ΜΑΘΗΜΑΤΙΚΑ. Γ Τάξης Ενιαίου Λυκείου Θετική & Τεχνολογική Κατεύθυνση



Σχετικά έγγραφα
ΜΑΡΙΑ ΓΚΟΥΝΤΑΡΟΠΟΥΛΟΥ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

Η θεωρία στα Μαθηματικά κατεύθυνσης

Θεωρήματα και προτάσεις με τις αποδείξεις τους

ΘΕΩΡΙΑ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΟΡΙΣΜΟΙ ΘΕΩΡΗΜΑΤΑ ΤΥΠΟΙ ΧΩΡΙΣ ΑΠΟΔΕΙΞΗ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ

Qwφιertyuiopasdfghjklzxερυυξnmηq σwωψerβνtyuςiopasdρfghjklzxcvbn mqwertyuiopasdfghjklzxcvbnφγιmλι qπςπζαwωeτrtνyuτioρνμpκaλsdfghςj

ΟΙ ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ

Επομένως μια ακολουθία α είναι γεωμετρική πρόοδος αν και μόνο αν ισχύει α, δηλαδή το πηλίκο δύο διαδοχικών όρων είναι σταθερό.

ΚΕΦΑΛΑΙΟ 1 ο Οι πράξεις πρόσθεση και πολλαπλασιασµός και οι ιδιότητές τους.

ΚΕΦΑΛΑΙΟ 4ο: ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 2: ΟΡΙΣΜΕΝΟ ΟΛΟΚΛΗΡΩΜΑ - ΜΕΘΟΔΟΙ ΕΥΡΕΣΗΣ [Κεφ: Μέρος Β του σχολικού βιβλίου].

Η Θεωρία σε 99 Ερωτήσεις

ΘΕΩΡΙΑ ΠΙΝΑΚΩΝ τοποθετημένους σε μ γραμμές και v στήλες. Το σύμβολο. λέγεται πίνακας διάστασης μ x ν. α α

ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ. Υπάρχει ένα στοιχείο i τέτοιο, ώστε i 1, Κάθε στοιχείο z του γράφεται κατά μοναδικό τρόπο με τη μορφή i, όπου,

Η θεωρία στα Μαθηματικά κατεύθυνσης :

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

Γ ΛΥΚΕΙΟΥ ΘΕΩΡΙΑ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΤΕΥΘΥΝΣΗΣ

1o ΓΕ.Λ. Λιβαδειάς Μαθηματικά Προσανατολισμού Ορισμοί Θεωρήματα- Αποδείξεις- Γεωμετρικές ερμηνείες- Σχόλια Αντιπαραδείγματα - Παρατηρήσεις.

ΜΑΘΗΜΑΤΙΚΑ Γ ΚΑΤ/ΝΣΗΣ ΘΕΩΡΙΑ - ΑΠΟΔΕΙΞΕΙΣ

Κ Ο Λ Λ Α Σ Α Ν Τ Ω Ν Η Σ

ΘΕΩΡΗΜΑΤΑ (των οποίων πρέπει να ξέρουμε & τις αποδείξεις) από το σχολικό βιβλίο της ΤΕΧΝΟΛΟΓΙΚΗΣ & ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ Λυκείου

ΜΑΘΗΜΑΤΙΚΑ. Γ Τάξης Ενιαίου Λυκείου Θετική Κατεύθυνση

Η θεωρία στα Μαθηματικά κατεύθυνσης :

π.χ. 2, 3, π=3,14... Αναλογία λέγεται κάθε ισότητα κλασµάτων και έχουµε τις παρακάτω ιδιότητες : α = 4) β = δ και δ γ β

Παραδείγµατα στις ακολουθίες. 2. Να γράψετε τους 4 πρώτους όρους των ακολουθιών. 2ν +1. i) α. =, ii)α. = (-1) v. ΛΥΣΗ

Π ρ ό λ ο γ ο ς. Το βιβλίο αυτό γράφτηκε με στόχο την πληρέστερη προετοιμασία των μαθητών μας.

ΜΑΘΗΜΑΤΙΚΑ Θεωρία & Σχόλια

α+ βi, όπου α, ii) Ο µιγαδικός α+ βi είναι ίσος µε το µηδέν αν και µόνο αν α= 0 και β = 0

Ορισμοί των εννοιών και θεωρήματα χωρίς απόδειξη

Επαναληπτικά θέµατα Θεωρίας Γ Λυκείου

ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ

+ 4 µε x >0. x = f(x) f(t) dt. Άρα από κριτήριο παρεµβολής lim f(t) dt = 4.

Ε π ι μ έ λ ε ι α Κ Ο Λ Λ Α Σ Α Ν Τ Ω Ν Η Σ

Φροντιστήρια 2001-ΟΡΟΣΗΜΟ

Άλγεβρα και Στοιχεία Πιθανοτήτων Θεωρία & Σχόλια

ΤΟ ΣΥΝΟΛΟ C ΤΩΝ ΜΙΓΑ ΙΚΩΝ

1.6 ΜΗ ΠΕΠΕΡΑΣΜΕΝΟ ΟΡΙΟ ΣΤΟ x

ΤΖΕΜΠΕΛΙΚΟΥ ΚΑΤΕΡΙΝΑ ΜΑΘΗΜΑΤΙΚΟΣ

Μαθηματικά Γ Λυκείου 2.1 Η ΕΝΝΟΙΑ ΤΟΥ ΜΙΓΑ ΙΚΟΥ ΑΡΙΘΜΟΥ. Το Σύνολο των Μιγαδικών Αριθµών

Ορισμοί των εννοιών Τύποι και ιδιότητες Βασική μεθοδολογία

ΣΗΜΕΙΩΣΕΙΣ ΑΛΓΕΒΡΑΣ Α ΛΥΚΕΙΟΥ

Λογάριθμοι. Α. ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ Η έννοια του λογάριθμου Έστω η εξίσωση αx

ρ3ρ ΑΠΑΝΤΗΣΕΙΣ Επιµέλεια: Οµάδα Μαθηµατικών της Ώθησης

ΟΡΙΑ - ΣΥΝΕΧΕΙΑ. Πόσα είδη ορίων υπάρχουν; Τι είναι το +, - ; Τι ονοµάζουµε γειτονιά ή περιοχή του x o ; Τι ονοµάζουµε γειτονιά του +, - ;

, µε α και β, πραγµατικούς αριθµούς. Τα στοιχεία του C λέγονται µιγαδικοί αριθµοί και το C σύνολο των µιγαδικών αριθµών. Εποµένως:

ΑΛΓΕΒΡΑ ΤΗΣ Β ΤΑΞΗΣ. ηµχ = ηµθ χ=2κπ+θ ή χ=2κπ+π-θ, κ Z συνχ = συνθ χ=2κπ+θ ή χ=2κπ-θ, κ Z εφχ = εφθ χ=κπ+θ, κ Z σφχ = σφθ χ=κπ+θ, κ Z

ΣΑΜΑΡΑΣ ΚΩΝΣΤΑΝΤΙΝΟΣ ΚΩΣΤΑΚΗΣ ΛΑΜΠΡΟΣ

Ορισμος Μια ακολουθια ονομαζεται αριθμητικη προοδος, αν και μονο αν, υπαρχει ω, τετοιος ωστε για κάθε ν να ισχυει: α. ν ν

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ ΕΠΑΝΑΛΗΠΤΙΚΕΣ Γ ΗΜΕΡΗΣΙΩΝ

α β α < β ν θετικός ακέραιος.

1.7 OΡΙΑ ΣΥΝΑΡΤΗΣΗΣ ΣΤΟ ΑΠΕΙΡΟ

ΜΑΘΗΜΑΤΙΚΑ B ΛΥΚΕΙΟΥ

Επανάληψη Τελευταίας Στιγμής

Παρατηρήσεις. Παρατήρηση Ισχύουν οι επόµενες ισότητες: Προσέχουµε: Αν α 0και ν θετικός ακέραιος τότε η µη αρνητική ρίζα της εξίσωσης.

AΠΟΔΕΙΞΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΚΩΝ Γ ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗΣ ΔΙΑΦΟΡΙΚΟΣ ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ

Ο μαθητής που έχει μελετήσει το κεφάλαιο αυτό θα πρέπει:

Λύσεις των θεμάτων ΤΕΤΑΡΤΗ 20 MAΪΟΥ 2015 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

Τα παρακάτω είναι τα κυριότερα θεωρήματα και ορισμοί από το σχολικό βιβλίο ακολουθούμενα από δικά μας σχόλια. 1 ο ΠΡΩΤΟ.

