Οι ασκήσεις βασίζονται στο αξιόλογο φυλλάδιο του Μαθηματικού Μιλτ. Παπαγρηγοράκη, από τις σημειώσεις του για το 4ο Γενικό Λύκειο Χανίων [ <
|
|
- Αελλα Αλαβάνος
- 7 χρόνια πριν
- Προβολές:
Transcript
1 Οι ασκήσεις βασίζονται στο αξιόλογο φυλλάδιο του Μαθηματικού Μιλτ. Παπαγρηγοράκη, από τις σημειώσεις του για το 4ο Γενικό Λύκειο Χανίων [ < Mathematica.gr], τον οποίο κι ευχαριστώ ιδιαίτερα για το ήθος και την ευχάριστη διάθεση, με την οποία συμβάλλει στην ελεύθερη διάθεση της γνώσης. Για την αντιγραφή: Κόλλας Αντώνης.
2 ΚΕΦΑΛΑΙΟ 3 ΘΕΩΡΗΜΑ ROLLE x 2 + αx + β, x < 0 1. Αν f(x) = να βρεθούν τα α, β, γ, ώστε να 3 + (γ α)x, x 0 εμφαρμόζεται το Θ.Rolle στο [ 1, 1] και να βρεθεί ξ ( 1, 1), ώστε f (ξ) = Έστω η παραγωγίσιμη f: [α, β], ώστε f 2 (α) f 2 (β) = α 2 β 2. Να αποδείξετε ότι υπάρχει ξ (α, β), έτσι ώστε f(ξ) f (ξ) = ξ. 3. Δίνεται ότι η f συνεχής στο [α, β], α > 0 και παραγωγίσιμη στο f(α) f(β) (α, β), με =. Να αποδείξετε ότι υπάρχει ξ (α, β), ώστε α β ξ f (ξ) = f(ξ). 4. Δίνεται η συνάρτηση f συνεχής στο [α, β] και παραγωγίσιμη στο (α, β). Να αποδείξετε ότι υπάρχει ξ (α, β), ώστε: 3ξ 2 f(β) f(α) = f (ξ) 3 3 β α 5. Να αποδείξετε ότι η κάθε μία από τις παρακάτω εξισώσεις έχει το πλήθος των ριζών, που περιγράφεται: α. Η x 8 = 7x + 6 δεν έχει περισσότερες από δύο διαφορετικές ρίζες στο. β. Η e x = αx 2 + βx + γ έχει μέχρι τρεις ρίζες στο. γ. Η x 7 + αx 2 + λ = 0 έχει το πολύ τρεις (ανά δύο άνισες) πραγματικές ρίζες. 6. Να αποδείξετε ότι κάθε μία από τις παρακάτω εξισώσεις έχει μοναδική ρίζα στο. α. x 5 + 3x α = 0 β. αx 3 + βx 2 + γx + δ = 0, με β 2 < αγ, α Αν f(x) = (x 2 x)(x 2 4) + 1, να βρείτε το πλήθος των πραγματικών ριζών της εξίσωσης f (x) = 0.
3 8. Να λύσετε τις εξισώσεις: α. ln(1 + xe x ) = x β. 2 x + 5 x = 2 + 5x 9. α. Αν για κάθε x ισχύει f (x) > 0 και g (x) = < 0, να αποδείξετε ότι οι γραφικές παραστάσεις των f και g έχουν το πολύ ένα κοινό σημείο. β. Να αποδείξετε ότι οι γραφικές παραστάσεις των συναρτήσεων f(x) = e x + 2x και g(x) = e x x 3 έχουν ένα μόνο κοινό σημείο, που βρίσκεται στον άξονα y y. 10. Να αποδείξετε ότι μεταξύ δύο ριζών της εξίσωσης e x ημx = 1 υπάρχει ρίζα της εξίσωσης e x συνx = 1. ΘΕΩΡΗΜΑ ΜΕΣΗΣ ΤΙΜΗΣ 11. Αν f συνεχής στο [1, 5] με f(1) = 2 και f (x) < 2, x (1, 5), να δείξετε ότι 10 < f(5) < Δίνεται η f(x) = logx. Να αποδείξετε ότι υπάρχει ξ (1, 20), ώστε: 19 log e ξ =. 1 + log2 13. Η συνάρτηση f έχει δεύτερη παράγωγο στο και υπάρχει α, ώστε f(0) = 3α 1, f(1) = 5α 1 και f(2) = 7α 1. Να αποδείξετε ότι υπάρχει ξ, ώστε f (ξ) = Αν η συνάρτηση f είναι δύο φορές παραγωγίσιμη στο και υπάρχουν τρία συνευθειακά σημεία της Cf, να αποδείξετε ότι υπάρχει ξ, με f (ξ) = Η συνάρτηση f είναι παραγωγίσιμη στο [1, 4] και για κάθε x ισχύει f(4x) = 4f(x) και f(25/100) = 1, να αποδείξετε ότι υπάρχουν ξ1, ξ2, ξ3 (1, 4), ώστε f (ξ1) + f (ξ2) + f (ξ3) = Να αποδείξετε τις παρακάτω ανισότητες: 1 α. x e x+ 1 < x + 1 < x e x, για κάθε x > 0 β. e π 2 < lnπ < π e γ. x < ln(x + 1) < x, αν x > 0 x + 1 1
4 δ. x e x (x 1)e, αν x (1, 2) 17. Η απόσταση δύο πόλεων, που συνδέονται με ευθεία σιδηροδρομική γραμμή είναι 51 km. Μια αμαξοστοιχία διανύει τη μεταξύ τους απόσταση σε 0,6 ώρες. Να αποδειχτεί ότι για κάποια χρονική στιγμή η αμαξοστοιχία έχει ταχύτητα 85 km/h. ΘΕΩΡΗΜΑ ROLLE & ΜΕΣΗΣ ΤΙΜΗΣ 18. Δίνεται συνάρτηση f δύο φορές παραγωγίσιμη στο. Αν f(2) f(1) = f(3) f(2), να αποδείξετε ότι υπάρχει x0 (1, 3), τέτοιο ώστε η εφαπτομένη της f στο x0 να είναι παράλληλη στον x x. 19. Η συνάρτηση f δυο φορές παραγωγίσιμη στο. Αν οι αριθμοί f(2), f(4), f(6) είναι διαδοχικοί όροι αριθμητικής προόδου, να αποδείξετε ότι υπάρχει ένα τουλάχιστον x0 (2, 6), ώστε f (x0) = H ευθεία (ε): y = λx + μ τέμνει τη γραφική παράσταση της f: σε τρία διαφορετικά σημεία. Αν η f είναι δύο φορές παραγωγίσιμη, να δείξετε ότι υπάρχει x0, ώστε f (x0) = Έστω f: τρεις φορές παραγωγίσιμη. Υποθέτουμε ότι: f(1) = f(0) = f (0) = f (0) = 0 Να αποδείξετε ότι υπάρχει x (0, 1), ώστε f (x) = Έστω f μια παραγωγίσιμη συνάρτηση στο με f(x) > 0, για κάθε f(2000) x και = e. Να αποδείξετε ότι η εξίσωση f (x) = f(x) έχει f(1999) μία τουλάχιστον ρίζα στο (1999, 2000). 23. Έστω f παραγωγίσιμη στο, της οποίας η παράγωγος είναι γνησίως φθίνουσα στο. Να αποδείξετε ότι: f(1999) + f(2002) < f(2000) + f(2001) 24. Έστω συνάρτηση f για την οποία ισχύουν ότι είναι συνεχής στο [1, e], παραγωγίσιμη στο (1, e) και f(e) f(1) = 1. Να αποδειχτεί ότι η εξίσωση x f (x) = 1, έχει μία τουλάχιστον λύση στο (1, e).
