LABORATOORNE TÖÖ NR 2. TAHKE KEHA SOOJUSPAISUMISE UURIMINE
|
|
- Ανδρομέδη Βιτάλη
- 7 χρόνια πριν
- Προβολές:
Transcript
1 LABORATOORNE TÖÖ NR 2. TAHKE KEHA SOOJUSPAISUMISE UURIMINE TÖÖ EESMÄRGID 1. Määrata uuritava aine joonpaisumistegur. 2. Õppida tundma empiiriliste valemite tuletusviisi keskmiste meetodil. TÖÖVAHENDID Katseriist soojuspaisumise tekitamiseks koos uuritava kehaga, mõõteindikaator, nihik, programm Data Studio, Xplorer GLX koos vajalike ühendusjuhtmetega, programm soojuspaisumine.ds, PASCO temperatuurisensor (-10 kuni 110 ºC), statiiv kinnituskruvi ja käpaga. TEOREETILINE OSA Katsed ja vaatlused näitavad, et rõhuv enamik kehi paisub temperatuuri tõustes ja tõmbub kokku temperatuuri langedes. See on seletatav asjaoluga, et temperatuuri tõustes suureneb keha molekulide liikumise kiirus ja võnkeamplituud keskmise asendi suhtes. Järelikult eemalduvad molekulid keskmiselt üksteisest keha paisub. Et molekulaarne liikumine on kaootiline, siis paisub keha soojenemisel igas suunas. Keha joonmõõdete suurenemist soojenemisel nimetatakse keha soojuslikuks ehk termiliseks joonpaisumiseks. Arvestades keha kõigi mõõtmete suurenemist, räägitakse joonpaisumise kõrval ka ruumpaisumisest. Nagu joonpaisumise korral, nii on keha ruumala juurdekasv ka ruumpaisumisel võrdeline temperatuuri kasvuga. Mitte eriti suurtes temperatuurivahemikes on suhteline pikenemine võrdeline temperatuuri muuduga: l l 0 = l = t t l 0 l 0, (2.1) 0 1
2 kus l on keha pikkus temperatuuril t ja l 0 pikkus algtemperatuuril t 0. Võrdetegurit α nimetatakse joonpaisumisteguriks. Joonpaisumistegur näitab, kui suure osa algpikkusest moodustab keha pikenemine keha soojenemisel 1 K võrra. Joonpaisumistegur sõltub ainest nagu ruumpaisumistegur β. Nende vahel kehtib seos β = 3α. Valemist (2.1) tuleneb, et keha joonmõõtmed sõltuvad temperatuuri muudust järgmiselt: l=l 0 1 t. (2.2) Kehade joonpaisumistegur on väga väike. Enamikul ainetel on see vahemikus K 1. TÖÖ KÄIK I OSA KATSE SEADME SEADISTAMINE Tutvuge katseseadmega, mis on kujutatud joonisel 2.1. Soojendajasse (a) pannakse jääseguse veega katseklaas (b). Katseklaasis on varras (v), mille joonpaisumist uuritakse. Varda pikenemist soojenemisel näitab mõõteindikaator (c). Temperatuuri muutust t näitab läbi interfeisi arvutiga ühendatud elektriline termomeeter, mille indikaatori ots (bimetall-ühendus) paigutatakse katseklaasi. Mõõteindikaator c võimaldab mõõta nihkeid vahemikus 0 10 mm, täpsusega 0,01 mm. Indikaatori mõõtevarda (v) ühe otsa nihkumine antakse ülekandemehhanismi abil edasi kahele osutile. Väike osuti näitab varda nihet täismillimeetrites, suur osuti aga sajandikmillimeetrites. Sajandikmillimeetrites gradueeritud skaalat võib rõnga (d) abil pöörata ja viia osuti näit nulli juurde, rõngast fikseerib kruvi (e). Vedru hoiab mõõtevarrast äärmises asendis ja surub selle vastu mõõdetavat eset. Mõõtevarda otsas on toetuskruvi, mille pööramisega saab mõõteindikaatori osuti nullida. 2
3 Joonis 2.1. Katseseade varda soojuspaisumise uurimiseks. II OSA SOOJUSPAISUMISE UURIMINE 1. Asuge uurima sõltuvust (2.2) katseliselt. Selles valemis on tarvis määrata l 0 ja α. 2. Ühendage USB juhtme abil Xplorer GLX arvutiga, lülitage interfeis ja arvuti tööle (palun ühendada interfeis kindlasti vooluvõrku). Ühendage temperatuuri sensori Xploreri GLX külje peal asuvasse temperatuurianduri pesasse 1. Avage Data Studio fail soojuspaisumine.ds, mille leiate kataloogist "F:\Desktop\DataStudio failid". Seejärel avanevad arvuti ekraanil kõik vajalikud aknad: graafikuaken Graph 1, tabeliaken Table 1 ja temperatuurinäidik Digits Täitke katseklaas jää-ja lumeseguse veega ja asetage soojendaja avasse. Paigutage keha jää ja lume seguse veega täidetud katseklaasi ja laske katsekehal maha jahtuda. Seejärel mõõtke keha 3
4 algpikkus l 0 nihiku abil ja fikseerige tabelis Paigaldage temperatuurisensor (edaspidi termomeeter) katseklaasi, milles on juba varras. Fikseerige termomeeter statiivi külge. NB! Kontrollige hoolikalt, et varras ja mõõteindikaator ei nihkuks paigast. Kui vajalik, korrigeerige peale termomeetri paigaldamist nende asendit. Asetage mõõteindikaatori toetuskruvi uuritava varda otsale ja kontrollige, kas see toetub vardale küllalt kindlalt. Nullige mõõteindikaatori näit, kas toetuskruvi või rõnga (d) pööramisega. 4. Joonpaisumistegur määrake graafikult, mille saate katsetulemuste põhjal. Vajutage arvuti ekraanil nuppu Start, mille tulemusena alustab programm temperatuuri mõõtmist. Fikseerige algtemperatuur t 0 vajutades ekraanik nuppu Keep ning sisestage varda algne nihikuga määratud pikkus meetrites. Seejärel jätkab programm oma tööd- 5. Lülitage soojendaja elektrivõrku. Märgutuli selle alusel näitab, kas katseriist töötab või mitte. 6. Jälgige varda temperatuuri tõusu ning varda pikenemist. Sisestage Keep nupu abil ekraanil iga 1-2 sajandikmillimeetri pikenemise järel uus varda pikkus (meetrites). Graafikule ilmuvad punktid, mis kirjeldavad temperatuuri tõusu ja varda pikenemise vahelist seost. Kui temperatuur on tõsnud 80 ºC-ni, siis lülitage soojendi välja. Samas mõõtke temperatuuri edasi veel mõne minuti vältel. Fikseerige tabelisse 2.1 iga uue termomeetri näidu ajal varda mõõteindikaatori näit. 7. Katse ühe seeria pikkus on keskmiselt 20 minutit. Seega saate paberile mõõteindikaatori näitu. Kui märkate mõõteindikaatorit jälgides, et varda pikenemist enam ei toimu, siis lõpetage andmete salvestamine, vajutades Keep nupu kõrval olevat punast kastikest (so stopp nuppu). 8. Aktiviseerige aken Table 1 ja seejärel kandke tulemused oma protokolli nii, et antud ajamomendile vastab temperatuur t i ja varda pikenemine l. Võite kasutada ka programmi Microsoft Excel. 9. Töö lõpetanud, kallake katseklaasist vesi välja, kuivatage varras ja termomeeter, väljuge programmist Science Workshop, korrastage töökoht. 4
