Γ' ΤΑΞΗ ΓΕΝ. ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ A Α. Θεωρία βιβλίο Ο.Ε..Β. σελίδα 50-5 Α. Θεωρία βιβλίο Ο.Ε..Β. σελίδα 70 Α. Θεωρία βιβλίο Ο.Ε..Β. σελίδα Α4. α. ΣΩΣΤΟ β. ΣΩΣΤΟ γ. ΛΑΘΟΣ δ. ΣΩΣΤΟ ε. ΛΑΘΟΣ ΘΕΜΑ Β Β. Η παράγωγος συνάρτηση της f είναι f x = x κx, x R οπότε f = + κ f = κ f = f + κ = κ + κ = 9 + κ 4κ = κ = Β. Για κ= έχουµε f ( x) = 0 x( x ) = 0 x = 0 ή x = f ( x) > 0 x( x ) > 0 x < 0 ή x > f x = x x + 4 και f x = x x, x R
Μονοτονία x,0 η συνάρτηση f είναι γνησίως αύξουσα. Αν ( ] Αν x [ 0,] η συνάρτηση f είναι γνησίως φθίνουσα. Αν x [, ) + η συνάρτηση f είναι γνησίως αύξουσα. Ακρότατα Στο x 0 =0 έχουµε τοπικό µέγιστο το f(0)=4 και στο x 0 = έχουµε τοπικό ελάχιστο το f()=0. Β. Έχουµε: Α ΤΡΟΠΟΣ ( + ) = ( + ) ( + ) + οπότε f( + h) 4 ( + h) ( + h) f h h h 4 lim h = lim = h h 0 h 0 ( + ) ( + ) ( + ) h h h h = lim = lim = lim( + h) = 9 h 0 h h 0 h h 0 Β ΤΡΟΠΟΣ = + = και f( + h) 4 f ( + h) f ( ) f 4 4 f = = 9. L = lim = lim = f = 9 h 0 h h 0 h Το σηµείο επαφής είναι Μ(,4). Η εφαπτοµένη στο Μ(,4) έχει συντελεστή διεύθυνσης ίσο µε f ( ) = 9 και η εξίσωσή της είναι y=9x+β. Επειδή όµως το σηµείο Μ ανήκει στην ευθεία έχουµε 4 = 9 + β β = Aρα η εξίσωση της εφαπτόµενης είναι y=9x. Β4. Έχουµε f ( x) = x f ( x) = 0 x = 0 x = f ( x) > 0 x > 0 x > Άρα το σηµείο στην τετµηµένη του οποίου ο ρυθµός µεταβολής της y=f(x) ως προς,f,. x έχει την ελάχιστη τιµή είναι το δηλαδή
ΘΕΜΑ Γ Γ. Το µέσον της δεύτερης κλάσης είναι 5 και της τέταρτης 55. Άρα c c 5 + + c + = 55 c = 55 5 c = 0. Εποµένως οι 4 κλάσεις είναι [0,0), [0,40), [40,50) και [50,0). Γ. Από το ιστόγραµµα συχνοτήτων έχουµε ν = και ν 4 = 4 ν + ν + ν + ν 4 = 40 ν + ν = 4 () 5 + 5 ν + 45 ν + 4 55 x = 40 00 + 5 ν + 45 ν + 0 = 440 5 ν + 45 ν = 90 () Λύνουµε το σύστηµα των εξισώσεων () και () ν + ν = 4 45ν 45ν = 080 ( + ) 5ν + 45ν = 90 5ν + 45ν = 90 0ν = 0 ν = οπότε ν = 8. Γ. [ ) x i ν i f i F i F i % [0,0) 5 0, 0, 0 [0,40) 5 0,4 0,7 70 [40,50) 45 8 0, 0,9 90 [50,0) 55 4 0, 00 Σύνολο 40 Έχουµε Γ(0,0), (δ,50), Ε(40,70) και 50 0 0 λ Γ = = δ 0 δ 0
4 70 0 40 λ ΓΕ= = = 4 οπότε 40 0 0 0 λ Γ = λγε = 4 4δ = 40 δ = 5. δ 0 Γ4. P( A B) + P( B A) = P( A B) P( A B) = = P( A) + P( B) P( A B) () ( + ) ( ) P( A) + P( B) P( A B), P( A B) + ( ) 0,55 P( A B) () P A 0,5 P A 0,5 P A 0,75 P A + P B, P B 0,5 P B 0,5 P B 0,5 P A P B P A B P A B + P B A 0,55 P A B ΘΕΜΑ Έχουµε s s CV = = 0, 5 x x. = ( + ) f x x x s x Επειδή η εφαπτόµενη της γραφικής παράστασης της f στο σηµείο της µε τετµηµένη x 0 = είναι παράλληλη στον x x έχει συντελεστή διεύθυνσης 0. Οπότε έχουµε f = 0 x + s = 0 x + s = x = s s s = 0,5 = 0,5 s = 0, 5 s x s s = 0,5 ( s) s =,5 0,5s s = Για s= έχουµε x = x = 4.Τότε ο τύπος της f γίνεται: 50 f( x) = 4x ( x+ s) x + + s= 4x x + 0. 0,5 Έχουµε: f ( x) = x x = x( x ) 4
5 Η f έχει τοπικό µέγιστο το f(0) = 0 και τοπικό ελάχιστο το f() = 0. s = 0,5 ( s) s =,5 + 0,5s s = απορρίπτεται.. Έχουµε y= x+ c. Τότε y= x+ c= 4+ c και sy= s= s y CV 0, 0, 0, 4 + c 0 y 4 + c 4 + c 0 c 4 απορρίπτεται γιατί c>0. 4 + c 0 c Άρα ο µικρότερος θετικός c είναι ο. 4. Έχουµε P( A) = = και P( B) = δ 5 Επειδή η κατανοµή είναι κανονική τότε x 4 δ = = οπότε P( B) i. Έστω α = Ρ( Α Β) και β = Ρ( Α Β ) µε α, β [ 0,] τότε Ρ( Α Β) Ρ( Α Β ) = α β = () 9 9 Ρ Α Β = Ρ Α + Ρ Β Ρ Α Β 5 β = + α α + β = () 5 5 () α α = α α = 8α 5α + = 0 9 9 που έχει ρίζες α = και α = Επειδή όµως Α Β Β Ρ( Α Β) Ρ( Β) α οπότε δηλαδή Ρ( Α Β ) = () 5 β = β = δηλαδή ( ) Ρ Α Β = Έχουµε Ρ Α Β = Ρ Α + Ρ Β Ρ Α Β = = 4 5 =. α = 5
5 = Ρ( Α ) + Ρ( Β) Ρ( Α ) + Ρ( Α Β ) = + = δηλαδή ( ) Ρ Α Β = 5 iii. Επειδή η κατανοµή είναι κανονική ή περίπου κανονική µε x= 4, s= και x s= έχουµε: x s x s x s x x+ s x+ s x+ s 4 5 7 8% 95% 99,7% Το ποσοστό των παρατηρήσεων x i, µε x i είναι 00 95 =,5%. Τότε 00 το µέγεθος του δείγµατος είναι ν = 5 = 00.,5