5 25. Δίνονται οι α, β, γ. Να αποδειχτεί ότι η εξίσωση: α συνx + β συν2x + γ συν3χ = 0 έχει μια τουλάχιστον ρίζα στο διάστημα (0, π). 26. Έστω συνάρτηση f, δύο φορές παραγωγίσιμη στο [α, β], για την οποία ισχύει f(α) = f(β) = 0. Να αποδειχτεί ότι υπάρχει x0 (α, β), ώστε f (x0) = f(x0) f (x0). 27. Αν για τη συνάρτηση f στο διάστημα [α, β] ικανοποιούνται οι προϋποθέσεις του θεωρήματος του Rolle, τότε να αποδείξετε ότι: α. υπάρχουν ξ1, ξ2 (α, β) με ξ1 < ξ2 και f (ξ1) + f (ξ2) = 0. β. υπάρχουν κ1, κ2 (α, β) με κ1 <κ2, ώστε 3f (κ1) + 2f (κ2) = 0. γ. ότι η εξίσωση f (x) = f(x) f(α) έχει μία τουλάχιστον ρίζα στο διάστημα (α, β). 28. Έστω η συνάρτηση f: [α, β], συνεχής στο [α, β], παραγωγίσιμη στο (α, β) με f(α) = 2β, f(β) = 2α. α. Να αποδείξετε ότι η εξίσωση f(x) = 2x έχει μία τουλάχιστον ρίζα στο (α, β). β. Να αποδείξετε ότι υπάρχουν ξ1, ξ2 (α, β), τέτοια ώστε f (ξ1) f (ξ2) = Θεωρούμε την παραγωγίσιμη στο συνάρτηση f, για την οποία ισχύει f(lnα) = f(lnβ). Αν ισχύει lnα < lnγ < lnβ, με α, β, γ > 0 και γ β 2 = = e, να δειχτεί ότι υπάρχουν ξ1, ξ2 με f (ξ1) + f (ξ2) = 0. α γ 31. Έστω η συνάρτηση f, παραγωγίσιμη στο με f( 1) = 1, f(1) = 1. Να αποδειχτεί ότι υπάρχουν: α. 1 < ξ1 < ξ2 < 1, ώστε f (ξ1) + f (ξ2) = 2. β < κ1 < κ2 < 1, ώστε + = 2. f (κ ) f (κ ) 32. Η συνεχής συνάρτηση f: [α, β], είναι δύο φορές παραγωγίσιμη στο (α, β), με f(α) = f(β) = 0. Να αποδείξετε ότι: 1 α. αν υπάρχει x0 (α, β) με f(x0) > 0, τότε υπάρχει ξ (α, β), τέτοιο ώστε f (ξ) < 0. 2
6 β. αν υπάρχει x0 (α, β) με f(x0) < 0, τότε υπάρχει ξ (α, β), τέτοιο ώστε f (ξ) > Η συνάρτηση f είναι παραγωγίσιμη στο [0, α] και για κάθε x [0, α], ισχύει f(x 2 ) = 2xf(x). Να δείξετε ότι υπάρχουν ξ1, ξ2 (0, α), ώστε: f (ξ1) + f (ξ2) = Δίνεται ότι α > 1 και f(0) = 0. 2x f(α) ( α 1) 34. Η συνάρτηση f είναι δύο φορές παραγωγίσιμη στο [α, β], με f(β) < 0 και f(α) = f (α) = 0. Να αποδείξετε ότι υπάρχει ξ (α, β), ώστε f (ξ) < Έστω η συνάρτηση f(x) = α 2 x 6 + β x 4 + x 2 + γ + δ, (α, β, γ, δ *) με 3β 2 < 5α 2. Να αποδείξετε ότι δεν υπάρχουν τρία διαφορετικά συνευθειακά σημεία, που να ανήκουν στη γραφική παράστασή της. 36. Αν x ημx 2 2 f(x) =, x (0, π) τότε: x ημx α. Να αποδειχτεί ότι υπάρχει ξ (ημx, x), τέτοιο ώστε να ισχύει f(x) = 2 ξ ln2. β. x ημx 2 2 Να βρεθεί το lim x 0 x ημx. 37. Έστω παραγωγίσιμη συνάρτηση f: με f(2) = 0. Να αποδείξετε ότι υπάρχει ξ, ώστε η εφαπτομένη της γραφικής παράστασης της f στο σημείο Μ(ξ, f(ξ)) να τέμνει τον άξονα x x στο σημείο Ρ (2ξ, 0). 38. Η συνάρτηση f: [1, 4] είναι δύο φορές παραγωγίσιμη και ισχύουν f(1) = 2 και f(4) = 8. Να αποδείξετε ότι υπάρχει εφαπτόμενη της Cf που διέρχεται από την αρχή των αξόνων. 39. Έστω συνάρτηση f για την οποία ισχύουν οι προϋποθέσεις του Θ.Rolle στο διάστημα [2, 20]. Να αποδείξετε ότι υπάρχουν: α. x1, x2, x3 με 2 < x1 < x2 < x3 < 20, ώστε: f (x1) + f (x2) + f (x3) = 0 β. ξ1, ξ2, ξ3 με 2 < ξ1 < ξ2 < ξ3 < 20, ώστε: 2f (ξ1) + 3f (ξ2) + 4f (ξ3) = 0
7 ΣΤΑΘΕΡΗ ΣΥΝΑΡΤΗΣΗ 40. Έστω οι παραγωγίσιμες στο συναρτήσεις, τέτοιες ώστε για κάθε x να ισχύουν οι παρακάτω σχέσεις: f (x) = f(x) lng(x) και g (x) = g(x) lnf(x) α. Να αποδειχτεί ότι είναι σταθερή η συνάρτηση: G(x) = (lnf(x) ημx) 2 + (lng(x) συνx) 2, x β. Αν f(0) = 1, g(0) = e να βρεθούν οι f, g. 41. Δίνεται συνάρτηση f:, ώστε: f (x) + 2f (x) = f (x) + 2f(x), για κάθε x και: f(0) = f (0) = f (0) = 1. Να αποδείξετε ότι: α. Η g(x) = [f (x) f (x)] 2 + 2[f (x) f(x)] 2, x είναι σταθερή και να βρεθεί η τιμή της. β. Η h(x) = f(x) e x, x, είναι σταθερή. γ. Να βρεθεί ο τύπος της f. 42. Θεωρούμε συνάρτηση f: για την οποία ισχύει ότι: f(x) f(y) + συν(x y) 1, για κάθε x, y. Να αποδειχτεί ότι η f είναι σταθερή. 43. Να βρείτε συνάρτηση f σε κάθε μία, από τις παρακάτω περιπτώσεις: α. Αν f (x) = ημx + x συνx, x και f(π/2) = 2 f(0). β. Αν f (1 2x) = 7 12x, x και f(1) = 2. γ. 1 Αν f (x) =, x * και f( 1) = f(1) = 2. 2 x δ. Αν f (x) = 4x 2x + 6x + 2, x και f (0) = f(0) = Να αποδειχτεί ότι: α. αν f (x) = f(x), x και f(0) = f (0) = 1, τότε f(x) = e x, για κάθε x. β. αν δ (x) = δ(x) + 5x, x, δ(0) = 1 και δ (0) = 4, τότε δ(x) = e x 5x.
8 45. Αν η f: (0, π) είναι δύο φορές παραγωγίσιμη με f (π/2) = 0 και f (x) = f(x), για κάθε x (0, π), να αποδείξετε ότι f(x) = α ημx, α. 46. Να βρεθεί, αν υπάρχει, συνάρτηση f που είναι παραγωγίσιμη στο * και για κάθε x * ισχύει: f(x) = x f (x), f(1) = 1 και f( 1) = Έστω η συνάρτηση f: με f(0) = 2, ώστε να ισχύει: (f(x) e x ) (f (x) e x ) = 0, x α. Να αποδείξετε ότι: (f(x) e x ) 2 = 1. β. Να αποδείξετε ότι η h(x) = f(x) e x διατηρεί σταθερό πρόσημο στο και να βρείτε τον τύπο της f. 48. Δίνεται η συνάρτηση f: για την οποία ισχύει: (x 2) f (x) = 2x 2 5x + 2, για κάθε x. Αν f(3) = 7, να βρεθεί ο τύπος της f. 49. Να βρεθεί παραγωγίσιμη συνάρτηση f: (0, + ) (0, + ), αν ισχύει ότι: f (x) = f(x) ln[f(x)], για κάθε x > 0 και f (1) = Να βρείτε την f, αν για κάθε x ισχύει: π f (x) f(x) = 2 ημ x + και f(0) = Να βρεθεί η παραγωγίσιμη συνάρτηση f: με f(0) = f (0) = 1, για την οποία ισχύει: f(x + y) + f(x y) = 2f(x), για κάθε x, y 52. Έστω f παραγωγίσιμη συνάρτηση στο. Να δείξετε ότι ισχύει: f (x) = (2x + 1) f(x), για κάθε x αν και μόνο αν υπάρχει c, ώστε: f(x) = c e 53. Να βρείτε την εξίσωση της καμπύλης, που διέρχεται από το Μ(0, 3) και σε κάθε σημείο της με τετμημένη x0 έχει εφαπτομένη 4x0 με λεφ = 2 4x x 2 + x