ν παραγοντες 1 ( ) β β α β α α α γ + β γ = α+ γ γ

Α2. Πότε μία συνάρτηση f λέγεται γνησίως φθίνουσα σε ένα διάστημα του πεδίου ορισμού της; Μονάδες 3

ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ. 1. y - -2 x + π. f (x) = 3x, x = 1. π y = 9 x - 6. δ. f (x) = x, x0. 4. y = -9 x + 5. (2000-1ο)

Μαθηματικά για την Α τάξη του Λυκείου

ΘΕΩΡΙΑ ΚΕΦΑΛΑΙΟ 1 Ο. Παράγραφος 1.1. Ποιο πείραμα λέγεται αιτιοκρατικό και ποιο πείραμα τύχης;

ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ. 1. y - -2 x + π. f (x) = 3x, x = 1. π y = 9 x - 6. δ. f (x) = x, x0. 4. y = -9 x + 5. (2000-1ο) ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ

ταυτότητες διάταξη α 2 +β 2 = (α+β) 2-2αβ (α+β) 2 = α 2 +β 2 +2αβ (α+β) 3 = α 3 +β 3 +3α 2 β+3αβ 2 =α 3 +β 3 +3αβ(α+β) α 3 +β 3 = (α+β) 3-3αβ(α+β)

ΕΡΩΤΗΣΕΙΣ ΚΑΤΑΝΟΗΣΗΣ στο ΔΙΑΦΟΡΙΚΟ ΛΟΓΙΣΜΟ

( ) = ( ) για κάθε. Θέμα Δ. x 2. Δίνονται οι συναρτήσεις f x

1.5 ΙΔΙΟΤΗΤΕΣ ΤΩΝ ΟΡΙΩΝ

ΥΠΟΥΡΓΕΙΟ ΕΘΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΠΑΙΔΑΓΩΓΙΚΟ ΙΝΣΤΙΤΟΥΤΟ ΜΑΘΗΜΑΤΙΚΑ. Β Τάξη Ενιαίου Λυκείου Θετική Κατεύθυνση ΛΥΣΕΙΣ ΤΩΝ ΑΣΚΗΣΕΩΝ

Ορισμός : Ακολουθία ονομάζεται κάθε συνάρτηση με πεδίο ορισμού το σύνολο Ν* των θετικών ακεραίων και παίρνει τιμές στο R. a: Ν* R

Ε 1. Διαφορικός λογισμός (Κανόνες παραγώγισης)

Εργαστήριο Άλγεβρας Συμπληρωματικές Προτάσεις και Αποδείξεις στην Άλγεβρα της Α Λυκείου

ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 4: ΕΜΒΑΔΟΝ ΕΠΙΠΕΔΟΥ ΧΩΡΙΟΥ

3. Να δειχτει οτι α α. Ποτε ισχυει το ισον;

Μαθηματικά Προσανατολισμού Γ Λυκείου ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ. συνάρτηση φ: α,β. Ορισμός Έστω f συνάρτηση ορισμένη στο., αν. κάθε xo.

Κεφάλαιο 1ο 55 Να χαρακτηρίσετε τις παρακάτω προτάσεις με (Σ) αν είναι σωστές ή με (Λ) αν είναι λανθασμένες:

1.1 Η ΕΝΝΟΙΑ ΤΟΥ ΔΙΑΝΥΣΜΑΤΟΣ 1.2 ΠΡΟΣΘΕΣΗ ΚΑΙ ΑΦΑΙΡΕΣΗ ΔΙΑΝΥΣΜΑΤΩΝ. . Άρα, το τετράπλευρο ΑΒΓΔ είναι παραλληλόγραμμο.

[ ] ( ) [( ) ] ( ) υ

1o ΛΥΚΕΙΟ ΠΕΤΡΟΥΠΟΛΗΣ ΠΟΛΥΩΝΥΜΑ ΠΟΛΥΩΝΥΜΑ ΟΡΙΣΜΟΣ ( ) Αριθµητική τιµή του πολυώνυµου ( ) Το πολυώνυµο ( ) = = =.

ΘΕΩΡΗΤΙΚΑ ΘΕΜΑΤΑ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΩΡΙΑ ΕΡΩΤΗΣΕΙΣ ΕΠΙΣΗΜΑΝΣΕΙΣ ΤΟ Α ΘΕΜΑ ΠΑΝΕΛΛΑΔΙΚΩΝ ΤΥΠΟΛΟΓΙΑ.

ΘΕΜΑΤΑ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ

Θεωρήματα, Προτάσεις, Εφαρμογές

ΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΡΩΤΗΣΕΙΣ ΚΑΤΑΝΟΗΣΗΣ I

Μαθηµατικά Ιβ Σελίδα 1 από 7

Ίσα Τρίγωνα όχι, Ψευδοΐσα ναι

ΓΕΝΙΚΕΥΜΕΝΑ ΟΛΟΚΛΗΡΩΜΑΤΑ - ΣΕΙΡΕΣ

ΜΑΘΗΜΑΤΙΚΑ Θετικής - Τεχνολογικής κατεύθυνσης Γ Λυκείου

β ] και συνεχής στο ( a, β ], τότε η f παίρνει πάντοτε στο [ a,

ΑΠΑΝΤΗΣΕΙΣ ΣΤΑ ΘΕΜΑΤΑ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 2009.

ΚΕΦΑΛΑΙΟ 4ο: ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 3: Η ΣΥΝΑΡΤΗΣΗ. F(x) = f(t)dt Μέρος Β του σχολικού βιβλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β

ΑΠΑΝΤΗΣΕΙΣ. (Μονάδες 7) α) Να παραγοντοποιήσετε την παράσταση 5x 3 20x. (Μονάδες 3) β) Να λύσετε την εξίσωση 7x 3 = 2(10x + x 3 ) (Μονάδες 6,5)

ΜΑΘΗΜΑΤΙΚΑ. Γ' Τάξης Γενικού Λυκείου Θετική και Τεχνολογική Κατεύθυνση

ΤΥΠΟΛΟΓΙΟ ΜΑΘΗΜΑΤΙΚΩΝ

Η έννοια του διανύσματος

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΚΡΙΤΗΡΙΟ ΑΞΙΟΛΟΓΗΣΗΣ

ΠΡΟΤΥΠΟ ΛΥΚΕΙΟ ΑΝΑΒΡΥΤΩΝ ΜΑΘΗΜΑΤΑ ΓΙΑ ΤΟΝ ΙΑΓΩΝΙΣΜΟ «ΘΑΛΗΣ» TAΞΗ Α ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ ΥΝΑΜΕΙΣ - ΤΑΥΤΟΤΗΤΕΣ ΠΑΡΑΓΟΝΤΟΠΟΙΗΣΗ (Μέρος πρώτο) ΒΑΣΙΚΗ ΘΕΩΡΙΑ

ΑΛΓΕΒΡΑ. Για να βρούµε την δύναµη i (όπου κ ακέραιος), διαιρούµε το κ µε το 4 και σύµφωνα µε την ταυτότητα της διαίρεσης ισχύει κ=4ρ+υ όπου ρ Ζ

ENA ΣΧΗΜΑ ΜΕ ΕΝΔΙΑΦΕΡΟΥΣΕΣ ΠΡΟΕΚΤΑΣΕΙΣ. Κόσυβας Γιώργος. 1ο Πειραματικό Γυμνάσιο Αθηνών

Η έννοια της συνάρτησης

ΜΑΘΗΜΑ ΤΟΠΙΚΑ ΑΚΡΟΤΑΤΑ ΣΥΝΑΡΤΗΣΗΣ Η

ΕΡΩΤΗΣΕΙΣ ΑΠΟ ΤΗΝ ΥΛΗ ΤΗΣ B ΤΑΞΗΣ

Transcript:

ΜΑΘΗΜΑΤΙΚΑ Γ Τάξης Ειίου Λυκείου Θετική & Τεχολογική Κτεύθυση

ΣΥΓΓΡΑΦΕΙΣ Αδρεδάκης Στυλιός Κτσργύρης Βσίλειος Μέτης Στέφος Μπρουχούτς Κω/ος Ππστυρίδης Στύρος Πολύζος Γεώργιος Κθηγητής Πεπιστημίου Αθηώ Κθηγητής Β/θμις Εκπίδευσης Κθηγητής Β/θμις Εκπίδευσης Κθηγητής Β/θμις Εκπίδευσης Κθηγητής Πεπιστημίου Αθηώ Κθηγητής Β/θμις Εκπίδευσης ΙΣΤΟΡΙΚΑ ΣΗΜΕΙΩΜΑΤΑ Θωμΐδης Ιωάης Κθηγητής Β/θμις Εκπίδευσης OMAΔΑ ΑΝΑΜΟΡΦΩΣΗΣ Αδρεδάκης Στυλιός Κτσργύρης Βσίλειος Μέτης Στέφος Μπρουχούτς Κω/ος Πολύζος Γεώργιος ΕΠΟΠΤΕΙΑ ΣΤΟ ΠΛΑΙΣΙΟ ΤΟΥ ΠΑΙΔΑΓΩΓΙΚΟΥ ΙΝΣΤΙΤΟΥΤΟΥ Αδμόπουλος Λεωίδς Επίτιμος Σύμβουλος του ΠΙ Δκτυλογράφηση: Σχήμτ: Γρδέρη Ρόζ Μπούτσικς Μιχάλης Με πόφση της ελληικής κυβερήσεως τ διδκτικά βιβλί του Δημοτικού, του Γυμσίου κι του Λυκείου τυπώοτι πό το Οργισμό Εκδόσεως Διδκτικώ Βιβλίω κι διέμοτι δωρεά

