacijska i regresijska analiza Multivarijatne statističke metode Planiranje i analiza pokusa Optimiranje: Linearno programiranje i optimizacija Cjelobrojno programiranje Nelinearno programiranje Eksperimentalno optimiranje Metode kontrole kvalitete Analiza vremenskih nizova i prognoziranje Transportni problemi Analiza rizika Računalne simulacije Monte Carlo simulacije Modeliranje stohastičkih procesa Supply chain management

4 Temeljna znanja iz kvantitativnih metoda na smjeru ind. inženjerstva: 1. Inženjerska statistika 2. Planiranje pokusa 3. Optimiranje 4. Kontrola kvalitete

5 1. INŽENJERSKA STATISTIKA Područja inženjerske statistike: Kombinatorika i vjerojatnost Deskriptivna statistika Raspodjele podataka Teorija uzoraka Testiranje statističkih hipoteza Analiza varijance Korelacijska i regresijska analiza Kombinatorika i vjerojatnost Slučajni događaj događaj koji se pod nekim okolnostima može ali i ne mora dogoditi. Služe pri određivanju vjerojatnosti slučajnih događaja Modeli u kombinatorici: Permutacije (bez ponavljanja i s ponavljanjem) Varijacije (bez ponavljanja i s ponavljanjem) Kombinacije Složene kombinacije

6 Zavod za industrijsko inženjerstvo Primjer iz kombinatorike: Primjer 1: Koliko treba ispuniti nizova da bi se u LOTU 7/39 sigurno dobila sedmica? NAPOMENA: budući da nije bitan redoslijed odabiranja (izvlačenja) kuglica radi se o kombinacijama. Primjer iz vjerojatnosti: Primjer 2: Bacamo kocku i novčić. Kolika je vjerojatnost da će kocka pokazati broj 6 i novčić pasti na glavu? P(broj 6) ; P('glava') P('glava' i '6')

7 Upotreba teorije vjerojatnosti na primjeru iz prakse: Primjer 3: U kritičnom dijelu nekog sustava važno je da je barem jedna pumpa u stanju ispravnog rada kako ne bi došlo do zastoja. Ako su vjerojatnosti ispravnog rada (pouzdanost) svake pumpe R=0,99 kolika je vjerojatnost da sustav funkcionira ispravno? Budući da je P(ispravnog rada)+p(zastoja)=1 možemo pisati sljedeće: P(ispravnog rada) 1-P(zastoja); P(zastoja) Q(pumpa1) Q(pumpa2) Q(pumpa3) P(ispravnog rada) 1-0,01 0,01 0,

8 Deskriptivna statistika opisivanje podataka iz uzorka ili populacije u formi osnovnih parametara, identifikacija procesa grafička obrada empirijskih podataka: Histogram Histogram Histogram of x1 Boxplot of x1; x Frequency Frequency Cumulative Frequency Data C x x x1 x2 fi Stem Leaf ; 40,5% Pie Chart of x 1; 2; 0,5% 1,0% 7; 3,5% 31; 15,5% Category Dotplot of x Cause-and-Effect Diagram Measurement Material Personnel s Kriva Krivo Veličina veličina postavljen papira papira papir zraku poklopca zatvaranja nejasne papira ; 38,5% x u Vlaga nakon papir Pomaknut podešavanje za Oznake Each symbol represents up to 3 observations. Environment Methods Machines

9 numerička obrada empirijskih podataka mjere položaja: aritmetička sredina suma svih elemenata u populaciji podijeljena sa brojem elemenata populacije (težište paralela sa mehaničkim modelom) n xi i 1 x aritm. sredina uzorka n mod podatak (ili razred) koji ima najveću frekvenciju medijan 50% podataka je manje, a 50% veće od te vrijednosti kvantili - vrijednosti numeričkog obilježja koje niz uređen po veličini dijele na q jednakih dijelova Kvartili Decili Percentili

10 interpretacija mjera položaja u praksi: Primjer: Izračun prosječne mjesečne plaće u RH. Mjere položaja su bitno različite u ovisnosti o samoj strukturi podataka. Moguće manipulacije terminima i pogrešno tumačenje istih. Ako se govori o prosjeku na razini aritmetičke sredine: Uzimajući medijan kao relevantnu mjeru: Kada se koristi mod: x 5493 kn 4300 kn xmed xmod 2900 kn mjere rasipanja: standardna devijacija σ prosječno odstupanje svakog podatka od arit. sredine varijanca σ 2 prosječno kvadratno odstupanje svakog podatka od arit. Sredine n 2 ( xi x) 2 i 1 2 n koeficijent varijacije, V međusobno uspoređivanje varijabilnosti pojava ili svojstava - pokazuje koliki odnos vrijednosti aritm. sredine iznosi vrijednost standardne devijacije (u %) raspon, R x razlika najveće i najmanje vrijednosti u nekom nizu podataka

11 Raspodjele podataka Raspodjele podataka za diskretna obilježja Raspodjele podataka za kontinuirana obilježja Teorijske raspodjele podataka 0,30 0,25 Distribution Plot Poisson; Mean=2,3 0,265 0,20 Probability 0,15 0,10 0,30 0 Binomial; n=18; p=0, , ,05 0,00 Probability 0,25 0, ,15 X 0,10 0,05 0, X 7

12 Poisson-ova raspodjela primjer upotrebe ( Operations research ) Primjer: Tijekom drugog svjetskog rata London je gađan projektilima V1. Britance je zanimalo kako iz podataka o padanju projektila zaključiti da li je riječ o gađanju nasumce ili se cilja neka točka u Londonu. - London je podijeljen na 576 sektora - U vremenskom periodu promatranja palo je 537 projektila Value Chart of Observed and Expected Values x >=4 Expected Observed Poisson mean for x = 0, Poisson Contribution x Observed Probability Expected Chi-Sq , ,74 0, , ,39 0, , ,54 0, , ,62 0, , ,14 0, (6,7..) 1 1,57 TEST: N N* DF Chi-Sq P-Value , ,796 - podaci se ponašaju po Poisson-ovoj razdiobi! - zaključak - V1 nije imao navođenje

13 Normalna raspodjela prvi definirao Abraham de Moivre upotrijebio Gauss (Gauss-ova raspodjela) najčešće korištena raspodjela čak 33% procesa u prirodi slijedi zakon normalne raspodjele funkcija gustoće vjerojatnosti normalne raspodjele f(x): 1 2 f( x) e za - x 2 vjerojatnosti ispod normalne raspodjele N{μ, σ 2 }: 2 1 x

14 primjena normalne raspodjele: Primjer: Pretpostavimo da se izmjerena jakost struje u vodiču pokorava zakonu normalne raspodjele sa očekivanjem μ=10 ma i varijancom σ 2 =4 ma2. Kolika je vjerojatnost da će jakost struje premašiti 13 ma? 0,20 0,15 Normal; Mean=10; StDev=2 5,0 7,5 10,0 12,5 15,0 17,5 ( x ) (13 10) z z 1,5 2 Px ( 13) Pz ( 1,5) 1 Pz ( 1,5) 0,06681 Density 0,10 0,05 Normal; Mean=0; StDev= ,00 5,0 7,5 10,0 X 12, ,0 17,5 0,4 0,3 Density 0,2 0,1 0,0668 0, z 1 1,5 2 3

15 definicija krivulje učestalosti kvarova u tehničkim sustavima (krivulja mortaliteta): I. period dječje bolesti 1. raspodjela e -λt II. period normalne eksploatacije, slučajni kvarovi 2. raspodjela uniformna III. period zbog trošenja dijelova, vremenski kvarovi 3. raspodjela normalna

16 Teorija uzoraka i testiranje statističkih hipoteza T.S.H. predstavlja postupak donošenja odluke na bazi uzorka uzorak, n podataka: x1, x2,..., xn rezultati se uzorka mogu shvatiti kao točka u n-dimenzionalnom prostoru prostor se može podijeliti na dva međusobno disjunktna dijela (koji se isključuju), dio A i dio B Postavljaju se dvije hipoteze H 0 : nulta hipoteza H 1 : alternativna hipoteza dio B (odbacivanje H 0 ) dio A (prihvaćanje H 0 )