5 Tabel 2.1. Varda soojuspaisumise uurimine. Katse nr t [ºC] t=t i t 0 l[m] 10 6 K l ANDMETE ANALÜÜS 1. Joonistage katseandmete põhjal sõltuvuse l = f(t) graafik (kas millimeeterpaberile formaadiga vähemalt pool protokollilehekülge või progammiga MS Excel (või mõne muu tabelarvutusprogrammiga). Esialgu ühendage graafikule kantud punktid sirglõikude abil. 2. Valemist (2.1) leidke joonpaisumistegur: = l l 0 t 3. Arvutage α iga temperatuurivahemiku kohta ja kandke tabelisse 2.1. Leidke α aritmeetiline keskmine ja absoluutne piirviga =...± K Jooniselt 2.2 on näha, et suhe l/ t, mis sisaldub ka valemis (2.3), on võrdne tan γ, kus γ on sirge tõusunurk. See asjaolu annab võimaluse asendada graafiku murdjoone sirgega, mis vea piirides sõltuvust (2.3) kõige paremini väljendab. 5. Sirge välja joonistamiseks lugege alg- ja lõpptemperatuuri punktid t 0 ja t 1 termomeetri riistavea piires keskmisteks väärtusteks. Kandke need graafikule. Punktist, mis vastab temperatuurile t 1 joonestage lõik l, mille pikkuse on määratud valemiga (2.3) (2.3) l= l 0 t. Leidke punkt l 1. Ühendage punkt t 0 punktiga l 1. Moodustunud sirge väljendab sõltuvust (2.2) konkreetsel juhul. Kandke graafikule punktiirjoonega ka jooned piirveast, mis võib tekkida termomeetri ebatäpsusest. 6. Termomeetri lubatud viga on seega... ºC. Kandke lubatud piirviga temperatuuri teljele ja joonestage vastavad sirged. 5
6 7. Kasutades regressioonanalüüsi meetodit (vt Lisa 7), leidke graafikul oleva sirge tõus, mis arvuliselt on võrdne joonpaisumisteguriga α. on sama, mis arvutuslikul teel saadud tõusu väärtus. Joonis 2.2. Joonpaisumisteguri sõltuvus temperatuuris ja suhtelisest pikenemisest. 8. Tõusu uurimiseks kasutage valemit (2.3) ning teisendage see uuele kujule l=l 0 t l 0. Järgenevalt kasutage regressioonanalüüsi meetodit (vt Lisa 7). Avaldage joonpaisumistegur järgmise seose = k b abil. Formuleerige järeldus. KÜSIMUSED 1. Millega on seletatav kehade paisumine temperatuuri tõustes? 2. Kirjutage välja sõltuvus (2.2) teie poolt saadud l 0 ja α konkreetsete väärtustega. Milline oleks teie kasutada olnud varda pikkus -30 ºC temperatuuri juures? 3. Analüüsige graafikul saadud murdjoone asendamist sirgega. Kuivõrd see on õigustatud? 4. Kas graafikul saadud murdjoon jääb piirsirgete vahele või väljub mõnes kohas sellest? 5. Kas võime katsest järeldada, et keha joonmõõtmete juurdekasv on võrdeline temperatuuri kasvuga, nagu järeldub valemist (2.2)? 6. Kui me teeme seda mõõtmisvigade piires, siis kuidas sel juhul asendada graafikul saadud 6
7 murdjoon sirgega? Selliseid sirgeid võib tõmmata läbi erinevate punktide mitmeti. 7. Võrrelge omavahel regressioonanalüüsi kaudu leitud sirge tõusu ja graafikult leitud tõusu väärtusi. Kas ja milline ning millest võib olla erinevus tingitud? 7
MATEMAATIKA TÄIENDUSÕPE MÕISTED, VALEMID, NÄITED, ÜLESANDED LEA PALLAS VII OSA
MATEMAATIKA TÄIENDUSÕPE MÕISTED, VALEMID, NÄITED, ÜLESANDED LEA PALLAS VII OSA SISUKORD 57 Joone uutuja Näited 8 58 Ülesanded uutuja võrrandi koostamisest 57 Joone uutuja Näited Funktsiooni tuletisel on
Lokaalsed ekstreemumid
Lokaalsed ekstreemumid Öeldakse, et funktsioonil f (x) on punktis x lokaalne maksimum, kui leidub selline positiivne arv δ, et 0 < Δx < δ Δy 0. Öeldakse, et funktsioonil f (x) on punktis x lokaalne miinimum,
Matemaatiline analüüs I iseseisvad ülesanded
Matemaatiline analüüs I iseseisvad ülesanded Leidke funktsiooni y = log( ) + + 5 määramispiirkond Leidke funktsiooni y = + arcsin 5 määramispiirkond Leidke funktsiooni y = sin + 6 määramispiirkond 4 Leidke
Ehitusmehaanika harjutus
Ehitusmehaanika harjutus Sõrestik 2. Mõjujooned /25 2 6 8 0 2 6 C 000 3 5 7 9 3 5 "" 00 x C 2 C 3 z Andres Lahe Mehaanikainstituut Tallinna Tehnikaülikool Tallinn 2007 See töö on litsentsi all Creative
MATEMAATIKA TÄIENDUSÕPE MÕISTED, VALEMID, NÄITED LEA PALLAS XII OSA
MATEMAATIKA TÄIENDUSÕPE MÕISTED, VALEMID, NÄITED LEA PALLAS XII OSA SISUKORD 8 MÄÄRAMATA INTEGRAAL 56 8 Algfunktsioon ja määramata integraal 56 8 Integraalide tabel 57 8 Määramata integraali omadusi 58
HAPE-ALUS TASAKAAL. Teema nr 2
PE-LUS TSL Teema nr Tugevad happed Tugevad happed on lahuses täielikult dissotiseerunud + sisaldus lahuses on võrdne happe analüütilise kontsentratsiooniga Nt NO Cl SO 4 (esimeses astmes) p a väärtused
1. Soojuskiirguse uurimine infrapunakiirguse sensori abil. 2. Stefan-Boltzmanni seaduse katseline kontroll hõõglambi abil.