ΥΠΟΥΡΓΕΙΟ ΕΘΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΠΑΙΔΑΓΩΓΙΚΟ ΙΝΣΤΙΤΟΥΤΟ ΜΑΘΗΜΑΤΙΚΑ Γ Τάξης Ειίου Λυκείου Θετική & Τεχολογική Κτεύθυση Αδρεδάκης Στυλιός Κθηγητής Πεπιστημίου Αθηώ Κτσργύρης Βσίλειος Κθηγητής Β/θμις εκπίδευσης Μέτης Στέφος Κθηγητής Β/θμις εκπίδευσης Μπρουχούτς Κω/ος Κθηγητής Β/θμις εκπίδευσης Ππστυρίδης Στύρος Κθηγητής Πεπιστημίου Αθηώ Πολύζος Γεώργιος Κθηγητής Β/θμις εκπίδευσης ΟΡΓΑΝΙΣΜΟΣ ΕΚΔΟΣΕΩΣ ΔΙΔΑΚΤΙΚΩΝ ΒΙΒΛΙΩΝ ΑΘΗΝΑ 999

ΠΡΟΛΟΓΟΣ To βιβλίο που κρτάτε στ χέρι σς περιλμβάει τη ύλη τω Μθημτικώ, όπως προβλέπετι πό το πρόγρμμ σπουδώ της Θετικής Κτεύθυσης της Γ τάξης του Ειίου Λυκείου, του οποίου η εφρμογή ρχίζει πό το σχολικό έτος 999- Το βιβλίο υτό προήλθε πό μόρφωση του βιβλίου τω Μθημτικώ της ης κι της ης δέσμης της Γ τάξης του Γεικού Λυκείου κι ποτελείτι πό δύο μέρη To πρώτο μέρος, που φέρει το τίτλο ΑΛΓΕΒΡΑ, ποτελείτι πό δυο κεφάλι To πρώτο κεφάλιο ποτελεί μι εισγωγή στη Θεωρί τω Πιάκω, η ο- ποί μετξύ άλλω είι έ εργλείο γι τη μελέτη τω Γεωμετρικώ Μετσχημτισμώ κι τω Γρμμικώ Συστημάτω, τ οποί μελετώτι στο ίδιο κεφάλιο Το δεύτερο κεφάλιο εισάγει στους Μιγδικούς Αριθμούς, οι οποίοι είι προέκτση τω Πργμτικώ Αριθμώ Οι Μιγδικοί Αριθμοί κλύφθηκ τη περίοδο της Αγέησης στη προσπάθει επίλυσης εξισώσεω τρίτου βθμού Όμως, στους ιώες που κολούθησ ποδείχτηκε η μεγάλη σημσί τους γι πάρ πολλά προβλήμτ της μθημτικής επιστήμης κι τω εφρμογώ της Το κεφάλιο υτό έχει ληφθεί πό το βιβλίο τω Μθημτικώ Θετικής Κτεύθυσης Β τάξης Ειίου Λυκείου τω συγγρφέω: Αδμόπουλου Λ, Βισκδουράκη Β, Γβλά Δ, Πολύζου Γ κι Σβέρκου Α Tο δεύτερο μέρος, που φέρει το τίτλο ΑΝΑΛΥΣΗ, ποτελείτι πό τρί κεφάλι Το πρώτο κεφάλιο σημτοδοτεί έ έο ξεκίημ Είι το πέρσμ πό τις πεπερσμέες πράξεις στις «άπειρες διδικσίες» Τ σπέρμτ της έοις του ορίου υπάρχου σφλώς με πολύ σφή κι συγκεκριμέο τρόπο στ γρπτά του Αρχιμήδη Η άπτυξη, όμως, υτής της έοις έγιε στ χρόι της Αγέησης κι έκτοτε κτέχει κετρική θέση στο κόσμο τω μθημτικώ εοιώ Κτ ρχάς στο κεφάλιο υτό προυσιάζοτι βσικές κι ήδη γωστές στους μθητές - έοιες τω συρτήσεω, κθώς κι μερικές κόμη βσικές έοιες της Αάλυσης Στη συέχει εισάγετι η έοι του ορίου στο, η έοι του ορίου στο κι στο κι δίοτι οι πιο χρκτηριστικές ιδιότητές του Τέλος, δίετι η έοι της συέχεις μις συάρτησης κι προυσιάζοτι οι βσικότερες ιδιότητές της Στο δεύτερο κι τρίτο κεφάλιο προυσιάζοτι οι έοιες της πργώγου κι του ολοκληρώμτος τιστοίχως κι γίετι χρήση τω εοιώ υτώ σε πολλές εφρμογές Η πράγωγος κι το ολοκλήρωμ είι κτά κάποιο τρόπο οι

δύο διφορετικές όψεις του ίδιου ομίσμτος Σε μι έκφρσή τους είι η κλίση της εφπτομέης κι το εμβδό, σε άλλη η τχύτητ κι το μήκος της τροχιάς εός κιητού κτλ Αυτό το βιβλίο ως θρώπιο δημιούργημ δε είι τέλειο Ο μόος τρόπος γι έχουμε στ σχολεί μς ύστερ πό μερικά χρόι έ κλύτερο μέσο διδσκλίς είι ο ηφάλιος κι ελεύθερος διάλογος, το οποίο η επιστημοική πράδοση έχει κθιερώσει γι ιώες τώρ Γι υτό το λόγο η συγγρφική ο- μάδ με ιδιίτερη ικοποίηση θ δέχετι σχόλι κι πρτηρήσεις γι το βιβλίο πό οποιοδήποτε συάδελφο, μθητή ή άλλο πολίτη εδιφέρετι γι τ ζητήμτ της πιδείς Τ σχόλι κι οι πρτηρήσεις μπορού ποστέλλοτι στο Πιδγωγικό Ιστιτούτο, Μεσογείω 96, 5 Αγί Πρσκευή Μάρτιος 999 Οι Συγγρφείς

ΠΕΡΙΕΧΟΜΕΝΑ Α ΜΕΡΟΣ ΑΛΓΕΒΡΑ ΚΕΦΑΛΑΙΟ ο: Πίκες Γρμμικά Συστήμτ Σελ Η έοι του πίκ Πρόσθεση πιάκω - Πολλπλσισμός ριθμού με πίκ 6 Πολλπλσισμός πιάκω Γεωμετρικοί μετσχημτισμοί 7 5 Η έοι του γρμμικού συστήμτος 5 6 Επίλυση γρμμικού συστήμτος με τη μέθοδο πλοιφής του Gauss 5 7 Eπίλυση γρμμικού συστήμτος με τη μέθοδο τω οριζουσώ 6 ΚΕΦΑΛΑΙΟ ο: Μιγδικοί Αριθμοί Η Έοι του Μιγδικού Αριθμού 85 Πράξεις στο Σύολο τω Μιγδικώ 88 Μέτρο Μιγδικού Αριθμού 97 Τριγωομετρική Μορφή Μιγδικού 5 Πολυωυμικές Εξισώσεις στο Β ΜΕΡΟΣ ΑΝΑΛΥΣΗ ΚΕΦΑΛΑΙΟ ο: Όριο - συέχει συάρτησης Σελ Πργμτικοί Αριθμοί 9 Συρτήσεις Μοότοες συρτήσεις - Ατίστροφη συάρτηση 8 Όριο συάρτησης στο 57 5 Ιδιότητες τω ορίω 65 6 Μη πεπερσμέο όριο στο 76 7 Όριο συάρτησης στο άπειρο 8 8 Συέχει συάρτησης 88

ΚΕΦΑΛΑΙΟ ο: Διφορικός Λογισμός Η έοι της πργώγου 9 Πργωγίσιμες συρτήσεις - Πράγωγος συάρτήση Κόες πργώγισης 9 Ρυθμός μετβολής 5 Θεώρημ Μέσης Τιμής Διφορικού Λογισμού 5 6 Συέπειες του Θεωρήμτος Μέσης Τιμής 5 7 Τοπικά κρόττ συάρτησης 58 8 Κυρτότητ - σημεί κμπής συάρτησης 7 9 Ασύμπτωτες - Κόες De L Hospital 79 Μελέτη κι χάρξη της γρφικής πράστσης μις συάρτησης 87 ΚΕΦΑΛΑΙΟ ο: Ολοκληρωτικός Λογισμός Αόριστο ολοκλήρωμ Μέθοδοι ολοκλήρωσης 9 Διφορικές εξισώσεις 8 Ορισμέο ολοκλήρωμ 6 5 Η συάρτηση F f t dt 6 Θεώρημ Μέσης Τιμής Ολοκληρωτικού Λογισμού 7 Εμβδό επιπέδου χωρίου ΥΠΟΔΕΙΞΕΙΣ - ΑΠΑΝΤΗΣΕΙΣ ΑΣΚΗΣΕΩΝ 65

Α ΜΕΡΟΣ ΑΛΓΕΒΡΑ

ΚΕΦΑΛΑΙΟ ο ΠΙΝΑΚΕΣ - ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ Πίκες κι Γρμμικά Συστήμτ