17 testiranje hipoteze na primjeru (t-test uzorak-osnovni skup) Primjer: Ugovorom je propisano da određena pošiljka alata mora imati tvrdoću 60HRC. Iz pošiljke izuzet je uzorak od 8 elemenata te je nad njim izvršeno ispitivanje tvrdoće. Podaci su dani u tablici. Potrebno je testirati hipotezu: Da li na temelju uzorka možemo zaključiti da je očekivana tvrdoća alata u pošiljci jednaka propisanoj. Neka je razina povjerenja P=0,95. 59,4 59,6 61,2 60,2 60,4 59,6 58,8 58,5 H0 : 60HRc H1 : 60HRc x 59,2 s 0,535; sx 0,189 x 59, 2 60 t s 0,189 x 4,23 k n 1 t0 2,365 0,05 t t odbaciti H i prihvatiti H 0 0 1

18 Analiza varijance Postupak usporedbe više uzoraka pri čemu svaki uzorak predstavlja osnovni skup (populaciju) U tehničkim i proizvodnim uvjetima analiza varijance predstavlja postupak provjere djelovanja promjene stanja nekog faktora na mjerenu vrijednost rezultat Analizom varijance provjeravaju se promjene aritmetičkih sredina uzoraka Primjena ANOVA metode u praksi: Primjer - Čvrstoća papira (psi) u ovisnosti o udjelu tvrdog drva u smjesi, u % mjerenja udio tvrdog drva, % Suma po uzorcima Ar. sredina uzorka izvor varijacije faktor: udio tvrdog drva slučajno odst. u uzorcima (ostatak) suma kvadrata odstupanja stupnjevi slobode srednji kvadrat odstupanja F rač. F 0( =0.01) UKUPNO: f ( F ) 1 k b = 3; k n = 20 F 0 = F rač. > F 0 odbaciti H 0 uz vj. pogreške 1. vrste = 0.01 F

19 Korelacijska analiza Mjera povezanosti dvije ili više varijabli metoda kojom se utvrđuje da li među varijablama postoji funkcionalna ovisnost Pearson-ov koeficijent korelacije r može poprimiti vrijednost od do r<0 definira negativnu korelaciju r>0 definira pozitivnu korelaciju SMJER POVEZANOSTI Metoda korelacije prati odstupanja i uspoređuje varijacije dvaju ili više varijabli te mjeri odnose među varijacijama. jakost veze Regresijska analiza Određuje oblik krivulje koja najbolje opisuje zadane podatke Oblik povezanosti varijabli: Linearna povezanost ili krivolinijska Kod regresijske analize se zna što je uzrok a što posljedica (zavisna, nezavisna varijabla) Osnovni problem ove metode je odrediti koeficijente regresije Regresijska analiza: jednostavna linearna regresija; nelinearna regresija (linearizacija); višestruka regresija

20 primjena korelacijske i regresijske metode PRIMJER U nekom istraživanju mehaničkih svojstava nekog alatnog čelika utvrđeni su podaci o mikrostrukturnom sastavu (volumnom udjelu jedne od faza) i tvrdoći, prema tablici. Utvrditi ima li ovisnosti između ove dvije varijable i kakvog je ona oblika. Volumni udio faze x [%] tvrdoća, y [HRC] Regression Analysis: Tvrdoca versus Udio faze_ The regression equation is Tvrdoca = 68,2-2,09 Udio faze_ Predictor Coef SE Coef T P Constant 68,1995 0, ,52 0,000 Udio faze_ -2,0895 0, ,81 0,000 S = 0, R-Sq = 98,1% R-Sq(adj) = 97,8%

21 Analysis of Variance Source DF SS MS F P Regression 1 60,726 60, ,23 0,000 Residual Error 6 1,149 0,191 Total 7 61,875 Udio Obs faze_ Tvrdoca Fit SE Fit Residual St Resid 1 1,20 66,000 65,692 0,242 0,308 0,84 2 1,40 65,000 65,274 0,225-0,274-0,73 3 1,80 64,000 64,438 0,193-0,438-1,12 4 2,10 64,000 63,812 0,174 0,188 0,47 5 2,90 62,000 62,140 0,155-0,140-0,34 6 3,60 61,000 60,677 0,182 0,323 0,81 7 4,20 60,000 59,424 0,227 0,576 1,54 8 5,10 57,000 57,543 0,312-0,543-1,77

22 2. PLANIRANJE POKUSA Visoki zahtjevi koje suvremeno tržište postavlja na sve aspekte kvalitete proizvodnih i tehnoloških procesa zahtijevaju uporabu različitih metoda kontrole i upravljanja kvalitetom kako u procesima proizvodnje tako i u njihovu projektiranju Uz već uobičajene metode i tehnike upravljanja kvalitetom, sve se više koristi i metodologija planiranja i analize pokusa (Design of Experiments), koja se pokazala vrlo učinkovitom, posebice žele li se postići optimalna rješenja kako u funkcionalnim značajkama proizvoda tako i u pogledu parametara odvijanja tehnološkog i proizvodnog procesa odnosi se na procedure planiranja istraživanja koja se temelje na statističkom ocjenjivanju rezultata ispitivanja kako bi se, s određenom razinom povjerenja, donosili zaključci o značajkama procesa ili proizvoda metode planiranja pokusa najčešće se primjenjuju u istraživanju utjecajnih faktora na karakteristike procesa ili proizvoda Primjenom neke od procedura planiranja pokusa postižu se velike uštede ljudskih, vremenskih i financijskih resursa

23 Francis Bacon ( ), filozof, znanstvenik, povjesničar, koristio jednofaktorske pokuse ponavljanje pokusa John Bennet Lawes zanimao se za utjecaj vrste gnojiva na količinu uroda godine zajedno s s Joseph Henry Gilbert osnovao Rothamsted Experimental Station godine započeli su prvu seriju eksperimenata glavni cilj je bio mjeriti efekte na poljima usjeva pognojenih organskim i anorganskim gnojivom godine Sir Ronald Aylmer Fisher zaposlio se u Rothamsted Experimental Station, te počeo proučavati dotada sakupljene podatke o eksperimentima godine Fisher objavljuje knjigu pod nazivom Statistical Methods for Research Workers definirao osnovne pojmove vezane uz pokuse: ponavljanje (repetiton; replicates), slučajnost pri izvođenju pokusa (randomization), blokovi, aliasi godine Fisher objavljuje knjigu pod nazivom Design of Experiments od tada je izraz Design of Experiments u službenoj upotrebi Početkom 20-og stoljeća pokusi sa smjesama se pojavljuju u poljoprivrednoj industriji, industriji guma te industriji sapuna

24 Model pokusa kontrolirani faktori w 1 w 2... w p Faze pri izvođenju pokusa 1. Definirati problem i cilj istraživanja Odabrati utjecajne faktore i njihove razine 3. Odabrati mjerene vrijednosti (izlazne varijable) x 1 y 1 4. Odabrati model pokusa x 2 : x m ulazi (faktori, varijable)... Proces, problem y 2 : y m izlazi (mjerne vrijednosti, rezultati) 5. Izvesti pokus (predpokus, glavni pokus) 6. Analizirati rezultate 7. Formulirati zaključke i prijedloge z 1 z 2... z p nekontrolirani faktori (poremećaji) Primjer : Kokice za mikrovalnu

25 3. METODE OPTIMIRANJA Eksperimentalno optimiranje, nakon provedenog i analiziranog plana pokusa direktno optimiranje svojstava proizvoda i procesa Matematičko optimiranje metode optimiranja kada su funkcije cilja i ograničenja unaprijed poznate i eksplicitno izražene

26 Eksperimentalno optimiranje primjer : Siluminski odljevci Matematičko programiranje: Linearno programiranje L.P. je kvantitativna znanstvena metoda kojom se od većeg broja mogućih alternativnih rješenja izabere ono koje je optimalno za neki definirani kriterij optimalnosti Postupak koji se pri tome koristi omogućava određivanje svih vrijednosti niza varijabli povezanih ograničenjima, koje daju ekstremnu vrijednost (maksimum ili minimum) linearne funkcije cilja. Nelinearno programiranje Kvantitativna znanstvena metoda koja izabire optimalno rješenje iz domene varijabli povezanih ograničenjima koje daju optimum funkcije cilja nelinearnog karaktera Transportni problem Cjelobrojno programiranje

27 Linearno programiranje (grafička metoda) Primjer: Za zadanu funkciju cilja F(X)=30x 1 +20x 2 potrebno je grafički pronaći maksimalnu vrijednost, ako su zadana sljedeća ograničenja:

28 Trendovi u području industrijskog inženjerstva Dva osnovna smjera razvoja proizvoda i procesa objedinjavanjem i uporabom kvantitativnih metoda : Poboljšanje proizvodnih procesa na principu LEAN proizvodnje vitka proizvodnja Povećanje kvalitete uporabom 6 sigma metodologije

29 6 sigma metodologija σ slovo grčkog alfabeta σ mjera varijabilnosti nekog procesa (koji se ponaša prema normalnoj razdiobi) k σ razina kvalitete govori o učestalosti mogućih pogrešaka uz unaprijed definirane granice tolerancije specifikcije!

