ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2014

Σχετικά έγγραφα
ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Ηµεροµηνία: Κυριακή 27 Απριλίου 2014 ιάρκεια Εξέτασης: 3 ώρες ΑΠΑΝΤΗΣΕΙΣ

Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α

f x x, ν Ν-{0,1} είναι παραγωγίσιμη στο R

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2016 Β ΦΑΣΗ Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΣ: ΘΕΤΙΚΩΝ ΣΠΟΥ ΩΝ / ΣΠΟΥ ΩΝ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ

( ) ( ) lim f x lim g x. z-3i 2-18= z-3 2 w-i =Im(w)+1. x x x x

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ 2013 ΕΚΦΩΝΗΣΕΙΣ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ 2012 ΕΚΦΩΝΗΣΕΙΣ. β α

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2017 Β ΦΑΣΗ Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΣ: ΘΕΤΙΚΩΝ ΣΠΟΥ ΩΝ / ΣΠΟΥ ΩΝ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ 2011 ΕΚΦΩΝΗΣΕΙΣ

Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΜΑΘΗΜΑΤΙΚΑ ΕΚΦΩΝΗΣΕΙΣ ÏÅÖÅ

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 2008

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2017 Α ΦΑΣΗ

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2016 Β ΦΑΣΗ ΜΑΘΗΜΑΤΙΚΑ ΑΠΑΝΤΗΣΕΙΣ. lim = 0. Βλέπε σελίδα 171 σχολικού. σχολικού βιβλίου.

lim f(x) =, τότε f(x)<0 κοντά στο x Επιμέλεια : Ταμπούρης Αχιλλέας M.Sc. Mαθηματικός 1

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2016 Β ΦΑΣΗ

α) Για κάθε μιγαδικό αριθμό z 0 ορίζουμε z 0 =1

Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ. Ημερομηνία: Πέμπτη 20 Απριλίου 2017 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ

Πέµπτη, 29 Μαΐου 2003 ΘΕΤΙΚΗ και ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ Γ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2013 ÔÑÉÐÔÕ Ï

Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ. Ημερομηνία: Τρίτη 10 Απριλίου 2018 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ

ΜΑΘΗΜΑΤΙΚΑ Γ ΤΑΞΗΣ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ 2003

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2013 ÁÍÅËÉÎÇ

β) Μια συνάρτηση f είναι 1-1, αν και μόνο αν για κάθε στοιχείο y του συνόλου τιμών της η εξίσωση f(x)=y έχει ακριβώς μία λύση ως προς x

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝ/ΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ - Γ ΛΥΚΕΙΟΥ

ΕΚΦΩΝΗΣΕΙΣ. οι f, g είναι συνεχείς στο και f (x) = g (x) για κάθε εσωτερικό σηµείο του, ÏÅÖÅ

ÖÑÏÍÔÉÓÔÇÑÉÏ ÊÏÑÕÖÇ ÓÅÑÑÅÓ ΜΑΘΗΜΑΤΙΚΑ ΘΕΜΑ Α ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑ.Λ. Β 19 ΜΑΪΟΥ 2010 ΕΚΦΩΝΗΣΕΙΣ

[ ] [ ] ΘΕΜΑ 1o A. Για x x 0 έχουµε: παραγωγίσιµη στο χ 0 ) άρα η f είναι συνεχής στο χ 0.

ΙΑΓΩΝΙΣΜΑ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ. σε µια σελίδα Α4 ανά έτος.. προσαρµοσµένα στις επιταγές του ΝΤ MΑΘΗΜΑΤΙΚΑ ΟΜΟΓΕΝΩΝ 05 ΣΕΠΤΕΜΒΡΙΟΥ

Διαγώνισμα Προσομοίωσης Εξετάσεων 2017

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Ο.Ε.Φ.Ε ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ-ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ÏÅÖÅ. x και f ( x ) >, τότε f ( ) 0

ΜΑΘΗΜΑΤΙΚΑ Γ ΤΑΞΗΣ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ 2003

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 2008 ΕΚΦΩΝΗΣΕΙΣ

Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΜΑΘΗΜΑΤΙΚΑ ΕΚΦΩΝΗΣΕΙΣ

= R {x συν x = 0} ισχύει: 1 ( εφ x)' = συν

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Ο.Ε.Φ.Ε ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ-ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΑΠΑΝΤΗΣΕΙΣ. f x > κοντά στο x0.

ΜΑΘΗΜΑΤΙΚΑ II ΕΚΦΩΝΗΣΕΙΣ

5o Επαναληπτικό Διαγώνισμα 2016

AΠΑΝΤΗΣΕΙΣ. z z 0 που είναι τριώνυμο με διακρίνουσα. 2 Re z 4Im z R. x 2 y x y 2

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ/ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

ΕΞΕΤΑΣΕΙΣ ΠΡΟΣΟΜΟΙΩΣΗΣ 2002 ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 5 ΣΕΛΙ ΕΣ

α) Για κάθε μιγαδικό αριθμό z 0 ορίζουμε z 0 =1

Τελευταία Επανάληψη. την ευθεία x=1 και τoν x x. 2 1 x. Λύση. x 2 1 x 0, άρα. x 1 x. x x 1. γ) x 1 e x x 1 x e ln x 1 x f x.

ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ. Ημερομηνία: Πέμπτη 2 Μαΐου 2019 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ

α) Για κάθε μιγαδικό αριθμό z 0 ορίζουμε z 0 =1

4ο Επαναληπτικό διαγώνισμα στα Μαθηματικά προσανατολισμού της Γ Λυκείου

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

ΑΡΧΗ 1 ΗΣ ΣΕΛΙΔΑΣ. είναι μιγαδικοί αριθμοί, να αποδειχθεί ότι:

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΑΠΑΝΤΗΣΕΙΣ

Μαθηµατικά Θετικής & Τεχνολογικής Κατεύθυνσης Γ' Λυκείου 2001

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 2005

β) Μια συνάρτηση f είναι 1-1, αν και μόνο αν για κάθε στοιχείο y του συνόλου τιμών της η εξίσωση f(x)=y έχει ακριβώς μία λύση ως προς x

ΠΕΡΙΦΕΡΕΙΑΚΗ Δ/ΝΣΗ Π/ΘΜΙΑΣ & Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ Β. ΑΙΓΑΙΟΥ

Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ. Ημερομηνία: Τρίτη 3 Ιανουαρίου 2017 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ

Λύσεις των θεμάτων προσομοίωσης -2- Σχολικό Έτος

5ο Επαναληπτικό διαγώνισμα στα Μαθηματικά κατεύθυνσης της Γ Λυκείου Θέμα A

ΦΕΒΡΟΥΑΡΙΟΣ Ο συντελεστής διεύθυνσης της εφαπτοµένης της γραφικής παράστασης τη f(x) στο σηµείο x ο είναι f x ) (Μονάδες 4)

Λύσεις των θεμάτων προσομοίωσης -2- Σχολικό Έτος

2η ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ

Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΜΑΘΗΜΑΤΙΚΑ ΑΠΑΝΤΗΣΕΙΣ. Εποµένως η f είναι κοίλη στο διάστηµα (, 1] και κυρτή στο [ 1, + ).

Γ ε ν ι κ έ ς εξ ε τ ά σ ε ι ς Μαθηματικά Γ λυκείου Θ ε τ ι κ ών και οικονομικών σπουδών

( ) ( ) ɶ = = α = + + = = z1 z2 = = Οπότε. Έχουµε. ii) γ) 1ος Τρόπος. Οπότε Ελάχιστη απόσταση είναι:

ΘΕΜΑΤΑ ΠΑΝΕΛΛΗΝΙΩΝ 2014 ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

z-4 =2 z-1. 2z1 2z2 β) -4 w 4. ( ) x 1 3 x 2 e t dt, x 0

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑ.Λ. Β 28 ΜΑΪΟΥ 2012 ΑΠΑΝΤΗΣΕΙΣ. y R, η σχέση (1) γράφεται

ΕΝΔΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ 2017

ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 10: ΕΥΡΕΣΗ ΤΟΠΙΚΩΝ ΑΚΡΟΤΑΤΩΝ

ΑΠΑNTHΣΕΙΣ ΣΤA ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ ΠΑΝΕΛΛΑΔΙΚΕΣ 2012

ΔΕΙΓΜΑΤΑ ΔΙΑΓΩΝΙΣΜΑΤΩΝ ΠΡΟΣΟΜΟΙΩΣΗΣ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ. 1 ο δείγμα

ΟΜΟΣΠΟΝΔΙΑ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑΔΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2019 Β ΦΑΣΗ

ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗΣ 2007 ΕΚΦΩΝΗΣΕΙΣ. Α.3 Πότε η ευθεία y = l λέγεται οριζόντια ασύµπτωτη της γραφικής παράστασης της f στο + ; Μονάδες 3

A. Να αποδείξετε ότι, αν μία συνάρτηση f είναι παραγωγίσιμη σ ένα σημείο x 0, τότε είναι και συνεχής στο σημείο αυτό. Μονάδες 8

ΟΜΟΣΠΟΝΔΙΑ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑΔΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2019 Β ΦΑΣΗ

ΜΑΙΟΣ ΜΑΘΗΜΑΤΙΚΑ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ ο 5 + i Α. Δίνεται ο μιγαδικός αριθμός z =. + i α) Να γράψετε τον z στη μορφή α + βi, α, β IR. Στην παρ

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ., στο οποίο όμως η f είναι συνεχής. Αν η f x

Λύσεις των θεμάτων των Πανελλαδικών Εξετάσεων στα Μαθηματικά Προσανατολισμού 2016

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ. Α.3 Πότε η ευθεία y = λέγεται οριζόντια ασύμπτωτη της γραφικής παράστασης της f στο + ; Μονάδες 3

Α2. Να διατυπώσετε το θεώρημα του Fermat. (Απάντηση : Θεώρημα σελ. 260 σχολικού βιβλίου) Μονάδες 4

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 4 ΣΕΛΙΔΕΣ

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΓΕΝΙΚΑ ΘΕΜΑ Α. , έχει κατακόρυφη ασύμπτωτη την x 0.