ΠΙΝΑΚΕΣ - ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ Η ΕΝΝΟΙΑ ΤΟΥ ΠΙΝΑΚΑ Γεικά Τέσσερ εργοστάσι πργωγής υτοκιήτω A, B, Γ κι Δ δίου γι το τελευτίο μοτέλο τους ως προς πέτε τεχικά χρκτηριστικά τις εξής πληροφορίες: Εργοστάσιο Α: Ισχύς 97 DIN, χρόος γι τη μετβολή της τχύτητς πό - km/h,7 sec, τελική τχύτητ 8 km/h, κτάλωση στη πόλη ά km 9,5 lit, φορολογήσιμοι ίπποι Εργοστάσιο Β: Ισχύς DIN, χρόος γι τη μετβολή της τχύτητς πό - km/h,9 sec, τελική τχύτητ 9 km/h, κτάλωση στη πόλη ά km lit, φορολογήσιμοι ίπποι Εργοστάσιο Γ: Ισχύς 5 DIN, χρόος γι τη μετβολή της τχύτητς πό - km/h 7,9 sec, τελική τχύτητ km/h, κτάλωση στη πόλη ά km, 7, lit, φορολογήσιμοι ίπποι 6 Εργοστάσιο Δ: Ισχύς 7 DIN, χρόος γι τη μετβολή της τχύτητς πό - km/h 7,6 sec, τελική τχύτητ 5 km/h, κτάλωση στη πόλη ά km,5 lit, φορολογήσιμοι ίπποι Τις πληροφορίες υτές μπορούμε τις προυσιάσουμε πιο οργωμέ ως ε- ξής: Εργοστάσιο Τεχικά Χρκτηρ Ισχύς DIN Α 97 Β Γ 5 Δ 7 Χρόος γι τη μετβολή της τχύτητς πό - km/h,7,9 7,9 7,6 Τελική Τχύτητ km/h 8 9 5 Κτάλωση στη πόλη lit ά km 9,5 7,,5 Φορολογήσι μοι ίπποι 6

ΠΙΝΑΚΕΣ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ Τ ριθμητικά δεδομέ της ορθογώις υτής διάτξης, κλεισμέ μέσ σε γκύλες, 97 5 7,7,9 7,9 7,6 8 9 5 λέμε ότι σχημτίζου έ πίκ με γρμμές κι 5 στήλες ή, συτομότερ, έ πίκ τύπου 5 ή κόμ έ 5 πίκ Έστω το σύστημ 5 9,5 7,,5 z ω 6 z ω 7z ω Το σύστημ υτό θ μπορούσε πρστθεί ως εξής: Συτελεστής Εξίσωση η η η του του του z του ω στθ όρος 5 - - -7 - Έτσι οι συτελεστές τω γώστω σχημτίζου το πίκ 5 7 κι οι συτελεστές τω γώστω μζί με τους στθερούς όρους το 5 πίκ 5 Γεικά έχουμε το κόλουθο ορισμό: ΟΡΙΣΜΟΣ 7 Μι διάτξη γρμμές κι στήλες, λέγετι πίκς τύπου μ ή πλούστερ μ πίκς μ το πλήθος ριθμώ σε μορφή ορθογωίου σχήμτος με μ

ΠΙΝΑΚΕΣ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ Τους πίκες τους συμβολίζουμε συήθως με κεφλί γράμμτ A, B, Γ κτλ Οι ριθμοί με τους οποίους σχημτίζουμε έ πίκ λέγοτι στοιχεί του πίκ Το στοιχείο εός μ πίκ Α που ήκει στη i-γρμμή κι j-στήλη συμβολίζετι με ij Έτσι ο μ πίκς Α γράφετι: i μ i μ j στήλη j j ή συτομογρφικά ], i μ, j [ ij Γι πράδειγμ, ο πίκς ] με [ ij ij μj ij i i γρμμή μ i j έχει στοιχεί,, κι Επομέως, ο πίκς υτός γράφετι Η ισότητ μετξύ τω πιάκω ορίζετι ως εξής: ΟΡΙΣΜΟΣ Δυο πίκες A, B λέμε ότι είι ίσοι, ότ έχου το ίδιο ριθμό γρμμώ, το ίδιο ριθμό στηλώ δηλδή είι του ίδιου τύπου κι τ τίστοιχ στοιχεί τους είι ίσ Γι δηλώσουμε ότι δύο πίκες είι ίσοι γράφουμε A B, Από το ορισμό υτό προκύπτει ότι δύο πίκες διφορετικού τύπου δε μπορεί είι ίσοι Α ές πίκς έχει το ίδιο ριθμό γρμμώ κι στηλώ, δηλδή είι τύπου * γι κάποιο, τότε ο πίκς υτός λέγετι τετργωικός πίκς Τ στοιχεί,,, εός τετργωικού πίκ Α, λέμε ότι σχημτίζου τη κύρι διγώιο του Α Α τ στοιχεί εός τετργωικού πίκ Α που δε βρίσκοτι στη κύρι διγώιο είι όλ, τότε ο Α λέγετι διγώιος πίκς Γι πράδειγμ, οι πίκες: είι διγώιοι πίκες,, 6

ΠΙΝΑΚΕΣ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ Ές πίκς που έχει μί μόο γρμμή, όπως ο λέγετι πίκς 7 γρμμή, εώ ές πίκς που έχει μί μόο στήλη, όπως ο λέγετι πίκς στήλη Ές πίκς που έχει έ μόο στοιχείο, όπως ο [ ] λέγετι πίκς στοιχείο Τέλος, ές τετργωικός πίκς λέγετι τριγωικός άω, ότ όλ τ στοιχεί του που βρίσκοτι κάτω πό τη κύρι διγώιο είι μηδεικά κι τριγωικός κάτω, ότ όλ τ στοιχεί του που βρίσκοτι πάω πό τη κύρι διγώιο είι μηδεικά Γι πράδειγμ, οι πίκες 6 5, είι τριγωικοί άω, εώ οι πίκες 6 5 είι τριγωικοί κάτω 7, 5 6 5 ΕΦΑΡΜΟΓΕΣ Το διπλό σχήμ πριστάει το οδικό δίκτυο που συδέει τις πόλεις Α, Β, Γ, Δ κι Ε Ν πρστθεί το δίκτυο υτό με έ πίκ του οποίου κάθε στοιχείο φερώει το πλήθος τω δυτώ τρόπω μετάβσης πό πόλη σε πόλη, όχι οπωσδήποτε διφορετική πόλη, φού προηγουμέως περάσουμε πό μί μόο πόλη, πχ ΑΒΑ κτλ ΛΥΣΗ Από τη πόλη Α στη Α υπάρχου τρόποι: ABA, AΔ Α, AEA, πό τη Α στη Β δε υπάρχει τρόπος, φού πρέπει περάσουμε πό μί μόο πόλη, πό τη Α στη Γ υπάρχου τρόποι AΔ Γ, ΑΒΓ, πό τη Α στη Δ υπάρχει ές τρόπος ΑΕΔ, πό τη Α στη Ε υπάρχει τρόπος ΑΔΕ κτλ Ε A Δ B Γ

ΠΙΝΑΚΕΣ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ 5 Έτσι το οδικό δίκτυο μπορεί πρστθεί με το πίκ διπλής εισόδου ΣΤΗΝ ΑΠΟ Α Β Γ Δ Ε Α Β Γ Δ Ε ή πλά με το 5 5 πίκ Ν εξετστεί υπάρχου τιμές τω, γι τις οποίες ισχύου: 5 i ii ΛΥΣΗ i H ισότητ ισχύει, κι μόο συληθεύου οι ισότητες Η τρίτη ισότητ ληθεύει γι 5 6 7 7 6 6 5 5 6 5 5 6 5 πρπάω Η τιμή υτή του επληθεύει κι τις άλλες δύο ισότητες Επομέως, οι ισότητες συληθεύου γι ii Η ισότητ ισχύει, κι μόο συληθεύου οι Η δεύτερη κι τρίτη ισότητ γράφοτι κι προφώς δε συληθεύου γι κμί τιμή τω κι υπάρχου τιμές τω 7 7 6 6 5 ισότητες 7 7 6 6 5 6 Επομέως, δε, γι τις οποίες οι πίκες υτοί είι ίσοι

6 ΠΙΝΑΚΕΣ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΑΣΚΗΣΕΙΣ Α ΟΜΑΔΑΣ Ο διπλός πίκς δείχει ΟΜΑΔΕΣ γι τρεις ομάδες ποδοσφίρου τους γώες Α, τις ίκες Ν, τις ΝΙΚΗ ήττες Η, τις ισοπλίες Ι, τ ΘΥΕΛΛΑ τέρμτ Ε που πέτυχε η ομάδ, τ τέρμτ Δ που δέχτηκε ΔΑΦΝΗ η ομάδ κι τους βθμούς Β που έχει Α A ] είι ο πίκς υτός, τότε βρείτε: [ ij i Ποιος είι ο τύπος του πίκ ii Ποιες πληροφορίες μς δίου τ στοιχεί, κι A N 6 7 H I 5 E 5, 7 Δ 6 B 5 7 Δίετι συτομογρφικά ο πίκς A ] όπου Ν πρστήσετε το πίκ υτό, φού βρείτε τ στοιχεί του [ ij i j ij Ν βρείτε τ, γι τ οποί ισχύει: i ii Γι ποι τιμή του θετικού ριθμού ο πίκς είι διγώιος ln ln ln 5 Ν βρεθού οι τιμές τω [,π γι τις οποίες ισχύει: ημ εφ ημ συ ΠΡΟΣΘΕΣΗ ΠΙΝΑΚΩΝ - ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΑΡΙΘΜΟΥ ΜΕ ΠΙΝΑΚΑ Πρόσθεση πιάκω Μί ετιρεί πουλάει τηλεοράσεις, ψυγεί, κουζίες κι πλυτήρι σε Αθή, Θεσσλοίκη κι Πάτρ Οι πωλήσεις τους μήες Σεπτέμβριο κι Οκτώβριο προυσίσ τη εξής κίηση:

ΠΙΝΑΚΕΣ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ 7 Σεπτέμβριος Οκτώβριος Aθή Θεσ/κη Πάτρ Aθή Θεσ/κη Πάτρ Τηλεοράσεις 8 6 8 5 Ψυγεί 9 5 Κουζίες 9 8 Πλυτήρι 7 6 8 Επομέως, τους δυο υτούς μήες οι συολικές πωλήσεις της ετιρείς ήτ οι εξής: Τηλεοράσεις Ψυγεί Κουζίες Πλυτήρι Αθή 8 5 9 9 7 Θεσ/ίκη 6 8 6 Πάτρ 5 8 8 Α τώρ θεωρήσουμε τους πίκες τω πρπάω πωλήσεω έχουμε: Γι το Σεπτέμβριο: 8 A 9 6 9 8 8 5 Γι το Οκτώβριο: 5 B 7 6 8 κι γι τις συολικές πωλήσεις: 8 6 8 5 8 8 5 9 7 Γ 9 8 8 7 6 8 8 8 O πίκς Γ λέγετι άθροισμ τω πιάκω Α κι Β κι συμβολίζετι με δηλδή Γ A B Γεικά έχουμε το κόλουθο ορισμό: A B, ΟΡΙΣΜΟΣ Άθροισμ δυο μ πιάκω A [ ] κι B β ] λέγετι ο μ πίκς ij του οποίου κάθε στοιχείο είι το άθρο ισμ τω τίστοιχω στοιχείω τω Α κι Β Ο πίκς υτό ς συμβολίζετι με A B Δηλδή, A B ij β [ ij ] [ ij

8 ΠΙΝΑΚΕΣ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ Δε ορίζουμε άθροισμ πιάκω διφορετικού τύπου 9 7 Γι πράδειγμ, οι πίκες A 8 5 κι B 9 6 που είι 5 7 6 του ίδιου τύπου, με βάση το πρπάω ορισμό, μπορού προστεθού κι το άθροισμά τους είι 9 7 9 A B 8 5 9 6 8, 5 7 6 εώ οι πίκες Γ κι Δ που δε είι του ίδιου τύπου δε μπορού προστεθού 5, Η πράξη με τη οποί βρίσκουμε το άθροισμ δύο πιάκω λέγετι π ρ ό σ θ ε σ η π ι ά κ ω Ιδιότητες της πρόσθεσης τω πιάκω Η πρόσθεση τω πιάκω έχει ιδιότητες άλογες με τη πρόσθεση τω πργμτικώ ριθμώ Συγκεκριμέ: Α A, B, Γ είι μ πίκες, τότε A B B A τιμετθετική A B Γ A B Γ προσετιριστική Α είι ο μ πίκς που όλ τ στοιχεί του είι μηδέ, τότε γι κάθε μ πίκ Α ισχύει A A A Ο πίκς λέγετι μηδεικός πίκς Γι πράδειγμ, οι πίκες, είι μηδεικοί Α με A συμβολίσουμε το πίκ του οποίου όλ τ στοιχεί είι τίθετ τω τίστοιχω στοιχείω εός πίκ Α, τότε ισχύει A A A A Ο πίκς A λέγετι τίθετος του πίκ Α

ΠΙΝΑΚΕΣ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ 9 6 Γι πράδειγμ, ο τίθετος του πίκ είι ο πίκς 7 6 7 Η προσετιριστική ιδιότητ μς επιτρέπει γράφουμε A B Γ γι κθέ πό τ ίσ θροίσμτ A B Γ, A B Γ Ομοίως, A, B, Γ,Δ είι πίκες του ίδιου τύπου, τότε έχουμε: [ A B Γ ] Δ A B Γ Δ [ A B Γ] Δ A [ B Γ Δ] A [ B Γ Δ] [ B A Γ] Δ κτλ κι επομέως, μπορούμε γράφουμε A B Γ Δ γι κθέ πό τ θροίσμτ υτά Γεικά, επειδή ισχύει η τιμετθετική κι η προσετιριστική ιδιότητ, μπορεί ποδειχθεί ότι το άθροισμ τριώ ή περισσοτέρω πιάκω A, A,, A είι το ίδιο κτά οποιοδήποτε τρόπο κι εκτελεστεί η πρόσθε- ση κι συμβολίζετι με A A A Αφίρεση πιάκω Όπως κι στη περίπτωση τω πργμτικώ ριθμώ, έτσι κι στους πίκες η φίρεση ορίζετι με τη βοήθει της πρόσθεσης Συγκεκριμέ, A, B είι δύο μ πίκες, τότε η διφορά A B ορίζετι ως εξής: A B A B Γι πράδειγμ, A κι 6 B, τότε A B 7 6 6 6 Δηλδή, ο πίκς A B προκύπτει με φίρεση τω στοιχείω του Β πό τ τίστοιχ στοιχεί του Α Από τους πρπάω ορισμούς της πρόσθεσης κι της φίρεσης προκύπτει ότι: Πράγμτι: X B A X A B Α X B A, τότε X B B A B, οπότε X A B, εώ Α X A B, τότε X B A B B, οπότε X B A Πολλπλσισμός ριθμού με πίκ Ο πρκάτω πίκς Α περιγράφει τις τιμές πώλησης σε δρχμές τριώ ηλε- ειδώ μις βιομηχίς σε δύο υποκτστήμτ: κτρικώ

ΠΙΝΑΚΕΣ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ Tηλεοράσεις Βίτεο Στερεοφωικά 6 8 A 5 7 ο υποκτάστημ ο υποκτάστημ Α κτά τη περίοδο τω εκπτώσεω, ο βιομήχος προτίθετι κάει έκπτωση % στ προϊότ του, τότε πρέπει διμορφώσει τις έες τιμές στο 8% τω προηγουμέω Οι έες τιμές πώλησης θ προκύψου πολλπλσιάσουμε τις πλιές τιμές με,8, όπως φίετι στο πρκάτω πίκ:,8 6,8,8 8 8 88 B,8 5,8,8 7 8 6 Ο πίκς Β λέγετι γιόμεο του ριθμού,8 με το πίκ Α κι συμβολίζετι με,8 A, δηλδή είι B, 8A Γεικά, έχουμε το κόλουθο ορισμό: OΡΙΣΜΟΣ Γιόμεο εός πργμτικού ριθμού λ με έ πίκ A [ ij ], λέγετι ο πίκς που προκύπτει πολλπλσιάσουμε κάθε στοιχείο του Α με λ Ο πίκς υτός συμβολίζετι με λ A ή λa Δηλδή, λ A Η πράξη με τη οποί βρίσκουμε το γιόμεο ριθμού με πίκ λέγετι π ο λ- λ π λ σ ι σ μ ό ς ρ ι θ μ ο ύ μ ε π ί κ Γι πράδειγμ, το γιόμεο του ριθμού λ με το πίκ A 5 είι ο πίκς: [ λij 5 5 6 5 A 6 ] Iδιότητες του πολλπλσισμού ριθμού με πίκ Α A, B είι μ πίκες κι κ, λ πργμτικοί ριθμοί, τότε ισχύου οι πρκάτω ιδιότητες, που είι άμεση συέπει του ορισμού: Επιπλέο, ισχύει η ισοδυμί: κ λ A κα λα λ A B λ λ κ λα κλ A A A λa λ ή A

ΠΙΝΑΚΕΣ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΕΦΑΡΜΟΓH βρεθεί ο πίκς Χ γι το οποίο ισχύει: ε π ί κ ε ς ΛΥΣΗ Έχουμε N 5 7 5 X Mι τέτοι ισότητ είι μι ε ξ ί σ ω σ η μ 5 7 5 X 5 X 7 5 7 7 5 5 5 X X 7 7 7 7 X X ΑΣΚΗΣΕΙΣ Α ΟΜΑΔΑΣ Σε κθεμιά πό τις πρ ις, βρείτε το άθροισμ κάτω περιπτώσε B A A B κι τη διφορά, εφόσο φυσικά ορίζοτι: i 5 A, 5 6 B ii 8 7 6 5 9 8 7 6 A, 9 8 7 6 8 7 6 5 B

ΠΙΝΑΚΕΣ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ iii ] 6 5 [ A, ] 6 5 [ B 6 5 A, 5 B iv v Α είι κι είτε μ λ κ ω γ β A, μ λ κ ω γ β B A, το άθροισ 5 A, A A A 5 6 A A, A βρ μ βρείτε τ ω,, Ν γι τ οποί ισχύει η ισότητ: πράξ i ii 7 6 5 8 9 5 ω Ν κάετε τις εις: 5 6 5 6 5 iii 5 Α κι βρείτε τους πίκες: λ λ λ λ λ λ λ A 8 B, 6 iv B A A ii iii A A B 5 i 6 Ν λύσετε ισώσεις: τις εξ i ii 7 Ν ποδείξετε ότι το άθροισμ 5 7 5 X 5 7 6 X

