Φροντιστήριο 2 ο : Εισαγωγή στον διανυσµατικό λογισµό



Σχετικά έγγραφα
ΚΕΦΑΛΑΙΟ 5: ΣΥΣΤΗΜΑΤΑ ΠΟΛΛΩΝ ΣΩΜΑΤΩΝ

[Ολοκληρωτική μορφή του νόμου του Gauss στο κενό ή τον αέρα]

ΕΞΙΣΩΣΗ ΣΦΑΙΡΑΣ. είναι όλοι ίσοι και επιπλέον δεν υπάρχουν οι όροι xy, yz, zx. Γενικά µια εξίσωση της µορφής: 0 + Β + Α.

1. Κινηµατική. x dt (1.1) η ταχύτητα είναι. και η επιτάχυνση ax = lim = =. (1.2) Ο δεύτερος νόµος του Νεύτωνα παίρνει τη µορφή: (1.

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ. ΕΞΕΤΑΣΗ ΣΤΗ ΜΗΧΑΝΙΚΗ Ι Σεπτέµβριος 2004

ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ

Φροντιστήριο 4 ο : Πεδίο βαρύτητος, Θερµότης,.

Κεφάλαιο M4. Κίνηση σε δύο διαστάσεις

Νόμος του Gauss 1. Ηλεκτρική Ροή ( πλήθος δυναμικών γραμμών). είναι διάνυσμα μέτρου Α και κατεύθυνσης κάθετης στην επιφάνεια. Στην γενική περίπτωση:

Τα είδη της κρούσης, ανάλογα µε την διεύθυνση κίνησης των σωµάτων πριν συγκρουστούν. (α ) Κεντρική (ϐ ) Εκκεντρη (γ ) Πλάγια

Ενότητα 4: Κεντρικές διατηρητικές δυνάμεις

ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΜΑΘΗΜΑ : ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΣΜΟΣ I (Βασικό 3 ου Εξαμήνου) Διδάσκων : Δ.Σκαρλάτος ΜΑΘΗΜΑΤΙΚΟ ΤΥΠΟΛΟΓΙΟ. Α. Τριγωνομετρικές Ταυτότητες

Εφαρµογές στη δυναµική του κέντρου µάζας στερεού σώµατος

ιανυσµατικά πεδία Όπως έχουµε ήδη αναφέρει ένα διανυσµατικό πεδίο είναι µια συνάρτηση

και ( n) 1 R. Αν ε > 0, επιλέγουµε για κάθε k 1 ένα καλύπτουµε τότε την ευθεία Α µε την ακολουθία των ορθογωνίων .

Κατοίκον Εργασία 2. (γ) το ολικό φορτίο που βρίσκεται στον κύβο. (sd p.e 4.9 p146)

Καρτεσιανό Σύστηµα y. y A. x A

5 Σχετικιστική μάζα. Στο Σ Πριν Μετά. Στο Σ

Λύσεις στο επαναληπτικό διαγώνισμα 3

Συµπάγεια και οµοιόµορφη συνέχεια

ΚΕΦΑΛΑΙΟ 6. Κεντρικές υνάµεις. 1. α) Αποδείξτε ότι η στροφορµή διατηρείται σε ένα πεδίο κεντρικών δυνάµεων και δείξτε ότι η κίνηση είναι επίπεδη.

