Περίληψη μαθημάτων Ι. ΣΥΝΑΡΤΗΣΕΙΣ. Με N θα συμβολίζουμε το σύνολο των φυσικών αριθμών, δηλ. N = {1, 2, 3, 4, }.

Σχετικά έγγραφα
ΘΕΩΡΗΜΑ (Μέσης Τιμής) Έστω f: [α, β] R συνεχής και παραγωγίσιμη στο (α, β). Τότε υπάρχει ξ (α, β)

Σημειώσεις Μαθηματικών 2

Περίληψη μαθημάτων Ι. ΣΥΝΑΡΤΗΣΕΙΣ

Περίληψη μαθημάτων Ι. ΣΥΝΑΡΤΗΣΕΙΣ

Σημειώσεις Μαθηματικών 2

( ) Ίσες συναρτήσεις. = g, Οι συναρτήσεις f, g λέμε ότι είναι ίσες και συμβολίζουμε f. όταν: Έχουν το ίδιο πεδία ορισμού Α

Κεφάλαιο 2 ΣΥΝΑΡΤΗΣΕΙΣ ΜΙΑΣ ΜΕΤΑΒΛΗΤΗΣ. 2.1 Συνάρτηση

Κ Ο Λ Λ Α Σ Α Ν Τ Ω Ν Η Σ


ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ. Το 1ο Θέμα στις πανελλαδικές εξετάσεις

ΤΟ ΘΕΜΑ Α ΤΩΝ ΕΞΕΤΑΣΕΩΝ

θ. Bolzano θ. Ενδιάμεσων τιμών θ. Μεγίστου Ελαχίστου και Εφαρμογές

Συναρτήσεις Θεωρία Ορισμοί - Παρατηρήσεις

ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΕΞΙ (6) Α1.i. Να διατυπώσετε το θεώρημα ενδιαμέσων τιμών (Μονάδες 2) και στη

x x = e, x > 0 έχει ακριβώς δυο Γ4. Να βρείτε το εμβαδόν του χωρίου που περικλείεται από τη γραφική

Συνέχεια Συνάρτησης. Λυγάτσικας Ζήνων. Βαρβάκειο Ενιαίο Πειραµατικό Λύκειο. 1 εκεµβρίου f(x) = f(x 0 )

ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟΥ-ΛΑΘΟΥΣ

ΚΕΦΑΛΑΙΟ 1 ο : ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ

ΘΕΩΡΙΑ 1ΟΥ ΚΕΦΑΛΑΙΟΥ (χωρίς αποδείξεις) ΣΥΝΑΡΤΗΣΕΙΣ ΟΡΙΑ- ΣΥΝΕΧΕΙΑ 1. Να δώσετε τον ορισμό της συνάρτησης

KEΦΑΛΑΙΟ 1ο : Διαφορικός Λογισμός

ΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΛΥΚΕΙΟΥ ( ΘΕΡΙΝΑ )

Οι ασκήσεις βασίζονται στο αξιόλογο φυλλάδιο του Μαθηματικού Μιλτ. Παπαγρηγοράκη, από τις σημειώσεις του για το 4ο Γενικό Λύκειο Χανίων [ <

ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΡΟΤΕΙΝΟΜΕΝΕΣ ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑΤΩΝ

3. lim [f(x) g(x)] = lim f(x) lim g(x) x xo x xo x xo x xo x xo v f(x) lim f(x) x xo lim = x xo g(x) lim g(x) x xo v lim [f(x)] = lim f(x) 6. li

Λύσεις του διαγωνίσματος στις παραγώγους

Ερωτήσεις-Απαντήσεις Θεωρίας

Π Α Ν Ε Λ Λ Η Ν Ι Ε Σ Μ Α Θ Η Μ Α Τ Ι Κ Α I E Π Α Λ

ευτέρα, 18 Μα ου 2009 Γ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΜΑΘΗΜΑΤΙΚΑ

Qwertyuiopasdfghjklzxcvbnmq wertyuiopasdfghjklzxcvbnmqw ertyuiopasdfghjklzxcvbnmqwer tyuiopasdfghjklzxcvbnmqwerty. uiopasdfghjklzxcvbnmqwertyui

ΑΣΚΗΣΕΙΣ ΣΤΙΣ ΣΥΝΑΡΤΗΣΕΙΣ. Να εξετάσετε αν είναι ίσες οι συναρτήσεις f, g όταν: x x 2 x x. x x g x. ln x ln x 1 και

