ΘΕΩΡΗΜΑ BOLZANO Μία διδακτική προσέγγιση

Σχετικά έγγραφα
Σενάριο τεσσάρων 2ωρων μαθημάτων διδασκαλίας της Γ Λυκείου στα Μαθηματικά Κατεύθυνσης

Qwertyuiopasdfghjklzxcvbnmq wertyuiopasdfghjklzxcvbnmqw ertyuiopasdfghjklzxcvbnmqwer tyuiopasdfghjklzxcvbnmqwerty. uiopasdfghjklzxcvbnmqwertyui

θ. Bolzano θ. Ενδιάμεσων τιμών θ. Μεγίστου Ελαχίστου και Εφαρμογές

Μέθοδος Α. Β 3. Η γραφική παράσταση της f τέμνει τον άξονα των xx σε ένα σημείο με τετμημένη ξ [α,β],

τότε για κάθε αριθμό ξ μεταξύ των f(α) και f(β) υπάρχει τουλάχιστον ένας x0 (α, β) τέτοιος ώστε να ισχύει f(x0)=ξ. Μονάδες 15

Σημειώσεις Μαθηματικών 2

A. ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ

ΣΥΝΑΡΤΗΣΕΙΣ-ΟΡΙΟ-ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ

ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 10: ΕΥΡΕΣΗ ΤΟΠΙΚΩΝ ΑΚΡΟΤΑΤΩΝ

ΘΕΩΡΗΜΑ BOLZANO..Αν μια συνάρτηση f είναι συνεχής σε ένα κλειστό διάστημα [α,β].και f(α).f(β)<0 Τότε υπάρχει ένα τουλάχιστον χ 0

A. ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ

Συνέχεια συνάρτησης σε διάστημα. Η θεωρία και τι προσέχουμε. x, ισχύει: lim f (x) f ( ).

ΕΦΑΡΜΟΓΕΣ ΣΤΟ ΘΕΩΡΗΜΑ BOLZANO ΚΑΙ ΣΤΑ ΑΛΛΑ ΒΑΣΙΚΑ ΘΕΩΡΗΜΑΤΑ ΕΠΙΜΕΛΕΙΑ : Π. Δ. ΤΡΙΜΗΣ ΜΑΘΗΜΑΤΙΚΟΣ

Συνέχεια συνάρτησης σε κλειστό διάστημα

f(x) = και στην συνέχεια

Ο μαθητής που έχει μελετήσει τo κεφάλαιο αυτό θα πρέπει να είναι σε θέση:

1.8 ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΘΕΩΡΗΜΑ BOLZANO A. ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ

ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ. Παύλος Βασιλείου

Mαθηματικά Θετικής - Τεχνολογικής Κατεύθυνσης Γ. Λυκείου Ανάλυση Κεφ. 1 ο ΣΥΝΑΡΤΗΣΕΙΣ

ΗΡΑΚΛΕΙΤΟΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΗΡΑΚΛΕΙΤΟΣ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β') ΔΕΥΤΕΡΑ 28 ΜΑΪΟΥ 2012

2 ο Διαγώνισμα περιόδου στις Συναρτήσεις και τα Όρια

Θεώρημα Bolzano. Γεωμετρική Ερμηνεία του θ.bolzano. Θ. Bolzano και ύπαρξη ρίζας

τα βιβλία των επιτυχιών

ΟΡΙΑ ΣΥΝΕΧΕΙΑ: Τύποι - Βασικές έννοιες

ΘΕΩΡΗΜΑ BOLZANO Μία διδακτική προσέγγιση

Θεώρημα Bolzano. ΑΠΑΝΤΗΣΗ. Έστω μια συνάρτηση f, ορισμένη σε ένα κλειστό διάστημα [, ]. Αν: η f είναι συνεχής στο [, ] και, επιπλέον, ισχύει

A. ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ Μάθημα: Μαθηματικά κατεύθυνσης, Τάξη: Γ Λυκείου Ενότητα: Θεώρημα Bolzano ( 3 διδακτικές ώρες)

[ α π ο δ ε ί ξ ε ι ς ]