Κεφάλαιο 8. Ορμή, ώθηση, κρούσεις

ΦΥΣ Διαλ Κινηµατική και Δυναµική Κυκλικής κίνησης

14 ΚΑΜΠΥΛΟΓΡΑΜΜΕΣ ΣΥΝΤΕΤΑΓΜΕΝΕΣ

Ανασκόπηση-Μάθημα 29 Σφαιρικές συντεταγμένες- Εφαρμογές διπλού και τριπλού ολοκληρώματος- -Επικαμπύλιο ολοκλήρωμα α είδους

Κ. Χριστοδουλίδης: Μαθηµατικό Συµπλήρωµα για τα Εισαγωγικά Μαθήµατα Φυσικής Ολοκληρώµατα διανυσµατικών συναρτήσεων

Ελληνικό Ανοικτό Πανεπιστήµιο Ενδεικτικές Λύσεις Θεµάτων Τελικών εξετάσεων στη Θεµατική Ενότητα ΦΥΕ34. Ιούλιος 2008 KYMATIKH. ιάρκεια: 210 λεπτά

v = r r + r θ θ = ur + ωutθ r = r cos θi + r sin θj v = u 1 + ω 2 t 2

ΜΑΓΝΗΤΙΚΟ ΠΕ ΙΟ. Παράδειγµα: Κίνηση φορτισµένου σωµατιδίου µέσα σε µαγνητικό πεδίο. z B. m υ MAΓΝΗTIKΟ ΠΕ ΙΟ

Ορμή - Κρούσεις. ΦΥΣ Διαλ.23 1

Γενική Φυσική. Ενότητα 1: Κινητική. Γεώργιος Βούλγαρης Σχολή Θετικών Επιστημών Τμήμα Μαθηματικών

ΕΛΑΣΤΙΚΟΤΗΤΑ. ε = = Η ελαστικότητα ζήτησης

3. ιατήρηση της ενέργειας

Ανοικτά και κλειστά σύνολα

ΦΥΣΙΚΗ Ι. ΤΜΗΜΑ Α Ευστάθιος. Στυλιάρης ΠΑΝΕΠΙΣΤΗΜΙΟN ΑΘΗΝΩΝ,,

ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ ΜΕΡΟΣ 2ο ΓΕΩΜΕΤΡΙΑ ΑΣΚΗΣΕΙΣ ΛΥΜΕΝΕΣ 1 ΕΠΙΜΕΛΕΙΑ : ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ

ΛΥΣΕΙΣ ΔΙΑΓΩΝΙΣΜΑΤΟΣ ΦΕΒΡΟΥΑΡΙΟΥ mu 1 2m. + u2. = u 1 + u 2. = mu 1. u 2, u 2. = u2 u 1 + V2 = V1

ΚΕΦΑΛΑΙΟ 4: ΚΕΝΤΡΙΚΕΣ ΥΝΑΜΕΙΣ

ΛΥΣΕΙΣ ΦΥΛΛΑΔΙΟΥ 3 Ευθεία - Επίπεδο ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ/

3.3 Το συναρτησοειδές του Minkowski και μετρικοποιησιμότητα σε τοπικά κυρτούς χώρους. x y E (υποπροσθετικότητα ) ) και p( x) p( x)

Φυσική Β Λυκειου, Γενικής Παιδείας 3ο Φυλλάδιο - Ορµή / Κρούση

4.1 ΕΥΘΕΙΕΣ ΚΑΙ ΕΠΙΠΕ Α ΣΤΟ ΧΩΡΟ

5 Σχετικιστική μάζα. Στο Σ Πριν Μετά. Στο Σ

ΚΕΦΑΛΑΙΟ 7. Ροπή και Στροφορµή Μέρος πρώτο

ΦΥΣ Πριν αρχίσετε συµπληρώστε τα στοιχεία σας (ονοµατεπώνυµο και αριθµό ταυτότητας).

εάν F x, x οµόρροπα εάν F x, x αντίρροπα B = T W T = W B

ΘΕΩΡΗΤΙΚΟ ΠΡΟΒΛΗΜΑ 2 ΛΥΣΗ DOPPLER LASER ΨΥΞΗ ΚΑΙ ΟΠΤΚΕΣ ΜΕΛΑΣΣΕΣ

Βαρύτητα Βαρύτητα Κεφ. 12

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΕΞΕΤΑΣΗ ΣΤΗ ΜΗΧΑΝΙΚΗ Ι Φεβρουάριος 2004

Εφαρμοσμένα Μαθηματικά ΙΙ 4ο Σετ Ασκήσεων (Λύσεις) Διπλά Ολοκληρώματα Επιμέλεια: Ι. Λυχναρόπουλος

ΚΕΦΑΛΑΙΟ 4. ιατήρηση ορµής

< F ( σ(h(t))), σ (h(t)) > h (t)dt.