Λύσεις των θεμάτων των Πανελλαδικών Εξετάσεων στα Μαθηματικά Προσανατολισμού 2016

f( ) + f( ) + f( ) + f( ). 4 γ) υπάρχει x 2 (0, 1), ώστε η εφαπτοµένη της γραφικής παράστασης της

ΗΡΑΚΛΕΙΤΟΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΗΡΑΚΛΕΙΤΟΣ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β') ΔΕΥΤΕΡΑ 28 ΜΑΪΟΥ 2012

4 η ΕΚΑ Α. = g(t)dt, x [0, 1] i) είξτε ότι F(x) > 0 για κάθε x (0, 1] ii) είξτε ότι f(x)g(x) > F(x) για κάθε x (0, 1] και G(x) για κάθε x (0, 1]

προπαρασκευή για Α.Ε.Ι. & Τ.Ε.Ι. c είναι παράγουσες της f στο Δ και κάθε άλλη παράγουσα G της f στο Δ παίρνει τη μορφή G( x) F( x) c,

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

Υψώνουμε την δοσμένη σχέση στο τετράγωνο οπότε

ΘΕΜΑ Α. A2. Πότε δύο συναρτήσεις f και g λέγονται ίσες; Μονάδες 2. Α3. Να διατυπώσετε το θεώρημα Rolle. Μονάδες 6

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ :3

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ. B. α) Αν z=x+yi 0, z = ρ και θ ένα όρισµα του z, να αποδείξετε ότι ο z παίρνει τη µορφή z=ρ (συνθ + iηµθ) Μονάδες 8,5

ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ 2014

ΤΩΝ ΟΜΑΔΩΝ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ

ln 1. ( ) vii. Να βρείτε το εμβαδόν του χωρίου που περικλείεται από τη C f, τον άξονα η οποία είναι συνεχής στο και για την οποία ισχύει

2. Έστω η συνάρτηση f :[0, 6] με την παρακάτω γραφική παράσταση.

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ

f ( x) f ( x ) για κάθε x A

1o. Θ Ε Μ Α Β Ε. Γ Κ Ο Ρ Α. βρίσκεται ολόκληρη μέσα στο τετράγωνο ΑΒΓΔ.

Transcript:

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 4 Ε_.ΜλΘΤ(ε) ΤΑΞΗ: ΚΑΤΕΥΘΥΝΣΗ: ΜΑΘΗΜΑ: ΘΕΜΑ Α Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Ηµεροµηνία: Κυριακή 7 Απριλίου 4 ιάρκεια Εξέτασης: ώρες Α. Να αποδείξετε ότι η συνάρτηση ν στο IR και ισχύει f '() = ν -. ΕΚΦΩΝΗΣΕΙΣ ν f () =, ν IN {,} είναι παραγωγίσιµη Μονάδες 7 Α. Πότε η ευθεία y = λ + β λέγεται ασύµπτωτη της γραφικής παράσταση µιας συνάρτησης f στο + ; Μονάδες 4 Α. Να διατυπώσετε το κριτήριο παρεµβολής. Μονάδες 4 Α4. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν, γράφοντας στο τετράδιό σας, δίπλα στο γράµµα που αντιστοιχεί σε κάθε πρόταση, τη λέξη Σωστό, αν η πρόταση είναι σωστή, ή Λάθος, αν η πρόταση είναι λανθασµένη: i) Αν µια συνάρτηση f µε πεδίο ορισµού το Α έχει αντίστροφη, τότε f (f ()) =, για κάθε A. ii) Αν lim f( ) >, τότε f( )> κοντά στο. o Μονάδες Μονάδες iii) Αν µια συνάρτηση f δεν είναι συνεχής στο σηµείο, τότε δεν είναι παραγωγίσιµη σ αυτό. Μονάδες iv) Μια συνεχής στο (α, β) συνάρτηση, παίρνει σε κάθε περίπτωση στο (α, β) µια µέγιστη και µια ελάχιστη τιµή. Μονάδες ÈÅÌÁÔÁ 4 v) Αν f συνεχής συνάρτηση στο [α, β] και λ IR, τότε λ f( ) d =λ f( ) d β. α β α Μονάδες ΤΑ ΘΕΜΑΤΑ ΠΡΟΟΡΙΖΟΝΤΑΙ ΓΙΑ ΑΠΟΚΛΕΙΣΤΙΚΗ ΧΡΗΣΗ ΤΗΣ ΦΡΟΝΤΙΣΤΗΡΙΑΚΗΣ ΜΟΝΑ ΑΣ ΣΕΛΙ Α: ΑΠΟ