LABORATOORNE TÖÖ NR. 1 STEFAN-BOLTZMANNI SEADUS I TÖÖ EESMÄRGID 1. Soojuskiirguse uurimine infrapunakiirguse sensori abil. 2. Stefan-Boltzmanni seaduse katseline kontroll hõõglambi abil. TÖÖVAHENDID Infrapunase
Matemaatiline analüüs I iseseisvad ülesanded
Matemaatiline analüüs I iseseisvad ülesanded. Leidke funktsiooni y = log( ) + + 5 määramispiirkond.. Leidke funktsiooni y = + arcsin 5 määramispiirkond.. Leidke funktsiooni y = sin + 6 määramispiirkond.
Ruumilise jõusüsteemi taandamine lihtsaimale kujule
Kodutöö nr.1 uumilise jõusüsteemi taandamine lihtsaimale kujule Ülesanne Taandada antud jõusüsteem lihtsaimale kujule. isttahuka (joonis 1.) mõõdud ning jõudude moodulid ja suunad on antud tabelis 1. D
Geomeetrilised vektorid
Vektorid Geomeetrilised vektorid Skalaarideks nimetatakse suurusi, mida saab esitada ühe arvuga suuruse arvulise väärtusega. Skalaari iseloomuga suurusi nimetatakse skalaarseteks suurusteks. Skalaarse
1. Õppida tundma kalorimeetriliste mõõtmiste põhimõtteid ja kalorimeetri ehitust.
Kaorimeetriised mõõtmised LABORATOORNE TÖÖ NR. 3 KALORIMEETRILISED MÕÕTMISED TÖÖ EESMÄRGID 1. Õppida tundma aorimeetriiste mõõtmiste põhimõtteid ja aorimeetri ehitust. 2. Määrata jää suamissoojus aorimeetriise
Sissejuhatus mehhatroonikasse MHK0120
Sissejuhatus mehhatroonikasse MHK0120 2. nädala loeng Raavo Josepson raavo.josepson@ttu.ee Loenguslaidid Materjalid D. Halliday,R. Resnick, J. Walker. Füüsika põhikursus : õpik kõrgkoolile I köide. Eesti
Funktsiooni diferentsiaal
Diferentsiaal Funktsiooni diferentsiaal Argumendi muut Δx ja sellele vastav funktsiooni y = f (x) muut kohal x Eeldusel, et f D(x), saame Δy = f (x + Δx) f (x). f (x) = ehk piisavalt väikese Δx korral
PLASTSED DEFORMATSIOONID
PLAED DEFORMAIOONID Misese vlavustingimus (pinegte ruumis) () Dimensineerimisega saab kõrvaldada ainsa materjali parameetri. Purunemise (tugevuse) kriteeriumid:. Maksimaalse pinge kirteerium Laminaat puruneb
Kompleksarvu algebraline kuju
Kompleksarvud p. 1/15 Kompleksarvud Kompleksarvu algebraline kuju Mati Väljas mati.valjas@ttu.ee Tallinna Tehnikaülikool Kompleksarvud p. 2/15 Hulk Hulk on kaasaegse matemaatika algmõiste, mida ei saa
ITI 0041 Loogika arvutiteaduses Sügis 2005 / Tarmo Uustalu Loeng 4 PREDIKAATLOOGIKA
PREDIKAATLOOGIKA Predikaatloogika on lauseloogika tugev laiendus. Predikaatloogikas saab nimetada asju ning rääkida nende omadustest. Väljendusvõimsuselt on predikaatloogika seega oluliselt peenekoelisem
Planeedi Maa kaardistamine G O R. Planeedi Maa kõige lihtsamaks mudeliks on kera. Joon 1
laneedi Maa kaadistamine laneedi Maa kõige lihtsamaks mudeliks on kea. G Joon 1 Maapinna kaadistamine põhineb kea ümbeingjoontel, millest pikimat nimetatakse suuingjooneks. Need suuingjooned, mis läbivad
Vektorid II. Analüütiline geomeetria 3D Modelleerimise ja visualiseerimise erialale
Vektorid II Analüütiline geomeetria 3D Modelleerimise ja visualiseerimise erialale Vektorid Vektorid on arvude järjestatud hulgad (s.t. iga komponendi väärtus ja positsioon hulgas on tähenduslikud) Vektori
Lisa 2 ÜLEVAADE HALJALA VALLA METSADEST Koostanud veebruar 2008 Margarete Merenäkk ja Mati Valgepea, Metsakaitse- ja Metsauuenduskeskus
Lisa 2 ÜLEVAADE HALJALA VALLA METSADEST Koostanud veebruar 2008 Margarete Merenäkk ja Mati Valgepea, Metsakaitse- ja Metsauuenduskeskus 1. Haljala valla metsa pindala Haljala valla üldpindala oli Maa-Ameti
Mitmest lülist koosneva mehhanismi punktide kiiruste ja kiirenduste leidmine
TALLINNA TEHNIKAÜLIKOOL MEHAANIKAINSTITUUT Dünaamika kodutöö nr. 1 Mitmest lülist koosnea mehhanismi punktide kiiruste ja kiirenduste leidmine ariant ZZ Lahendusnäide Üliõpilane: Xxx Yyy Üliõpilase kood:
KORDAMINE RIIGIEKSAMIKS VII teema Vektor. Joone võrrandid.