ΠΙΝΑΚΕΣ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ συ συ ημ είι ές διγώιος πίκς ημ ημ συ ημ συ συ ημ β β 8 Α X κι Y βρείτε τις τιμές τω γ δ γ,,β,γ,δ δ ώστε ισχύει: 8 X 5Y B ΟΜΑΔΑΣ Ν βρείτε τ, γι τ οποί ισχύει: i ii N βρείτε τους πίκες X, Y γι τους οποίους ισχύει: X Y κι 5X Y Α A κι 5 B, λύσετε τη εξίσωση X B X A 5B Μι βιομηχί που κτσκευάζει τηλεοράσεις, βίτεο κι κάμερες έχει δύο εργοστάσι πργωγής Π κι Π Το κόστος πργωγής ά συσκευή δίετι σε χιλιάδες δρχ στους πρκάτω πίκες: Τηλ Βιτ Κμ Τηλ Βιτ Κμ 8 Υλικά 8 Υλικά Π 5 6 Π Εργσί 8 8 Εργσί Ν βρείτε το πίκ Π Π κι εξηγήσετε τι εκφράζει 5 Μι βιομηχί έχει τέσσερ εργοστάσι πργωγής Π, Π, Π κι Π, κθέ πό τ οποί πράγει δύο προϊότ E κι E Το ημεεπίπεδο πργωγής σε μοάδες προϊότω δίετι στο επόμε- ο ρήσιο πίκ:

ΠΙΝΑΚΕΣ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ Π Π Π Π 8 6 E A 8 E i N βρείτε το ημερήσιο επίπεδο πργωγής, υτή υξηθεί κτά % ii Ν βρείτε το σύολο της πργωγής ά προϊό σε 5 μήες, υποτ εθεί ότι τ εργοστάσι δούλ εψ μήες με το προηγούμεο επίπεδο κι μήες με το έο επίπεδο πργωγής μής = μέρες ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΠΙΝΑΚΩΝ Ορισμός του γιομέου δύο πιάκω Ας υποθέσουμε ότι γι τη κτσκευή δύο ειδώ γλυκισμάτω Γ κι Γ χρειζόμστε τ υλικά σε kg που φίοτι στο πρκάτω πίκ: Αλεύρι Ζάχρη Βούτυρο,,6, Γ A Γ,,8, γλύκισμ γλύκισμ Έστω επίσης ότι το κόστος σε δρχ τω υλικώ υτώ ά κιλό, γι τ έτη 99 κι 99, είι όπως δείχει ο πρκάτω πίκς: 99 99 6 8 λεύρι B 7 ζάχρη 9 βούτυρο Γι βρούμε το κόστος σε δρχμές τω υλικώ του γλυκίσμτος, πολλ- πλσιάζο υμε τις ποσότητες τω υλικώ με τις τίστοιχες τιμές κι προσθέτουμε τ γιόμε υτά Δηλδή το κόστος του Γ το 99 ήτ, 6,6 7, 9 56 Η πρπάω διδικσί περιγράφετι με τη βοήθει τω πιάκω ως εξής: Γ

ΠΙΝΑΚΕΣ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ 5 6 [,,6,] 7 [, 6,6 7, 9] [56] 9 O πίκς [56] λέγετι γιόμεο της πρώτης γρμμής του Α επί τη πρώτη στήλη του Β Αλόγως, το κόστος του Γ το 99 ήτ, 8,6, 696 Δηλδή πριστάετι με το γιόμεο της πρώτης γρμμής του Α επί τη δεύτερη στήλη του Β 8 [,,6,] [696] Ομοίως, το κόστος του Γ το 99 ήτ:, 6,8 7, 9 7 ή 6 [,,8,] 7 [7], 9 εώ το 99 ήτ: Ο πίκς 56 Γ 7, 8,8, 89 ή 8 [,,8,] [89] 696 89 δείχει το κόστος τω δύο γλυκισμάτω κτά τ έτη 99 κι 99 Ο πίκς Γ που προκύπτει με το πιο πάω τρόπο λέγετι γιόμεο του πίκ Α με το πίκ Β κι συμβολίζετι με A B ή AB, δηλδή 6 8,,6, 56 696 Γ 7,,8, 7 89 9 Γεικά έχουμε το κόλουθο ορισμό: OΡΙΣΜΟΣ

ΠΙΝΑΚΕΣ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ 6 Α είι ές ] [ ik A μ πίκς κι ] [ kj β B είι ές ρ πίκς, τότε ορίζουμε ως γιόμεο του πίκ Α με το πίκ Β κι το συμβολίζουμε με B A ή με ΑΒ το ρ μ πίκ, του οποίου κάθε στοιχείο είι το ά- γ ij θροισμ τω γιομέω τω στοιχείω της -γρμμής του Α με τ τίστοιi χ στοιχεί της -στήλης του Β Δηλδή, j j i j i j i ij β β β γ Σχημτικά -στήλη j μρ μj μ μ iρ ij i i ρ j ρ j ρ j ρ j ρ j μ μ μ i i i γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ β β β β β β β β β β β β i γρμμή Γι πράδειγμ, το γιόμεο βρίσκετι ως εξής: 5, γ γ κι 6 5 9 5 γ γ Επομέως, 6 9 5 Τοίζετι ότι το γιόμεο ΑΒ ορίζετι ότ ο ριθμός τω στηλώ του πίκ Α είι ίσος με το ριθμό τω γρμμώ του πίκ Β Σχημτικά: ρ μ ρ μ AB Β A, Γι πράδειγμ,, κι, τότε, σύμφω με το πρπάω ορισμό, ορίζοτι τ γιόμε κι είι A B 5 Γ AΓ BA AB,,

ΠΙΝΑΚΕΣ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ 7, 8 7 AB κι 6 6 9 BA, 8 6 8 5 5 AΓ εώ δε ορίζοτι τ γιόμε κι ΓΒ BΓ, ΓΑ Ιδιότητες του πολλπλσισμού τω πιάκω Α είι πργμτικοί ριθμοί κι είι πίκες, τότε ισχύου οι πρκάτω ιδιότητες με τη προϋπόθεση οτι ορίζοτι οι πράξεις που σημειώοτι μ λ, B A, Γ AB BΓ A προσετιριστική κι ΑΓ AB Γ Β Α ΓΑ BA A Γ Β επιμεριστική AB λμ μb λa Α με συμβολίσουμε το I διγώιο πίκ του οποίου κάθε στοιχείο της κυρίς διγωίου είι ίσο με, τότε γι κάθε τετργωικό πίκ Α ισχύει: A A I AI O πίκς υτός λέγετι μοδιίος πίκς Γι πράδειγμ, οι πίκες, είι μοδιίοι I I Το πίκ θ το συμβολίζουμε πλούστερ με Ι, ότ είι προφής ο τύπος του I Α τώρ Α είι ές μ πίκς, τότε ισχύου ΑΙ A κι I μ A A Γι πράδειγμ

8 ΠΙΝΑΚΕΣ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ 5 6 5 6 κι 5 6 Η προσετιριστική ιδιότητ μς επιτρέπει γράφουμε ABΓ γι κθέ πό τ ίσ γιόμε ABΓ, AB Γ Ομοίως, Α,Β,Γ,Δ είι πίκες τέτοιοι, ώστε ορίζοτι τ γιόμε ΑΒ, ΒΓ, ΓΔ τότε έχουμε 5 6 [ AB Γ] Δ AB ΓΔ A[ B ΓΔ] A[ ΒΓ Δ] [ A BΓ] Δ κι μπορούμε γράφουμε ΑΒΓΔ γι κθέ πό τ γιόμε υτά Γεικά, επειδή ισχύει η προσετιριστική ιδιότητ, μπορεί ποδειχτεί ότι ότ πολλπλσιάζουμε έ ριθμό πιάκω A, A,, A το γιόμεο θ είι το ίδιο κτά οποιοδήποτε τρόπο κι εκτελεστεί ο πολλπλσισμός, χωρίς ό- μως λλάξει η σειρά τω πργότω κι συμβολίζετι με A A Α ο Α είι ές τετργωικός πίκς, τότε ορίζοτι τ γιόμε ΑΑ, ΑΑΑ, ΑΑΑΑ, κτλ κι τ συμβολίζουμε με μορφή δυάμεω ως εξής: A, A, A,, - τιστοίχως Ορίζουμε επίσης A A Α p, q είι θετικοί κέριοι, κι κ πργμτικός ριθμός, ποδεικύετι ότι: ΣΧΟΛΙΟ A p q pq p q pq p p p A A, A A κι κa κ A Γωρίζουμε ότι γι το πολλπλσισμό τω πργμτικώ ριθμώ ισχύει, επιπλέο, κι η τιμετθετική ιδιότητ Δηλδή, ισχύει β β γι οποιουσδήποτε,β Η ιδιότητ, όμως, υτή δε ισχύει γι το πολλπλσισμό τω πιάκω, φού υπάρχου πίκες A 5 κι B, τότε A, B με AB BA Γι πράδειγμ, AB BA, φού: 9 8 AB, εώ BA 5 5 7 5 5 Επειδή, λοιπό, δε ισχύει η τιμετθετική ιδιότητ οι ισότητες: A B A B A AB, A B A A B AB B, B A B A B, A B A B A AB B κτλ A AB BA οι πρπάω ισότη- δε ισχύου πάτοτε Στη περίπτωση, όμως, που τες ισχύου