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 4 Ε_.ΜλΘΤ(ε) ΘΕΜΑ Β ίνονται οι µιγαδικοί z, z και w µε z = α + β i, µε α, β R τέτοιοι, ώστε o ( ) + β i z = α + i Β. Να αποδείξετε ότι: να είναι φανταστικός και ( ) i Ιm w i = w + i. α) Ο γεωµετρικός τόπος των εικόνων του z στο µιγαδικό επίπεδο είναι η ευθεία ε µε εξίσωση y+ 4=. Μονάδες 6 β) Ο γεωµετρικός τόπος των εικόνων του w στο µιγαδικό επίπεδο είναι η παραβολή µε εξίσωση + y =. Μονάδες 6 Β. Να αποδείξετε ότι z w 7 4. Μονάδες 5 Β. α) Να βρείτε το γεωµετρικό τόπο C των εικόνων του w στο µιγαδικό επίπεδο. Μονάδες ΘΕΜΑ Γ β) Να υπολογίσετε το εµβαδόν του χωρίου, που περικλείεται από την ευθεία y 4 + = και την γραµµή C του προηγούµενου ερωτήµατος. Μονάδες 5 Οι συναρτήσεις f, g είναι παραγωγίσιµες στο IR µε f () =, g() = και ικανοποιούν τις σχέσεις: f '() f () = e g '() και f () +, για κάθε IR. Γ. Να αποδείξετε ότι f () e g() Γ. α) Να υπολογίσετε το g '(). = +. β) Να αποδείξετε ότι Μονάδες 6 ÈÅÌÁÔÁ 4 + lim + g = +. + Μονάδες Μονάδες 4 ΤΑ ΘΕΜΑΤΑ ΠΡΟΟΡΙΖΟΝΤΑΙ ΓΙΑ ΑΠΟΚΛΕΙΣΤΙΚΗ ΧΡΗΣΗ ΤΗΣ ΦΡΟΝΤΙΣΤΗΡΙΑΚΗΣ ΜΟΝΑ ΑΣ ΣΕΛΙ Α: ΑΠΟ

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 4 Ε_.ΜλΘΤ(ε) Γ. Αν, επιπλέον ΘΕΜΑ g() = ( ) για κάθε IR, τότε α) Να βρείτε το σύνολο τιµών της f. Μονάδες 6 β) Να αποδείξετε ότι, για κάθε λ IR, από το σηµείο Μ(, λ) άγονται το πολύ τρεις εφαπτόµενες στη γραφική παράσταση της συνάρτησης h µε h() = e ( ) +. Η συνάρτηση g είναι δύο φορές παραγωγίσιµη στο IR µε και g ''( ) [ g ''()] e d < g ''() e g ''(), για κάθε IR g() =, g () g () e d e d <.. Να αποδείξετε ότι η g' είναι γνησίως αύξουσα.. Να αποδείξετε ότι υπάρχει ρ (, ), τέτοιο, ώστε g g '( ρ ) < < g '() (µονάδες ).. Να υπολογίσετε το όριο 4. Να λύσετε την εξίσωση lim g. g() + g( ) g() g() g( ) + = +, >. Ευχόµαστε Επιτυχία Μονάδες 6 Μονάδες 6 ρ = (µονάδες 5) και Μονάδες 8 Μονάδες 6 Μονάδες 5 ÈÅÌÁÔÁ 4 ΤΑ ΘΕΜΑΤΑ ΠΡΟΟΡΙΖΟΝΤΑΙ ΓΙΑ ΑΠΟΚΛΕΙΣΤΙΚΗ ΧΡΗΣΗ ΤΗΣ ΦΡΟΝΤΙΣΤΗΡΙΑΚΗΣ ΜΟΝΑ ΑΣ ΣΕΛΙ Α: ΑΠΟ

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 4 Ε_.ΜλΘΤ(α) ΤΑΞΗ: ΚΑΤΕΥΘΥΝΣΗ: ΜΑΘΗΜΑ: ΘΕΜΑ Α Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Ηµεροµηνία: Κυριακή 7 Απριλίου 4 ιάρκεια Εξέτασης: ώρες Α. Θεωρία σχολικού βιβλίου σελ. 4. Α. Θεωρία σχολικού βιβλίου σελ. 8. Α. Θεωρία σχολικού βιβλίου σελ. 69. Α4. i. Σωστό ii. Σωστό iii. Σωστό iv. Λάθος v. Σωστό ΘΕΜΑ Β ΑΠΑΝΤΗΣΕΙΣ Β. Είναι Re z = () α) Φέρνουµε τον z στην µορφή κ+ λi, : ( + βi i) ( α + + i) z = α + i α + + i z φανταστικός, εάν και µόνο αν ÈÅÌÁÔÁ 4 α+ + i+ αβi+ βi β αi 4i+ = α+ + α β+ 4 αβ+ β α = + i α+ + α+ + Από την σχέση () προκύπτει α β + 4 = α β + 4 =. α + + ΤΑ ΘΕΜΑΤΑ ΠΡΟΟΡΙΖΟΝΤΑΙ ΓΙΑ ΑΠΟΚΛΕΙΣΤΙΚΗ ΧΡΗΣΗ ΤΗΣ ΦΡΟΝΤΙΣΤΗΡΙΑΚΗΣ ΜΟΝΑ ΑΣ ΣΕΛΙ Α: ΑΠΟ