Κίνηση πλανητών Νόµοι του Kepler

Εφαρμοσμένα Μαθηματικά ΙΙ Πρόοδος (Λύσεις) Ι. Λυχναρόπουλος

( )U 1 ( θ )U 3 ( ) = U 3. ( ) όπου U j περιγράφει περιστροφή ως προς! e j. Γωνίες Euler. ω i. ω = ϕ ( ) = ei = U ij ej j

b proj a b είναι κάθετο στο

( () () ()) () () ()

ΦΥΣΙΚΗ Ι. ΤΜΗΜΑ Α Ευστάθιος. Κωνσταντίνος Βελλίδης ΕΚΠΑ, ΤΜΗΜΑ ΧΗΜΕΙΑΣ, Στυλιάρης

ΚΕΦΑΛΑΙΟ 2. Τρισδιάστατες κινήσεις

k ) 2 P = a2 x 2 P = 2a 2 x y 2 Q = b2 y 2 Q = 2b 2 y z 2 R = c2 z 2 R = 2c 2 z P x = 2a 2 Q y = 2b 2 R z = 2c 2 3 (a2 +b 2 +c 2 ) I = 64π

ΜΑΘΗΜΑΤΙΚΑ ΙΙ ΠΑΡΑΔΕΙΓΜΑΤΑ Διανύσματα - Διανυσματικές Συναρτήσεις

Στερεό σώµα (διάκριτη κατανοµή): ορίζεται ως ένα σύνολο σηµειακών µαζών που διατηρούν σταθερές αποστάσεις µεταξύ τους.

Κεφάλαιο M11. Στροφορµή

2 Η ΠΡΟΟΔΟΣ. Ενδεικτικές λύσεις κάποιων προβλημάτων. Τα νούμερα στις ασκήσεις είναι ΤΥΧΑΙΑ και ΟΧΙ αυτά της εξέταση

Φυσική για Μηχανικούς


Φυσική Ι 1ο εξάμηνο. Γεώργιος Γκαϊντατζής Επίκουρος Καθηγητής. Τμήμα Μηχανικών Παραγωγής & Διοίκησης Δημοκρίτειο Πανεπιστήμιο Θράκης.

2. Οι νόµοι της κίνησης, οι δυνάµεις και οι εξισώσεις κίνησης

Ακουστικό Ανάλογο Μελανών Οπών

ΠΑΡΑΡΤΗΜΑ Γ. Επικαμπύλια και Επιφανειακά Ολοκληρώματα. Γ.1 Επικαμπύλιο Ολοκλήρωμα

ΚΕΦΑΛΑΙΑ 3,4. Συστήµατα ενός Βαθµού ελευθερίας. k Για E 0, η (1) ισχύει για κάθε x. Άρα επιτρεπτή περιοχή είναι όλος ο άξονας

1ο ιαγώνισµα Β Τάξης Ενιαίου Λυκείου Κυριακή 9 Νοέµβρη 2014 Φυσική Προσανατολισµού - Μηχανική

Μαθηματικά για μηχανικούς ΙΙ ΑΣΚΗΣΕΙΣ

ΗΛΕΚΤΡΟΣΤΑΤΙΚΟ ΠΕΔΙΟ ΣΤΗΝ ΥΛΗ ΘΕΩΡΙΑ

p& i m p mi i m Με τη ίδια λογική όπως αυτή που αναπτύχθηκε προηγουµένως καταλήγουµε στην έκφραση της κινητικής ενέργειας του ρότορα i,

Μετά το τέλος της µελέτης του 1ου κεφαλαίου, ο µαθητής θα πρέπει να είναι σε θέση:

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών. HY-112: Φυσική Ι Χειµερινό Εξάµηνο 2016 ιδάσκων : Γ. Καφεντζής. εύτερη Σειρά Ασκήσεων - Λύσεις.