30 Rezultat, iskazan u ppm (dpmo) DGS -1.5 σ +1.5 σ GGS μ Granice specifikacije: ±1 σ ±2 σ ±3 σ ±4 σ ±5 σ ±6 σ Sukladnih % 30,23 69,13 93,32 99, , , Nesukladnih (ppm) ,4

31 Uobičajena razina kvalitete 99% sukladnih proizvoda i usluga znači: izgubljenih poštanskih pošiljki na sat 15 min/dan zagađenje pitke vode nekorektno izvedenih medicinskih zahvata na tjedan 2 nekorektno prizemljena zrakoplova dnevno (u glavnim zračnim lukama) pogrešno propisanih lijekova godišnje bez električne energije cca 7 sati/mjesec Ako odigrate 100 partija golfa godišnje i igrate na razini preciznosti: 2 sigma promašit će te 6 putt-ova po partiji 3 sigma promašit će te 1 putt po partiji 4 sigma promašit će te 1 putt svakih 9 partija 5 sigma promašit će te 1 putt svake 2.33 godine 6 sigma promašit će te 1 putt svakih 163 godine

32 Stopa nesukladnosti i σ razina kvalitete - unapređenje Zavod za industrijsko inženjerstvo ppm 10 puta UNAPREĐENJE 30 puta 70 puta N. razdioba centrirana + + N. razdioba pomaknuta za 1.5 σ σ razina kvalitete

33 Počela 6σ programa MOTOROLA, 1987 (Bill Smith, reliability engineer) Uvođenje programa 6σ inicirano krizom izazvanom jakom konkurencijom, nedovoljnom kvalitetom proizvoda i usluga i visokim troškovima! 1995 MOTOROLA primila prestižnu nagradu za kvalitetu (Malcom Baldrige Quality Award) Prema propozicijama MBQA iskustva objavljena i podijeljena s drugima!!! Kasnije: GENERAL ELECTRIC CEO Jack Welch izjavio: Six Sigma je bila najizazovnija inicijativa ikada poduzeta u General Electricu! GE objavio godišnju korist: $ 300 miliona prihoda, najava i realizacija za 1998.: UDVOSTRUČENJE Slijedili: ABB, Bombardier, Lockheed Martin, IBM, Allied Signal, KODAK, VOLVO,

34 6σ DMAIC MODEL D M A I C Definiraj ciljeve aktivnosti unapređenja Izmjeri postojeći sustav (način rada, proces) Analiziraj sustav (proces) radi utvrđivanja mogućnosti eliminiranja razlike današnjih performansi sustava ili procesa i željenog cilja Unaprijedi sustav, proces Kontroliraj (upravljaj) novi sustav

35 Metodologija rješavanja problema Faza 1: Odredi (Define) Karakterizacija Faza 2: Izmjeri (Measure) Strategija raščlanjivanja Faza 3: Analiziraj (Analyze) Optimiranje Faza 4: Unaprijedi (Improve) Faza 5: Upravljaj (Control)

36 METODE, TEHNIKE, ALATI U PROJEKTIMA 6σ D faza: Pareto analiza blok-dijagrami procesa M faza: Analiza mjernog sustava: mjerna nesigurnost Analiza podataka: deskriptivna statistika Rudarenje podataka (Data mining) Pareto analiza Karta izvođenja (run) procesa

37 A faza: dijagram uzrok posljedica dijagram stabla greška (fault tree diagrams) mozgovne oluje (brainstorming) karte povijesti (ponašanja) procesa (SPC) blok-dijagrami procesa enumerativna statistika (testiranje hipoteza) nepristrane i intervalne procjene FMEA, QFD, stablo grešaka, simulacijski modeli i metode planiranje i analiza pokusa (DOE Design of Experiments) I faza metode operacijskih istraživanja (LP, ND, teorija igara, )

38 Zavod za industrijsko inženjerstvo Veće kompanije koje su uvele 6σ razinu kvalitete u svoje poslovanje

39 Kvantitativne metode potpora odlučivanju!

numeričkih deskriptivnih mera.

numeričkih deskriptivnih mera. DESKRIPTIVNA STATISTIKA Numeričku seriju podataka opisujemo pomoću Numeričku seriju podataka opisujemo pomoću numeričkih deskriptivnih mera. Pokazatelji centralne tendencije Aritmetička sredina, Medijana,

Διαβάστε περισσότερα

2.2 Srednje vrijednosti. aritmetička sredina, medijan, mod. Podaci (realizacije varijable X): x 1,x 2,...,x n (1)

2.2 Srednje vrijednosti. aritmetička sredina, medijan, mod. Podaci (realizacije varijable X): x 1,x 2,...,x n (1) 2.2 Srednje vrijednosti aritmetička sredina, medijan, mod Podaci (realizacije varijable X): x 1,x 2,...,x n (1) 1 2.2.1 Aritmetička sredina X je numerička varijabla. Aritmetička sredina od (1) je broj:

Διαβάστε περισσότερα

3 Populacija i uzorak

3 Populacija i uzorak 3 Populacija i uzorak 1 3.1 Slučajni uzorak X varijabla/stat. obilježje koje izučavamo Cilj statističke analize na osnovi uzorka izvesti odredene zaključke o (populacijskoj) razdiobi od X 2 Primjer 3.1.

Διαβάστε περισσότερα

PISMENI ISPIT IZ STATISTIKE

PISMENI ISPIT IZ STATISTIKE 1. a) Trgovina odjeće prodaje odjeću u tri različite veličine: 32% veličine S, 44% veličine M i ostatak veličine L. Pokazalo se da je postotak odjeće s greškom redom 1%, 5% i 2%. Ako je trgovina ustanovila

Διαβάστε περισσότερα

Izbor statističkih testova Ana-Maria Šimundić

Izbor statističkih testova Ana-Maria Šimundić Izbor statističkih testova Ana-Maria Šimundić Klinički zavod za kemiju Klinička jedinica za medicinsku biokemiju s analitičkom toksikologijom KBC Sestre milosrdnice Izbor statističkog testa Tajna dobrog

Διαβάστε περισσότερα

2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x

2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x Zadatak (Darjan, medicinska škola) Izračunaj vrijednosti trigonometrijskih funkcija broja ako je 6 sin =,,. 6 Rješenje Ponovimo trigonometrijske funkcije dvostrukog kuta! Za argument vrijede sljedeće formule:

Διαβάστε περισσότερα

TRIGONOMETRIJSKE FUNKCIJE I I.1.

TRIGONOMETRIJSKE FUNKCIJE I I.1. TRIGONOMETRIJSKE FUNKCIJE I I Odredi na brojevnoj trigonometrijskoj kružnici točku Et, za koju je sin t =,cost < 0 Za koje realne brojeve a postoji realan broj takav da je sin = a? Izračunaj: sin π tg

Διαβάστε περισσότερα

ELEKTROTEHNIČKI ODJEL

ELEKTROTEHNIČKI ODJEL MATEMATIKA. Neka je S skup svih živućih državljana Republike Hrvatske..04., a f preslikavanje koje svakom elementu skupa S pridružuje njegov horoskopski znak (bez podznaka). a) Pokažite da je f funkcija,

Διαβάστε περισσότερα

(Hi-kvadrat test) r (f i f ti ) 2 H = f ti. i=1

(Hi-kvadrat test) r (f i f ti ) 2 H = f ti. i=1 χ 2 test (Hi-kvadrat test) Jedan od prvih statističkih testova je χ 2 -test. Predložio ga je K. Pearson 900. godine, pa je poznat i pod nazivom Pearsonov test. χ 2 test je neparametarski test. Pomoću χ

Διαβάστε περισσότερα

Numerička matematika 2. kolokvij (1. srpnja 2009.)