ΘΕΩΡΗΜΑ ROLLE ΘΕΩΡΗΜΑ ROLLE

Μαθηματικά Προσανατολισμού Γ Λυκείου Κανιστράς Δημήτριος. Συναρτήσεις Όρια Συνέχεια Μια πρώτη επανάληψη Απαντήσεις των ασκήσεων

5.1.1 Η θεωρία και τι προσέχουμε

ΤΟ ΘΕΜΑ Α ΤΩΝ ΕΞΕΤΑΣΕΩΝ

ΘΕΩΡΗΜΑ ROLLE. τέτοιο ώστε. στο οποίο η εφαπτομένη είναι παράλληλη στον άξονα χχ. της γραφικής παράστασης της f x με. Κατηγορίες Ασκήσεων

ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟΥ-ΛΑΘΟΥΣ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΥΛΗ ΔΙΑΓΩΝΙΣΜΑΤΟΣ:ΠΑΡΑΓΩΓΟΙ

Μαθηματικά Προσανατολισμού Γ Λυκείου Κανιστράς Δημήτριος. Συναρτήσεις Όρια Συνέχεια Μια πρώτη επανάληψη Απαντήσεις των ασκήσεων.

( ) f( x ) ΔΙΑΓΩΝΙΣΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ. Επώνυμο: Όνομα: Τμήμα: Ημερομηνία: Α Βαθ. Β Βαθ. Μ.Ο. (ενδεικτικές λύσεις)

ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ. Το 1ο Θέμα στις πανελλαδικές εξετάσεις


ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Β ΜΕΡΟΣ

Επαναληπτικά θέματα στα Μαθηματικά προσανατολισμού-ψηφιακό σχολείο ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ ΝΕΟ & ΠΑΛΑΙΟ ΣΥΣΤΗΜΑ Γ ΗΜΕΡΗΣΙΩΝ

2ο Επαναληπτικό διαγώνισμα στα Μαθηματικά κατεύθυνσης της Γ Λυκείου Θέμα A

Περίληψη μαθημάτων Ι. ΣΥΝΑΡΤΗΣΕΙΣ. Με N θα συμβολίζουμε το σύνολο των φυσικών αριθμών, δηλ. N = {1, 2, 3, 4, }.

Διαγώνισμα (Μονάδες 2) β. Μια συνάρτηση f μπορεί να μην είναι συνεχής στα άκρα ακαι β αλλά να είναι συνεχής στο [ α, β ].

ΕΝΔΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ 2017

αβ (, ) τέτοιος ώστε f(x

Μ Α Θ Η Μ Α Τ Α Γ Λ Υ Κ Ε Ι Ο Υ

Διαγώνισμα Προσομοίωσης Εξετάσεων 2017

qwertyuiopasdfghjklzxcvbnmq ertyuiopasdfghjklzxcvbnmqwer tyuiopasdfghjklzxcvbnmqwerty uiopasdfghjklzxcvbnmqwertyui opasdfghjklzxcvbnmqwertyuiop

ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ/ Γ ΛΥΚΕΙΟΥ ΗΜΕΡΟΜΗΝΙΑ: ΑΠΑΝΤΗΣΕΙΣ

ΠΕΡΙΦΕΡΕΙΑΚΗ Δ/ΝΣΗ Π/ΘΜΙΑΣ & Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ Β. ΑΙΓΑΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ. Ημερομηνία: Πέμπτη 3 Ιανουαρίου 2019 Διάρκεια Εξέτασης: 3 ώρες ΘΕΜΑΤΑ

ΜΑΘΗΜΑ ΣΥΝΕΠΕΙΕΣ ΤΟΥ Θ.Μ.Τ Μονοτονία συνάρτησης Ασκήσεις Εξισώσεις Θεωρητικές Συνέχεια του µαθήµατος 31. e 3 = 0. e + e 3, x R.