9 54. Δίνεται η συνάρτηση f: [0, 1] [0, + ) με f(0) = 0, που είναι παραγωγίσιμη και δεν είναι σταθερή συνάρτηση. Να αποδείξετε ότι: α. Υπάρχει ξ (0, 1), ώστε (1 ξ) f (ξ) = f(ξ). β. Υπάρχουν α, β με 0 < α < β < 1, ώστε: Re(z1 z2) < 0 με z1 = β + i και z2 = f (α) + i f (β)
Οι ασκήσεις βασίζονται στο αξιόλογο φυλλάδιο του Μαθηματικού Μιλτ. Παπαγρηγοράκη, από τις σημειώσεις του για το 4ο Γενικό Λύκειο Χανίων [ <
Οι ασκήσεις βασίζονται στο αξιόλογο φυλλάδιο του Μαθηματικού Μιλτ. Παπαγρηγοράκη, από τις σημειώσεις του για το 4ο Γενικό Λύκειο Χανίων [008-009 < Mathematica.gr], τον οποίο κι ευχαριστώ ιδιαίτερα για
Διαβάστε περισσότεραΘΕΩΡΗΜΑ ΜΕΣΗΣ ΤΙΜΗΣ - ΘΕΩΡΗΜΑ ROLLE
ΘΕΩΡΗΜΑ ΜΕΣΗΣ ΤΙΜΗΣ - ΘΕΩΡΗΜΑ ROLLE Θεώρημα Rolle Αν μια συνάρτηση f είναι συνεχής στο κλειστό διάστημα [α, β], παραγωγίσιμη στο ανοικτό διάστημα (α, β) και ισχύει ότι f(α) f(β), τότε υπάρχει ένα τουλάχιστον
Διαβάστε περισσότεραΕΝΝΟΙΑ ΤΗΣ ΠΑΡΑΓΩΓΟΥ - ΟΡΙΣΜΟΣ
ΕΝΝΟΙΑ ΤΗΣ ΠΑΡΑΓΩΓΟΥ - ΟΡΙΣΜΟΣ 3.1. Να αποδείξετε ότι η συνάρτηση: f x = { x e 1/ x,αν x 0 x ημx,αν x 0} είναι παραγωγίσιμη στο 0. 3.2. Δίνεται η συνάρτηση f x = { x 2 αx 1,αν x 1 2x 2, αν x 1 } η οποία
Διαβάστε περισσότεραΦίλε μαθητή, Το βιβλίο αυτό, που κρατάς στα χέρια σου προέκυψε τελικά μέσα από την εμπειρία και διδακτική διαδικασία πολλών χρόνων στον Εκπαιδευτικό Όμιλο Άλφα. Είναι το αποτέλεσμα συγγραφής πολλών καθηγητών
Διαβάστε περισσότεραΜαθηματικά Θετικής - Τεχνολογική Κατεύθυνσης
4 o Γενικό Λύκειο Χανίων 008-009 Γ τάξη Τμήμα. Μαθηματικά Θετικής - Τεχνολογική Κατεύθυνσης γ Ασκήσεις για λύση Μ.. Παπαγρηγοράκης 4 ο Γενικό Λύκειο Χανίων Γ Λυκείου Θετική Τεχνολογική κατεύθυνση Σχ. Έτος
Διαβάστε περισσότεραΟι ασκήσεις βασίζονται στο αξιόλογο φυλλάδιο του Μαθηματικού Μιλτ. Παπαγρηγοράκη, από τις σημειώσεις του για το 4ο Γενικό Λύκειο Χανίων [ <
Οι ασκήσεις βασίζονται στο αξιόλογο φυλλάδιο του Μαθηματικού Μιλτ. Παπαγρηγοράκη, από τις σημειώσεις του για το 4ο Γενικό Λύκειο Χανίων [008-09 < Mathematica.gr], τον οποίο κι ευχαριστώ ιδιαίτερα για το
Διαβάστε περισσότερα( ) f( x ) ΔΙΑΓΩΝΙΣΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ. Επώνυμο: Όνομα: Τμήμα: Ημερομηνία: Α Βαθ. Β Βαθ. Μ.Ο. (ενδεικτικές λύσεις)
Επώνυμο: Όνομα: Τμήμα: ΤΣΙΜΙΣΚΗ & ΚΑΡΟΛΟΥ ΝΤΗΛ ΓΩΝΙΑ ΤΗΛ : 777 594 ΑΡΤΑΚΗΣ Κ. ΤΟΥΜΠΑ ΤΗΛ : 99 9494 www.sygrono.gr Ημερομηνία: Α Βαθ. Β Βαθ. Μ.Ο. ΔΙΑΓΩΝΙΣΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ (ενδεικτικές
Διαβάστε περισσότεραΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΛΥΚΕΙΟΥ ( ΘΕΡΙΝΑ )
5 1 1 1η σειρά ΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΛΥΚΕΙΟΥ ( ΘΕΡΙΝΑ ) ΘΕΜΑ 1 Α. Ας υποθέσουμε ότι x 1,x,...,x κ είναι οι τιμές μιας μεταβλητής X, που αφορά τα άτομα ενός δείγματος μεγέθους
Διαβάστε περισσότεραx x = e, x > 0 έχει ακριβώς δυο Γ4. Να βρείτε το εμβαδόν του χωρίου που περικλείεται από τη γραφική
ΘΕΜΑΤΑ ΘΕΜΑ Γ. Δίνεται η συνάρτηση f() ( )ln, >. Γ. Να αποδείξετε ότι η συνάρτηση f είναι γνησίως φθίνουσα στο διάστημα Δ (, ] και γνησίως αύξουσα στο διάστημα Δ [, ). Στη συνέχεια να βρείτε το σύνολο
Διαβάστε περισσότεραΘΕΩΡΗΜΑ ROLLE Θ.Μ.Τ. ΔΙΑΦΟΡΙΚΟΥ ΛΟΓΙΣΜΟΥ
ΦΥΛ 14 ΘΕΩΡΗΜΑ ROLLE Θ.Μ.Τ. ΔΙΑΦΟΡΙΚΟΥ ΛΟΓΙΣΜΟΥ a, 1 0 1. Δίνεται η συνάρτηση f (), 0 1 Να βρείτε τα α,β,γ έτσι ώστε για την συνάρτηση να ισχύουν οι προϋπόθεσης του θεωρήματος Rolle στο [-1,1]. 4. Δίνεται
Διαβάστε περισσότεραΘεώρημα Bolzano. Γεωμετρική Ερμηνεία του θ.bolzano. Θ. Bolzano και ύπαρξη ρίζας
Θεώρημα Bolzano Έστω μια συνάρτηση f η οποία είναι ορισμένη σε ένα κλειστό διάστημα [α, β]. Αν: Η f είναι συνεχής στο [α, β] και Ισχύει f(a)f(β) < 0, τότε υπάρχει τουλάχιστον ένα x 0 (α, β) τέτοιο ώστε
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΥΛΗ ΔΙΑΓΩΝΙΣΜΑΤΟΣ:ΠΑΡΑΓΩΓΟΙ
ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΥΛΗ ΔΙΑΓΩΝΙΣΜΑΤΟΣ:ΠΑΡΑΓΩΓΟΙ ΘΕΜΑ Α Να χαρακτηρίσετε τις προτάσεις που ακολουθούν, γράφοντας στο τετράδιό σας τη λέξη Σωστό ή Λάθος δίπλα στο γράμμα που αντιστοιχεί σε κάθε
Διαβάστε περισσότεραf(x 2) 5 x 1 α) Να αποδείξετε ότι: i) f (3) = 5 και ii) f (3) = 6 x 2 f(x)
. Έστω η συνάρτηση = + e. Να μελετήσετε την f ως προς τη μονοτονία.. Να λύσετε την εξίσωση e = 3. Θεωρούμε τη γνησίως μονότονη συνάρτηση g : R R η οποία για κάθε R ικανοποιεί τη σχέση g() + e g() = +.
Διαβάστε περισσότεραΕΦΑΡΜΟΓΕΣ ΣΤΟ ΘΕΩΡΗΜΑ BOLZANO ΚΑΙ ΣΤΑ ΑΛΛΑ ΒΑΣΙΚΑ ΘΕΩΡΗΜΑΤΑ ΕΠΙΜΕΛΕΙΑ : Π. Δ. ΤΡΙΜΗΣ ΜΑΘΗΜΑΤΙΚΟΣ
Λ Υ Κ Ε Ι Ο Α Ν Α Λ Υ Σ Η 1Ο Κ Ε Φ Α Λ Α Ι Ο ΕΠΙΜΕΛΕΙΑ : Π. Δ. ΤΡΙΜΗΣ ΜΑΘΗΜΑΤΙΚΟΣ Θετική Τεχνολογική Κατεύθυνση ασκήσεις (ΝΑ ΛΥΘΟΥΝ ΜΕΤΑ ΑΠΟ ΤΙΣ ΑΝΤΙΣΤΟΙΧΕΣ ΤΟΥ ΒΙΒΛΙΟΥ) ΘΕΩΡΗΜΑ BOLZANO ΘΕΩΡΗΜΑ ΕΝΔΙΑΜΕΣΩΝ
Διαβάστε περισσότεραΣημειώσεις Μαθηματικών 2
Σημειώσεις Μαθηματικών 2 Συναρτήσεις - 4 Ραφαήλ Φάνης Μαθηματικός 1 Κεφάλαιο 4 Παράγωγος Συνάρτησης 4.1 Έννοια Παραγώγου Ορισμός f(x) f(x 0 ) Μια συνάρτηση f ονομάζεται παραγωγίσιμη στο x 0 Df αν υπάρχει
Διαβάστε περισσότεραΕΦΑΠΤΟΜΕΝΗ ΓΡΑΦΙΚΗΣ ΠΑΡΑΣΤΑΣΗΣ ΣΥΝΑΡΤΗΣΗΣ
ΕΦΑΠΤΟΜΕΝΗ ΓΡΑΦΙΚΗΣ ΠΑΡΑΣΤΑΣΗΣ ΣΥΝΑΡΤΗΣΗΣ Ορισμός εφαπτομένης καμπύλης Αν μία συνάρτηση f είναι παραγωγίσιμη στο x, τότε ορίζουμε ως εφαπτομένη της γραφικής παράστασης της f στο σημείο Α(x, f(x )) την
Διαβάστε περισσότεραθ. Bolzano θ. Ενδιάμεσων τιμών θ. Μεγίστου Ελαχίστου και Εφαρμογές
Περιοδικό ΕΥΚΛΕΙΔΗΣ Β ΕΜΕ (Τεύχος 35) θ Bolzano θ Ενδιάμεσων τιμών θ Μεγίστου Ελαχίστου και Εφαρμογές Στο άρθρο αυτό επιχειρείται μια προσέγγιση των βασικών αυτών θεωρημάτων με εφαρμογές έ- τσι ώστε να
Διαβάστε περισσότεραΜΑΘΗΜΑ ΣΥΝΕΠΕΙΕΣ ΤΟΥ Θ.Μ.Τ Μονοτονία συνάρτησης Ασκήσεις Εξισώσεις Θεωρητικές Συνέχεια του µαθήµατος 31. e 3 = 0. e + e 3, x R.