Numerička matematika 2. kolokvij (1. srpnja 2009.) Numerička matematika 2. kolokvij (1. srpnja 29.) Zadatak 1 (1 bodova.) Teorijsko pitanje. (A) Neka je G R m n, uz m n, pravokutna matrica koja ima puni rang po stupcima, tj. rang(g) = n. (a) Napišite puni

Διαβάστε περισσότερα

7 Algebarske jednadžbe

7 Algebarske jednadžbe 7 Algebarske jednadžbe 7.1 Nultočke polinoma Skup svih polinoma nad skupom kompleksnih brojeva označavamo sa C[x]. Definicija. Nultočka polinoma f C[x] je svaki kompleksni broj α takav da je f(α) = 0.

Διαβάστε περισσότερα

DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović

DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović Novi Sad April 17, 2018 1 / 22 Teorija grafova April 17, 2018 2 / 22 Definicija Graf je ure dena trojka G = (V, G, ψ), gde je (i) V konačan skup čvorova,

Διαβάστε περισσότερα

Verovatnoća i Statistika I deo Teorija verovatnoće (zadaci) Beleške dr Bobana Marinkovića

Verovatnoća i Statistika I deo Teorija verovatnoće (zadaci) Beleške dr Bobana Marinkovića Verovatnoća i Statistika I deo Teorija verovatnoće zadaci Beleške dr Bobana Marinkovića Iz skupa, 2,, 00} bira se na slučajan način 5 brojeva Odrediti skup elementarnih dogadjaja ako se brojevi biraju

Διαβάστε περισσότερα

UVOD DEFINICIJA: Statistika planiranje i provođenje pokusa skupljanje podataka interpretacija

UVOD DEFINICIJA: Statistika planiranje i provođenje pokusa skupljanje podataka interpretacija OSNOVE STATISTIKE UVOD DEFINICIJA: Statistika je grana matematike koja obuhvaća sakupljanje, analizu, interpretaciju i prezentaciju podataka te izradu predviđanja koja se temelje na tim podacima. Smatra

Διαβάστε περισσότερα

Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama.

Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. a b Verovatno a da sluqajna promenljiva X uzima vrednost iz intervala

Διαβάστε περισσότερα

(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k.

(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k. 1 3 Skupovi brojeva 3.1 Skup prirodnih brojeva - N N = {1, 2, 3,...} Aksiom matematičke indukcije Neka je N skup prirodnih brojeva i M podskup od N. Ako za M vrijede svojstva: 1) 1 M 2) n M (n + 1) M,

Διαβάστε περισσότερα

VJEROJATNOST I STATISTIKA Popravni kolokvij - 1. rujna 2016.

VJEROJATNOST I STATISTIKA Popravni kolokvij - 1. rujna 2016. Broj zadataka: 5 Vrijeme rješavanja: 120 min Ukupan broj bodova: 100 Zadatak 1. (a) Napišite aksiome vjerojatnosti ako je zadan skup Ω i σ-algebra F na Ω. (b) Dokažite iz aksioma vjerojatnosti da za A,

Διαβάστε περισσότερα

Funkcija gustoće neprekidne slučajne varijable ima dva bitna svojstva: 1. Nenegativnost: f(x) 0, x R, 2. Normiranost: f(x)dx = 1.

Funkcija gustoće neprekidne slučajne varijable ima dva bitna svojstva: 1. Nenegativnost: f(x) 0, x R, 2. Normiranost: f(x)dx = 1. σ-algebra skupova Definicija : Neka je Ω neprazan skup i F P(Ω). Familija skupova F je σ-algebra skupova na Ω ako vrijedi:. F, 2. A F A C F, 3. A n, n N} F n N A n F. Borelova σ-algebra Definicija 2: Neka

Διαβάστε περισσότερα

Osnove teorije uzoraka

Osnove teorije uzoraka Oove teorije uzoraka Oove teorije uzoraka UZORAK: lučaji, reprezetativi dio oovog kupa populacije Uzorci: 1.uzorak:,, 1 1.uzorak:,, i.uzorak:,, i i Razdioba aritmetičke redie uzorka f ( ) f ( ) razdioba

Διαβάστε περισσότερα

18. listopada listopada / 13

18. listopada listopada / 13 18. listopada 2016. 18. listopada 2016. 1 / 13 Neprekidne funkcije Važnu klasu funkcija tvore neprekidne funkcije. To su funkcije f kod kojih mala promjena u nezavisnoj varijabli x uzrokuje malu promjenu

Διαβάστε περισσότερα

3.1 Granična vrednost funkcije u tački

3.1 Granična vrednost funkcije u tački 3 Granična vrednost i neprekidnost funkcija 2 3 Granična vrednost i neprekidnost funkcija 3. Granična vrednost funkcije u tački Neka je funkcija f(x) definisana u tačkama x za koje je 0 < x x 0 < r, ili

Διαβάστε περισσότερα

( , 2. kolokvij)

( , 2. kolokvij) A MATEMATIKA (0..20., 2. kolokvij). Zadana je funkcija y = cos 3 () 2e 2. (a) Odredite dy. (b) Koliki je nagib grafa te funkcije za = 0. (a) zadanu implicitno s 3 + 2 y = sin y, (b) zadanu parametarski

Διαβάστε περισσότερα

M086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost

M086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost M086 LA 1 M106 GRP Tema: CSB nejednakost. 19. 10. 2017. predavač: Rudolf Scitovski, Darija Marković asistent: Darija Brajković, Katarina Vincetić P 1 www.fizika.unios.hr/grpua/ 1 Baza vektorskog prostora.

Διαβάστε περισσότερα

radni nerecenzirani materijal za predavanja R(f) = {f(x) x D}

radni nerecenzirani materijal za predavanja R(f) = {f(x) x D} Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Neka su D i K bilo koja dva neprazna skupa. Postupak f koji svakom elementu x D pridružuje točno jedan element y K zovemo funkcija

Διαβάστε περισσότερα

4. MJERE DISPERZIJE. Josipa Perkov, prof., pred. 1

4. MJERE DISPERZIJE. Josipa Perkov, prof., pred. 1 4. MJERE DISPERZIJE Josipa Perkov, prof., pred. 1 Kod mnogih mjerenja se može opaziti da se rezultati grupiraju i skupljaju oko jedne srednje vrijednosti Srednja vrijednost dobro reprezentira rezultate

Διαβάστε περισσότερα

Riješeni zadaci: Limes funkcije. Neprekidnost

Riješeni zadaci: Limes funkcije. Neprekidnost Riješeni zadaci: Limes funkcije. Neprekidnost Limes funkcije Neka je 0 [a, b] i f : D R, gdje je D = [a, b] ili D = [a, b] \ { 0 }. Kažemo da je es funkcije f u točki 0 jednak L i pišemo f ) = L, ako za

Διαβάστε περισσότερα

RIJEŠENI ZADACI I TEORIJA IZ

RIJEŠENI ZADACI I TEORIJA IZ RIJEŠENI ZADACI I TEORIJA IZ LOGARITAMSKA FUNKCIJA SVOJSTVA LOGARITAMSKE FUNKCIJE OSNOVE TRIGONOMETRIJE PRAVOKUTNOG TROKUTA - DEFINICIJA TRIGONOMETRIJSKIH FUNKCIJA - VRIJEDNOSTI TRIGONOMETRIJSKIH FUNKCIJA

Διαβάστε περισσότερα

Iskazna logika 3. Matematička logika u računarstvu. novembar 2012

Iskazna logika 3. Matematička logika u računarstvu. novembar 2012 Iskazna logika 3 Matematička logika u računarstvu Department of Mathematics and Informatics, Faculty of Science,, Serbia novembar 2012 Deduktivni sistemi 1 Definicija Deduktivni sistem (ili formalna teorija)

Διαβάστε περισσότερα

INTEGRALNI RAČUN. Teorije, metodike i povijest infinitezimalnih računa. Lucija Mijić 17. veljače 2011.