έχει μοναδική ρίζα στο. β. Να δείξετε ότι για κάθε x. x 2

Σημειώσεις Μαθηματικών 2

Μαθηματικά Προσανατολισμού Γ' Λυκείου

Πολλά ψέματα λίγες αλήθειες. ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΜΕΡΟΣ 1 ο

ΜΙΓΑ ΙΚΟΙ. 3. Για κάθε z 1, z 2 C ισχύει z1 + z2 = z1 + z2. 4. Για κάθε z C ισχύει z z 2 z. 5. Για κάθε µιγαδικό z ισχύει: 6.

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ Γ ΛΥΚΕΙΟΥ 2010 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 2010

ΘΕΩΡΗΜΑ ΜΕΣΗΣ ΤΙΜΗΣ ΔΙΑΦΟΡΙΚΟΥ ΛΟΓΙΣΜΟΥ

1o. Θ Ε Μ Α Β Ε. Γ Κ Ο Ρ Α. βρίσκεται ολόκληρη μέσα στο τετράγωνο ΑΒΓΔ.

x x = e, x > 0 έχει ακριβώς δυο Γ4. Να βρείτε το εμβαδόν του χωρίου που περικλείεται από τη γραφική

2o Επαναληπτικό Διαγώνισμα 2016

ΜΑΘΗΜΑΤΙΚΑ Γ ΤΑΞΗΣ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ 2003

2.6 ΣΥΝΕΠΕΙΕΣ ΤΟΥ ΘΕΩΡΗΜΑΤΟΣ ΜΕΣΗΣ ΤΙΜΗΣ

Λύσεις των θεμάτων των Πανελλαδικών Εξετάσεων στα Μαθηματικά Προσανατολισμού 2016

3. Ειδικά θεωρήµατα Συνέχεια

ΚΕΦΑΛΑΙΟ 3ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 8: ΜΟΝΟΤΟΝΙΑ ΣΥΝΑΡΤΗΣΗΣ [Ενότητα Μονοτονία Συνάρτησης του κεφ.2.6 Μέρος Β του σχολικού βιβλίου].

ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΔΕΥΤΕΡΑ 11 ΙΟΥΝΙΟΥ 2018 ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ ΣΤΑ ΘΕΜΑΤΑ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ 2012 ΕΚΦΩΝΗΣΕΙΣ. β α

Μαθηματικά Κατεύθυνσης Γ Λυκείου ( ) ( ) ( ) α β, παραγωγίσιμη στο ( ) β με. β α β α. f β f α. g ( ξ ) = 0, δηλαδή

Ερωτήσεις-Απαντήσεις Θεωρίας

ΜΑΘΗΜΑΤΙΚΑ Γ ΤΑΞΗΣ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ 2003

ΘΕΩΡΗΜΑ ΜΕΣΗΣ ΤΙΜΗΣ ΘΕΩΡΗΜΑ ΜΕΣΗΣ ΤΙΜΗΣ ΔΙΑΦΟΡΙΚΟΥ ΛΟΓΙΣΜΟΥ

ΘΕΩΡΗΜΑ ΜΕΣΗΣ ΤΙΜΗΣ - ΘΕΩΡΗΜΑ ROLLE

ΘΕΜΑΤΑ ΠΑΝΕΛΛΗΝΙΩΝ 2014 ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΥΠΑΡΞΗ ΣΕ ΙΣΟΤΗΤΑ Ή ΑΝΙΣΟΤΗΤΑ

Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α

ΦΕΒΡΟΥΑΡΙΟΣ Ο συντελεστής διεύθυνσης της εφαπτοµένης της γραφικής παράστασης τη f(x) στο σηµείο x ο είναι f x ) (Μονάδες 4)

α,β,γ και α 0 στο σύνολο των μιγαδικών

4ο Επαναληπτικό διαγώνισμα στα Μαθηματικά προσανατολισμού της Γ Λυκείου

1.8 ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ

y = 2 x και y = 2 y 3 } ή

) της γραφικής παράστασης της f που άγονται από το Α, τις οποίες και να βρείτε. Μονάδες 8 Γ2. Αν ( 1) : y x, και ( 2

Να εξετασθεί αν είναι 1-1 οι συναρτήσεις α) f(x)=4x-1 β) g(x)= γ.