ΜΑΘΗΜΑ.6 ΣΥΝΕΠΕΙΕΣ ΤΟΥ Θ.Μ.Τ Μονοτονία συνάρτησης Ασκήσεις Εξισώσεις Θεωρητικές Συνέχεια του µαθήµατος ΑΣΚΗΣΕΙΣ. Να λύσετε την εξίσωση Η εξίσωση γράφεται e + e e 0 Προφανής ρίζα Θεωρούµε τη συνάρτηση f()
Διαβάστε περισσότεραΠΡΟΤΕΙΝΟΜΕΝΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ
ΠΡΟΤΕΙΝΟΜΕΝΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑ Ο Να εξετάσετε ποιες από τις παρακάτω προτάσεις είναι σωστές και ποιες λανθασµένες.. Αν η συνάρτηση είναι συνεχής στο
Διαβάστε περισσότεραΓ Λυκείου. ανάλυση. Μαθηματικά Προσανατολισμού Mίλτος Παπαγρηγοράκης Χανιά. Παράγωγοι. Ταξινομημένες ασκήσεις για λύση
Γ Λυκείου Μαθηματικά Προσανατολισμού 06-07 Mίλτος Παπαγρηγοράκης Χανιά ανάλυση Ταξινομημένες ασκήσεις για λύση Παράγωγοι Ταξη: Γ Γενικού Λυκείου Μαθηματικά Θετικών Σπουδών Μέρος Β: Διαφορικός Λογισμός
Διαβάστε περισσότεραqwφιertyuiopasdfghjklzxερυυξnmηq σwωψerβνtyuςiopasdρfghjklzxcvbn mqwertyuiopasdfghjklzxcvbnφγιmλι qπςπζαwωeτrtνyuτioρνμpκaλsdfghςj
qwφιeryuiopasdfghjklερυυξnmηq σwωψerβνyuςiopasdρfghjklcvbn mqweryuiopasdfghjklcvbnφγιmλι ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ qπςπζαwωeτrνyuτioρνμpκaλsdfghςj Τάξη : Γ Λυκείου klcvλοπbnαmqweryuiopasdfghjkl
Διαβάστε περισσότερατην αρχή των αξόνων και ύστερα να υπολογίσετε το εμβαδόν του
ΑΣΚΗΣΗ 47 Δίνεται η συνάρτηση f(x) = και οι ευθείες (ε ): y = x και (ε ): y = x +. Να αποδείξετε ότι:. Η (ε ) είναι ασύμπτωτη της C f στο, ενώ η (ε ) είναι ασύμπτωτη της C f στο +. Για κάθε x R ισχύει
Διαβάστε περισσότεραΚΕΦΑΛΑΙΟ 1 ο : ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ
1 ΚΕΦΑΛΑΙΟ 1 ο : ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ 1. Πότε µια συνάρτηση f σε ένα διάστηµα του πεδίου ορισµού της λέγεται γνησίως αύξουσα και πότε γνησίως φθίνουσα; 2. Να αποδείξετε ότι η παράγωγος
Διαβάστε περισσότεραΚΕΦΑΛΑΙΟ 3ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 5: ΘΕΩΡΗΜΑ ROLLE [Θεώρημα Rolle του κεφ.2.5 Μέρος Β του σχολικού βιβλίου]. ΑΣΚΗΣΕΙΣ
ΚΕΦΑΛΑΙΟ 3ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 5: ΘΕΩΡΗΜΑ ROLLE [Θεώρημα Rolle του κεφ..5 Μέρος Β του σχολικού βιβλίου]. ΑΣΚΗΣΕΙΣ ΘΕΜΑ Β Άσκηση 1. Να δείξετε ότι η εξίσωση 7 3 + + + 3= (1) έχει ακριβώς μία πραγματική
Διαβάστε περισσότεραΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΑΠΑΝΤΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ ΘΕΜΑ Α Α1. Απόδειξη σχολικού βιβλίου σελίδα 135.
ΑΠΑΝΤΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ ΘΕΜΑ Α Α1. Απόδειξη σχολικού βιβλίου σελίδα 135. Α2. α) Η πρόταση είναι ψευδής. β) Αιτιολόγηση: Σελίδα 99 σχολικού βιβλίου (η f(x)= x είναι συνεχής στο x=0
Διαβάστε περισσότερα23 2011 ΘΕΜΑ Α A1. Έστω μια συνάρτηση f ορισμένη σε ένα διάστημα Δ και x 0 ένα εσωτερικό σημείο του Δ. Αν η f παρουσιάζει τοπικό ακρότατο στο x 0 και είναι παραγωγίσιμη στο σημείο αυτό, να αποδείξετε ότι:
Διαβάστε περισσότεραΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ ΝΕΟ & ΠΑΛΑΙΟ ΣΥΣΤΗΜΑ Γ ΗΜΕΡΗΣΙΩΝ
ΑΡΧΗ ΗΣ ΣΕΛΙΔΑΣ ΝΕΟ & ΠΑΛΑΙΟ ΣΥΣΤΗΜΑ Γ ΗΜΕΡΗΣΙΩΝ ΘΕΜΑ Α ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΤΕΤΑΡΤΗ 8 ΜΑΪΟΥ 06 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ (ΝΕΟ
Διαβάστε περισσότεραΗ ΑΠΟΛΥΤΗ ΕΠΑΝΑΛΗΨΗ ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ. Έκδοση 01 Φεβρουάριος Ντάνος Γιώργος
Έκδοση 01 Φεβρουάριος 2018 Η ΑΠΟΛΥΤΗ ΕΠΑΝΑΛΗΨΗ ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ Ντάνος Γιώργος ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ Η ΑΠΟΛΥΤΗ ΕΠΑΝΑΛΗΨΗ Copyright ΦΕΒΡΟΥΑΡΙΟΣ 2017 1 Περιεχόμενα Μέρος Α Α1. Συναρτήσεις.σελίδα
Διαβάστε περισσότεραqwφιertyuiopasdfghjklzxερυυξnmηq σwωψerβνtyuςiopasdρfghjklzxcvbn mqwertyuiopasdfghjklzxcvbnφγιmλι ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ
qwφιertyuiopasdfghjklzερυυξnmηq σwωψerβνtyuςiopasdρfghjklzcvbn mqwertyuiopasdfghjklzcvbnφγιmλι ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ qπςπζαwωeτrtνyuτioρνμpκaλsdfghςj klzcvλοπbnαmqwertyuiopasdfghjklz
Διαβάστε περισσότεραευτέρα, 18 Μα ου 2009 Γ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΜΑΘΗΜΑΤΙΚΑ
ΕΘΝΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 009 ευτέρα, 8 Μα ου 009 Γ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΜΑΘΗΜΑΤΙΚΑ ΘΕΜΑ o Α. Να αποδείξετε ότι για οποιαδήποτε ασυμβίβαστα μεταξύ τους ενδεχόμενα Α και Β ισχύει ότι Ρ(Α Β)=Ρ(Α)+Ρ(Β) Μονάδες
Διαβάστε περισσότεραΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΛΥΚΕΙΟΥ (1η σειρά)
3 1 0 011 ΘΕΡΙΝΑ ΤΜΗΜΑΤΑ ΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΛΥΚΕΙΟΥ (1η σειρά) ΘΕΜΑ 1 Α. Έστω η συνάρτηση F()=f()+g(). Aν οι συναρτήσεις f, g είναι παραγωγίσιμες, να αποδείξετε ότι F
Διαβάστε περισσότερα2o Επαναληπτικό Διαγώνισμα 2016
wwwaskisopolisgr o Επαναληπτικό Διαγώνισμα 6 Διάρκεια: ώρες ΘΕΜΑ A A Να αποδείξετε ότι αν δύο συναρτήσεις f,g είναι παραγωγίσιμες στο του πεδίου ορισμού τους, τότε και η συνάρτηση f g είναι παραγωγίσιμη
Διαβάστε περισσότεραqwertyuiopasdfghjklzxcvbnmq ertyuiopasdfghjklzxcvbnmqwer tyuiopasdfghjklzxcvbnmqwerty uiopasdfghjklzxcvbnmqwertyui opasdfghjklzxcvbnmqwertyuiop
qwertyuiopasdfghjklzxcvbnmq wertyuiopasdfghjklzxcvbnmqw ertyuiopasdfghjklzxcvbnmqwer tyuiopasdfghjklzxcvbnmqwerty ΘΕΩΡΙΑ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ uiopasdfghjklzxcvbnmqwertyui ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ
Διαβάστε περισσότεραΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 10: ΕΥΡΕΣΗ ΤΟΠΙΚΩΝ ΑΚΡΟΤΑΤΩΝ
ΚΕΦΑΛΑΙΟ 3ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 1: ΕΥΡΕΣΗ ΤΟΠΙΚΩΝ ΑΚΡΟΤΑΤΩΝ [Ενότητα Προσδιορισμός των Τοπικών Ακροτάτων - Θεώρημα Εύρεση Τοπικών Ακροτάτων του κεφ27 Μέρος Β του σχολικού βιβλίου] ΣΗΜΕΙΩΣΕΙΣ Εύρεση
Διαβάστε περισσότεραΟι ασκήσεις βασίζονται στο αξιόλογο φυλλάδιο του Μαθηματικού Μιλτ. Παπαγρηγοράκη, από τις σημειώσεις του για το 4ο Γενικό Λύκειο Χανίων [ <
Οι ασκήσεις βασίζονται στο αξιόλογο φυλλάδιο του Μαθηματικού Μιλτ. Παπαγρηγοράκη, από τις σημειώσεις του για το 4ο Γενικό Λύκειο Χανίων [008-09 < Mathematica.gr], τον οποίο κι ευχαριστώ ιδιαίτερα για το
Διαβάστε περισσότεραΓΕΛ. ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ
ΓΕΛ. ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ 213-14 Ονοματεπώνυμο Τμήμα Θεώρημα Rolle Michel Rolle (1652 1719) Γάλλος μαθηματικός γεννήθηκε στο Ambert- Basse και πέθανε στο Παρίσι. Αυτοδίδακτος μαθηματικός σε αυτόν οφείλεται ο
Διαβάστε περισσότεραqwφιertyuiopasdfghjklzxερυυξnmηq σwωψerβνtyuςiopasdρfghjklzxcvbn mqwertyuiopasdfghjklzxcvbnφγιmλι qπςπζαwωeτrtνyuτioρνμpκaλsdfghςj
qwφιertyuiopasdfghjklzερυυξnmηq σwωψerβνtyuςiopasdρfghjklzcvbn mqwertyuiopasdfghjklzcvbnφγιmλι ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ qπςπζαwωeτrtνyuτioρνμpκaλsdfghςj ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ klzcvλοπbnαmqwertyuiopasdfghjklz
Διαβάστε περισσότεραΚΕΦΑΛΑΙΟ 3ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 5: ΘΕΩΡΗΜΑ ROLLE [Θεώρημα Rolle του κεφ.2.5 Μέρος Β του σχολικού βιβλίου]. ΣΗΜΕΙΩΣΕΙΣ
ΚΕΦΑΛΑΙΟ 3ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 5: ΘΕΩΡΗΜΑ ROLLE [Θεώρημα Rolle του κεφ..5 Μέρος Β του σχολικού βιβλίου]. ΣΗΜΕΙΩΣΕΙΣ MICHEL ROLLE Μία μορφή του θεωρήματος Rolle δόθηκε από τον Ινδό αστρονόμο Bhaskara
Διαβάστε περισσότεραΜαθηματικά Κατεύθυνσης Γ Λυκείου ( ) ( ) ( ) α β, παραγωγίσιμη στο ( ) β με. β α β α. f β f α. g ( ξ ) = 0, δηλαδή
Κεφάλαιο: ιαφορικός Λογισμός Το θεώρημα μέσης τιμής αποτελεί γενίκευση του θεωρήματος Rolle Λόγω όμως των πολλών και σημαντικών εφαρμογών του θεωρείται ένα από τα πλέον θεμελιώδη θεωρήματα της ανάλυσης
Διαβάστε περισσότεραΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Α ΜΕΡΟΣ
ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 7-8 Α ΜΕΡΟΣ Δίνεται η παραγωγίσιμη στο συνάρτηση f για την οποία ισχύει : f ()+f()=, για κάθε και f()=e+ α) Να δείξετε ότι f()=+e -, β) Να βρείτε το όριο lim ( lim f(y)) y γ) Να δείξετε
Διαβάστε περισσότερα2018 Φάση 1 ιαγωνίσµατα Προετοιµασίας ΜΑΘΗΜΑΤΙΚΑ. Γ' Γενικού Λυκείου. Θετικών Σπουδών / Σπουδών Οικονοµίας & Πληροφορικής
ΘΕΜΑ Α 2018 Φάση 1 ιαγωνίσµατα Προετοιµασίας ΜΑΘΗΜΑΤΙΚΑ Γ' Γενικού Λυκείου Θετικών Σπουδών / Σπουδών Οικονοµίας & Πληροφορικής Σάββατο 13 Ιανουαρίου 2018 ιάρκεια Εξέτασης: 3 ώρες ΘΕΜΑΤΑ ν Α1. Να αποδειχθεί
Διαβάστε περισσότεραΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ. 1 x. ln = Μονάδες 10 Α.2 Πότε μια συνάρτηση f λέμε ότι είναι συνεχής σε ένα κλειστό διάστημα [α,β]; Μονάδες 5
ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΣΑΒΒΑΤΟ 4 ΜΑΪΟΥ 008 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΠΕΝΤΕ (5) ΘΕΜΑ 1 o A.1 Να
Διαβάστε περισσότεραΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Β ΜΕΡΟΣ
ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 7-8 Β ΜΕΡΟΣ. Δίνεται η τέσσερις φορές παραγωγίσιμη στο συνάρτηση f τέτοια ώστε : f (4) () + f () () = ημ + συν, για κάθε και f() =, f () =, f () = - και f () () =. α) Να βρείτε τον
Διαβάστε περισσότεραΓ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ. Ημερομηνία: Τρίτη 10 Απριλίου 2018 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ
ΑΠΟ /4/8 ΕΩΣ 4/4/8 ΤΑΞΗ: ΜΑΘΗΜΑ Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Ημερομηνία: Τρίτη Απριλίου 8 Διάρκεια Εξέτασης: ώρες ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α Α Έστω μία συνάρτηση ορισμένη σε ένα διάστημα Δ Αν o
Διαβάστε περισσότερατότε για κάθε αριθμό ξ μεταξύ των f(α) και f(β) υπάρχει τουλάχιστον ένας x0 (α, β) τέτοιος ώστε να ισχύει f(x0)=ξ. Μονάδες 15
ΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΟΡΙΑ ΚΑΙ ΣΤΗ ΣΥΝΕΧΕΙΑ ΘΕΜΑ o Α Να αποδείξετε ότι, αν μία συνάρτηση f είναι συνεχής στο κλειστό διάστημα [α, β] και f(α)f(β), τότε για κάθε αριθμό ξ μεταξύ των f(α) και f(β) υπάρχει τουλάχιστον
Διαβάστε περισσότεραΣυνέχεια Συνάρτησης. Λυγάτσικας Ζήνων. Βαρβάκειο Ενιαίο Πειραµατικό Λύκειο. 1 εκεµβρίου f(x) = f(x 0 )
Συνέχεια Συνάρτησης Λυγάτσικας Ζήνων Βαρβάκειο Ενιαίο Πειραµατικό Λύκειο 1 εκεµβρίου 013 1 Ορισµός Ορισµός 1.1 Μια πραγµατική συνάρτηση f : A R λέµε ότι είναι συνεχής στο x 0 A αν και µόνο αν : x x 0 fx
Διαβάστε περισσότεραΔιαγώνισμα Προσομοίωσης Εξετάσεων 2017
Ένα διαγώνισμα προετοιμασίας για τους μαθητές της Γ Λυκείου στα Μαθηματικά Προσανατολισμού Διαγώνισμα Προσομοίωσης Εξετάσεων 7 Μαθηματικά Προσανατολισμού Γ Λυκείου Κων/νος Παπασταματίου Μαθηματικός Φροντιστήριο
Διαβάστε περισσότεραΘΕΩΡΗΜΑ ROLLE. τέτοιο ώστε. στο οποίο η εφαπτομένη είναι παράλληλη στον άξονα χχ. της γραφικής παράστασης της f x με. Κατηγορίες Ασκήσεων
Διατύπωση: Εάν για μια συνάρτηση ΘΕΩΡΗΜΑ ROLLE x ισχύουν Η x συνεχής στο [α,β] Η x παραγωγίσιμη στο (α, β) a τότε υπάρχει ένα τουλάχιστον, τέτοιο ώστε ' 0 Γεωμετρική Ερμηνεία : Γεωμετρικά το θεώρημα ROLLE
Διαβάστε περισσότεραΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ Γ ΛΥΚΕΙΟΥ 2010 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 2010
ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ Γ ΛΥΚΕΙΟΥ ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑ 3ο : Δίνεται η συνάρτηση f :(,) R με f() η οποία για κάθε (,
Διαβάστε περισσότεραΠ Α Ν Ε Λ Λ Η Ν Ι Ε Σ 2 0 1 4 Μ Α Θ Η Μ Α Τ Ι Κ Α I E Π Α Λ
Π Α Ν Ε Λ Λ Η Ν Ι Ε Σ 0 1 4 Μ Α Θ Η Μ Α Τ Ι Κ Α I E Π Α Λ Ε π ι μ ε λ ε ι α : Τ α κ η ς Τ σ α κ α λ α κ ο ς 1o ΘΕΜΑ 1 A1. Δινεται μια συναρτηση f : [α, ]. Να δωσετε τον ορισμο της συνεχειας της f στο διαστημα
Διαβάστε περισσότερα3. lim [f(x) g(x)] = lim f(x) lim g(x) x xo x xo x xo x xo x xo v f(x) lim f(x) x xo lim = x xo g(x) lim g(x) x xo v lim [f(x)] = lim f(x) 6. li
Μετά το τέλος της µελέτης του 1ου κεφαλαίου, ο µαθητής θα πρέπει να γνωρίζει: Τον ορισµό της συνάρτησης και τον τρόπο εύρεσης του πεδίου ορισµού της. Τις πράξεις µεταξύ συναρτήσεων, τις γραφικές παραστάσεις
Διαβάστε περισσότεραΘΕΩΡΗΜΑ ROLLE ΘΕΩΡΗΜΑ ROLLE
ΘΕΩΡΗΜΑ ROLLE ΘΕΩΡΗΜΑ ROLLE Αν μια συνάρτηση f είναι : συνεχής στο κλειστό [α,β] παραγωγίσιμη στο ανοιχτό (α,β) f(α)=f(β) f 0 τότε υπάρχει ένα τουλάχιστον, τέτοιο ώστε ΓΕΩΜΕΤΡΙΚΑ : σημαίνει ότι υπάρχει
Διαβάστε περισσότεραΥΠΑΡΞΗ ΣΕ ΙΣΟΤΗΤΑ Ή ΑΝΙΣΟΤΗΤΑ
ΥΠΑΡΞΗ ΣΕ ΙΣΟΤΗΤΑ Ή ΑΝΙΣΟΤΗΤΑ ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ: Πρακτικές και καινοτομίες στην εκπαίδευση και στην έρευνα. Χρόνης Χ. Παναγιώτης pachronis@gmail.com Περίληψη Στόχος της εργασίας αυτής είναι να καταδείξει
Διαβάστε περισσότεραΘΕΜΑ Α. lim f(x) 0 και lim g(x), τότε lim [f(x) g(x)] 0. lim.