KORDMINE RIIGIEKSMIKS VII teema Vektor Joone võrrandid Vektoriaalseid suuruseid iseloomustavad a) siht b) suund c) pikkus Vektoriks nimetatakse suunatud sirglõiku Vektori alguspunktiks on ja lõpp-punktiks
9. AM ja FM detektorid
1 9. AM ja FM detektorid IRO0070 Kõrgsageduslik signaalitöötlus Demodulaator Eraldab moduleeritud signaalist informatiivse osa. Konkreetne lahendus sõltub modulatsiooniviisist. Eristatakse Amplituuddetektoreid
2.2.1 Geomeetriline interpretatsioon
2.2. MAATRIKSI P X OMADUSED 19 2.2.1 Geomeetriline interpretatsioon Maatriksi X (dimensioonidega n k) veergude poolt moodustatav vektorruum (inglise k. column space) C(X) on defineeritud järgmiselt: Defineerides
TEOREETILINE OSA. Joonis 5.1. Valguse levimissuuna ning vektori E r ja magnetvälja vektori H r perioodiline muutumine.
LABORATOORNE TÖÖ NR. 5 VALGUSE POLARISATSIOON TEOREETILINE OSA Valgusel on lainelised ja korpuskulaarsed omadused. Laineoptika põhinähtused on interferents, difraktsioon, dispersioon ja polarisatsioon.
Funktsioonide õpetamisest põhikooli matemaatikakursuses
Funktsioonide õpetamisest põhikooli matemaatikakursuses Allar Veelmaa, Loo Keskkool Funktsioon on üldtähenduses eesmärgipärane omadus, ülesanne, otstarve. Mõiste funktsioon ei ole kasutusel ainult matemaatikas,
HSM TT 1578 EST 6720 611 954 EE (04.08) RBLV 4682-00.1/G
HSM TT 1578 EST 682-00.1/G 6720 611 95 EE (0.08) RBLV Sisukord Sisukord Ohutustehnika alased nõuanded 3 Sümbolite selgitused 3 1. Seadme andmed 1. 1. Tarnekomplekt 1. 2. Tehnilised andmed 1. 3. Tarvikud
Vektoralgebra seisukohalt võib ka selle võrduse kirja panna skalaarkorrutise
Jõu töö Konstanse jõu tööks lõigul (nihkel) A A nimetatakse jõu mooduli korrutist teepikkusega s = A A ning jõu siirde vahelise nurga koosinusega Fscos ektoralgebra seisukohalt võib ka selle võrduse kirja
Jätkusuutlikud isolatsioonilahendused. U-arvude koondtabel. VÄLISSEIN - COLUMBIA TÄISVALATUD ÕÕNESPLOKK 190 mm + SOOJUSTUS + KROHV
U-arvude koondtabel lk 1 lk 2 lk 3 lk 4 lk 5 lk 6 lk 7 lk 8 lk 9 lk 10 lk 11 lk 12 lk 13 lk 14 lk 15 lk 16 VÄLISSEIN - FIBO 3 CLASSIC 200 mm + SOOJUSTUS + KROHV VÄLISSEIN - AEROC CLASSIC 200 mm + SOOJUSTUS
4.2.5 Täiustatud meetod tuletõkestusvõime määramiseks
4.2.5 Täiustatud meetod tuletõkestusvõime määramiseks 4.2.5.1 Ülevaade See täiustatud arvutusmeetod põhineb mahukate katsete tulemustel ja lõplike elementide meetodiga tehtud arvutustel [4.16], [4.17].
KORDAMINE RIIGIEKSAMIKS V teema Vektor. Joone võrrandid.
KORDMINE RIIGIEKSMIKS V teema Vektor Joone võrrandid Vektoriaalseid suuruseid iseloomustavad a) siht b) suund c) pikkus Vektoriks nimetatakse suunatud sirglõiku Vektori alguspunktiks on ja lõpp-punktiks
Temperatuur ja soojus. Temperatuuri mõõtmise meetodid. I. Bichele, 2016
Temperatuur ja soojus. Temperatuuri mõõtmise meetodid. I. Bichele, 016 Soojuseks (korrektselt soojushulgaks) nimetame energia hulka, mis on keha poolt juurde saadud või ära antud soojusvahetuse käigus
,millest avaldub 21) 23)
II kursus TRIGONOMEETRIA * laia matemaatika teemad TRIGONOMEETRILISTE FUNKTSIOONIDE PÕHISEOSED: sin α s α sin α + s α,millest avaldu s α sin α sα tan α, * t α,millest järeldu * tα s α tα tan α + s α Ülesanne.
λ ). Seetõttu on tsoonide mõju paarikaupa vastastikku
LABORATOORNE TÖÖ NR. 3 VALGUSE DIFRAKTSIOON TEOREETILINE OSA Lainete, sealhulgas valguslainete difraktsioon tekib valguslaine ja tõkke äärte vastastikuse mõju tulemusena ning on seda tugevam, mida lähedasemad
28. Sirgvoolu, solenoidi ja toroidi magnetinduktsiooni arvutamine koguvooluseaduse abil.
8. Sigvoolu, solenoidi j tooidi mgnetinduktsiooni vutmine koguvooluseduse il. See on vem vdtud, kuid mitte juhtme sees. Koguvooluseduse il on sed lihtne teh. Olgu lõpmt pikk juhe ingikujulise istlõikeg,
sin 2 α + cos 2 sin cos cos 2α = cos² - sin² tan 2α =
KORDAMINE RIIGIEKSAMIKS III TRIGONOMEETRIA ) põhiseosed sin α + cos sin cos α =, tanα =, cotα =, cos sin + tan =, tanα cotα = cos ) trigonomeetriliste funktsioonide täpsed väärtused α 5 6 9 sin α cos α
Analüütilise geomeetria praktikum II. L. Tuulmets
Analüütilise geomeetria praktikum II L. Tuulmets Tartu 1985 2 Peatükk 4 Sirge tasandil 1. Sirge tasandil Kui tasandil on antud afiinne reeper, siis iga sirge tasandil on selle reeperi suhtes määratud lineaarvõrrandiga
TTÜ VIRUMAA KOLLEDŽ. Mõõteriistad ja mõõtevahendid:...