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 5 ΣΕΛΙ ΕΣ

ΛΥΣΕΙΣ. f(x) = g(x)+c. Α2. ί. Ποια είναι η γεωμετρική ερμηνεία του Θεωρήματος Μέσης Τιμής του διαφορικού λογισμού;; (Να κάνετε πρόχειρο σχήμα).

ΘΕΜΑ Α. Α1. Θεωρία -απόδειξη θεωρήματος στη σελίδα 262 (μόνο το iii) στο σχολικό βιβλίο.

ΣΥΝΟΛΟ ΤΙΜΩΝ ΣΥΝΑΡΤΗΣΗΣ : Η ΕΥΡΕΣΗ ΚΑΙ Η ΣΗΜΑΣΙΑ ΤΟΥ

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝ/ΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ - Γ ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ Ο.Π. ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ

Ελληνική Μαθηματική Εταιρεία Παράρτημα Νομού Εύβοιας ΕΞΕΤΑΣΕΙΣ 2008 ΜΑΘΗΜΑ : ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ

Οι ασκήσεις βασίζονται στο αξιόλογο φυλλάδιο του Μαθηματικού Μιλτ. Παπαγρηγοράκη, από τις σημειώσεις του για το 4ο Γενικό Λύκειο Χανίων [ <

ΜΑΘΗΜΑΤΙΚΑ Ο.Π. ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ

ΘΕΜΑ Α. A1. Έστω f μια συνεχής συνάρτηση σε ένα διάστημα [α, β]. Αν G είναι μια παράγουσα της f στο [α, β], τότε να αποδείξετε ότι:

ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 10: ΕΥΡΕΣΗ ΤΟΠΙΚΩΝ ΑΚΡΟΤΑΤΩΝ

ΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ (1 η σειρά)

Εφαρμογές παραγώγων. Διαφορικός Λογισμός μιας μεταβλητής Ι

1. Για οποιουσδήποτε μιγαδικούς z 1, z 2 με Re (z 1 + z 2 ) = 0, ισχύει: Re (z 1 ) + Re (z 2 ) = 0

Transcript:

Μία διδακτική προσέγγιση ΦΥΛΛΑ ΕΡΓΑΣΙΑΣ (4-2ωρα) Δ. Ε. ΚΟΝΤΟΚΩΣΤΑΣ ΜΑΘΗΜΑΤΙΚΟΣ

1 ο 2ωρο Μπέρναρντ Μπολζάνο (1781-1848) (Πηγή: http://en.wikipedia.org/wiki/bernard_bolzano ) www.commonmaths.weebly.com Σελίδα 1

Ο Bernard Bolzano γεννήθηκε στην Πράγα. Το 1796 φοίτησε στο πανεπιστήμιο, όπου σπούδασε μαθηματικά, φιλοσοφία και φυσική. Το 1800 άρχισε τις σπουδές του στη Θεολογία. Το 1805 χειροτονήθηκε ιερέας και αναγορεύτηκε διδάκτορας και το 1806 έγινε τακτικός καθηγητής της Ρωμαιοκαθολικής Θεολογίας στη Φιλοσοφική Σχολή. Ο Bolzano ήταν υπέρμαχος μιας ολοκληρωτικής μεταρρύθμισης του κοινωνικού συστήματος. Οι σοσιαλιστικές του απόψεις τον έφεραν σε σύγκρουση με το κατεστημένο της εποχής, με αποτέλεσμα να διωχθεί από το πανεπιστήμιο το 1819 και να χαρακτηριστεί "αιρετικός". Το συγγραφικό του έργο περιλήφθηκε στον κατάλογο των απαγορευμένων βιβλίων. Οι φιλοσοφικές και λογικές του έρευνες και απόψεις περιλαμβάνονται στο έργο του "Θεωρία της επιστήμης". Εξαιτίας του ότι ήταν απαγορευμένος αναγκαζόταν να δημοσιεύει τις εργασίες του ανώνυμα και σε "περιθωριακές" εκδόσεις. Στον Bolzano οφείλεται ο αυστηρός ε-δ ορισμός του ορίου, καθώς και η πρώτη αναλυτική απόδειξη του γνωστού ως θεωρήματος Bolzano για τις συνεχείς συναρτήσεις. Έδωσε παράδειγμα συνάρτησης παντού συνεχούς και πουθενά παραγωγίσιμης πολύ πριν τον Weirstrass. Οι εργασίες του αυτές ήταν άγνωστες ως το 1881,που τα έφερε στο φως ο Otto Stolz. (Πηγή: http://eisatopon.blogspot.gr/ ) www.commonmaths.weebly.com Σελίδα 2