ΘΕΜΑ Α ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΑΡΑΣΚΕΥΗ 9 ΙΟΥΝΙΟΥ 017 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΤΡΕΙΣ (3) A1. Έστω μια
Διαβάστε περισσότεραln 1. ( ) vii. Να βρείτε το εμβαδόν του χωρίου που περικλείεται από τη C f, τον άξονα η οποία είναι συνεχής στο και για την οποία ισχύει
Μαθηματικά Γ Λυκείου Θέμα 4o Α Δίνεται η συνάρτηση h ( ), η οποία είναι συνεχής και γνησίως αύξουσα στο διάστημα [, ] β αβ Να δείξετε ότι h d hαβα Β Δίνεται η συνάρτηση f α ( ) ln i Να βρείτε το πεδίο
Διαβάστε περισσότεραqwφιertyuiopasdfghjklzxερυυξnmηq σwωψerβνtyuςiopasdρfghjklzxcvbn mqwertyuiopasdfghjklzxcvbnφγιmλι qπςπζαwωeτrtνyuτioρνμpκaλsdfghςj
qwφιrtyuiopasdfghjklzερυυξnmηq σwωψrβνtyuςiopasdρfghjklzcvbn mqwrtyuiopasdfghjklzcvbnφγιmλι ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ qπςπζαwωτrtνyuτioρνμpκaλsdfghςj ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ klzcvλοπbnαmqwrtyuiopasdfghjklz
Διαβάστε περισσότεραΘέματα Πανελλαδικών στις Παραγώγους. Εφαπτομένη
Θέματα Πανελλαδικών 000-04 στις Παραγώγους Εφαπτομένη Έστω η συνάρτηση f :, με f 000 ln Έστω c > 000 και έστω ότι η ευθεία y = c και η C f τέμνονται σε δύο διαφορετικά σημεία Α,Β του επιπέδου Να αποδείξετε
Διαβάστε περισσότεραΔΕΙΓΜΑΤΑ ΔΙΑΓΩΝΙΣΜΑΤΩΝ ΠΡΟΣΟΜΟΙΩΣΗΣ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ. 1 ο δείγμα
ΔΕΙΓΜΑΤΑ ΔΙΑΓΩΝΙΣΜΑΤΩΝ ΠΡΟΣΟΜΟΙΩΣΗΣ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ο δείγμα ΘΕΜΑ ο Α. Έστω μία συνάρτηση f συνεχής σε ένα διάστημα α,β. Αν G είναι μία παράγουσα της f στο α,β τότε να αποδείξετε ότι
Διαβάστε περισσότεραΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ. Β κύκλος
ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Β κύκλος 6-7 ) Δίνεται η παραγωγίσιμη στο συνάρτηση f για την οποία ισχύει : α) Να δείξετε ότι f()=+e -, f ()+f()=, για κάθε και f()=e+ β) Να βρείτε το όριο ( y f(y)) γ) Να δείξετε
Διαβάστε περισσότεραΣημειώσεις Μαθηματικών 2
Σημειώσεις Μαθηματικών 2 Συναρτήσεις - 3 Ραφαήλ Φάνης Μαθηματικός 1 Κεφάλαιο 3 Συνέχεια Συναρτήσεων 3.1 Όρισμός Συνεχούς Συνάρτησης Ορισμός Μια συνάρτηση f ονομάζεται συνεχής στο x 0 Df αν υπάρχει το πραγματικός
Διαβάστε περισσότερα52 Χρόνια ΦΡΟΝΤΙΣΤΗΡΙΑ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΣΑΒΒΑΪΔΗ-ΜΑΝΩΛΑΡΑΚΗ ΠΑΓΚΡΑΤΙ : Εκφαντίδου 26 και Φιλολάου : Τηλ.:
5 Χρόνια ΦΡΟΝΤΙΣΤΗΡΙΑ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΠΑΓΚΡΑΤΙ : Εκφαντίδου 6 και Φιλολάου : Τηλ.: 107601470-107600179 ΔΙΑΓΩΝΙΣΜΑ : ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 01 ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ: ΘΕΜΑ 1 ο Α. i) Θεωρία, σχολικό
Διαβάστε περισσότεραf κυρτή στο [1,5] f x x f η Επαναληπτική f [ 2,10], επιπλέον για την f ισχύουν lim 2 x f 8 1,0 και
13η Επαναληπτική Δίνεται η συνάρτηση, δύο φορές παραγωγίσιμη στο [1,] [,1], επιπλέον για την ισχύουν 8 lim στο [1,] Να αποδείξετε ότι ε1 ε Υπάρχουν, με, ώστε στο οποίο η η, έχει σημείο καμπής ε3 Υπάρχει
Διαβάστε περισσότεραΔιαφορικόσ Λογιςμόσ. Παράγωγοσ. Εξίςωςη εφαπτομένησ όταν γνωρίζουμε το ςημείο επαφήσ
Διαφορικόσ Λογιςμόσ Παράγωγοσ Εξίςωςη εφαπτομένησ όταν γνωρίζουμε το ςημείο επαφήσ 1 ε καθεμία από τισ επόμενεσ περιπτώςεισ να βρείτε την εξίςωςη τησ εφαπτομένησ τησ γραφικήσ παράςταςησ τησ ςτο ςημείο
Διαβάστε περισσότεραΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ 4. [ ] z, w. 3 f x, x 1,3 όπου 3 μιγαδικοί των οποίων οι εικόνες
ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ 4 1. i) Να δείξετε ότι υπάρχει μοναδικό 3 3 0 1, ώστε: 3 e, 1 ln 0 + 0 = 0 ii) Δίνεται ο μιγαδικός 3 z = ln + i, > 0 a) Να βρείτε την ελάχιστη απόσταση k της εικόνας του z από την αρχή
Διαβάστε περισσότεραΜέθοδος Α. Β 3. Η γραφική παράσταση της f τέμνει τον άξονα των xx σε ένα σημείο με τετμημένη ξ [α,β],
Θωμάς Ραϊκόφτσαλης ΣΥΝΕΧΕΙΑ ΣΕ ΚΛΕΙΣΤΟ ΔΙΑΣΤΗΜΑ Μέθοδος Α Αν μας ζητείτε να αποδείξουμε ότι ισχύει ένα από τα εξής: Α. Η εξίσωση f() έχει μια τουλάχιστον ρίζα ξ (α,β), Α. Υπάρχει ξ (α,β) έτσι ώστε f(ξ),
Διαβάστε περισσότεραΚεφάλαιο 2 ο ανάλυσης ερωτήσεις στις παραγώγους. τότε η f(x) είναι παραγωγίσιμη
Κεφάλαιο 2 ο ανάλυσης ερωτήσεις στις παραγώγους. 1. Αν υπάρχει το lim x x0 f(x) f(x 0 ) x x 0 τότε η f(x) είναι παραγωγίσιμη στο x 0 του Π.Ο της; : όχι. Πρέπει επιπλέον το όριο να είναι πραγματικός αριθμός.