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2013

Μαθηματικά για μηχανικούς ΙΙ ΛΥΣΕΙΣ/ΑΠΑΝΤΗΣΕΙΣ ΑΣΚΗΣΕΩΝ

13 ΙΑΝΥΣΜΑΤΙΚΗ ΑΝΑΛΥΣΗ

Ενεργός Διατοµή (Cross section)

( () () ()) () () ()

10. Παραγώγιση διανυσµάτων

Παραδείγματα τριπλών oλοκληρωμάτων Επιμέλεια: Ι. Λυχναρόπουλος

ds ds ds = τ b k t (3)

ΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 3//7/2013 ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΙΑΣ ΑΠΑΝΤΗΣΕΙΣ ΓΡΑΠΤΗΣ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ

Μπορείτε να δείξετε ότι αυξανομένης της θερμοκρασίας το κλάσμα των μορίων του συστήματος που βρίσκεται στην βασική ενεργειακή κατάσταση θα μειώνεται;

Ε Θ Ν Ι Κ Ο Μ Ε Τ Σ Ο Β Ι Ο Π Ο Λ Υ Τ Ε Χ Ν Ε Ι Ο Τ Ο Μ Ε Α Σ Φ Υ Σ Ι Κ Η Σ

( ) ( r) V r. ( ) + l 2. Τι είδαμε: m!! r = l 2. 2mr 2. 2mr 2 + V r. q Ξεκινήσαμε την συζήτηση για το θέμα κεντρικής δύναμης

Ανασκόπηση-Μάθημα 28 Τριπλό ολοκλήρωμα-κυλινδρικές-σφαιρικές συντεταγμένες

ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΑΓΩΓΟΙ - ΠΥΚΝΩΤΕΣ

lim Δt Δt 0 da da da dt dt dt dt Αν ο χρόνος αυξηθεί κατά Δt το διάνυσμα θα γίνει Εξετάζουμε την παράσταση

Γωνία που σχηματίζει η ε με τον άξονα. Έστω Oxy ένα σύστημα συντεταγμένων στο επίπεδο και ε μια ευθεία που τέμνει τον άξονα

Ασκήσεις Διανυσματικής Ανάλυσης

ΘΕΩΡΗΤΙΚΗ ΜΗΧΑΝΙΚΗ Ι Σεπτέμβριος 2012

16. Να γίνει µετατροπή µονάδων και να συµπληρωθούν τα κενά των προτάσεων: α. οι τρεις ώρες είναι... λεπτά β. τα 400cm είναι...

ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ/Γ ΛΥΚΕΙΟΥ ΣΕΙΡΑ: ΑΠΟΦΟΙΤΟΙ ΗΜΕΡΟΜΗΝΙΑ: 09/01/12 ΛΥΣΕΙΣ

Ορμή - Κρούσεις, ΦΥΣ Διαλ.19 1

Φυσική για Μηχανικούς

Θέµατα Φυσικής Θετικής Κατεύθυνσης Β Λυκείου 1999 ΕΚΦΩΝΗΣΕΙΣ

Transcript:

Φροντιστήριο ο : Εισαγωγή στον διανυσµατικό λογισµό Βαθµωτά ή µονόµτρα µγέθη scls: Για να οριστούν τα µγέθη αυτά απαιτίται να δοθί µόνο το µέτρο τους πριλαµβανοµένης της µονάδας µέτρησης ιανυσµατικά µγέθη vectos: ίναι µγέθη κίνα τα οποία για να οριστούν απαιτίται να δοθί το µέτρο τους και πί πλέον η διύθυνση και φορά του µγέθους, και η µονάδα µέτρησης του µγέθους. Συµβολισµός: â ή â, όπου ίναι το µέτρο του διανύσµατος και â ίναι το µοναδιαίο διάνυσµα, δηλ. µέτρο â. Recittion, Phsics I 008-9 M. Velgkis