TTÜ VIRUMAA KOLLEDŽ Ehitus ja Tootmistehika lektorat Tehilie füüsika Üliõpilae: Õpperühm: Töö r. ja imetus: Ülmõõtmise Tehtu: Arvestatu: Mõõteriista ja mõõtevahei:...... Joois Kruvik: -ka (пята); -seaekaliiber
Tuletis ja diferentsiaal
Peatükk 3 Tuletis ja diferentsiaal 3.1 Tuletise ja diferentseeruva funktsiooni mõisted. Olgu antud funktsioon f ja kuulugu punkt a selle funktsiooni määramispiirkonda. Tuletis ja diferentseeruv funktsioon.
20. SIRGE VÕRRANDID. Joonis 20.1
κ ËÁÊ Â Ì Ë Æ Á 20. SIRGE VÕRRANDID Sirget me võime vaadelda kas tasandil E 2 või ruumis E 3. Sirget vaadelda sirgel E 1 ei oma mõtet, sest tegemist on ühe ja sama sirgega. Esialgu on meie käsitlus nii
Smith i diagramm. Peegeldustegur
Smith i diagramm Smith i diagrammiks nimetatakse graafilist abivahendit/meetodit põhiliselt sobitusküsimuste lahendamiseks. Selle võttis 1939. aastal kasutusele Philip H. Smith, kes töötas tol ajal ettevõttes
Joonis 1. Teist järku aperioodilise lüli ülekandefunktsiooni saab teisendada võnkelüli ülekandefunktsiooni kujul, kui
Ülesnded j lhendused utomtjuhtimisest Ülesnne. Süsteem oosneb hest jdmisi ühendtud erioodilisest lülist, mille jonstndid on 0,08 j 0,5 ning õimendustegurid stlt 0 j 50. Leid süsteemi summrne ülendefuntsioon.
4.1 Funktsiooni lähendamine. Taylori polünoom.
Peatükk 4 Tuletise rakendusi 4.1 Funktsiooni lähendamine. Talori polünoom. Mitmetes matemaatika rakendustes on vaja leida keerulistele funktsioonidele lihtsaid lähendeid. Enamasti konstrueeritakse taolised
Kirjeldab kuidas toimub programmide täitmine Tähendus spetsifitseeritakse olekuteisendussüsteemi abil Loomulik semantika
Operatsioonsemantika Kirjeldab kuidas toimub programmide täitmine Tähendus spetsifitseeritakse olekuteisendussüsteemi abil Loomulik semantika kirjeldab kuidas j~outakse l~oppolekusse Struktuurne semantika
2017/2018. õa keemiaolümpiaadi piirkonnavooru lahendused klass
2017/2018. õa keemiaolümpiaadi piirkonnavooru lahendused 11. 12. klass 18 g 1. a) N = 342 g/mol 6,022 1023 molekuli/mol = 3,2 10 22 molekuli b) 12 H 22 O 11 + 12O 2 = 12O 2 + 11H 2 O c) V = nrt p d) ΔH
Kontekstivabad keeled
Kontekstivabad keeled Teema 2.1 Jaan Penjam, email: jaan@cs.ioc.ee Rekursiooni- ja keerukusteooria: KV keeled 1 / 27 Loengu kava 1 Kontekstivabad grammatikad 2 Süntaksipuud 3 Chomsky normaalkuju Jaan Penjam,
Veaarvutus ja määramatus
TARTU ÜLIKOOL Tartu Ülikooli Teaduskool Veaarvutus ja määramatus Urmo Visk Tartu 2005 Sisukord 1 Tähistused 2 2 Sissejuhatus 3 3 Viga 4 3.1 Mõõteriistade vead................................... 4 3.2 Tehted
HULGATEOORIA ELEMENTE
HULGATEOORIA ELEMENTE Teema 2.2. Hulga elementide loendamine Jaan Penjam, email: jaan@cs.ioc.ee Diskreetne Matemaatika II: Hulgateooria 1 / 31 Loengu kava 2 Hulga elementide loendamine Hulga võimsus Loenduvad
1 Funktsioon, piirväärtus, pidevus
Funktsioon, piirväärtus, pidevus. Funktsioon.. Tähistused Arvuhulki tähistatakse üldlevinud viisil: N - naturaalarvude hulk, Z - täisarvude hulk, Q - ratsionaalarvude hulk, R - reaalarvude hulk. Piirkonnaks
T~oestatavalt korrektne transleerimine
T~oestatavalt korrektne transleerimine Transleerimisel koostatakse lähtekeelsele programmile vastav sihtkeelne programm. Transleerimine on korrektne, kui transleerimisel programmi tähendus säilib. Formaalsemalt:
p A...p D - gaasiliste ainete A...D osarõhud, atm K p ja K c vahel kehtib seos
LABO RATOO RNE TÖÖ 3 Keemiline tasakaal ja reaktsioonikiirus Keemilised rotsessid võib jagada öörduvateks ja öördumatuteks. Pöördumatud rotsessid kulgevad ühes suunas raktiliselt lõuni. Selliste rotsesside
Compress 6000 LW Bosch Compress LW C 35 C A ++ A + A B C D E F G. db kw kw /2013
55 C 35 C A A B C D E F G 50 11 12 11 11 10 11 db kw kw db 2015 811/2013 A A B C D E F G 2015 811/2013 Toote energiatarbe kirjeldus Järgmised toote andmed vastavad nõuetele, mis on esitatud direktiivi
Andmeanalüüs molekulaarbioloogias
Andmeanalüüs molekulaarbioloogias Praktikum 3 Kahe grupi keskväärtuste võrdlemine Studenti t-test 1 Hüpoteeside testimise peamised etapid 1. Püstitame ENNE UURINGU ALGUST uurimishüpoteesi ja nullhüpoteesi.
O15. Prisma aine dispersiooni määramine goniomeetri abil.