ΕΦΑΡΜΟΓΗ ΘΕΩΡΗΜΑ BOLZANO 1 ο ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ Δίνεται η συνάρτηση f(x) = x 2 4x + 3. i. Να λυθεί η εξίσωση f(x) = 0. Ποια η γεωμετρική ερμηνεία των ριζών της πιο πάνω εξίσωσης; ii. iii. Είναι η συνάρτηση f συνεχής και αν ναι για πιο λόγο; Να βρεθεί το πρόσημο του γινομένου : f(0).f(2) Να γίνει η γραφική παράσταση της f. Εντοπίστε τα f(0), f(2). Στο διάστημα [0,2] η γραφική παράσταση τέμνει τον χ χ ; www.commonmaths.weebly.com Σελίδα 3

iv. Ανοίγουμε το πρόγραμμα GEOGEBRA και στην αρχική σελίδα πληκτρολογούμε την εντολή, όπως φαίνεται στην εικόνα, μέσα στην γραμμή εισαγωγής ( κάτω μέρος). Προσοχή όσα πληκτρολογούμε πρέπει να είναι με Αγγλική γραμματοσειρά. www.commonmaths.weebly.com Σελίδα 4

ΕΡΩΤΗΣΗ 1 η Να διατυπωθεί το θεώρημα Bolzano και να γραφτούν οι άμεσες συνέπειες. ΑΠΑΝΤΗΣΗ ΘΕΩΡΗΜΑ BOLZANO Έστω μια συνάρτηση f, ορισμένη σ ένα διάστημα [α, β]. Αν : η f είναι συνεχής στο [α, β] και f(α) f(β) < 0 τότε υπάρχει τουλάχιστον ένα x 0 ε (α, β) τέτοιο ώστε f(x 0 ) = 0, δηλαδή υπάρχει μία, τουλάχιστον, ρίζα της εξίσωσης f(x)=0 στο ανοικτό διάστημα (α, β). Γεωμετρική Eρμηνεία Θεωρήματος Bolzano Παρατηρούμε ότι f(α)<0 ενώ f(β)>0 και επειδή η f είναι συνεχής στο [α,β], δηλ. η C f είναι συνεχόμενη γραμμή τότε σίγουρα θα τέμψει τον χ χ τουλάχιστον μία φορά. Μπορούμε να δούμε και ένα σχετικό video με την παρουσίαση του Θ.Β. στην παρακάτω διεύθυνση: http://www.youtube.com/watch?v=uyitsjlq3e8 Παρακάτω θα δούμε την αναγκαιότητα των πιο πάνω προϋποθέσεων στο Θ.Β. www.commonmaths.weebly.com Σελίδα 5

ΕΦΑΡΜΟΓΗ ΘΕΩΡΗΜΑ BOLZANO 2 ο ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ Δίνεται η συνάρτηση f(x) = { χ2 5χ + 6, χ 1 χ 2 χ 1, χ > 1. i. Να εξετάσετε αν f είναι συνεχής στο [0,2]. ii. iii. Να βρεθεί το πρόσημο του γινομένου : f(0).f(2) Ισχύουν και οι 2 προϋποθέσεις του Θ.Β. στο [0,2] ; Είμαστε σίγουροι ότι η f έχει ρίζα στο [0, 2]; Ανοίγουμε το πρόγραμμα GEOGEBRA και στην αρχική σελίδα πληκτρολογούμε την εντολή, όπως φαίνεται στην εικόνα, μέσα στην γραμμή εισαγωγής ( κάτω μέρος). Προσοχή όσα πληκτρολογούμε πρέπει να είναι με Αγγλική γραμματοσειρά. Σχεδιάστε τη γραφική παράσταση στο πιο πάνω σύστημα αξόνων www.commonmaths.weebly.com Σελίδα 6