INTEGRALNI RAČUN. Teorije, metodike i povijest infinitezimalnih računa. Lucija Mijić 17. veljače 2011. INTEGRALNI RAČUN Teorije, metodike i povijest infinitezimalnih računa Lucija Mijić lucija@ktf-split.hr 17. veljače 2011. Pogledajmo Predstavimo gornju sumu sa Dodamo još jedan Dobivamo pravokutnik sa Odnosno

Διαβάστε περισσότερα

Dijagonalizacija operatora

Dijagonalizacija operatora Dijagonalizacija operatora Problem: Može li se odrediti baza u kojoj zadani operator ima dijagonalnu matricu? Ova problem je povezan sa sljedećim pojmovima: 1 Karakteristični polinom operatora f 2 Vlastite

Διαβάστε περισσότερα

Mate Vijuga: Rijeseni zadaci iz matematike za srednju skolu

Mate Vijuga: Rijeseni zadaci iz matematike za srednju skolu 16. UVOD U STATISTIKU Statistika je nauka o sakupljanju i analizi sakupljenih podatka u cilju donosenja zakljucaka o mogucem toku ili obliku neizvjesnosti koja se obradjuje. Frekventna distribucija - je

Διαβάστε περισσότερα

Definicija: Hipoteza predstavlja pretpostavku koja je zasnovana na određenim činjenicama (najčešće naučnim ili iskustvenim).

Definicija: Hipoteza predstavlja pretpostavku koja je zasnovana na određenim činjenicama (najčešće naučnim ili iskustvenim). Str. 53;76; Testiranje statističkih hipoteza Predavač: Dr Mirko Savić savicmirko@eccf.su.ac.yu www.eccf.su.ac.yu Definicija: Hipoteza predstavlja pretpostavku koja je zasnovana na određenim činjenicama

Διαβάστε περισσότερα

4 Testiranje statističkih hipoteza

4 Testiranje statističkih hipoteza 4 Testiranje statističkih hipoteza 1 4.1. Statistička hipoteza Promatramo statističko obilježje X. Statistička hipoteza je (bilo koja) pretpostavka o (populacijskoj) razdiobi od X. Kažemo da je statistička

Διαβάστε περισσότερα

MODEL JEDNOSTAVNE LINEARNE REGRESIJE

MODEL JEDNOSTAVNE LINEARNE REGRESIJE SVEUČILIŠTE U RIJECI GRAĐEVINSKI FAKULTET U RIJECI Specijalistički diplomski stručni studij građevinarstva Odabrana poglavlja inženjerske matematike MODEL JEDNOSTAVNE LINEARNE REGRESIJE Studenti: Sara

Διαβάστε περισσότερα

SVEUČILIŠTE U RIJECI GRAĐEVINSKI FAKULTET U RIJECI. Specijalistički diplomski stručni studij

SVEUČILIŠTE U RIJECI GRAĐEVINSKI FAKULTET U RIJECI. Specijalistički diplomski stručni studij SVEUČILIŠTE U RIJECI GRAĐEVINSKI FAKULTET U RIJECI Specijalistički diplomski stručni studij Test hipoteze o jednakosti aritmetičkih sredina K osnovnih skupova Seminarski rad Kolegij: Odabrana poglavlja

Διαβάστε περισσότερα

Kaskadna kompenzacija SAU

Kaskadna kompenzacija SAU Kaskadna kompenzacija SAU U inženjerskoj praksi, naročito u sistemima regulacije elektromotornih pogona i tehnoloških procesa, veoma često se primenjuje metoda kaskadne kompenzacije, u čijoj osnovi su

Διαβάστε περισσότερα

Strukture podataka i algoritmi 1. kolokvij 16. studenog Zadatak 1

Strukture podataka i algoritmi 1. kolokvij 16. studenog Zadatak 1 Strukture podataka i algoritmi 1. kolokvij Na kolokviju je dozvoljeno koristiti samo pribor za pisanje i službeni šalabahter. Predajete samo papire koje ste dobili. Rezultati i uvid u kolokvije: ponedjeljak,

Διαβάστε περισσότερα

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova)

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova) MEHANIKA 1 1. KOLOKVIJ 04/2008. grupa I 1. Zadane su dvije sile F i. Sila F = 4i + 6j [ N]. Sila je zadana s veličinom = i leži na pravcu koji s koordinatnom osi x zatvara kut od 30 (sve komponente sile

Διαβάστε περισσότερα

Grafičko prikazivanje atributivnih i geografskih nizova

Grafičko prikazivanje atributivnih i geografskih nizova Grafičko prikazivanje atributivnih i geografskih nizova Biserka Draščić Ban Pomorski fakultet u Rijeci 17. veljače 2011. Grafičko prikazivanje atributivnih nizova Atributivni nizovi prikazuju se grafički

Διαβάστε περισσότερα

Testiranje statističkih hipoteza Materijali za nastavu iz Statistike

Testiranje statističkih hipoteza Materijali za nastavu iz Statistike Testiranje statističkih hipoteza Materijali za nastavu iz Statistike Kristina Krulić Himmelreich i Ksenija Smoljak 2012/13 1 / 39 Uvod Osnovna zadaća Statistike je na temelju uzorka ocijeniti kakvu razdiobu

Διαβάστε περισσότερα

Slučajne varijable Materijali za nastavu iz Statistike

Slučajne varijable Materijali za nastavu iz Statistike Slučajne varijable Materijali za nastavu iz Statistike Kristina Krulić Himmelreich i Ksenija Smoljak 2012/13 1 / 1 Slučajna varijabla Slučajna varijabla je funkcija X koja elementarnim dogadajima pridružuje

Διαβάστε περισσότερα

Operacije s matricama

Operacije s matricama Linearna algebra I Operacije s matricama Korolar 3.1.5. Množenje matrica u vektorskom prostoru M n (F) ima sljedeća svojstva: (1) A(B + C) = AB + AC, A, B, C M n (F); (2) (A + B)C = AC + BC, A, B, C M

Διαβάστε περισσότερα

Trigonometrija 2. Adicijske formule. Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto

Trigonometrija 2. Adicijske formule. Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto Trigonometrija Adicijske formule Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto Razumijevanje postupka izrade složenijeg matematičkog problema iz osnova trigonometrije

Διαβάστε περισσότερα

Konstruisanje. Dobro došli na... SREDNJA MAŠINSKA ŠKOLA NOVI SAD DEPARTMAN ZA PROJEKTOVANJE I KONSTRUISANJE

Konstruisanje. Dobro došli na... SREDNJA MAŠINSKA ŠKOLA NOVI SAD DEPARTMAN ZA PROJEKTOVANJE I KONSTRUISANJE Dobro došli na... Konstruisanje GRANIČNI I KRITIČNI NAPON slajd 2 Kritični naponi Izazivaju kritične promene oblika Delovi ne mogu ispravno da vrše funkciju Izazivaju plastične deformacije Može doći i

Διαβάστε περισσότερα

Računarska grafika. Rasterizacija linije

Računarska grafika. Rasterizacija linije Računarska grafika Osnovni inkrementalni algoritam Drugi naziv u literaturi digitalni diferencijalni analizator (DDA) Pretpostavke (privremena ograničenja koja se mogu otkloniti jednostavnim uopštavanjem

Διαβάστε περισσότερα

Uvod u neparametarske testove

Uvod u neparametarske testove Str. 148 Uvod u neparametarske testove Predavač: Dr Mirko Savić savicmirko@ef.uns.ac.rs www.ef.uns.ac.rs Hi-kvadrat testovi c Str. 149 Koristi se za upoređivanje dve serije frekvencija. Vrste c testa:

Διαβάστε περισσότερα

Linearna algebra 2 prvi kolokvij,

Linearna algebra 2 prvi kolokvij, 1 2 3 4 5 Σ jmbag smjer studija Linearna algebra 2 prvi kolokvij, 7. 11. 2012. 1. (10 bodova) Neka je dano preslikavanje s : R 2 R 2 R, s (x, y) = (Ax y), pri čemu je A: R 2 R 2 linearan operator oblika

Διαβάστε περισσότερα

Elementi spektralne teorije matrica

Elementi spektralne teorije matrica Elementi spektralne teorije matrica Neka je X konačno dimenzionalan vektorski prostor nad poljem K i neka je A : X X linearni operator. Definicija. Skalar λ K i nenula vektor u X se nazivaju sopstvena

Διαβάστε περισσότερα

1.4 Tangenta i normala

1.4 Tangenta i normala 28 1 DERIVACIJA 1.4 Tangenta i normala Ako funkcija f ima derivaciju u točki x 0, onda jednadžbe tangente i normale na graf funkcije f u točki (x 0 y 0 ) = (x 0 f(x 0 )) glase: t......... y y 0 = f (x

Διαβάστε περισσότερα

Edukacijsko-rehabilitacijski fakultet Sveučilišta u Zagreb S T A T I S T I K A. Skripta. Pripremio: Branko Nikolić. Zagreb 2015./2016.