ΠΙΝΑΚΕΣ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ 9 ΕΦΑΡΜΟΓH Δίοτι οι πίκες κι Ν ποδειχτεί ότι: A B i I A, I B κι A B ii I BA AB iii AB B A B A ΛΥΣΗ i Είι I A B I Άρ B A ii Είι AB BA Άρ I BA AB iii Είι I BA AB I B BA AB A B A B A B A I BA AB λόγω της ii λόγω της ii AB AB B A Άρ, AB B A B A Ατιστρέψιμοι πίκες Γωρίζουμε ότι γι κάθε πργμτικό ριθμό με υπάρχει ο τίστροφός του, που συμβολίζετι με ή, γι το οποίο ισχύει

ΠΙΝΑΚΕΣ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ Είι λογικό τώρ ρωτήσουμε: Α δοθεί ές πίκς Α μπορούμε βρούμε έ πίκ Β τέτοιο ώστε ισχύει AB BA I ; Σύμφω με το πολλπλσισμό που ορίσμε μι τέτοι ερώτηση έχει όημ μόο ο Α είι ές τετργωικός πίκς Οδηγούμστε έτσι στο εξής ορισμό: OΡΙΣΜΟΣ Έστω Α ές τετργωικός πίκς τύπου Α υπάρχει τετργωικός πίκς Β τύπου, τέτοιος ώστε ισχύει AB BA I, τότε ο Α λέγετι - τιστρέψιμος πίκς κι ο Β τίστροφος του Α Α ές πίκς Α έχει τίστροφο, τότε ποδεικύετι ότι υτός είι μοδικός κι συμβολίζετι με A Έτσι έχουμε: Γι πράδειγμ, τότε έχουμε: AB AA A A I A κι B, I Άρ, ο Β είι ο τίστροφος του Α κι BA I Σύμφω με το πρπάω ορισμό, ο πίκς Β είι τίστροφος του Α, ότ AB I κι BA I Αποδεικύετι, όμως, ότι: ΘΕΩΡΗΜΑ Α γι δυο πίκες A, B ισχύει μι πό τις ισότητες τότε θ ισχύει κι η άλλη AB I κι BA I, Με βάση υτό το θεώρημ, γι ποδείξουμε ότι ές πίκς Β είι τίστροφος εός πίκ Α, ρκεί ποδείξουμε μί μόο πό τις ισότητες AB I κι BA I Τέλος, ές πίκς Α είι τιστρέψιμος, τότε ισχύου οι ισοδυμίες: i ii AX B X A XA B X BA B Πράγμτι, γι τη i έχουμε: Α AX B, τότε A AX A B, οπότε X A B

ΠΙΝΑΚΕΣ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ Α X A B, τότε AX AA B, οπότε AX B Ομοίως ποδεικύετι κι η ii ΣΧΟΛΙΟ Γωρίζουμε ότι γι το πολλπλσισμό τω πργμτικώ ριθμώ ισχύει επιπλέο κι η ιδιότητ: β, τότε ή β Η ιδιότητ, όμως, υτή δε ισχύει γι το πολλπλσισμό τω πιάκω, φού πχ γι τους πίκες A κι B ισχύει χωρίς, ωστόσο, AB είι A O ή B O Δηλδή: Μπορεί έ γιόμεο πιάκω ισούτι με το μηδεικό πίκ, χωρίς κές είι μηδεικός Στη περίπτωση όμως που ισχύει AB κι ο ές πό τους πίκες είι - τιστρέψιμος, τότε ο άλλος είι μηδεικός Πράγμτι, ο Α είι τιστρέψιμος, τότε έχουμε διδοχικά: AB Aτίστροφος εός A πίκ AB A IB B β Έστω A ές πίκς Θ εξετάσουμε πότε υτός τιστρέφετι γ δ κι θ βρούμε το τίστροφό του Γι τιστρέφετι ο Α, πρέπει κι ρκεί υπάρχει πίκς X τέτοιος, ώστε ισχύει AX I ή, z ω ισοδύμ, γ β δ z ω βz γ δz βω γ δω βz γ δz βω Σ κι Σ γ δω Αρκεί, επομέως, τ συστήμτ Σ κι Σ έχου λύση Τ συστήμτ υτά έχου

ΠΙΝΑΚΕΣ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ κι D Επομέως: β D δ βγ γ δ β β δ, D z γ, D β, D ω δ γ δ γ A D, τότε τ συστήμτ Σ κι Σ έχου μοδική λύση, οπότε ο πίκς Α τιστρέφετι Η λύση του Σ είι το ζεύγος, z με D δ κι D D εώ η λύση του Σ είι το ζεύγος, ω D β κι D D Dz γ z, D D με D ω ω D D Άρ X δ D γ D β D, οπότε ο τίστροφος του Α είι ο πίκς D A δ D γ β Α D, τότε έ τουλάχιστο πό τ συστήμτ Σ κι Σ είι δύτο, οπότε ο πίκς Α δε τιστρέφετι Πράγμτι Α D ή D ή D ή D, τότε έ τουλάχιστο πό τ συστήμτ Σ κι Σ θ είι δύτο z β Α D D D D, τότε β γ δ, οπότε κι πάλι τ δύο συστήμτ θ είι δύτ Αποδείξμε λοιπό ότι: z ω ω O πίκς β β A είι τιστρέψιμος, κι μόο γ δ γ δ β Ο τίστροφος εός πίκ A, υπάρχει, δίετι πό το τύπο γ δ δ β β A, όπου D D γ γ δ Γι πράδειγμ:

ΠΙΝΑΚΕΣ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ Ο πίκς A τιστρέφετι, γιτί κι ο τίστροφός του είι ο A β Ο πίκς A δε τιστρέφετι, γιτί ΕΦΑΡΜΟΓH Δίοτι οι πίκες A κι B i N βρεθεί ο τίστροφος του πίκ Α ii Ν λυθεί η εξίσωση ΛΥΣΗ AX B i Γι το πίκ Α έχουμε D Άρ ii Επειδή ο πίκς Α είι τιστρέψιμος, έχουμε: AX B X A A B X 6 X ΑΣΚΗΣΕΙΣ Α ΟΜΑΔΑΣ N βρείτε τ γιόμε AB κι BA σε όποιες πό τις πρκάτω περιπτώσεις ορίζοτι:

ΠΙΝΑΚΕΣ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ i, ii, ] A [ B A B iii, 5 A 5 B iv, A 7 B Α, κι A B Γ Ν βρείτε τους πίκες: i AB ii Γ AB iii ABΓ T στοιχεί γι τις μοιβές κι το ριθμό τω εργτώ σε δύο οικοδομικές ετιρείες Α κι Β έχου με μορφή πιάκω ως εξής: Aριθμός εργτώ Εβδομδιίες ποδοχές Ειδικευμέοι Αειδίκευτοι σε χιλ δρχμές 6 75 6 B A Αειδίκευτοι Ειδικευμέοι 5 Ν εκφράσετε με τη βοήθει του πολλπλσισμού τω πιάκω το σύολο τω μοιβώ τω εργτώ στις δύο ετιρείες Σε κθεμιά πό τις πρκάτω περιπτώσεις ποδείξετε ότι ο πίκς Β είι τίστροφος του Α i, ii, A B 5 A 9 7 8 B 5 Ν βρείτε το τίστροφο, εφόσο υπάρχει, κθεός πό τους πρκάτω πίκες: A, κι B θ θ θ θ Γ συ ημ ημ συ 6 i Ν βρείτε το τίστροφο του πίκ ημ συ συ ημ

ΠΙΝΑΚΕΣ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ 5 ημ συ συ ημ ii Ν λύσετε τη εξίσωση: X συ ημ ημ συ Α A, τότε: B ΟΜΑΔΑΣ i Ν βρείτε τις τιμές τω, γι τις οποίες ισχύει A A I ii Ν υπολογίσετε τους πίκες A κι A A A, βρείτε το πργμτικό ριθμό, ώστε ισχύει A A I Ν βρείτε τους πίκες X, β X I,β γι τους οποίους ισχύει Α A, B, ποδείξετε ότι: i A I, B I iii A B A B A B ii A B, A B I 5 A A, ποδείξετε ότι: i Ο πίκς Α τιστρέφετι κι βρείτε το ii A A I, * A συ - ημ ημ συ 6 A A, B, τότε: ημ συ συ ημ i Ν ποδείξετε ότι A A, B A ii Ν ποδείξετε ότι A B iii Ν λύσετε τη εξίσωση A B I 7 Mι βιομηχί επίπλω κουζίς έχει δύο εργοστάσι E κι E Οι πίκες Μ κι Ν δίου τις ώρες εργσίς που πιτούτι γι τη κτσκευή κάθε επίπλου κι τις ωριίες μοιβές του προσωπικού σε δρχμές τιστοίχως