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 4 Ε_.ΜλΘΤ(α) Η τελευταία εξίσωση επαληθεύεται από όλα τα σηµεία Μ (α, β) του µιγαδικού επιπέδου τα οποία είναι εικόνες του z= α+ βi και µόνο αυτά. Άρα, ο γεωµετρικός τόπος των εικόνων του z είναι η ευθεία y+ 4=. β) Έστω w = + yi,, y IR. Είναι w i= + (y )i Εποµένως, Im(w i) = y Έχουµε: ( i) Im w i = w + i ( i ) y = + yi + i i y = + y i + y = + y + y = + y + y + 4 y y + = + y + y + 4 4 + y = Άρα ο γεωµετρικός τόπος των εικόνων του w είναι η γραµµή µε εξίσωση + y=, η οποία είναι παραβολή, αφού + y = y = Β. Το z w ισούται µε την απόσταση των εικόνων των µιγαδικών z και w, εποµένως εκφράζει την απόσταση των σηµείων της ευθείας (ε): y+ 4= από τα σηµεία της παραβολής C: y=. M, y τυχαίο σηµείο της παραβολής, και Ν τυχαίο σηµείο της Έστω ÈÅÌÁÔÁ 4 ευθείας. Σύµφωνα µε τα παραπάνω πρέπει και αρκεί να αποδείξουµε ότι 7 MN. Θεωρούµε την προβολή Μ του Μ στην ευθεία. Προφανώς 4 MN MM. Επειδή y = είναι M, η απόσταση του Μ από την ευθεία (ε) είναι: ΤΑ ΘΕΜΑΤΑ ΠΡΟΟΡΙΖΟΝΤΑΙ ΓΙΑ ΑΠΟΚΛΕΙΣΤΙΚΗ ΧΡΗΣΗ ΤΗΣ ΦΡΟΝΤΙΣΤΗΡΙΑΚΗΣ ΜΟΝΑ ΑΣ ΣΕΛΙ Α: ΑΠΟ

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 4 Ε_.ΜλΘΤ(α) εποµένως + + 4 + + 8 MM= d( M, ε) = = MM + ( + ) + 7 ( + ) + 7 7 7 = = = 4 7 Συνεπώς MN MM, που αποδεικνύει το ζητούµενο. 4 ος τρόπος εύρεσης του ελαχίστου από την (). Έστω f = + + 8, A = IR. H f είναι παραγωγίσιµη στο IR ως f πολυωνυµική µε f () = +, IR. Έχουµε f () = + = = Άρα για την () f ( ) > >, =, η f έχει ελάχιστο το MM f < < ÈÅÌÁÔÁ 4 () f = 7, οπότε + + 8 7 και από 7 7 = d( M, ε) = 4 Β. α) Οι εικόνες δύο συζυγών µιγαδικών είναι σηµεία συµµετρικά, ως προς τον άξονα. Εφόσον οι εικόνες του w είναι τα σηµεία,, IR, οι εικόνες του w, είναι τα,, IR, που έχουν γεωµετρικό τόπο την παραβολή C: y=, αφού αυτά και µόνο αυτά την επαληθεύουν. β) Έστω g( ) = και πρόσηµο της διαφοράς g( ) h( ) h = + 4. Αρχικά βρίσκουµε τις ρίζες και το. Είναι 4 + g h + + g h = 4 = 8 = = 4 η = ɺ ΤΑ ΘΕΜΑΤΑ ΠΡΟΟΡΙΖΟΝΤΑΙ ΓΙΑ ΑΠΟΚΛΕΙΣΤΙΚΗ ΧΡΗΣΗ ΤΗΣ ΦΡΟΝΤΙΣΤΗΡΙΑΚΗΣ ΜΟΝΑ ΑΣ ΣΕΛΙ Α: ΑΠΟ

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 4 Ε_.ΜλΘΤ(α) Το ζητούµενο εµβαδό είναι ΘΕΜΑ Γ 4 4 E = g() h() d = [h() g()]d 4 d = 4 + = + 4 = 8τµ. 6 Γ. Είναι f f = e g e f e f = e e g e e f ( ) e f( ) = g ( ) e ÈÅÌÁÔÁ 4 4 f e = g + e f e = g + e + c, () µε c IR Αν στη σχέση () θέσουµε όπου =, έχουµε f e = g + e + c e = e + c c = Εποµένως η () δίνει f = e g +, IR. Γ. α) Από την σχέση f ( ) f( ) = e g ( ), για f ( ) f( ) eg ( ) f ( ) eg ( ) = έχουµε = =, () Ακόµα f + f + () για κάθε IR Αν θεωρήσουµε f( ) ( ) η () γράφεται + = ϕ, τότε επειδή f + = ϕ ϕ =, ϕ ϕ. Συνεπώς η φ() παρουσιάζει για = (ολικό) ελάχιστο. Ακόµη η φ() είναι παραγωγίσιµη στο R µε: f ϕ = f +. ϕ = + ΤΑ ΘΕΜΑΤΑ ΠΡΟΟΡΙΖΟΝΤΑΙ ΓΙΑ ΑΠΟΚΛΕΙΣΤΙΚΗ ΧΡΗΣΗ ΤΗΣ ΦΡΟΝΤΙΣΤΗΡΙΑΚΗΣ ΜΟΝΑ ΑΣ ΣΕΛΙ Α: 4 ΑΠΟ