Συνιστώσς διανύσµατος - Συστήµατα συντταγµένων Καρτσιανές συντταγµένς:,, Το διάνυσµα θέσης ή πιβατική ακτίνα σώµατος στο σηµίο Ρ: t i j k,, i, j,k ίναι τα µοναδιαία διανύσµατα κατά µήκος των αξόνων,, Η διανυσµατική ποσότης Α: i j k,, Recittion, Phsics I 008-9

Πολικές συντταγµένς στο πίπδο -:,θ &, θ Μτασχηµατισµός: cosθ, sinθ, ή θ tn, Μοναδιαία διανύσµατα: ˆ cosθi sinθ j, θ ˆ sinθi cosθ j i cosθˆ sinθθˆ, j sin θˆ cosθθˆ Στοιχιώδης πιφάνια: dv dθ d ddθ Κυλινδρικές συντταγµένς:,α,α &,θ, θ Μτασχηµατισµός: ρcosφ, ρ sinφ, φ tn, ρ Στοιχιώδης όγκος: dv ρdφ dρ d ρdρdφd Recittion, Phsics I 008-9 3

Σφαιρικές συντταγµένς:,θ,φ και,α,α Μτασχηµατισµός: sinθcosφ, sinθsinφ, cosθ ή αντίστροφα φ tn /, θ cos /, Μοναδιαία διανύσµατα: ˆ sinθ cosφi sinθ sinφj cosθk, θˆ cosθ cosφi cosθ sinφj sinθk, φˆ sinφi cos φj ή αντίστροφα i sinθ cosφˆ cosθ cos φθˆ sinφφˆ j sin θ sinφˆ cosθ sinφ θˆ cos φφˆ k cosθˆ sinθθˆ Στοιχιώδης όγκος: dv sinθ ddθdφ θ φ,, Πράξις πί των διανυσµάτων: Ισότης διανυσµάτων:, σηµαίνι Α Β, Α Β,... Πρόσθση διανυσµάτων: C, σηµαίνι ότι το άθροισµα C έχι συνιστώσς: C Α Β, C Α Β, C Α Β Recittion, Phsics I 008-9 4

Recittion, Phsics I 008-9 5 Αριθµητικό ή σωτρικό γινόµνο διανυσµάτων: C, παριστά το µονόµτρο µέγθος C το οποίο έχι µέτρο: CΑ Β Α Β Α Β, ή άλλως Ccosθ, όπου θ ίναι η γωνία µταξύ των και. ιανυσµατικό ή ξωτρικό γινόµνο διανυσµάτων: C, σηµαίνι ότι το διαν. γινόµνο C έχι µέτρο και διύθυνση: nˆ sinθ C, όπου nˆ ίναι το µοναδιαίο διάνυσµα κάθτο στο πίπδο που ορίζουν τα διανύσµατα και. Σ καρτσιανές συντταγµένς: k j i k j i C Για παράδιγµα η συστροφή το cul του διανύσµατος ίναι: k j i k j i Γινόµνο διανύσµατος πί αριθµού: σηµαίνι ότι απλά πολλα/ζται το µέτρο του διανύσµατος: â λα λ ιαίρση διανυσµάτων: απαγορύται.