O. Prisma aine dispersiooni määramine goniomeetri abil. 1.VALGUSE DISPERSIOON 1.1. Teoreetilised alused Prisma abil saame lahutada uuritava valguse spektriks ning määrata murdumisnäitaja n sõltuvuse lainepikkusest.
I. Keemiline termodünaamika. II. Keemiline kineetika ja tasakaal
I. Keemiline termdünaamika I. Keemiline termdünaamika 1. Arvutage etüüni tekke-entalpia ΔH f lähtudes ainete põlemisentalpiatest: ΔH c [C(gr)] = -394 kj/ml; ΔH c [H 2 (g)] = -286 kj/ml; ΔH c [C 2 H 2 (g)]
Keemia lahtise võistluse ülesannete lahendused Noorem rühm (9. ja 10. klass) 16. november a.
Keemia lahtise võistluse ülesannete lahendused oorem rühm (9. ja 0. klass) 6. november 2002. a.. ) 2a + 2 = a 2 2 2) 2a + a 2 2 = 2a 2 ) 2a + I 2 = 2aI 4) 2aI + Cl 2 = 2aCl + I 2 5) 2aCl = 2a + Cl 2 (sulatatud
Sirgete varraste vääne
1 Peatükk 8 Sirgete varraste vääne 8.1. Sissejuhatus ja lahendusmeetod 8-8.1 Sissejuhatus ja lahendusmeetod Käesoleva loengukonspekti alajaotuses.10. käsitleti väändepingete leidmist ümarvarrastes ja alajaotuses.10.3
Teaduskool. Alalisvooluringid. Koostanud Kaljo Schults
TARTU ÜLIKOOL Teaduskool Alalisvooluringid Koostanud Kaljo Schults Tartu 2008 Eessõna Käesoleva õppevahendi kasutajana on mõeldud eelkõige täppisteaduste vastu huvi tundvaid gümnaasiumi õpilasi, kes on
7.7 Hii-ruut test 7.7. HII-RUUT TEST 85
7.7. HII-RUUT TEST 85 7.7 Hii-ruut test Üks universaalsemaid ja sagedamini kasutust leidev test on hii-ruut (χ 2 -test, inglise keeles ka chi-square test). Oletame, et sooritataval katsel on k erinevat
5. TUGEVUSARVUTUSED PAINDELE
TTÜ EHHTROONKNSTTUUT HE00 - SNTEHNK.5P/ETS 5 - -0-- E, S 5. TUGEVUSRVUTUSE PNELE Staatika üesandes (Toereaktsioonide eidmine) vaadatud näidete ause koostada taade sisejõuepüürid (põikjõud ja paindemoment)
Click & Plug põrandaküte. Paigaldusjuhend Devidry
Click & Plug põrandaküte EE Paigaldusjuhend Devidry Devidry Õnnitleme Teid DEVI põrandaküttesüsteemi ostu puhul. DEVI on juhtiv põrandaküttesüsteemide tootja Euroopas, kel on antud valdkonnas rohkem, kui
Koduseid ülesandeid IMO 2017 Eesti võistkonna kandidaatidele vol 4 lahendused
Koduseid ülesandeid IMO 017 Eesti võistkonna kandidaatidele vol 4 lahendused 17. juuni 017 1. Olgu a,, c positiivsed reaalarvud, nii et ac = 1. Tõesta, et a 1 + 1 ) 1 + 1 ) c 1 + 1 ) 1. c a Lahendus. Kuna
Töö nr. 2. Õhurõhu, temperatuuri ja õhuniiskuse määramine.(2013)
Töö nr. 2. Õhurõhu, temperatuuri ja õhuniiskuse määramine.(2013) Maakera ümbritseb õhukiht, mille paksus on umbes 1000 km (poolustel õhem, ekvaatoril paksem). 99% õhust asub 25-km paksuses kihis. Õhk on
Vektori u skalaarkorrutist iseendaga nimetatakse selle vektori skalaarruuduks ja tähistatakse (u ) 2 või u 2 u. u v cos α = u 2 + v 2 PQ 2
Vektorite sklrkorrutis Vtleme füüsikkursusest tuntud olukord, kus kehle mõjub jõud F r j keh teeb selle jõu mõjul nihke s Konkreetsuse huvides olgu kehks rööbsteel liikuv vgun Jõud F r mõjugu vgunile rööbstee
Ülesanne 4.1. Õhukese raudbetoonist gravitatsioontugiseina arvutus
Ülesanne 4.1. Õhukese raudbetoonist gravitatsioontugiseina arvutus Antud: Õhuke raudbetoonist gravitatsioontugisein maapinna kõrguste vahega h = 4,5 m ja taldmiku sügavusega d = 1,5 m. Maapinnal tugiseina
Eesti koolinoorte XLVIII täppisteaduste olümpiaadi
Eesti koolinoorte XLVIII täppisteaduste olümpiaadi lõppvoor MATEMAATIKAS Tartus, 9. märtsil 001. a. Lahendused ja vastused IX klass 1. Vastus: x = 171. Teisendame võrrandi kujule 111(4 + x) = 14 45 ning
STM A ++ A + A B C D E F G A B C D E F G. kw kw /2013
Ι 47 d 11 11 10 kw kw kw d 2015 811/2013 Ι 2015 811/2013 Toote energiatarbe kirjeldus Järgmised toote andmed vastavad nõuetele, mis on esitatud direktiivi 2010/30/ täiendavates määrustes () nr 811/2013,
Deformatsioon ja olekuvõrrandid
Peatükk 3 Deformatsioon ja olekuvõrrandid 3.. Siire ja deformatsioon 3-2 3. Siire ja deformatsioon 3.. Cauchy seosed Vaatleme deformeeruva keha meelevaldset punkti A. Algolekusontemakoor- dinaadid x, y,
REAALAINETE KESKUS JAAK SÄRAK
REAALAINETE KESKUS JAAK SÄRAK TALLINN 2006 1 DESCRIPTIVE GEOMETRY Study aid for daily and distance learning courses Compiler Jaak Särak Edited by Tallinn College of Engineering This publication is meant