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 4 Ε_.ΜλΘΤ(α) Για την φ() ισχύουν οι υποθέσεις του Θ. Ferma, άρα ισοδύναµα + = = Εποµένως από την () έχουµε: eg ( ) = f f g =. ϕ =, ή β) Έστω >. Θέτουµε + =, οπότε + + + = = + = + + + + Επειδή lim =, το τείνει στο. Έχουµε + + + g( ) g( ) lim ( + ) g = lim g( ) + + = lim = g ( ) = Γ. α) Είναι f( ) = e g( ) + και f( ) = e ( ) +, IR. g =, IR, οπότε: Η f είναι παραγωγίσιµη στο IR µε f ( ) = e ( ) + = e ( ) + e ( ) = e ( )( + ) Ο πίνακας µε τις ρίζες και το πρόσηµο της f ( ), τη µονοτονία και τα ακρότατα της f είναι: + f () + + f () 4 e + ÈÅÌÁÔÁ 4 H f είναι συνεχής στα διαστήµατα (, ], [, ], [, ) f ( ) > για <, f ( ) < για < <, f ( ) Άρα η f είναι γνησίως αύξουσα στο (, ] [, ] και γνησίως αύξουσα στο [, + ). Έχουµε + και > για >. lim f = lim e + = + =,, γνησίως φθίνουσα στο ΤΑ ΘΕΜΑΤΑ ΠΡΟΟΡΙΖΟΝΤΑΙ ΓΙΑ ΑΠΟΚΛΕΙΣΤΙΚΗ ΧΡΗΣΗ ΤΗΣ ΦΡΟΝΤΙΣΤΗΡΙΑΚΗΣ ΜΟΝΑ ΑΣ ΣΕΛΙ Α: 5 ΑΠΟ

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 4 Ε_.ΜλΘΤ(α) αφού + ( ) + ( ) = e lim e = lim lim = lim e DLH Ακόµη αφού ( e ) ( e ) ( ) = lim = lim = lim e = DLH e + lim f = lim e + = +, + + ( ) lim = + και lim e + ( ) ÈÅÌÁÔÁ 4 = +. Εποµένως η f παρουσιάζει τοπικό µέγιστο για ολικό ελάχιστο για τότε = το = το f( ) =. Αν = ( ), A = [, ] και A (, ) A, 4 4 f A = lim f, + =, + e e, 4 f( A ) = f( ), f( ) =, + e και f A =, lim f =, +. + Εποµένως το σύνολο τιµών της f είναι το β) Η = +, = = [ + ) f IR f A f A f A, h = e +, IR είναι παραγωγίσιµη στο IR µε Έστω ε η εφαπτοµένη που φέρουµε στη ( ) h = e + = e e = e, IR h 4 f = + και e C από το σηµείο,h το σηµείο επαφής. Η εξίσωση της εφαπτοµένης είναι η οποία γράφεται y h = h, y e = e M,λ και ΤΑ ΘΕΜΑΤΑ ΠΡΟΟΡΙΖΟΝΤΑΙ ΓΙΑ ΑΠΟΚΛΕΙΣΤΙΚΗ ΧΡΗΣΗ ΤΗΣ ΦΡΟΝΤΙΣΤΗΡΙΑΚΗΣ ΜΟΝΑ ΑΣ ΣΕΛΙ Α: 6 ΑΠΟ