2.1 ΜΟΝΟΤΟΝΙΑ ΑΚΡΟΤΑΤΑ - ΣΥΜΜΕΤΡΙΕΣ

ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 10: ΕΥΡΕΣΗ ΤΟΠΙΚΩΝ ΑΚΡΟΤΑΤΩΝ

ΜΑΘΗΜΑΤΙΚΑ - ΠΛΗΡΟΦΟΡΙΚΗ

ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ. Όταν θα έχετε ολοκληρώσει τη μελέτη αυτού του κεφαλαίου, θα πρέπει να μπορείτε: Να κάνετε πράξεις με συναρτήσεις.

Πολλά ψέματα λίγες αλήθειες. ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΜΕΡΟΣ 1 ο

Θέματα. Α1. Να δώσετε τον ορισμό της συχνότητας και της σχετικής συχνότητας μιας παρατήρησης x i. Σ Λ

ΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ (1 η σειρά)

ΕΦΑΡΜΟΓΕΣ ΣΤΟ ΘΕΩΡΗΜΑ BOLZANO ΚΑΙ ΣΤΑ ΑΛΛΑ ΒΑΣΙΚΑ ΘΕΩΡΗΜΑΤΑ ΕΠΙΜΕΛΕΙΑ : Π. Δ. ΤΡΙΜΗΣ ΜΑΘΗΜΑΤΙΚΟΣ

Θεώρημα Bolzano. Γεωμετρική Ερμηνεία του θ.bolzano. Θ. Bolzano και ύπαρξη ρίζας

ΠΟΛΥΩΝΥΜΑ. Κεφάλαιο 2ο: Ερωτήσεις του τύπου Σωστό-Λάθος

1.8 ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ. 1 x. ln = Μονάδες 10 Α.2 Πότε μια συνάρτηση f λέμε ότι είναι συνεχής σε ένα κλειστό διάστημα [α,β]; Μονάδες 5

ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ. Ημερομηνία: Πέμπτη 3 Ιανουαρίου 2019 Διάρκεια Εξέτασης: 3 ώρες ΘΕΜΑΤΑ

ΕΝΝΟΙΑ ΤΗΣ ΠΑΡΑΓΩΓΟΥ - ΟΡΙΣΜΟΣ

Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΜΑΘΗΜΑΤΙΚΑ ΕΚΦΩΝΗΣΕΙΣ ÏÅÖÅ

Γενικά Μαθηματικά (Φυλλάδιο 1 ο )

Σχόλια στις Παραγώγους. Μια συνάρτηση θα λέγεται παραγωγίσιμη σε ένα σημείο x 0 του. f(x h) f(x )

την αρχή των αξόνων και ύστερα να υπολογίσετε το εμβαδόν του

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΥΛΗ ΔΙΑΓΩΝΙΣΜΑΤΟΣ:ΠΑΡΑΓΩΓΟΙ

Συνέχεια συνάρτησης σε κλειστό διάστημα

qwertyuiopasdfghjklzxcvbnmq ertyuiopasdfghjklzxcvbnmqwer tyuiopasdfghjklzxcvbnmqwerty uiopasdfghjklzxcvbnmqwertyui opasdfghjklzxcvbnmqwertyuiop


ΕΝΔΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ 2017

Κεφάλαιο 2 ο ανάλυσης ερωτήσεις στις παραγώγους. τότε η f(x) είναι παραγωγίσιμη

ΣΥΝΑΡΤΗΣΕΙΣ-ΟΡΙΟ-ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ

Μαθηματικά Προσανατολισμού Γ' Λυκείου

Γ ε ν ι κ έ ς εξ ε τ ά σ ε ι ς Μαθηματικά Γ λυκείου Θ ε τ ι κ ών και οικονομικών σπουδών

1 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ 2008

Να εξετασθεί αν είναι 1-1 οι συναρτήσεις α) f(x)=4x-1 β) g(x)= γ.

Λύσεις των θεμάτων των Πανελλαδικών Εξετάσεων στα Μαθηματικά Προσανατολισμού 2016

, να αποδείξετε ότι και η συνάρτηση f+g είναι παραγωγίσιμη στο x. και ισχύει. Μονάδες 9 Α2. Έστω μια συνάρτηση f με πεδίο ορισμού το Α και [, ]

ΜΙΓΑ ΙΚΟΙ. 3. Για κάθε z 1, z 2 C ισχύει z1 + z2 = z1 + z2. 4. Για κάθε z C ισχύει z z 2 z. 5. Για κάθε µιγαδικό z ισχύει: 6.

ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ. Παύλος Βασιλείου

Διαγώνισμα (Μονάδες 2) β. Μια συνάρτηση f μπορεί να μην είναι συνεχής στα άκρα ακαι β αλλά να είναι συνεχής στο [ α, β ].

γ. H εικόνα f( ) ενός διαστήματος μέσω μιας συνεχούς και μη σταθερής συνάρτησης f είναι διάστημα. Μονάδες 2 Μονάδες 2 ε.

ΛΥΣΕΙΣ ΠΡΟΣΟΜΟΙΩΣΗ ΘΕΜΑΤΩΝ 5 05/05/2016 ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ

Γ Ε Ν Ι Κ Ο Δ Ι Α Γ Ω Ν Ι Σ Μ Α Ο Ι Κ Ο Ν Ο Μ Ι Α Σ - Θ Ε Τ Ι Κ Η Σ Γ Τ Α Ξ Η Β. Ρ.

τότε για κάθε αριθμό ξ μεταξύ των f(α) και f(β) υπάρχει τουλάχιστον ένας x0 (α, β) τέτοιος ώστε να ισχύει f(x0)=ξ. Μονάδες 15

ΛΥΣΕΙΣ ΠΡΟΣΟΜΟΙΩΣΗ ΘΕΜΑΤΩΝ 5 05/05/2016 ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ

Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΜΑΘΗΜΑΤΙΚΑ ΑΠΑΝΤΗΣΕΙΣ. Εποµένως η f είναι κοίλη στο διάστηµα (, 1] και κυρτή στο [ 1, + ).

Α. ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ

Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ. Ημερομηνία: Πέμπτη 20 Απριλίου 2017 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ

x + ax x x 4 να είναι παραγωγίσιμη στο x Υπόδειξη: Μπορείτε να εφαρμόσετε κανόνα L Hospital ή μπορεί σας χρειαστεί η sin sin = 2sin cos

[ α π ο δ ε ί ξ ε ι ς ]

ΜΑΘΗΜΑΤΙΚΑ Ι Β ΜΕΡΟΣ

5o Επαναληπτικό Διαγώνισμα 2016

Επαναληπτικά θέματα στα Μαθηματικά προσανατολισμού-ψηφιακό σχολείο ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ ΝΕΟ & ΠΑΛΑΙΟ ΣΥΣΤΗΜΑ Γ ΗΜΕΡΗΣΙΩΝ

> ln 1 + ln ln n = ln(1 2 3 n) = ln(n!).

3Νο. ασκήσεις Α Ν Α Λ Υ Σ Η 1Ο Κ Ε Φ Α Λ Α Ι Ο. Θετική Τεχνολογική Κατεύθυνση ( ) ( 0)

αβ (, ) τέτοιος ώστε f(x

ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΑΠΑΝΤΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ ΘΕΜΑ Α Α1. Απόδειξη σχολικού βιβλίου σελίδα 135.

ΠΟΛΥΩΝΥΜΑ. Κεφάλαιο 2ο: Ερωτήσεις του τύπου Σωστό-Λάθος

ΘΕΩΡΗΜΑ ΜΕΣΗΣ ΤΙΜΗΣ - ΘΕΩΡΗΜΑ ROLLE

ΕΡΩΤΗΣΕΙΣ Σ-Λ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΤΕΥΘΥΝΣΗΣ ΕΣΠΕΡΙΝΟY. 0, τότε είναι και παραγωγίσιμη στο σημείο αυτό.

ΕΝΔΕΙΚΤΙΚΕΣ ΠΛΗΡΕΙΣ ΑΠΑΝΤΗΣΕΙΣ. Α4. α) Λάθος. Το θεώρημα ισχύει για διάστημα και όχι για ένωση διαστημάτων που είναι το σύνολο Α. Π.χ.

Ο μαθητής που έχει μελετήσει το κεφάλαιο αυτό θα πρέπει:

ΘΕΜΑ Α A1 Να αποδείξετε το θεώρημα: Έστω μια συνάρτηση f, η οποία είναι ορισμένη σε ένα κλειστό διάστημα. τέτοιος ώστε: f x.