Pesumasin Πλυντήριο ρούχων Mosógép Veļas mašīna
ET Kasutusjuhend 2 EL Οδηγίες Χρήσης 17 HU Használati útmutató 34 LV Lietošanas instrukcija 50 Pesumasin Πλυντήριο ρούχων Mosógép Veļas mašīna ZWG 6120K Sisukord Ohutusinfo _ 2 Ohutusjuhised _ 3 Jäätmekäitlus
Kui ühtlase liikumise kiirus on teada, saab aja t jooksul läbitud teepikkuse arvutada valemist
KOOLIFÜÜSIKA: MEHAANIKA (kaugõppele). KINEMAATIKA. Ühtlane liikumine Punktmass Punktmassiks me nimetame keha, mille mõõtmeid me antud liikumise juures ei pruugi arestada. Sel juhul loemegi keha tema asukoha
MATEMAATILINE ANAL U US II Juhend TT U kaug oppe- uli opilastele
MATEMAATILINE ANALÜÜS II Juhend TTÜ kaugõppe-üliõpilastele TALLINNA TEHNIKAÜLIKOOL Matemaatikainstituut MATEMAATILINE ANALÜÜS II Juhend TTÜ kaugõppe-üliõpilastele Tallinn 24 3 MATEMAATILINE ANALÜÜS II
REAKTSIOONIKINEETIKA
TARTU ÜLIKOOL TEADUSKOOL TÄIENDAVAID TEEMASID KOOLIKEEMIALE II REAKTSIOONIKINEETIKA Vello Past Õppevahend TK õpilastele Tartu 008 REAKTSIOONIKINEETIKA. Keemilise reatsiooni võrrand, tema võimalused ja
Eesti koolinoorte 65. füüsikaolumpiaad
Eesti oolinoorte 65. füüsiaolumpiaad 14. aprill 018. a. Vabariili voor. Gümnaasiumi ülesannete lahendused 1. (POOLITATUD LÄÄTS) (6 p.) Autor: Hans Daniel Kaimre Ülesande püstituses on öeldud, et esialgse
2-, 3- ja 4 - tee ventiilid VZ
Kirjelus VZ 2 VZ 3 VZ 4 VZ ventiili pakuva kõrgekvaliteeilist ja kulusi kokkuhoivat lahenust kütte- ja/või jahutusvee reguleerimiseks jahutuskassettie (fan-coil), väikeste eelsoojenite ning -jahutite temperatuuri
Kasutusjuhend. Digitaalne multitester 5 in 1
Kasutusjuhend Digitaalne multitester 5 in 1 1. Ohutusnõuded Käesolev toode vastab järgmiste Euroopa Ühenduse direktiivide nõuetele: 2004/108/EC (Elektromagnetiline ühilduvus) ja 2006/95/EC (Madalpingeseadmed),
Staatika ja kinemaatika
Staatika ja kinemaatika MHD0071 I. Staatika Leo eder Mehhatroonikainstituut Mehaanikateaduskond allinna ehnikaülikool 2016 Sisukord I Staatika 1. Sissejuhatus. 2. Newtoni seadused. 3. Jõud. 4. ehted vektoritega.
Kehade soojendamisel või jahutamisel võib keha minna ühest agregaatolekust teise. Selliseid üleminekuid nimetatakse faasisiireteks.
KOOLIFÜÜSIKA: SOOJUS 3 (kaugõppele) 6. FAASISIIRDED Kehade sooendamisel või ahutamisel võib keha minna ühest agregaatolekust teise. Selliseid üleminekuid nimetatakse faasisiireteks. Sooendamisel vaaminev
PÕHIKOOLI LÕPUEKSAM FÜÜSIKA 16. JUUNI Kool: Maakond/linn: Õpilase ees- ja perekonnanimi: MEELESPEA
Punkte Eksamihinne Aastahinne FÜÜSIKA 16. JUUNI 2004 Kool: Maakond/linn: Õpilase ees- ja perekonnanimi: Poiss Tüdruk Punktide arv ülesandeti 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 3p
MATEMAATILISEST LOOGIKAST (Lausearvutus)
TARTU ÜLIKOOL Teaduskool MATEMAATILISEST LOOGIKAST (Lausearvutus) Õppematerjal TÜ Teaduskooli õpilastele Koostanud E. Mitt TARTU 2003 1. LAUSE MÕISTE Matemaatilise loogika ühe osa - lausearvutuse - põhiliseks
Energiabilanss netoenergiavajadus
Energiabilanss netoenergiajadus 1/26 Eelmisel loengul soojuskadude arvutus (võimsus) φ + + + tot = φ φ φ juht v inf φ sv Energia = tunnivõimsuste summa kwh Netoenergiajadus (ruumis), energiakasutus (tehnosüsteemis)
Nelja kooli ühiskatsete näidisülesanded: füüsika
Nelja kooli ühiskatsete näidisülesanded: füüsika Füüsika testi lahendamiseks on soovituslik aeg 45 minutit ja seda hinnatakse maksimaalselt 00 punktiga. Töö mahust mitte üle / moodustavad faktiteadmisi
Eesti koolinoorte 51. täppisteaduste olümpiaad
Eesti koolinoorte 5 täppisteaduste olümpiaad Füüsika lõppvoor 7 märts 2004 a Põhikooli ülesannete lahendused ülesanne (KLAASTORU) Plaat eraldub torust siis, kui petrooleumisamba rõhk saab võrdseks veesamba
Suhteline salajasus. Peeter Laud. Tartu Ülikool. peeter TTÜ, p.1/27
Suhteline salajasus Peeter Laud peeter l@ut.ee Tartu Ülikool TTÜ, 11.12.2003 p.1/27 Probleemi olemus salajased sisendid avalikud väljundid Program muud väljundid muud sisendid mittesalajased väljundid
I tund: Füüsika kui loodusteadus. (Sissejuhatav osa) Eesmärk jõuda füüsikasse läbi isiklike kogemuste. Kuidas kujunes sinu maailmapilt?