Edukacijsko-rehabilitacijski fakultet Sveučilišta u Zagreb S T A T I S T I K A. Skripta. Pripremio: Branko Nikolić. Zagreb 2015./2016. Edukacijsko-rehabilitacijski fakultet Sveučilišta u Zagreb S T A T I S T I K A Skripta Pripremio: Branko Nikolić Zagreb 05./06. LITERATURA: Obvezna:. Petz B., Kolesarić, V., Ivanec, D. (0): Petzova statistika.

Διαβάστε περισσότερα

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju RAČUN OSTATAKA 1 1 Prsten celih brojeva Z := N + {} N + = {, 3, 2, 1,, 1, 2, 3,...} Osnovni primer. (Z, +,,,, 1) je komutativan prsten sa jedinicom: sabiranje (S1) asocijativnost x + (y + z) = (x + y)

Διαβάστε περισσότερα

Pismeni ispit iz matematike Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: ( ) + 1.

Pismeni ispit iz matematike Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: ( ) + 1. Pismeni ispit iz matematike 0 008 GRUPA A Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: λ + z = Ispitati funkciju i nacrtati njen grafik: + ( λ ) + z = e Izračunati

Διαβάστε περισσότερα

IZRAČUNAVANJE POKAZATELJA NAČINA RADA NAČINA RADA (ISKORIŠĆENOSTI KAPACITETA, STEPENA OTVORENOSTI RADNIH MESTA I NIVOA ORGANIZOVANOSTI)

IZRAČUNAVANJE POKAZATELJA NAČINA RADA NAČINA RADA (ISKORIŠĆENOSTI KAPACITETA, STEPENA OTVORENOSTI RADNIH MESTA I NIVOA ORGANIZOVANOSTI) IZRAČUNAVANJE POKAZATELJA NAČINA RADA NAČINA RADA (ISKORIŠĆENOSTI KAPACITETA, STEPENA OTVORENOSTI RADNIH MESTA I NIVOA ORGANIZOVANOSTI) Izračunavanje pokazatelja načina rada OTVORENOG RM RASPOLOŽIVO RADNO

Διαβάστε περισσότερα

Str

Str Str. Testiranje statističkih hipoteza Predavač: Dr Mirko Savić savicmirko@ef.uns.ac.rs www.ef.uns.ac.rs Definicija: Hipoteza predstavlja pretpostavku koja je zasnovana na određenim činjenicama (najčešće

Διαβάστε περισσότερα

Ispitivanje toka i skiciranje grafika funkcija

Ispitivanje toka i skiciranje grafika funkcija Ispitivanje toka i skiciranje grafika funkcija Za skiciranje grafika funkcije potrebno je ispitati svako od sledećih svojstava: Oblast definisanosti: D f = { R f R}. Parnost, neparnost, periodičnost. 3

Διαβάστε περισσότερα

Slučajne varijable. Diskretna slučajna varijabla X je promjenjiva veličina koja poprima vrijednosti iz skupa

Slučajne varijable. Diskretna slučajna varijabla X je promjenjiva veličina koja poprima vrijednosti iz skupa Slučajne varijable Statistički podaci su distribuirani po odredenoj zakonitosti. Za matematičko (apstraktno) opisivanje te zakonitosti potrebno je definirati slučajnu varijablu kojoj pripada odredena razdioba

Διαβάστε περισσότερα

Korelacijska i regresijska analiza

Korelacijska i regresijska analiza Korelacijska i regresijska analiza Odnosi među pojavama Odnos među pojavama može biti: deterministički ili funkcionalni i stohastički ili statistički Kod determinističkoga se odnosa za svaku vrijednost

Διαβάστε περισσότερα

Počela biostatistike, Poslijediplomski interdisciplinarni doktorski studij Molekularne bioznanosti. Molekularne bioznanosti. Molekularne bioznanosti

Počela biostatistike, Poslijediplomski interdisciplinarni doktorski studij Molekularne bioznanosti. Molekularne bioznanosti. Molekularne bioznanosti Analiza brojčanih podataka Nora Nikolac Klinički zavod za kemiju KB Sestre milosrdnice Kolegij: Počela biostatistike Statistička hipoteza postupak testiranja 1. postavljanje hipoteze: H 0, H 1 2. odabir

Διαβάστε περισσότερα

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET Goran Stančić SIGNALI I SISTEMI Zbirka zadataka NIŠ, 014. Sadržaj 1 Konvolucija Literatura 11 Indeks pojmova 11 3 4 Sadržaj 1 Konvolucija Zadatak 1. Odrediti konvoluciju

Διαβάστε περισσότερα

Matematička analiza 1 dodatni zadaci

Matematička analiza 1 dodatni zadaci Matematička analiza 1 dodatni zadaci 1. Ispitajte je li funkcija f() := 4 4 5 injekcija na intervalu I, te ako jest odredite joj sliku i inverz, ako je (a) I = [, 3), (b) I = [1, ], (c) I = ( 1, 0].. Neka

Διαβάστε περισσότερα

Testiranje statistiqkih hipoteza

Testiranje statistiqkih hipoteza Testiranje statistiqkih hipoteza Testiranje statistiqkih hipoteza Testiranje statistiqkih hipoteza je vid statistiqkog zakljuqivanja koji se primenjuje u situacijama: kada se unapred pretpostavlja postojanje određene

Διαβάστε περισσότερα

SISTEMI NELINEARNIH JEDNAČINA

SISTEMI NELINEARNIH JEDNAČINA SISTEMI NELINEARNIH JEDNAČINA April, 2013 Razni zapisi sistema Skalarni oblik: Vektorski oblik: F = f 1 f n f 1 (x 1,, x n ) = 0 f n (x 1,, x n ) = 0, x = (1) F(x) = 0, (2) x 1 0, 0 = x n 0 Definicije

Διαβάστε περισσότερα

REGRESIJSKA ANALIZA zavisnost (korelacija) regresijske tehnike kvantitativno zavisnost (korelaciju) linearna regresija

REGRESIJSKA ANALIZA zavisnost (korelacija) regresijske tehnike kvantitativno zavisnost (korelaciju) linearna regresija REGRESIJSKA ANALIZA REGRESIJSKA ANALIZA često imamo dvije ili više varijabli koje su inherentno povezane, odnosno postoji neka zavisnost (korelacija) među njima koju želimo istražiti regresijske tehnike

Διαβάστε περισσότερα

MATEMATIKA Pokažite da za konjugiranje (a + bi = a bi) vrijedi. a) z=z b) z 1 z 2 = z 1 z 2 c) z 1 ± z 2 = z 1 ± z 2 d) z z= z 2

MATEMATIKA Pokažite da za konjugiranje (a + bi = a bi) vrijedi. a) z=z b) z 1 z 2 = z 1 z 2 c) z 1 ± z 2 = z 1 ± z 2 d) z z= z 2 (kompleksna analiza, vježbe ). Izračunajte a) (+i) ( i)= b) (i+) = c) i + i 4 = d) i+i + i 3 + i 4 = e) (a+bi)(a bi)= f) (+i)(i )= Skicirajte rješenja u kompleksnoj ravnini.. Pokažite da za konjugiranje

Διαβάστε περισσότερα

Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011.

Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011. Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika Monotonost i ekstremi Katica Jurasić Rijeka, 2011. Ishodi učenja - predavanja Na kraju ovog predavanja moći ćete:,

Διαβάστε περισσότερα

9. TESTIRANJE HIPOTEZA O PARAMETRU. Josipa Perkov, prof., pred. 1

9. TESTIRANJE HIPOTEZA O PARAMETRU. Josipa Perkov, prof., pred. 1 9. TESTIRANJE HIPOTEZA O PARAMETRU Josipa Perkov, prof., pred. 1 na prethodnom predavanju upoznali smo se s metodom i postupcima koji omogućavaju da se iz dijela populacije, koji je slučajno izabran, procijeni

Διαβάστε περισσότερα

PRIMJER 3. MATLAB filtdemo

PRIMJER 3. MATLAB filtdemo PRIMJER 3. MATLAB filtdemo Prijenosna funkcija (IIR) Hz () =, 6 +, 3 z +, 78 z +, 3 z +, 53 z +, 3 z +, 78 z +, 3 z +, 6 z, 95 z +, 74 z +, z +, 9 z +, 4 z +, 5 z +, 3 z +, 4 z 3 4 5 6 7 8 3 4 5 6 7 8

Διαβάστε περισσότερα

Analitička statistika Testiranje hipoteze.

Analitička statistika Testiranje hipoteze. Analitička statistika Testiranje hipoteze www.illustrationsof.com Dijelovi istraživanja Istraživačko pitanje Značenje Ustroj (design) - tip istraživanja Ispitanici Varijable Statistička obrada podataka

Διαβάστε περισσότερα

STATISTIKA S M E I M N I AR R 7 : METODE UZORKA

STATISTIKA S M E I M N I AR R 7 : METODE UZORKA Fakultet za menadžment u turizmu i ugotiteljtvu, Opatija Sveučilišni preddiplomki tudij Polovna ekonomija u turizmu i ugotiteljtvu Noitelj kolegija: Prof. dr. c. Suzana Marković Aitentica: Jelena Komšić

Διαβάστε περισσότερα

6 Polinomi Funkcija p : R R zadana formulom

6 Polinomi Funkcija p : R R zadana formulom 6 Polinomi Funkcija p : R R zadana formulom p(x) = a n x n + a n 1 x n 1 +... + a 1 x + a 0, gdje su a 0, a 1,..., a n realni brojevi, a n 0, i n prirodan broj ili 0, naziva se polinom n-tog stupnja s

Διαβάστε περισσότερα

Neka je a 3 x 3 + a 2 x 2 + a 1 x + a 0 = 0 algebarska jednadžba trećeg stupnja. Rješavanje ove jednadžbe sastoji se od nekoliko koraka.

Neka je a 3 x 3 + a 2 x 2 + a 1 x + a 0 = 0 algebarska jednadžba trećeg stupnja. Rješavanje ove jednadžbe sastoji se od nekoliko koraka. Neka je a 3 x 3 + a x + a 1 x + a 0 = 0 algebarska jednadžba trećeg stupnja. Rješavanje ove jednadžbe sastoji se od nekoliko koraka. 1 Normiranje jednadžbe. Jednadžbu podijelimo s a 3 i dobivamo x 3 +

Διαβάστε περισσότερα

Teorijske osnove informatike 1

Teorijske osnove informatike 1 Teorijske osnove informatike 1 9. oktobar 2014. () Teorijske osnove informatike 1 9. oktobar 2014. 1 / 17 Funkcije Veze me du skupovima uspostavljamo skupovima koje nazivamo funkcijama. Neformalno, funkcija

Διαβάστε περισσότερα

a M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A.

a M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A. 3 Infimum i supremum Definicija. Neka je A R. Kažemo da je M R supremum skupa A ako je (i) M gornja meda skupa A, tj. a M a A. (ii) M najmanja gornja meda skupa A, tj. ( ε > 0)( a A) takav da je a > M

Διαβάστε περισσότερα

Zavrxni ispit iz Matematiqke analize 1

Zavrxni ispit iz Matematiqke analize 1 Građevinski fakultet Univerziteta u Beogradu 3.2.2016. Zavrxni ispit iz Matematiqke analize 1 Prezime i ime: Broj indeksa: 1. Definisati Koxijev niz. Dati primer niza koji nije Koxijev. 2. Dat je red n=1

Διαβάστε περισσότερα

SADR\AJ. Predgovor. POGLAVLJE 2 Grafičko opisivanje podataka Klasifikacija varijabli 10 Kvalitativne ili numeričke 10 Mjerne skale 11

SADR\AJ. Predgovor. POGLAVLJE 2 Grafičko opisivanje podataka Klasifikacija varijabli 10 Kvalitativne ili numeričke 10 Mjerne skale 11 KRATAK SADR\AJ Poglavlje 1 Čemu proučavati statistiku? 1 Poglavlje 2 Grafičko opisivanje podataka 9 Poglavlje 3 Numeričko opisivanje podataka 46 Poglavlje 4 Vjerojatnost 78 Poglavlje 5 Diskretne slučajne

Διαβάστε περισσότερα

Funkcije dviju varjabli (zadaci za vježbu)

Funkcije dviju varjabli (zadaci za vježbu) Funkcije dviju varjabli (zadaci za vježbu) Vidosava Šimić 22. prosinca 2009. Domena funkcije dvije varijable Ako je zadano pridruživanje (x, y) z = f(x, y), onda se skup D = {(x, y) ; f(x, y) R} R 2 naziva

Διαβάστε περισσότερα

VOLUMEN ILI OBUJAM TIJELA

VOLUMEN ILI OBUJAM TIJELA VOLUMEN ILI OBUJAM TIJELA Veličina prostora kojeg tijelo zauzima Izvedena fizikalna veličina Oznaka: V Osnovna mjerna jedinica: kubni metar m 3 Obujam kocke s bridom duljine 1 m jest V = a a a = a 3, V

Διαβάστε περισσότερα

SEMINAR IZ KOLEGIJA ANALITIČKA KEMIJA I. Studij Primijenjena kemija

SEMINAR IZ KOLEGIJA ANALITIČKA KEMIJA I. Studij Primijenjena kemija SEMINAR IZ OLEGIJA ANALITIČA EMIJA I Studij Primijenjena kemija 1. 0,1 mola NaOH je dodano 1 litri čiste vode. Izračunajte ph tako nastale otopine. NaOH 0,1 M NaOH Na OH Jak elektrolit!!! Disoira potpuno!!!

Διαβάστε περισσότερα

INTELIGENTNO UPRAVLJANJE

INTELIGENTNO UPRAVLJANJE INTELIGENTNO UPRAVLJANJE Fuzzy sistemi zaključivanja Vanr.prof. Dr. Lejla Banjanović-Mehmedović Mehmedović 1 Osnovni elementi fuzzy sistema zaključivanja Fazifikacija Baza znanja Baze podataka Baze pravila

Διαβάστε περισσότερα

GLAZBENA UMJETNOST. Rezultati državne mature 2010.

GLAZBENA UMJETNOST. Rezultati državne mature 2010. GLAZBENA UJETNOST Rezultati državne mature 2010. Deskriptivna statistika ukupnog rezultata PARAETAR VRIJEDNOST N 112 k 61 72,5 St. pogreška mjerenja 5,06 edijan 76,0 od 86 St. devijacija 15,99 Raspon 66

Διαβάστε περισσότερα

( , treći kolokvij) 3. Na dite lokalne ekstreme funkcije z = x 4 + y 4 2x 2 + 2y 2 3. (20 bodova)

( , treći kolokvij) 3. Na dite lokalne ekstreme funkcije z = x 4 + y 4 2x 2 + 2y 2 3. (20 bodova) A MATEMATIKA (.6.., treći kolokvij. Zadana je funkcija z = e + + sin(. Izračunajte a z (,, b z (,, c z.. Za funkciju z = 3 + na dite a diferencijal dz, b dz u točki T(, za priraste d =. i d =.. c Za koliko

Διαβάστε περισσότερα

Sume kvadrata. mn = (ax + by) 2 + (ay bx) 2.