********* Β ομάδα Κυρτότητα Σημεία καμπής*********

β) Αν υπάρχουν τα limf (x), και είναι γ) Αν οι συναρτήσεις f, g είναι παραγωγίσιμες στο, τότε ισχύει: ( f g ) (x) = f (x) g (x), x

- ΟΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΕΝΟΤΗΤΑ 2: ΜΟΝΟΤΟΝΙΑ ΣΥΝΑΡΤΗΣΗΣ ΑΚΡΟΤΑΤΑ ΣΥΝΑΡΤΗΣΗΣ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ. Μονάδες 9 B. Έστω μια συνάρτηση f και x o ένα σημείο του πεδίου ορισμού της. Πότε θα λέμε ότι η f είναι συνεχής στο x o ; Μονάδες 6

ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΕΥΤΕΡΑ 11 ΙΟΥΝΙΟΥ 2018 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΠΡΟΤΕΙΝΟΜΕΝΕΣ ΛΥΣΕΙΣ

Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΜΑΘΗΜΑΤΙΚΑ ΕΚΦΩΝΗΣΕΙΣ

ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ 2017 ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ. ΕΠΙΜΕΛΕΙΑ: X. KOMNHNAKΙΔΗΣ ΜΑΘΗΜΑΤΙΚΟΣ M.Sc. ΘΕΜΑ Α

). Πράγματι, στο διάστημα [ x, x 1 2 ικανοποιεί τις προϋποθέσεις του Θ.Μ.Τ. Επομένως, υπάρχει ξ x 1,

ΘΕΜΑ Α ΘΕΜΑ Β. Β1. Η είναι συνεχής και παραγωγίσιμη στο R ως ρητή με πρώτη παράγωγο. x Μονοτονία της f oλικό ελάχιστο στο 0 το f(0)=0

ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΗΡΑΚΛΕΙΤΟΣ ΚΩΛΕΤΤΗ

2018 Φάση 2 ιαγωνίσµατα Επανάληψης ΑΛΓΕΒΡΑ. Β' Γενικού Λυκείου. Γενικής Παιδείας. Σάββατο 21 Απριλίου 2018 ιάρκεια Εξέτασης:3 ώρες ΘΕΜΑΤΑ

( ) ( ) lim f x lim g x. z-3i 2-18= z-3 2 w-i =Im(w)+1. x x x x

Transcript:

Περίληψη μαθημάτων Ι. ΣΥΝΑΡΤΗΣΕΙΣ Με N θα συμβολίζουμε το σύνολο των φυσικών αριθμών, δηλ. N = {1, 2, 3, 4, }. Με Z θα συμβολίζουμε το σύνολο των ακεραίων αριθμών, δηλ. Z = N {0, 1, 2, 3, 4, }. Με Q θα συμβολίζουμε το σύνολο των ρητών αριθμών, δηλ. Q = { α : α Z, και β N}. β Θεωρούμε ως γνωστό ότι κάθε ρητός έχει δεκαδική παράσταση που είναι πάντα περιοδική από ένα ψηφίο και μετά. Ισχύει και το αντίστροφο: κάθε δεκαδική παράσταση που από ένα ψηφίο και πέρα είναι περιοδική αντιστοιχεί σε κάποιο ρητό. Το σύνολο των αριθμών με δεκαδική παράσταση αποτελεί το σύνολο των πραγματικών αριθμών που συμβολίζεται R. Αν Χ και Υ είναι σύνολα, τότε συνάρτηση f: X Y λέμε μία σχέση όπου σε κάθε xεx αντιστοιχεί ένα μοναδικό στοιχείο yεy που το συμβολίζουμε f(x). Το Χ λέγεται πεδίο ορισμού της f και το Υ πεδίο τιμών της f. Το σύνολο f(x) = { f(x): x X } Υ λέγεται εικόνα της συνάρτησης f. Δύο συναρτήσεις f 1 : X 1 Y 1, f 2 : X 2 Y 2, λέγονται ίσες αν X 1 = X 2 = Χ και f 1 (x) = f 2 (x) για κάθε x X, οπότε γράφουμε f 1 = f 2. Αν Α Χ και f: X Y τότε ορίζουμε την συνάρτηση f περιορισμένη στο Α με f A : A Y, όπου f A (x) = f(x) για κάθε x Α. Αν έχουμε δύο συναρτήσεις g: X Y και f: Y Z, τότε ορίζεται η σύνθετη συνάρτηση f g: X Z που ορίζεται με την ιδιότητα f g(x) = f(g(x)) για κάθε x X. Η συνάρτηση f: X Y λέγεται 1-1 (ένα προς ένα) όταν έχει την ιδιότητα: αν f(x 1 ) = f(x 2 ) τότε x 1 = x 2.