ιαίρση διανύσµατος δια αριθµού: σηµαίνι ότι Α απλά διαιρίται το µέτρο του διανύσµατος: â λ λ d Παραγώγιση διανύσµατος: σηµαίνι: dt d d d d i j k dt dt dt dt Ολοκλήρωση διανύσµατος: dt σηµαίνι: dt i dt j dt k dt Recittion, Phsics I 008-9 6

Recittion, Phsics I 008-9 7

Recittion, Phsics I 008-9 8

Παράδιγµα ο Έργο δύναµη Επικαµπύλιο ολοκλήρωµα: Πλανήτης µάζας m πριφέρται σ λλιπτική τροχιά γύρω από τον ήλιο µάζας Μ, ο οποίος καταλαµβάνι το κέντρο της έλλιψης. Αν και ίναι οι ηµιάξονς της λλιπτικής τροχιάς του πλανήτη >, υπολογίσατ το παραγόµνο έργο για να διαγραφί ένα τταρτηµόριο της έλλιψης. Λύση: Λαµβάνοµ το πίπδο της έλλιψης σαν - πίπδο και το κέντρο της έλλιψης σαν αρχή των αξόνων 0, όπου τοποθτίται ο ήλιος ακίνητος. Το διάνυσµα θέσης του πλανήτη ίναι, t i j,, όπου, δίδονται από τις ακόλουθς παραµτρικές ξισώσις της έλλιψης, cosθ, sinθ. [Πολύ πιθανόν η δδοµένη καµπύλη της τροχιάς να δίδται από µια µαθηµατική σχέση της µορφής: f, π.χ. για την έλλιψη η σχέση αυτή ίναι:, η οποία πράγµατι προκύπτι από τις, απαλίφοντας τη µταβλητή θ]. Η δύναµη που ασκίται στο πλανήτη, σύµφωνα µ το νόµο βαρύτητος του Νύτωνα, έχι τη µορφή Mm Mm Mm Mm G ˆ G ή F G, G 3 3 F 3 3 Recittion, Phsics I 008-9 9

Το µίον πρόσηµο στη 3 απλά υποδηλώνι το γγονός ότι η δύναµη ίναι λκτική και κατυθύνται προς την αρχή των αξόνων 0, νώ το µέτρο ισούται µ: sin θ cos θ sin θ sin θ sin θ sin θ, οπου /. Το έργο που παράγται ή δαπανάται κατά τη µταφορά του πλανήτη από το σηµίο-α στο σηµίο-β της τροχιάς του, δίδται από το πικαµπύλιο ολοκλήρωµα, W F d 4 όπου d ίναι το στοιχιώδς βήµα ολοκλήρωσης πάνω στη καµπύλη της τροχιάς, από τo σηµίο: Α Β. Χρησιµοποιώντας τις παραµτρικές ξισώσις, λαµβάνουµ: d sinθi cosθ j dθ. Αν αντί της έλλιψης, ίχαµ πριφέρια κύκλου για τροχιά, τότ θα ίσχυ:, οπότ η προηγούµνη σχέση θα γραφόταν: d sin θi cos θ j dθ θdθ, όπου κάναµ χρήση και των σχέσων µτασχηµατισµού των πολικών συντταγµένων, σλ. 3. Βλέπουµ δηλ. ότι αναπαράγουµ τα αποτλέσµατα της σλ. 6. Μτά από τα παραπάνω, η 4 γράφται W F sinθ dθ GMm GMm GMm 3 / F cosθ dθ cosθ sinθ sinθ cosθ 3 / 3 / sin θ sinθ cosθ dθ 3 / sin θ sinθ cosθ dθ 5 3 / sin θ dθ Recittion, Phsics I 008-9 0