6 ΠΙΝΑΚΕΣ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ Κτσκευή Βάψιμο Συσκευσί E E,6,6, Πάγκος 5 55 M,9, Κρέκλ, N 6 7,5,, Τρπέζι 5 i Ν βρείτε το πίκ ΜΝ κι εξηγήσετε τι εκφράζει Κτσκευή Βάψιμο Συσκευσί ii Ποιο είι το κόστος εργσίς γι τη πργωγή μις κρέκλς στο εργοστάσιο κι εός πάγκου στο εργοστάσιο E ; E 8 Α A 5 6 κι B, ποδείξετε ότι: i A κι γεικά A, I άρτιος θετικός ii B I, B B κι γεικά B B περιττός θετικός ημ π 9 Δίετι ο πίκς A, συ ημ, π i Ν ποδείξετε ότι A A ii Ν λύσετε τη εξίσωση A I Α A, i Ν ποδείξετε ότι A A A ii Ν βρείτε τη σχέση μετξύ τω, ώστε ο πίκς A είι τίστροφος του A iii N βρείτε το τίστροφο του πίκ M λ λ Α A, λ λ λ, τότε: i Ν ποδείξετε ότι A I I, άρτιος A A, περιττός, A A κι γεικά ότι

ΠΙΝΑΚΕΣ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ 7 ii Α λ, βρείτε το πίκ Χ γι το οποίο ισχύει 99 A X iii Ν υπολογίσετε το άθροισμ I A A A Δίετι ο πίκς A i Ν βρείτε το τίστροφο του πίκ Α ii Ν βρείτε το πίκ Χ σε κάθε μι πό τις πρκάτω περιπτώσεις: AX β AXA γ AX A A Α A, τότε: i Ν ποδείξετε ότι A I κι γεικά ότι Ι, άρτιος A I, περιττός ii Ν βρείτε τις πργμτικές τιμές του γι τις οποίες ισχύει 99 989 A A ΓΕΩΜΕΤΡΙΚΟΙ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ Η Έοι του Γεωμετρικού Μετσχημτισμού Γωρίζουμε πό τη Α Λυκείου ότι συάρτηση πό έ σύολο Α σε έ σύολο Β είι μι διδικσί με τη οποί κάθε στοιχείο του Α τιστοιχίζετι σε έ κι μοδικό στοιχείο του Β Στη πράγρφο υτή θ σχοληθούμε με συρτήσεις γι τις οποίες τ Α κι Β συμπίπτου με το σύολο E τω σημείω εός κρτεσιού επιπέδου O Οι συρτήσεις υτές λέγοτι γεωμετρικοί μετσχημτισμοί στο επίπεδο ή, πλά, γεωμετρικοί μετσχημτισμοί Δηλδή, γεωμετρικός μετσχημτισμός είι οποιδήποτε συάρτηση Τ M, T :E E M, O

8 ΠΙΝΑΚΕΣ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ Ως προς τη συάρτηση υτή η εικό, T M, του σημείου M, θ συμβολίζετι με M, Έ πράδειγμ γεωμετρικού μετσχημτισμού είι η συάρτηση T :E E M, M,, η οποί τιστοιχίζει κάθε σημείο Μ στο συμμετρικό του M ως προς το άξο C C M, O M, Στη συέχει θ σχοληθούμε μόο με τους γεωμετρικούς μετσχημτισμούς που πεικοίζου τ σημεί M, στ M, τω οποίω οι συτετγμέες δίοτι πό έ σύστημ της μορφής β μ γ δ ή, ισοδύμ, πό μι εξίσωση της μορφής β μ γ δ όπου,β,γ,δ,μ, πργμτικοί ριθμοί Α μ κι, τότε η εξίσωση πίρει τη μορφή β γ δ Στη περίπτωση υτή ο γεωμετρικός μετσχημτισμός λέγετι γρμμικός μετσχημτισμός κι ο πίκς λέγετι πίκς του γρμμικού μετ- β γ δ σχημτισμού Γι πράδειγμ, ο γεωμετρικός μετσχημτισμός που ορίζετι πό το σύστημ 7 7 ή, ισοδύμ, πό τη εξίσωση είι ές γρμμικός μετσχημτισμός με πίκ το Με υτό το μετσχημτισμό 7 το σημείο A, πεικοίζετι στο A, 6, εώ το σημείο B, στο B,, δηλδή στο ευτό του Ας θεωρήσουμε τώρ το γρμμικό μετσχημτισμό

ΠΙΝΑΚΕΣ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ 9 T : β γ δ κι τ μοδιί διύσμτ i, κι j, Τότε, η εικό A του πέρτος A, του διύσμτος i έχει συτετγμέες, γ, φού β, γ δ γ Β β,δ Β, j Α,γ O i Α, εώ η εικό B του πέρτος B, του διύσμτος j έχει συτετγμέες β, δ, φού γ β β δ δ Πρτηρούμε, δηλδή, ότι: Oι συτετγμέες της εικός του πέρτος, A,, του διύσμτος i, είι η πρώτη στήλη, εώ οι συτετγμέες της εικός του πέρτος, Β,, του διύσμτος j είι η δεύτερη στήλη του πίκ του γρμμικού μετσχημτισμού Γι πράδειγμ, ο γρμμικός μετσχημτισμός, που πεικοίζει τ πέρτ A, κι B, τω διυσμάτω i, κι j, στ σημεί A, κι B, τιστοίχως, έχει πίκ ΕΦΑΡΜΟΓΕΣ Δίετι ο γρμμικός μετσχημτισμός T : i Ν βρεθού οι εικόες A, κι B, τω σημείω A, κι B, τιστοίχως ii Ν ποδειχτεί ότι A B AB

ΠΙΝΑΚΕΣ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΛΥΣΗ i Έχουμε Επομέως, οι εικόες τω κι είι τ σημεί κι τιστοίχως, A, B, A, B ii Είι AB B A Πρτηρούμε ότι ο μετσχημτισμός υτός διτηρεί τις ποστάσεις Οι γρμμικοί μετσχημτισμοί που διτηρού τις ποστάσεις λέγοτι ισομετρίες Δίετι ο γρμμικός μετσχημτισμός: T : N βρεθεί: i Το πρότυπο του σημείου, A, δηλδή το σημείο που πεικοίζετι στο, Α A, ii Η εικό της ευθείς : ε ΛΥΣΗ i Ισχύει Επειδή ο πίκς είι τιστρέψιμος, πολλπλσιάζουμε κι τ δύο μέλη με το τίστροφό του, που είι ο πίκς κι έχουμε διδοχικά:

ΠΙΝΑΚΕΣ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ Άρ το σημείο Α έχει συτετγμέες, ii Αρκεί βρούμε τη εξίσωση η οποί επληθεύετι πό τις συτετγμέες τω εικόω τω σημείω της ευθείς ε κι μόο π υτές Πράγμτι, έχουμε: Eπομέως, το σημείο ήκει στη ε, τότε θ ισχύει:, M O ε ε 5 6 Άρ, το σημείο ήκει στη ευθεί, M : ε Αλλά κι τιστρόφως, το σημείο, M ήκει στη ευθεί : ε, τότε το ήκει στη ευθεί, M : ε Συεπώς, η εικό της ευθείς : ε είι η ευθεί : ε ΣΧΟΛΙΟ Αποδεικύετι ότι κάθε γρμμικός μετσχημτισμός, του οποίου ο πίκς - τιστρέφετι, πεικοίζει: ευθείες σε ευθείες ευθύγρμμ τμήμτ σε ευθύγρμμ τμήμτ με άκρ τις εικόες τω άκρω πολύγω σε πολύγω με κορυφές τις εικόες τω κορυφώ Γι πράδειγμ, με το μετσχημτισμό

ΠΙΝΑΚΕΣ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ T : το τρίγωο ΑΒΓ με κορυφές A,, B, κι Γ, πεικοίζετι στο τρίγωο A BΓ που έχει ως κορυφές τις εικόες A,, B, κι Γ, τω κορυφώ του τριγώου ΑΒΓ Είι βολικό, πολλές φορές, έ πολύγωο A A A το πριστάουμε με το πίκ, που έχει ως στήλες τις συτετγμέες τω κορυφώ του Το πίκ υτό θ το λέμε πίκ του πολυγώου Έτσι, ο πίκς του ΑΒΓ είι ο, εώ του A BΓ ο Eίι φερό ότι 6 Β Γ A B Γ Α Β Γ Β Άρ ο πίκς του τριγώου A BΓ προκύπτει πολλπλσιάσουμε το πίκ του γρμμικού μετσχημτισμού με το πίκ του τριγώου ΑΒΓ Αυτό ισχύει κι γι οποιοδήποτε πολύγωο Βσικοί γεωμετρικοί μετσχημτισμοί Συμμετρί ως προς τη ρχή τω ξόω Κλούμε συμμετρί ως προς τη ρχή τω ξόω το γεωμετρικό εκείο μετσχημτισμό με το οποίο κάθε σημείο M, του κρτεσιού επιπέδου πεικοίζετι στο συμμετρικό του M, ως προς τη ρχή τω ξόω Όπως γωρίζουμε πό τη Α Λυκείου ισχύει C Μ -,- Γ O Α Α 7 Μ, C O Άρ, η συμμετρί ως προς τη ρχή τω ξόω είι γρμμικός μετσχημτισμός με πίκ I