Αν η συνάρτηση f: X Y είναι 1-1 τότε υπάρχει μια μοναδική συνάρτηση φ: f(x) X με την ιδιότητα φ(f(x)) = x για κάθε x X. Η φ λέγεται αντίστροφη της f και συμβολίζεται f 1. Μια συνάρτηση f: X Y λέγεται πραγματική αν Χ R και Υ R. Στη συνέχεια όταν θα λέμε συνάρτηση θα εννοούμε πραγματική συνάρτηση. Γραφική παράσταση μιας συνάρτησης f: X R λέμε το σύνολο των σημείων (x, y) του επιπέδου R 2 όπου y = f(x). Η γραφική παράσταση μιας συνάρτησης f: R R, με f(x) = ax + b, όπου a, b σταθερές, έχει γραφική παράσταση μία ευθεία. Μια συνάρτηση f: X R με Χ R, λέγεται γνησίως αύξουσα όταν: f(x1) < f(x2) x1 < x2, αύξουσα όταν: f(x1) f(x2) x1 x2, γνησίως φθίνουσα όταν: f(x1) < f(x2) x2 < x1, φθίνουσα όταν: f(x1) f(x2) x2 x1. Μία συνάρτηση f: X R λέμε ότι έχει τοπικά μέγιστο στο x0 αν υπάρχει διάστημα (α, β) με x0 (α, β) ώστε f(x) f(x0) για κάθε x (α, β) Χ. Μία συνάρτηση f: X R λέμε ότι έχει τοπικά ελάχιστο στο x0 αν υπάρχει διάστημα (α, β) με x0 (α, β) ώστε f(x0) f(x) για κάθε x (α, β) Χ. Τοπικά ακρότατα μιας συνάρτησης f: X R λέγονται τα τοπικά μέγιστα και τα τοπικά ελάχιστα της f. Μία συνάρτηση f: X R λέμε ότι παίρνει μέγιστη τιμή στο x0 αν f(x) f(x0) για κάθε x Χ, οπότε το f(x0) λέγεται μέγιστη τιμή της f. Μία συνάρτηση f: X R λέμε ότι παίρνει ελάχιστη τιμή στο x0 αν f(x0) f(x) για κάθε x Χ, οπότε το f(x0) λέγεται ελάχιστη τιμή της f. Η συνάρτηση f(x) = e x, x R, είναι 1-1, με εικόνα το σύνολο των θετικών αριθμών. Η αντίστροφή της f -1 είναι η συνάρτηση lnx, x > 0. Άρα ln(e x ) = x. Η συνάρτηση f(x) = εφx, x R, δεν είναι 1-1, αλλά η f A : A R, όπου Α = (-π/2, π/2) είναι 1-1. Η αντίστροφη της f A συμβολίζεται Τοξεφ. Άρα Τοξεφ(εφx) = x, για x (-π/2, π/2). Μία συνάρτηση f: R R λέγεται περιοδική αν υπάρχει Τ > 0 ώστε f(x + T) = f(x) για κάθε x R. Αν το Τ είναι η μικρότερη δυνατή τιμή με προηγούμενη ιδιότητα, τότε το Τ λέγεται περίοδος της f.