I tund: Füüsika kui loodusteadus. (Sissejuhatav osa) Eesmärk jõuda füüsikasse läbi isiklike kogemuste. Kuidas kujunes sinu maailmapilt? (Sündmused tekitavad signaale, mida me oma meeleorganitega aistingutena
HAPNIKUTARBE INHIBEERIMISE TEST
HAPNIKUTABE INHIBEEIMISE TEST 1. LAHUSED JA KEMIKAALID 1.1 Üldised põhimõtted Lahuste valmistamiseks kasutada analüütiliselt puhtaid kemikaale. Kasutatav vesi peab olema destilleeritud või deioniseeritud
DC 950/12. Eestikeelne kasutusjuhend. Registreerige oma toode ja saage tuge:
Registreerige oma toode ja saage tuge: www.philips.com/welcome DC 950/12 Külastage Philipsit internetis: http://www.philips.com Eestikeelne kasutusjuhend SISUKORD 9. PROBLEEMIDE LAHENDAMINE 1 Oluline...3
Lisa 1 Tabel 1. Veeproovide analüüside ja mõõtmiste tulemused Kroodi
Lisa 1 Tabel 1. Veeproovide analüüside ja mõõtmiste tulemused Kroodi Proovi nr EE14002252 EE14001020 EE14002253 EE140022980 EE14001021 9 2-6 EE14002255 2-7 EE1 4002254 10 2-8 EE140022981 Kraav voolamise
DEF. Kolmnurgaks nim hulknurka, millel on 3 tippu. / Kolmnurgaks nim tasandi osa, mida piiravad kolme erinevat punkti ühendavad lõigud.
Kolmnurk 1 KOLMNURK DEF. Kolmnurgaks nim hulknurka, millel on 3 tippu. / Kolmnurgaks nim tasandi osa, mida piiravad kolme erinevat punkti ühendavad lõigud. Kolmnurga tippe tähistatakse nagu punkte ikka
Statistiline andmetöötlus, VL-0435 sügis, 2008
Praktikum 6 Salvestage kursuse kodulehelt omale arvutisse andmestik lehmageen.xls. Praktikum püüab kirjeldada mõningaid võimalusi tunnuste vaheliste seoste uurimiseks. Kommentaarid andmestiku kohta Konkreetselt
KEEMIAÜLESANNETE LAHENDAMISE LAHTINE VÕISTLUS
KEEMIAÜLESANNETE LAHENDAMISE LAHTINE VÕISTLUS Nooem aste (9. ja 10. klass) Tallinn, Tatu, Kuessaae, Nava, Pänu, Kohtla-Jäve 11. novembe 2006 Ülesannete lahendused 1. a) M (E) = 40,08 / 0,876 = 10,2 letades,
KOMBINATSIOONID, PERMUTATSIOOND JA BINOOMKORDAJAD
KOMBINATSIOONID, PERMUTATSIOOND JA BINOOMKORDAJAD Teema 3.1 (Õpiku peatükid 1 ja 3) Jaan Penjam, email: jaan@cs.ioc.ee Diskreetne Matemaatika II: Kombinatoorika 1 / 31 Loengu kava 1 Tähistusi 2 Kombinatoorsed
KAITSELÜLITITE KATSETAMINE
PRAKTIKUMI JUHEND KAITSELÜLITITE KATSETAMINE 1(14) 1. Sissejuhatus Praktikumi eesmärk on: tutvuda tänapäeval kasutatavate kaitseaparaatidega, nende ehituse, tööpõhimõtte ja kasutusvõimalustega; anda ettekujutus
Graafiteooria üldmõisteid. Graaf G ( X, A ) Tippude hulk: X={ x 1, x 2,.., x n } Servade (kaarte) hulk: A={ a 1, a 2,.., a m } Orienteeritud graafid
Graafiteooria üldmõisteid Graaf G ( X, A ) Tippude hulk: X={ x 1, x 2,.., x n } Servade (kaarte) hulk: A={ a 1, a 2,.., a m } Orienteeritud graafid Orienteerimata graafid G(x i )={ x k < x i, x k > A}
Arvuteooria. Diskreetse matemaatika elemendid. Sügis 2008
Sügis 2008 Jaguvus Olgu a ja b täisarvud. Kui leidub selline täisarv m, et b = am, siis ütleme, et arv a jagab arvu b ehk arv b jagub arvuga a. Tähistused: a b b. a Näiteks arv a jagab arvu b arv b jagub
ELEKTRIMÕÕTMISTE TÄIENDKOOLITUS
Meede 1.1 projekt nr 1.0101-0386/IN660 Elektrotehnilise personali täiendkoolitussüsteemi väljaarendamine ELEKTRIMÕÕTMISTE TÄIENDKOOLITUS Täiendkoolituse õppematerjal Koostanud Raivo Teemets Tallinn 2007
TARTU ÜLIKOOL Teaduskool. STAATIKA TASAKAALUSTAMISTINGIMUSED Koostanud J. Lellep, L. Roots
TARTU ÜLIKOOL Teaduskool STAATIKA TASAKAALUSTAMISTINGIMUSED Koostanud J. Lellep, L. Roots Tartu 2008 Eessõna Käesoleva õppevahendi kasutajana on mõeldud eelkõige täppisteaduste vastu huvi tundvaid gümnaasiumi
Skalaar, vektor, tensor
Peatükk 2 Skalaar, vektor, tensor 1 2.1. Sissejuhatus 2-2 2.1 Sissejuhatus Skalaar Üks arv, mille väärtus ei sõltu koordinaatsüsteemi (baasi) valikust Tüüpiline näide temperatuur Vektor Füüsikaline suurus,
(Raud)betoonkonstruktsioonide üldkursus 33
(Raud)betoonkonstruktsioonide üldkursus 33 Normaallõike tugevusarvutuse alused. Arvutuslikud pinge-deormatsioonidiagrammid Elemendi normaallõige (ristlõige) on elemendi pikiteljega risti olev lõige (s.o.
Eesti koolinoorte XLIX täppisteaduste olümpiaad
Eesti koolinoorte XLIX täppisteaduste olümpiaad MATEMAATIKA PIIRKONDLIK VOOR 26. jaanuaril 2002. a. Juhised lahenduste hindamiseks Lp. hindaja! 1. Juhime Teie tähelepanu sellele, et alljärgnevas on 7.
1.1. NATURAAL-, TÄIS- JA RATSIONAALARVUD
1. Reaalarvud 1.1. NATURAAL-, TÄIS- JA RATSIONAALARVUD Arvu mõiste hakkas kujunema aastatuhandeid tagasi, täiustudes ja üldistudes koos inimkonna arenguga. Juba ürgühiskonnas tekkis vajadus teatavaid hulki