Sume kvadrata. mn = (ax + by) 2 + (ay bx) 2. Sume kvadrata Koji se prirodni brojevi mogu prikazati kao zbroj kvadrata dva cijela broja? Propozicija 1. Ako su brojevi m i n sume dva kvadrata, onda je i njihov produkt m n takoder suma dva kvadrata.

Διαβάστε περισσότερα

Analiza varijanse sa jednim Posmatra se samo jedna promenljiva

Analiza varijanse sa jednim Posmatra se samo jedna promenljiva ANOVA Analiza varijanse (ANOVA) Analiza varijanse sa jednim faktorom Proširena ANOVA tabela 2 Tehnike za analizu podataka Analiza varijanse sa jednim faktorom Posmatra se samo jedna promenljiva Posmatra

Διαβάστε περισσότερα

Matematika 1 - vježbe. 11. prosinca 2015.

Matematika 1 - vježbe. 11. prosinca 2015. Matematika - vježbe. prosinca 5. Stupnjevi i radijani Ako je kut φ jednak i rad, tada je veza između i 6 = Zadatak.. Izrazite u stupnjevima: a) 5 b) 7 9 c). d) 7. a) 5 9 b) 7 6 6 = = 5 c). 6 8.5 d) 7.

Διαβάστε περισσότερα

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Trigonometrijske jednačine i nejednačine. Zadaci koji se rade bez upotrebe trigonometrijskih formula. 00. FF cos x sin x

Διαβάστε περισσότερα

Ĉetverokut - DOMAĆA ZADAĆA. Nakon odgledanih videa trebali biste biti u stanju samostalno riješiti sljedeće zadatke.

Ĉetverokut - DOMAĆA ZADAĆA. Nakon odgledanih videa trebali biste biti u stanju samostalno riješiti sljedeće zadatke. Ĉetverokut - DOMAĆA ZADAĆA Nakon odgledanih videa trebali biste biti u stanju samostalno riješiti sljedeće zadatke. 1. Duljine dijagonala paralelograma jednake su 6,4 cm i 11 cm, a duljina jedne njegove

Διαβάστε περισσότερα

Mašinsko učenje. Regresija.

Mašinsko učenje. Regresija. Mašinsko učenje. Regresija. Danijela Petrović May 17, 2016 Uvod Problem predviđanja vrednosti neprekidnog atributa neke instance na osnovu vrednosti njenih drugih atributa. Uvod Problem predviđanja vrednosti

Διαβάστε περισσότερα

III VEŽBA: FURIJEOVI REDOVI

III VEŽBA: FURIJEOVI REDOVI III VEŽBA: URIJEOVI REDOVI 3.1. eorijska osnova Posmatrajmo neki vremenski kontinualan signal x(t) na intervalu definisati: t + t t. ada se može X [ k ] = 1 t + t x ( t ) e j 2 π kf t dt, gde je f = 1/.

Διαβάστε περισσότερα

VJEROJATNOST I STATISTIKA 2. kolokvij lipnja 2016.

VJEROJATNOST I STATISTIKA 2. kolokvij lipnja 2016. Broj zadataka: 5 Vrijeme rješavanja: 0 min Ukupan broj bodova: 50 Zadatak.. kolokvij - 0. lipnja 0. (a Ako su X i Y diskretne slučajne varijable, dokažite da vrijedi formula E [X + Y ] = E [X] + E [Y ].

Διαβάστε περισσότερα

Aritmetička sredina Medijan Mod. Harmonijska sredina

Aritmetička sredina Medijan Mod. Harmonijska sredina MJERE CENTRALNE TENDENCIJE Aritmetička sredina Medijan Mod Geometrijska sredina Harmonijska sredina MJERA CENTRALNE TENDENCIJE ili središnja vrijednost jest brojčana vrijednost koja reprezentira skupinu

Διαβάστε περισσότερα

XI dvoqas veжbi dr Vladimir Balti. 4. Stabla

XI dvoqas veжbi dr Vladimir Balti. 4. Stabla XI dvoqas veжbi dr Vladimir Balti 4. Stabla Teorijski uvod Teorijski uvod Definicija 5.7.1. Stablo je povezan graf bez kontura. Definicija 5.7.1. Stablo je povezan graf bez kontura. Primer 5.7.1. Sva stabla

Διαβάστε περισσότερα

1 Promjena baze vektora

1 Promjena baze vektora Promjena baze vektora Neka su dane dvije različite uredene baze u R n, označimo ih s A = (a, a,, a n i B = (b, b,, b n Svaki vektor v R n ima medusobno različite koordinatne zapise u bazama A i B Zapis

Διαβάστε περισσότερα

Otpornost R u kolu naizmjenične struje

Otpornost R u kolu naizmjenične struje Otpornost R u kolu naizmjenične struje Pretpostavimo da je otpornik R priključen na prostoperiodični napon: Po Omovom zakonu pad napona na otporniku je: ( ) = ( ω ) u t sin m t R ( ) = ( ) u t R i t Struja

Διαβάστε περισσότερα

APROKSIMACIJA FUNKCIJA

APROKSIMACIJA FUNKCIJA APROKSIMACIJA FUNKCIJA Osnovni koncepti Gradimir V. Milovanović MF, Beograd, 14. mart 2011. APROKSIMACIJA FUNKCIJA p.1/46 Osnovni problem u TA Kako za datu funkciju f iz velikog prostora X naći jednostavnu

Διαβάστε περισσότερα

IZVODI ZADACI ( IV deo) Rešenje: Najpre ćemo logaritmovati ovu jednakost sa ln ( to beše prirodni logaritam za osnovu e) a zatim ćemo

IZVODI ZADACI ( IV deo) Rešenje: Najpre ćemo logaritmovati ovu jednakost sa ln ( to beše prirodni logaritam za osnovu e) a zatim ćemo IZVODI ZADACI ( IV deo) LOGARITAMSKI IZVOD Logariamskim izvodom funkcije f(), gde je >0 i, nazivamo izvod logarima e funkcije, o jes: (ln ) f ( ) f ( ) Primer. Nadji izvod funkcije Najpre ćemo logarimovai

Διαβάστε περισσότερα

Riješeni zadaci: Nizovi realnih brojeva

Riješeni zadaci: Nizovi realnih brojeva Riješei zadaci: Nizovi realih brojeva Nizovi, aritmetički iz, geometrijski iz Fukciju a : N R azivamo beskoači) iz realih brojeva i ozačavamo s a 1, a,..., a,... ili a ), pri čemu je a = a). Aritmetički

Διαβάστε περισσότερα

radni nerecenzirani materijal za predavanja

radni nerecenzirani materijal za predavanja Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Kažemo da je funkcija f : a, b R u točki x 0 a, b postiže lokalni minimum ako postoji okolina O(x 0 ) broja x 0 takva da je

Διαβάστε περισσότερα

Računarska grafika. Rasterizacija linije

Računarska grafika. Rasterizacija linije Računarska grafika Osnovni inkrementalni algoritam Drugi naziv u literaturi digitalni diferencijalni analizator (DDA) Pretpostavke (privremena ograničenja koja se mogu otkloniti jednostavnim uopštavanjem

Διαβάστε περισσότερα

KONTROLA KVALITETE. Prof.dr.sc.Vedran Mudronja

KONTROLA KVALITETE. Prof.dr.sc.Vedran Mudronja KONTROLA KVALITETE Prof.dr.sc.Vedran Mudronja DEFINICIJA KVALITETE Ishikawa o kvaliteti: Kvaliteta je ekvivalent sa zadovoljstvom kupca. Kvaliteta mora biti definirana opsežno. Nije dovoljno samo reći

Διαβάστε περισσότερα

Sadrˇzaj. Sadrˇzaj 1 9 DVODIMENZIONALNI SLUČAJNI VEKTOR DISKRETNI DVODIMENZIONALNI

Sadrˇzaj. Sadrˇzaj 1 9 DVODIMENZIONALNI SLUČAJNI VEKTOR DISKRETNI DVODIMENZIONALNI Sadrˇzaj Sadrˇzaj DVODIMENZIONALNI. DISKRETNI DVODIMENZIONALNI............................ KONTINUIRANI -dim tko želi znati više.............................. 5. KOVARIJANCA, KORELACIJA, PRAVCI REGRESIJE........

Διαβάστε περισσότερα