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 4 Ε_.ΜλΘΤ(α) ΘΕΜΑ Επειδή το M,λ είναι σηµείο της εφαπτοµένης, για = και y = λ η τελευταία σχέση δίνει e e λ = + e + λ ( ) = ( ) ( ) e ( ) + = λ = λ f Όπως δείξαµε στο προηγούµενο ερώτηµα, η f είναι γνησίως µονότονη σε καθένα από τα διαστήµατα A, A, A, οπότε η εξίσωση f() = λ, έχει το πολύ µία λύση σε καθένα από αυτά και, συνεπώς, συνολικά έχει το πολύ τρεις λύσεις στο IR. Αυτό αποδεικνύει, ότι από το σηµείο M(, λ ) άγονται το πολύ τρεις εφαπτόµενες στη C. h ος τρόπος απόδειξης, ότι η εξίσωση f() = λ έχει το πολύ τρεις ρίζες. Υποθέτουµε ότι έχει τέσσερις διαφορετικές ρίζες τις ρ,ρ,ρ,ρ 4 και έστω χωρίς βλάβη της γενικότητας ρ < ρ < ρ < ρ 4. Αυτές είναι ρίζες και της συνάρτησης φ() = f() λ Η φ είναι συνεχής σε καθένα από τα διαστήµατα [ ρ, ρ ] [ ρ, ρ ] [ ρ, ρ ] και παραγωγίσιµη σε καθένα από τα (ρ, ρ ), (ρ, ρ ), (ρ, ρ 4) µε φ'() = f '() και ακόµα φ(ρ = φ(ρ = φ(ρ = φ(ρ = Άρα εφαρµόζεται το θεώρηµα Rolle σε καθένα από τα διαστήµατα (ρ, ρ ), (ρ, ρ ), (ρ, ρ 4), όποτε υπάρχουν κ (ρ, ρ ), κ (ρ, ρ ), κ (ρ, ρ ) τέτοια, ώστε 4 φ'(κ = φ'(κ = φ'(κ = Προφανώς κ < κ < κ. Επειδή φ'() = f '() προκύπτει ότι η εξίσωση f '() = έχει τρεις διαφορετικές ρίζες, τις κ, κ, κ, που είναι άτοπο, διότι, όπως αποδείχτηκε στο προηγούµενο ερώτηµα, έχει δύο ακριβώς δύο ρίζες τις =, =.. Θεωρούµε την συνάρτηση h: IR IR µε ÈÅÌÁÔÁ 4 h = e d e + ΤΑ ΘΕΜΑΤΑ ΠΡΟΟΡΙΖΟΝΤΑΙ ΓΙΑ ΑΠΟΚΛΕΙΣΤΙΚΗ ΧΡΗΣΗ ΤΗΣ ΦΡΟΝΤΙΣΤΗΡΙΑΚΗΣ ΜΟΝΑ ΑΣ ΣΕΛΙ Α: 7 ΑΠΟ

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 4 Ε_.ΜλΘΤ(α) Η h είναι παραγωγίσιµη στο IR µε παράγωγο h = e e + e + = e Η h µηδενίζεται για = και για κάθε είναι e e h > > < ' < Εποµένως, η h είναι γνησίως φθίνουσα στο IR, οπότε έχουµε: h < h < h > () Η πρώτη από τις δοσµένες ανισότητες για κάθε IR δίνει: g ( ) g e d g e + g < ή h( g ( )) < και λόγω της (): g ( ) > γνησίως αύξουσα στο IR. ος τρόπος Με ολοκλήρωση κατά παράγοντες έχουµε: g ( ) g ( ) e d< g e g ' g g < '' g g g ( ) e d g e g, που σηµαίνει ότι η g είναι ÈÅÌÁÔÁ 4 e < e d g e g g g g g e e d< g e g g > Και τώρα συνεχίζουµε ως εξής: g (*) ( ) g > ( e d ) d Επειδή e d g (*) g ( ) g ( ) e d d > g e d > (*) e, για κάθε IR είχαµε g g, η (*) αποκλείει g ''( ), αφού τότε θα e d e d, άτοπο. Εποµένως g ''( ) >, που σηµαίνει ότι η g είναι γνησίως αύξουσα στο IR.. Θεωρούµε την συνάρτηση f µε f g ( ) ( ) = e d, [,] - ΤΑ ΘΕΜΑΤΑ ΠΡΟΟΡΙΖΟΝΤΑΙ ΓΙΑ ΑΠΟΚΛΕΙΣΤΙΚΗ ΧΡΗΣΗ ΤΗΣ ΦΡΟΝΤΙΣΤΗΡΙΑΚΗΣ ΜΟΝΑ ΑΣ ΣΕΛΙ Α: 8 ΑΠΟ

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 4 Ε_.ΜλΘΤ(α) Η f είναι συνεχής, ως σύνθεση των συνεχών συναρτήσεων g και g µε = g e d. Ακόµα g g( ) f f e d e d = < Εποµένως, από το Θεώρηµα του Bolzano υπάρχει ρ (, ) τέτοιο ώστε f (ρ) = ή Αν g(ρ) >, επειδή Αν g(ρ) < επειδή άτοπο από την (). g ( ρ) e d= e > θα είναι e > θα είναι () ( ρ) g e d > άτοπο από την (). ( ρ) ÈÅÌÁÔÁ 4 ( ρ) g e d > e d g <, οµοίως Εποµένως g(ρ) =. Στη συνέχεια, εφαρµόζεται το Θεώρηµα του Rolle για την g στο διάστηµα [ρ, ], αφού ως παραγωγίσιµη είναι συνεχής στο [ρ, ], παραγωγίσιµη στο (ρ, ) και ακόµα g(ρ) = g() =. Εποµένως, υπάρχει ( ρ,) g ( ) = () Αλλά η g είναι γνησίως αύξουσα οπότε: ρ< < g ρ <g <g g ρ <<g που αποδεικνύει το ζητούµενο.. Έστω < <. Θέτουµε u= g + Είναι lim u = lim = + διότι: g + ( ) lim = < g( ) lim + = g() + <, γιατί από την µονοτονία της g είναι > g >g g > που σηµαίνει ότι η g είναι γνησίως αύξουσα στο [, + ).Έτσι < < g < g g < g + < Στη συνέχεια το ζητούµενο όριο γίνεται lim g lim = + g u u + g τέτοιο, ώστε ΤΑ ΘΕΜΑΤΑ ΠΡΟΟΡΙΖΟΝΤΑΙ ΓΙΑ ΑΠΟΚΛΕΙΣΤΙΚΗ ΧΡΗΣΗ ΤΗΣ ΦΡΟΝΤΙΣΤΗΡΙΑΚΗΣ ΜΟΝΑ ΑΣ ΣΕΛΙ Α: 9 ΑΠΟ