Διαβάστε περισσότεραΠερίληψη μαθημάτων Ι. ΣΥΝΑΡΤΗΣΕΙΣ. Με N θα συμβολίζουμε το σύνολο των φυσικών αριθμών, δηλ. N = {1, 2, 3, 4, }.
Περίληψη μαθημάτων Ι. ΣΥΝΑΡΤΗΣΕΙΣ Με N θα συμβολίζουμε το σύνολο των φυσικών αριθμών, δηλ. N = {1, 2, 3, 4, }. Με Z θα συμβολίζουμε το σύνολο των ακεραίων αριθμών, δηλ. Z = N {0, 1, 2, 3, 4, }. Με Q θα
Διαβάστε περισσότεραΘΕΜΑ Α ΘΕΜΑ Β. Β1. Η είναι συνεχής και παραγωγίσιμη στο R ως ρητή με πρώτη παράγωγο. x Μονοτονία της f oλικό ελάχιστο στο 0 το f(0)=0
ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ 2016 ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ ΕΠΙΜΕΛΕΙΑ : Χ.ΚΟΜΝΗΝΑΚΙΔΗΣ ΜΑΘΗΜΑΤΙΚΟΣ M.Sc. ΘΕΜΑ Α Α1. Θεωρία σχολικού βιβλίου, σελίδα 262. Α2. Θεωρία σχολικού βιβλίου, σελίδα 141
Διαβάστε περισσότεραΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΣΤΗ ΣΥΝΕΧΕΙΑ ΚΑΙ ΤΑ ΘΕΩΡΗΜΑΤΑ ΑΥΤΗΣ. x 0 για κάθε xεr και για την συνάρτηση g ισχύει i. Να βρείτε
ΕΠΑΝΑΛΗΠΤΙΚΑ ΤΑ ΣΤΗ ΣΥΝΕΧΕΙΑ ΚΑΙ ΤΑ ΘΕΩΡΗΜΑΤΑ ΑΥΤΗΣ Δίνεται η συνεχής συνάρτηση f : IR IR τέτοια ώστε f ( ) 1 για κάθε IR (1) και η γραφική της παράσταση διέρχεται από το σημείο i Να βρείτε τα κ και λ
Διαβάστε περισσότεραΘ.Rolle Θ.Μ.T. Συνέπειες Θ.Μ.Τ
Θέματα Πανελλαδικών 000-05 στις Παραγώγους Εφαπτομένη Έστω η συνάρτηση f :, με f 000 ln Έστω η συνάρτηση Έστω c > 000 και έστω ότι η ευθεία y = c και η C f τέμνονται σε δύο διαφορετικά σημεία Α,Β του επιπέδου
Διαβάστε περισσότερα1 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ 2008
ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ 008 α). Να αποδείξετε ότι το υπόλοιπο της διαίρεσης ενός πολυωνύμου Ρ(x) με το πρωτοβάθμιο πολυώνυμο x ρ ισούται με την αριθμητική τιμή του Ρ(x) για x =
Διαβάστε περισσότεραΘΕΩΡΗΜΑ ΜΕΣΗΣ ΤΙΜΗΣ ΔΙΑΦΟΡΙΚΟΥ ΛΟΓΙΣΜΟΥ
Διατύπωση: Αν μια συνάρτηση είναι: συνεχής στο κλειστό διάστημα [ α β] και παραγωγίσιμη στο ανοικτό διάστημα ( α β) τότε υπάρχει ένα τουλάχιστον ξ ( α β) τέτοιο ώστε: ( ( β) ( α) β α Γεωμετρικά αυτό σημαίνει
Διαβάστε περισσότεραΘΕΜΑ 101 ο. α. Να δείξετε ότι ο γεωμετρικός τόπος του z είναι η ευθεία (ε): x 2y 3 = 0.
ΘΕΜΑ 0 ο t - Αν για κάθε ισχύει z - i e dt z - + 3i - α. Να δείξετε ότι ο γεωμετρικός τόπος του z είναι η ευθεία (ε): y 3 = 0. β. Δίνεται ο μιγαδικός w, με w = z + 004. Να δείξετε ότι ο γεωμετρικός τόπος
Διαβάστε περισσότεραΤΟ ΘΕΜΑ Α ΤΩΝ ΕΞΕΤΑΣΕΩΝ
ΤΟ ΘΕΜΑ Α ΤΩΝ ΕΞΕΤΑΣΕΩΝ ΘΕΜΑ 1 Ο Α1. Έστω η συνάρτηση f ( x,,1. Nα αποδείξετε ότι η f είναι παραγωγίσιμη στο. v v 1 και ισχύει : x vx A2. Να διατυπώσετε και να ερμηνεύσετε γεωμετρικά το Θεώρημα Bolzano.
Διαβάστε περισσότεραΔΑΜΙΑΝΟΣ ΓΙΑΝΝΗΣ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ ΠΡΟΤΕΙΝΟΜΕΝΑ ΘΕΜΑΤΑ ΦΥΛΛΟ ΕΠΑΝΑΛΗΨΗΣ 1
ΘΕΜΑ Α ΦΥΛΛΟ 1 Α1. Να αποδείξετε ότι το υπόλοιπο υ της διαίρεσης ενός πολυωνύμου P(x) με το x - ρ είναι ίσο με την τιμή του πολυωνύμου για x = ρ. Είναι δηλαδή υ = P(ρ). Α. Να χαρακτηρίσετε τις προτάσεις
Διαβάστε περισσότεραΦΕΒΡΟΥΑΡΙΟΣ Ο συντελεστής διεύθυνσης της εφαπτοµένης της γραφικής παράστασης τη f(x) στο σηµείο x ο είναι f x ) (Μονάδες 4)
Αµυραδάκη, Νίκαια (-493576) ΘΕΜΑ ΦΕΒΡΟΥΑΡΙΟΣ 3 Α. Πότε µια συνάρτηση f λέγεται παραγωγίσιµη στο ο ; Β. Τι σηµαίνει γεωµετρικά το θεώρηµα Rolle ; Γ. Να αποδείξετε ότι ( ) a = a ln a (Μονάδες 5) (Μονάδες
Διαβάστε περισσότεραΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟΥ-ΛΑΘΟΥΣ
ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟΥ-ΛΑΘΟΥΣ 1. Αν f συνεχής στο [α, β] είναι f ( ) d 0 f ( ) 0 2. Αν f συνεχής και γν. αύξουσα στο [α, β] ισχύει ότι: f ( ) d 0. 3. Αν f ( ) d g( ) d, ό f ( ) g( ) ά [, ]. 4. Το σύνολο τιμών
Διαβάστε περισσότεραln x e οπότε lim x x lim lim = + lim = 0 1 x = 0. x 1 ) = = 1 (ln x) (x)
983 ΘΕΜΑΤΑ. Να βρεθεί το όριο της συνάρτησης f στο µε f() + ( + ). Πρέπει >, άρα το πεδίο ορισµού της f είναι το (, ) εποµένως έχει νόηµα η αναζήτηση του ορίου της στο. Για >, έχουµε + + ln e οπότε + +
Διαβάστε περισσότεραf( ) + f( ) + f( ) + f( ). 4 γ) υπάρχει x 2 (0, 1), ώστε η εφαπτοµένη της γραφικής παράστασης της
ΘΕΜΑΤΑ. Η συνάρτηση f είναι παραγωγίσιµη στο κλειστό διάστηµα [, ] και ισχύει f () > για κάθε (, ). Αν f() και f(), να δείξετε ότι: α. η ευθεία y τέµνει τη γραφική παράσταση της f σ' ένα ακριβώς σηµείο
Διαβάστε περισσότεραy = 2 x και y = 2 y 3 } ή
ΘΕΜΑ Έστω οι μιγαδικοί αριθμοί z, w για τους οποίους ισχύουν οι σχέσεις z = και w i =. i). Να βρείτε το γεωμετρικό τόπο των εικόνων των z και w. ii). Να αποδείξετε ότι δεν υπάρχουν μιγαδικοί αριθμοί z,
Διαβάστε περισσότερα[ α π ο δ ε ί ξ ε ι ς ]
Γ' Λυκείου Κατεύθυνση [ α π ο δ ε ί ξ ε ι ς ] ε ξ ε τ α σ τ έ α ς ύ λ η ς 7-8 Επιμέλεια Κόλλας Αντώνης Όριο πολυωνυμικής στο Αν P( = αν ν + αν ν +... + α + α είναι πολυώνυμο του και, τότε: P( P( P( =...