Το ολοκλήρωµα υπολογίζται ύκολα φαρµόζουµ το όριο: Α 0 Β π/, και στο τέλος sinθ cosθ dθ Ι 3 / sin θ udu u cos θ 3 / u 3 d u u 3 / 3 u θ π / cos θ θ 0 sinθ dsinθ 3 / sin θ du u 3 / u δηλ. το παραγόµνο έργο για τη διαγραφή νός τταρτηµορίου ίναι: W GMm GMm 0 6 < ο ττ Στη πρίπτωση κυκλικής τροχιάς, δηλ. για, το έργο µηδνίζται: W0! Γιατί όµως; Στη πρίπτωση συντηρητικών δυνάµων, ορίζται ως δυναµική νέργια η συνάρτηση U,,, της οποίας η µταβολή µταξύ των τιµών της στα σηµία Α και Β του Ευκλίδιου χώρου να ισούται µ το αρνητικό έργο της συντηρητικής δύναµης για τη µταφορά νός σώµατος από το σηµίο Α στο Β, δηλ. U -U -W.Συνπώς, U-U-W. Αν τώρα πιλέξουµ το Α να ίναι στο άπιρο δηλ. και υποθέσουµ ότι, U 0, και αν το σηµίο Β βρίσκται σ κάποια απόσταση από τον ήλιο, τότ χρησιµοποιώντας το αποτέλσµα 6, βρίσκοθµ: U -0-W, δηλ. U-GMm/ το γνωστό µας αποτέλσµα. Θα παναλάβουµ τους ίδιους υπολογισµούς, στη πρίπτωση που η καµπύλη ολοκλήρωσης δίδται από µια µαθηµατική σχέση της µορφής: f, πχ. για το παραπάνω πρόβληµα: f ± ±. Για τους υπολογισµούς σας καλό ίναι να χρησιµοποιίτ κάποιο µαθηµατικό τυπολόγιο, όπως το ΜΑΘΗΜΑΤΙΚΟ ΕΓΧΕΙΡΙ ΙΟ ή ΜΑΘΗΜΑΤΙΚΟ ΤΥΠΟΛΟΓΙΟ της σιράς SCHUM. Recittion, Phsics I 008-9

Recittion, Phsics I 008-9 Το παραγόµνο έργο από τη δύναµη F δίδται από το πικαµπύλιο ολοκλήρωµα, d f F F d d F F d d F W 3 3 d f f GMm[ d f d [ GMm όπου, και /. Συνπώς το ολοκλήρωµα ισούται: 3 / 3 / 3 d GMm 3 / 3 / d GMm d GMm 0 3 GMm GMm 3 GMm GMm /, δηλ. αναπαραγάγουµ το αποτέλσµα 6!!

Παράδιγµα ο Ώθηση δύναµης: Μια µπάλα του sell 0g ρίχνται µ ταχύτητα.6m/s από τον pitche. Κτυπώντας την ο tte µ το ρόπαλο Β, κτοξύται µ ταχύτητα 4m/s κατά τη διύθυνση που φαίνται στο σχήµα. Αν η διάρκια της παφής της µπάλας µ το ρόπαλο ίναι 0.05s, προσδιορίσατ την µέση δύναµη που ασκίται πάνω στη µπάλα κατά το κτύπηµα. Λύση: Από τον ο νόµο του Νύτωνα, F dp / dt, έχοµ: dp Fdt, και ολοκληρώνοντας από µια αρχική στιγµή tαρχ έως µια στιγµή t τλ, παίρνοµ Η ποσότης Ι p t τλ αρχ t τλ p αρχ Fdt t αρχ t τλ Fdt. 7 καλίται ώθηση impulse της δύναµης F. Η σχέση 7 αναφέρται σαν θώρηµα ώθησης - ορµής. Αν F ίναι µια µέση τιµή της δύναµης για το διάστηµα που φαρµόζται πάνω στο σώµα, δηλ. Ι t αρχ t τλ Fdt F t, όπου t t τλ tαρχ ίναι η διάρκια του φαινοµένου, τότ η 7 γράφται, Recittion, Phsics I 008-9 3