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 4 Ε_.ΜλΘΤ(α) Η εφαπτοµένη της C g στο σηµείο της Μ(, g()) έχει εξίσωση: y g = g' y = g' g '() + g () Επειδή η g είναι γνησίως αύξουσα η g είναι κυρτή στο IR, οπότε τα σηµεία της C είναι πάνω από τα αντίστοιχα σηµεία της εφαπτοµένης της, εκτός του g σηµείου επαφής, εποµένως για κάθε IR Επειδή g' > είναι g g' g '() + g () (4) lim g' g '() + g() = lim g' = + + + Αν h( ) = g g ' + g( ), µε IR αφού lim h( ) + α>, ώστε στο ( α,+ ) είναι h( ) > οπότε από (4) είναι Επειδή Αν φ( ) + g( ) h( ) > < g h( ) lim =, από κριτήριο παρεµβολής θα είναι h = g( ) g = φ, τότε φ( ) διότι είναι φ( ) > στο ( α,+ ) και Ώστε + + u + + = + θα υπάρχει lim =. g lim g = lim = + lim g u = +, lim g g( ) + lim φ =. + = lim g( u) = + + u 4. Η εξίσωση έχει προφανή ρίζα την =. Θα αποδείξουµε ότι είναι µοναδική. Πραγµατικά είναι: g( + ) = g() + g() g( ) g( + ) g() = g() g( ) (5) ÈÅÌÁÔÁ 4 Αν υποθέσουµε ότι >, τότε θεωρούµε τα διαστήµατα [ +, ] και [, ]. Αυτά είναι καλώς ορισµένα και ξένα µεταξύ τους, αφού ισχύουν < < και + < <, δηλαδή + < < <. ΤΑ ΘΕΜΑΤΑ ΠΡΟΟΡΙΖΟΝΤΑΙ ΓΙΑ ΑΠΟΚΛΕΙΣΤΙΚΗ ΧΡΗΣΗ ΤΗΣ ΦΡΟΝΤΙΣΤΗΡΙΑΚΗΣ ΜΟΝΑ ΑΣ ΣΕΛΙ Α: ΑΠΟ

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 4 Ε_.ΜλΘΤ(α) Εφαρµόζεται, τώρα, για την g το θεώρηµα µέσης τιµής σε καθένα από τα [ +, ] και [, ], γιατί η g είναι συνεχής σ αυτά και παραγωγίσιµη στα αντίστοιχα ανοιχτά διαστήµατα. Υπάρχουν, εποµένως, ξ, ξ µε + < ξ < < < ξ <, (6) τέτοια ώστε g() g( + ) g( ) g() = g '( ξ ) και = g '( ξ ) Λόγω της (5): g '( ξ ) = g '( ξ ) g '( ξ ) = g '( ξ ) Άτοπο, γιατί από την (6) και την µονοτονία της g είναι ξ < ξ g'( ξ ) < g '( ξ ) Πάλι, αν υποθέσουµε ότι < <, τότε εργαζόµαστε στα διαστήµατα [, + ] και [, ]. Αυτά είναι καλώς ορισµένα και ξένα µεταξύ τους, αφού ισχύουν < < και < + <, δηλαδή < < < + Εφαρµόζεται, οµοίως, για την g το θεώρηµα µέσης τιµής σε καθένα από τα [, + ] και [, ], γιατί η g είναι συνεχής σ αυτά και παραγωγίσιµη στα αντίστοιχα ανοιχτά διαστήµατα. Υπάρχουν, εποµένως, ξ, ξ µε < ξ < < < ξ < +, (7) τέτοια ώστε g( + ) g() g() g( ) = g '( ξ ) και = g '( ξ ) Λόγω της (5): g '( ξ ) = g '( ξ ) Άτοπο, γιατί από την (7) και την µονοτονία της g είναι ξ < ξ g'( ξ ) < g '( ξ ). Ώστε η εξίσωση έχει µοναδική λύση την προφανή =. ÈÅÌÁÔÁ 4 ΤΑ ΘΕΜΑΤΑ ΠΡΟΟΡΙΖΟΝΤΑΙ ΓΙΑ ΑΠΟΚΛΕΙΣΤΙΚΗ ΧΡΗΣΗ ΤΗΣ ΦΡΟΝΤΙΣΤΗΡΙΑΚΗΣ ΜΟΝΑ ΑΣ ΣΕΛΙ Α: ΑΠΟ