ΕΦΑΡΜΟΓΗ ΘΕΩΡΗΜΑ BOLZANO 3 ο ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ Δίνεται η συνάρτηση f(x) = lnx x. i. Είναι η συνάρτηση f συνεχής και αν ναι για πιο λόγο; Να βρεθεί το πρόσημο του γινομένου : f(2).f(e 2 ). ii. Ισχύουν οι 2 προϋποθέσεις του Θ.Β. στο [2, e 2 ] ; Είμαστε σίγουροι ότι η f έχει ρίζα στο [2, e 2 ]; Ανοίγουμε το πρόγραμμα GEOGEBRA και στην αρχική σελίδα πληκτρολογούμε την εντολή, όπως φαίνεται στην εικόνα, μέσα στην γραμμή εισαγωγής ( κάτω μέρος). Προσοχή όσα πληκτρολογούμε πρέπει να είναι με Αγγλική γραμματοσειρά. Σχεδιάστε τη γραφική παράσταση στο πιο πάνω σύστημα αξόνων. Προσοχή και στις δύο συναρτήσεις, που μελετήσαμε, είδαμε ότι κάθε φορά δεν ίσχυε μία προϋπόθεση του Θ.Β. και ότι δεν είχαν ρίζες στα δοθέντα διαστήματα. Προφανώς θα μπορούσα να είχα www.commonmaths.weebly.com Σελίδα 7

δώσει συναρτήσεις, που να μην ίσχυε μία προϋπόθεση του Θ.Β. και να είχαν ρίζες στα δοθέντα διαστήματα. Δηλαδή αυτό που χάνεται είναι η βεβαιότητα ύπαρξης τουλάχιστον μίας ρίζας, που εξασφαλίζουν οι 2 προϋποθέσεις του Θ.Β. Πάμε όμως να δούμε αν ισχύει το αντίστροφο του Θ.Β., δηλ. έστω f συνεχής με μία τουλάχιστον ρίζα στο [α,β] τότε θα ισχύει αναγκαστικά και ότι f(α).f(β)<0 ; www.commonmaths.weebly.com Σελίδα 8

ΕΦΑΡΜΟΓΗ ΘΕΩΡΗΜΑ BOLZANO 4 ο ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ Δίνεται η συνάρτηση f(x) = χ 2 e x. i. Να λυθεί η εξίσωση f(x)=0 i. Είναι η συνάρτηση f συνεχής και αν ναι για πιο λόγο; ii. Nα βρεθεί το πρόσημο του γινομένου : f(-6).f(1). Ισχύουν και οι 2 προϋποθέσεις του Θ.Β. στο [-6,1] ; Ανοίγουμε το πρόγραμμα GEOGEBRA και στην αρχική σελίδα πληκτρολογούμε την εντολή, όπως φαίνεται στην εικόνα, μέσα στην γραμμή εισαγωγής ( κάτω μέρος). Προσοχή όσα πληκτρολογούμε πρέπει να είναι με Αγγλική γραμματοσειρά. Σχεδιάστε τη γραφική παράσταση στο πιο πάνω σύστημα αξόνων www.commonmaths.weebly.com Σελίδα 9

Από τα παραπάνω καταλαβαίνουμε ότι : Αν υπάρχει ξ (α,β) με f(ξ)=0 και f(α)>0 δεν είναι απαραίτητο να είναι και f(β)<0. Αν υπάρχει ξ (α,β) με f(ξ)=0 δεν είναι απαραίτητο να είναι και f(α).f(β)<0. www.commonmaths.weebly.com Σελίδα 10