p p F t, 8 τλ αρχ από την οποία µπορούµ να υπολογίσουµ τη µέση δύναµη. Πράγµατι, στο -άξονα: F t p τλ, p αρχ, t [ mυ τλ cos40 ο mυ αρχ ] ο 0.0 4cos40 0.05.6 4.5Nt t ο στο -άξονα: F p p mυ sin40 0 άρα ή τλ, αρχ, ο 0.0 4 sin40 0.05 t τλ 0 8.8Nt F Fi F j 4.5i 8.8j Nt, F 8.8 o F 4.5 8.8 45.6 Nt, θ tn tn 7. F 4.5 Μπορούµ να υπολογίσουµ το παραγόµνο έργο από τη δύναµη F πάνω στη µπάλα. Πράγµατι, χρησιµοποιώντας το θώρηµα έργου-νέργιας έχοµ: W K τλ αρχ mυ mυ 0.0 4.6 4Joules Παράδιγµα 3 ο ιατήρηση ορµής-φαινόµνο Compton: έσµη φωτός µήκους κύµατος λ προσπίπτι πάνω σ νέφος ηρµούντων? σχδόν ηλκτρονίων πχ. µέσα σ µέταλλο. Παρατηρίται ότι κσφνδονίζονται ηλκτρόνια έξω από το νέφος. Να υπολογιστί η µταβολή του µήκους κύµατος του σκδαζόµνου φωτός σχτικιστική θώρηση. Λύση: Κατά την κβαντική θωρία, το φως έχι διπλή υπόσταση, δηλ. µφανίζι κυµατικές ιδιότητς, όπως ανάκλαση, συµβολή κλπ., αλλά και σωµατιδιακές ιδιότητς, δηλ. µπορί να Recittion, Phsics I 008-9 4

συγκρουστί µ υλικά σώµατα, κλπ. Όσον αφορά το τλυταίο ισχυρισµό, ο M Plnck γύρω στο 900 υπέθσ ότι το φως αποτλίται από δέσµη φωτονίων, τα οποία ίναι οντότητς που έχουν νέργια ίση µ hν, ορµή ίση µ h/λ, αλλά µάζα m µηδέν. Συνπώς, κατά τη σκέδαση του φωτός από ηλκτρόνια, στην ουσία πρόκιται για σύγκρουση φωτονίων πάνω σ ηλκτρόνια η προσέγγιση αυτή του προβλήµατος οφίλται στον Einstein. Κατά τη σχτικιστική προσέγγιση, η νέργια νός σώµατος ισούται: E cp mc, όπου c η ταχύτης του φωτός, και p,m η ορµή και µάζα του σώµατος. Κατά τη κρούση νός φωτονίου µ ένα ηλκτρόνιο που ηρµί γιατί;, ισχύουν οι ακόλουθοι νόµοι διατήρησης: α Ενέργια πριν τη κρούση νέργια µτά τη κρούση, mc hν' cp mc 9 h ν β Ορµή πριν τη κρούση ορµή µτά τη κρούση, κατά τον -άξονα: κατά τον -άξονα: h λ h 0 cosθ pcosφ 0 λ' h 0 0 sinθ p sinφ λ' Recittion, Phsics I 008-9 5

Απαλίφοντας τη γωνία φ µταξύ των 0,, παίρνουµ h λ h h cosθ p λ' λλ' Ισχύι: λνc, άρα νc/λ, και αντικαθιστώντας στην 9, hc λ hc λ' mc cp mc ή cp hc hc mc mc, λ λ' και υψώνοντας στο ττράγωνο, ή cp mc cp h c λ mc h c λ' hc λ mc mc hc λ' h c h c hc hc hc hc mc mc. λ λ' λ λ' λ λ' hc hc λ λ' Αντικαθιστώντας την ορµή p από την παίρνοµ, c h λλ' hc hc cosθ mc, λ λ' οπότ η µταβολή του µήκους κύµατος του σκδαζόµνου φωτός ίναι h mc λ h λ' λ cosθ. mc Η σταθρά λ C 0. 04 Å καλίται µήκος κύµατος Compton. Recittion, Phsics I 008-9 6