Διαβάστε περισσότεραqwφιertyuiopasdfghjklzxερυυξnmηq σwωψerβνtyuςiopasdρfghjklzxcvbn mqwertyuiopasdfghjklzxcvbnφγιmλι qπςπζαwωeτrtνyuτioρνμpκaλsdfghςj
qwφιrtyuiopasdfghjklzερυυξnmηq σwωψrβνtyuςiopasdρfghjklzcvbn ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ mqwrtyuiopasdfghjklzcvbnφγιmλι qπςπζαwωτrtνyuτioρνμpκaλsdfghςj Τάξη : Γ Λυκείου klzcvλοπbnαmqwrtyuiopasdfghjklz
Διαβάστε περισσότεραΜαθηματικά Προσανατολισμού Γ' Λυκείου
ΔΙΑΓΩΝΙΣΜΑ ΕΚΠ ΕΤΟΥΣ 6-7 ΜΑΘΗΜΑ / ΤΑΞΗ : ΣΕΙΡΑ: ΗΜΕΡΟΜΗΝΙΑ: ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: Μαθηματικά Προσανατολισμού Γ' Λυκείου Θέμα Α Α Να αποδείξετε ότι αν μια συνάρτηση f είναι παραγωγίσιμη στο, τότε είναι
Διαβάστε περισσότεραΚαθηγητήσ Μαθηματικών: Κωτςάκησ Γεώργιοσ e-mail: kotsakis @ windowslive. com.
Καθηγητήσ Μαθηματικών: Κωτςάκησ Γεώργιοσ e-mail: kotsakis @ windowslive. com. A. Οι κανόνες De L Hospital και η αρχική συνάρτηση κάνουν πιο εύκολη τη λύση των προβλημάτων με το Θ. Rolle. B. Η αλγεβρική
Διαβάστε περισσότεραΛύσεις του διαγωνίσματος στις παραγώγους
Λύσεις του διαγωνίσματος στις παραγώγους Θέμα ο Α Έστω ότι f ), για κάθε α, ), β) Επειδή η f είναι συνεχής στο θα είναι γνησίως αύξουσα σε κάθε ένα από τα διαστήματα α, ] και [, β) Επομένως, για ισχύει
Διαβάστε περισσότεραÖÑÏÍÔÉÓÔÇÑÉÏ ÊÏÑÕÖÇ ÓÅÑÑÅÓ ΜΑΘΗΜΑΤΙΚΑ ΘΕΜΑ Α ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑ.Λ. Β 19 ΜΑΪΟΥ 2010 ΕΚΦΩΝΗΣΕΙΣ
ΘΕΜΑ Α ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑ.Λ. Β 9 ΜΑΪΟΥ 00 ΕΚΦΩΝΗΣΕΙΣ A. Έστω f µια συνάρτηση ορισµένη σε ένα διάστηµα. Αν F είναι µια παράγουσα της f στο, τότε να αποδείξετε ότι: όλες οι συναρτήσεις
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ 2017 ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ. ΕΠΙΜΕΛΕΙΑ: X. KOMNHNAKΙΔΗΣ ΜΑΘΗΜΑΤΙΚΟΣ M.Sc. ΘΕΜΑ Α
ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ 2017 ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ ΕΠΙΜΕΛΕΙΑ: X. KOMNHNAKΙΔΗΣ ΜΑΘΗΜΑΤΙΚΟΣ M.Sc. ΘΕΜΑ Α Α1. Α2. α) Ψευδής β) Θεωρούμε την συνάρτηση f(x) = x, x. Η συνάρτηση γράφεται ως
Διαβάστε περισσότεραΜΙΓΑ ΙΚΟΙ. 3. Για κάθε z 1, z 2 C ισχύει z1 + z2 = z1 + z2. 4. Για κάθε z C ισχύει z z 2 z. 5. Για κάθε µιγαδικό z ισχύει: 6.
ΜΙΓΑ ΙΚΟΙ 1 Για κάθε z 1, z 2 C ισχύει z1 z2 z1 z2 1 2 Για κάθε z 1, z 2 C ισχύει z1 z2 z1 z2 3 Για κάθε z 1, z 2 C ισχύει z1 + z2 = z1 + z2 4 Για κάθε z C ισχύει z z 2 z 5 Για κάθε µιγαδικό z ισχύει:
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ. Παύλος Βασιλείου
ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ Παύλος Βασιλείου Σε όλους αυτούς που παλεύουν για έναν καλύτερο κόσμο ΣΥΝΑΡΤΗΣΕΙΣ-ΟΡΙΟ-ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΣΥΝΑΡΤΗΣΕΙΣ -ΟΡΙΟ
Διαβάστε περισσότερα1 ο Τεστ προετοιμασίας Θέμα 1 ο
ο Τεστ προετοιμασίας Θέμα ο Σε κάθε μια από τις ακόλουθες προτάσεις αφού πρώτα σημειώσετε το Σ (σωστή) ή το Λ (λανθασμένη), στη συνέχεια να δώσετε μια σύντομη τεκμηρίωση της όποιας απάντησή σας Αν για
Διαβάστε περισσότεραΜαθηματικά Θετικής και Τεχνολογικής Κατεύθυνσης Γ Λυκείου ΚΥΡΤΟΤΗΤΑ - ΣΗΜΕΙΑ ΚΑΜΠΗΣ ΣΥΝΑΡΤΗΣΗΣ
ΚΥΡΤΟΤΗΤΑ - ΣΗΜΕΙΑ ΚΑΜΠΗΣ ΣΥΝΑΡΤΗΣΗΣ Ορισμός Θεωρούμε μια συνάρτηση f συνεχή σ' ένα διάστημα Δ και παραγωγίσιμη στο εσωτερικό του Δ. α) Θα λέμε ότι η f είναι κυρτή ή στρέφει τα κοίλα άνω στο Δ, αν η f
Διαβάστε περισσότερα2ο Επαναληπτικό διαγώνισμα στα Μαθηματικά κατεύθυνσης της Γ Λυκείου Θέμα A
wwwaskisopolisgr ο Επαναληπτικό διαγώνισμα στα Μαθηματικά κατεύθυνσης της Γ Λυκείου 7-8 Θέμα A Α Έστω μια συνάρτηση f, η οποία είναι ορισμένη σε ένα κλειστό διάστημα, Αν: η f είναι συνεχής στο, f f να
Διαβάστε περισσότεραΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 10: ΕΥΡΕΣΗ ΤΟΠΙΚΩΝ ΑΚΡΟΤΑΤΩΝ
ΚΕΦΑΛΑΙΟ ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ : ΕΥΡΕΣΗ ΤΟΠΙΚΩΝ ΑΚΡΟΤΑΤΩΝ [Ενότητα Προσδιορισμός των Τοπικών Ακροτάτων - Θεώρημα Εύρεση Τοπικών Ακροτάτων του κεφ..7 Μέρος Β του σχολικού βιβλίου]. ΑΣΚΗΣΕΙΣ Άσκηση.
Διαβάστε περισσότεραα,β,γ και α 0 στο σύνολο των μιγαδικών
ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ ΓΕΝΙΚΟ ΔΙΑΓΩΝΙΣΜΑ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ (1 )ΓΙΑ ΤΟ ΕΤΟΣ 215 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΠΕΝΤΕ (5) ΘΕΜΑ Α 2 αz + βz +
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ Ο.Π. ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ
Κανάρη 6, Δάφνη Τηλ 9794 & 976976 ΜΑΘΗΜΑΤΙΚΑ ΟΠ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α Α Σχολικό βιβλίο σελ 4 Α Σχολικό βιβλίο σελ 6 Α α) Σ β) Σ γ) Σ δ) Λ ε) Λ ΘΕΜΑ B Β
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗ. Εµβαδά., x 1 x f
ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗ Εµβαδά Θέµα 1 ίνεται η συνάρτηση x e e, x< 1 (x) = l nx, x 1 x Να δείξετε ότι η είναι συνεχής και να υπολογίσετε το εµβαδόν του χωρίου που περικλείεται από την C, τον άξονα
Διαβάστε περισσότεραΟι ασκήσεις βασίζονται στο αξιόλογο φυλλάδιο του Μαθηματικού Μιλτ. Παπαγρηγοράκη, από τις σημειώσεις του για το 4ο Γενικό Λύκειο Χανίων [ <
Οι ασκήσεις βασίζονται στο αξιόλογο φυλλάδιο του Μαθηματικού Μιλτ. Παπαγρηγοράκη, από τις σημειώσεις του για το ο Γενικό Λύκειο Χανίων [00-0 < Mathematica.gr], τον οποίο κι ευχαριστώ ιδιαίτερα για το ήθος
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ
ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Δευτέρα Ιουνίου 9 Λύσεις των θεμάτων Έκδοση η (/6/9, 9:3) Οι απαντήσεις και οι λύσεις είναι αποτέλεσμα συλλογικής δουλειάς
Διαβάστε περισσότερα2η ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ
ΑΠΟ 3//7 ΕΩΣ 5//8 η ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ ΤΑΞΗ: ΜΑΘΗΜΑ: Γ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Ημερομηνία: Παρασκευή 5 Ιανουαρίου 8 Διάρκεια Εξέτασης: 3 ώρες ΘΕΜΑΤΑ ΘΕΜΑ Α Α. Αν μία συνάρτηση f είναι
Διαβάστε περισσότεραΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ ΛΥΣΕΙΣ ΣΤΑ ΘΕΜΑΤΑ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ 10/06/2019
ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ ΛΥΣΕΙΣ ΣΤΑ ΘΕΜΑΤΑ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ 0/06/09 ΘΕΜΑ Α. Α. α) Σχολικό βιβλίο σελίδα 5. β) (i) Σχολικό βιβλίο σελίδα 35. (ii) Σχολικό βιβλίο σελίδα 35-36. Α. Σχολικό βιβλίο
Διαβάστε περισσότερα