ΑΣΚΗΣΕΙΣ 1. Να βρείτε τα τοπικά ακρότατα της συνάρτησης f: [2, 5] R, με f(x) = 3x + 2, και να βρείτε την αντίστροφη f 1 εφόσον υπάρχει. 2. Να βρείτε την περίοδο της συνάρτησης f(x) = ημ(5x + 8), x R. 3. Αν η συνάρτηση f: X R έχει αντίστροφη συνάρτηση f 1, αποδείξτε ότι f(f 1 (y) = y, για κάθε y f(x). ΙΙ. ΟΡΙΑ - ΣΥΝΕΧΕΙΑ Έστω f: X R και x0 R, λ R. Θα λέμε ότι το όριο της f(x) είναι λ όταν το x τείνει στο x0, και το συμβολίζουμε lim x x0 f(x) = λ, όταν για κάθε ε > 0 υπάρχει δ > 0 ώστε αν x Χ και 0 < x x0 <δ τότε f(x) λ < ε. Σημείωση: υποθέτουμε ότι το x0 είναι τέτοιο ώστε {x X: 0 < x x 0 < δ} για κάθε δ>0. Έστω f: X R και x0 X. Θα λέμε ότι η f(x) είναι συνεχής στο x0 όταν για κάθε ε > 0 υπάρχει δ > 0 ώστε αν x Χ και x x0 <δ τότε f(x) f(x0) < ε. Σημείωση: Αν υπάρχει το lim f(x) τότε lim f(x) = f(x0). x x0 x x0 Μία συνάρτηση f: X R λέγεται συνεχής αν είναι συνεχής για κάθε x X. Για μια ποιοτική προσέγγιση της έννοιας του ορίου: Αν x είναι μία μεταβλητή, τότε με dx συμβολίζουμε την ( πολύ μικρή ) στοιχειώδη μεταβολή του x, δηλ. dx 0, με dx 0. Αν f(x) είναι συνάρτηση, τότε με df(x) = f(x+ dx) f(x) συμβολίζουμε την ( πολύ μικρή ) στοιχειώδη μεταβολή της f(x) στη θέση x. H f(x) είναι συνεχής στο x τότε και μόνο όταν f(x + dx) f(x) 0, δηλ. df(x) 0. Αν η f: X R είναι 1-1 και συνεχής τότε και η f -1 είναι συνεχής. ΘΕΩΡΗΜΑ (ενδιάμεσης τιμής) Αν f: [α, β] R είναι συνεχής τότε η εικόνα f([α, β]) της f περιλαμβάνει όλες τις τιμές μεταξύ των f(α) και f(β). Ισχύει κάτι πιο γενικό: ΘΕΩΡΗΜΑ Αν f: [α, β] R είναι συνεχής τότε η εικόνα f([α, β]) της f είναι ένα κλειστό διάστημα [ξ, η].

(ιδιότητες των συνεχών συναρτήσεων) Αν οι συναρτήσεις f(x), g(x) είναι συνεχείς τότε είναι συνεχείς και οι συναρτήσεις f(x) + g(x), (άθροισμα συναρτήσεων) f(x)g(x), (γινόμενο συναρτήσεων) f(x)/g(x), (πηλίκο συναρτήσεων) f(g(x)), (σύνθεση συναρτήσεων) όταν και όπου αυτές ορίζονται. Άσκηση Έστω οι συναρτήσεις g: (α, β) R, f: {g(x): x (α, β)} R. Οπότε ορίζεται η σύνθετη συνάρτηση f(g(x)). Υποθέτουμε ότι οι συναρτήσεις g(x), f(x) είναι συνεχείς. Δείξτε ότι η συνάρτηση f(g(x)) είναι συνεχής. Απόδειξη: d (f(g(x))) = f(g(x + dx)) f(g(x)) = f(dg(x) + g(x)) f(g(x)). Αλλά η g(x) είναι συνεχής, άρα dg(x) 0. Οπότε f(dg(x) + g(x)) f(g(x)) 0, λόγω συνέχειας της f(x). Δείξαμε ότι d (f(g(x))) 0, άρα η f(g(x)) είναι συνεχής. Οι ακόλουθες συναρτήσεις είναι συνεχείς f(x) = c, x R, c σταθερά f(x) = x n, x R, n N, f(x) = x m, x 0, m Z f(x) = x α, x > 0, α R f(x) = e x, x R f(x) = lnx, x > 0 f(x) = συνx, x R f(x) = ημx, x R f(x) = εφx, x R f(x) = σφx, x R

Ισχύουν δύο περιγραφικές παρατηρήσεις: a) Μια συνάρτηση είναι συνεχής αν περιγράφεται με έναν ενιαίο μαθηματικό τύπο. b) Μια συνάρτηση είναι συνεχής αν η γραφική παράστασή της είναι συνεχής γραμμή. ΑΣΚΗΣΕΙΣ 1. Δείξτε ότι η συνάρτηση x, αν x 0 f(x) = { 1, αν x < 0 Δεν είναι συνεχής στο 0 ενώ είναι συνεχής σε κάθε x 0. 2. Δείξτε ότι η εξίσωση x 3 + x 2 + x + 1 = 0 έχει τρείς (πραγματικές) λύσεις.