ΑΣΚΗΣΗ 1 η i. Δίνεται η συνάρτηση f(x) = e x 1, να δειχθεί ότι έχει μία x τουλάχιστον ρίζα στο ( 1 2, 1). ii. Ανοίγουμε το πρόγραμμα GEOGEBRA και στην αρχική σελίδα πληκτρολογούμε την εντολή, όπως φαίνεται στην εικόνα, μέσα στην γραμμή εισαγωγής ( κάτω μέρος). Προσοχή όσα πληκτρολογούμε πρέπει να είναι με Αγγλική γραμματοσειρά. Σχεδιάστε τη γραφική παράσταση στο πιο πάνω σύστημα αξόνων. Να διαβαστούν όσα ειπώθηκαν στο μάθημα και ειδικότερα από το σχολικό βιβλίο σελ. 192 (χωρίς το σχόλιο), εφαρμογή σελ. 197 και να γίνει η άσκηση : Α7 / 198. www.commonmaths.weebly.com Σελίδα 11

2 ο 2ωρο Θα συζητηθούν απορίες και θα λυθεί η άσκηση του προηγούμενου μαθήματος. ΣΥΝΕΠΕΙΕΣ Θ.Β. Έχουμε f(x) 0 και f συνεχής στο [α,β] τότε η f έχει σταθερό πρόσημο στο [α,β], δηλ. f(χ) < 0 ή f(χ) > 0 για κάθε χ [α,β]. www.commonmaths.weebly.com Σελίδα 12

ΑΣΚΗΣΗ 2 η i. Έστω g μια συνεχής συνάρτηση για την οποία ισχύει : g 2 (x) 16 = x 2, για κάθε χ [ 4,4]. α. Να λυθεί η εξίσωση g(x) = 0 στο διάστημα [-4,4]. β. Να δείξετε ότι η συνάρτηση g διατηρεί σταθερό πρόσημο στο (-4,4). γ. Να βρεθεί ο τύπος της g αν g(0)=-4. ii. Ανοίγουμε το πρόγραμμα GEOGEBRA και στην αρχική σελίδα πληκτρολογούμε την εντολή, όπως φαίνεται στην εικόνα, μέσα στην γραμμή εισαγωγής ( κάτω μέρος). Προσοχή όσα πληκτρολογούμε πρέπει να είναι με Αγγλική γραμματοσειρά. www.commonmaths.weebly.com Σελίδα 13

Σχεδιάστε τη γραφική παράσταση στο πιο πάνω σύστημα αξόνων. Αν ρ 1, ρ 2, ρ 3,, ρ ν οι διαδοχικές ρίζες μιας συνεχούς συνάρτησης f σε ένα διάστημα [α,β] τότε η f διατηρεί το πρόσημο της, μεταξύ 2 διαδοχικών ριζών. Για να βρούμε το πρόσημο αυτό απλά επιλέγουμε μία τυχαία τιμή χ i μεταξύ 2 διαδοχικών ριζών και υπολογίζουμε το f(χ i ).Ότι πρόσημο θα έχει το f(χ i ), θα έχει και η f μεταξύ αυτών των 2 διαδοχικών ριζών. www.commonmaths.weebly.com Σελίδα 14

ΑΣΚΗΣΗ 3 η i. Να βρείτε το πρόσημο της συνάρτησης f για όλες τις πραγματικές τιμές του χ, όταν : f(x) = x 3 6x 2 + 11x 6... ii. Ανοίγουμε το πρόγραμμα GEOGEBRA και στην αρχική σελίδα πληκτρολογούμε την εντολή, όπως φαίνεται στην εικόνα, μέσα στην γραμμή εισαγωγής ( κάτω μέρος). Προσοχή όσα πληκτρολογούμε πρέπει να είναι με Αγγλική γραμματοσειρά. Σχεδιάστε τη γραφική παράσταση στο πιο πάνω σύστημα αξόνων. www.commonmaths.weebly.com Σελίδα 15

ΑΣΚΗΣΗ 4 η i. Δίνεται η εξίσωση lnx = x 2, να δειχθεί ότι έχει μία τουλάχιστον ρίζα στο (1,e 2 ). ii. Ανοίγουμε το πρόγραμμα GEOGEBRA και στην αρχική σελίδα πληκτρολογούμε την εντολή, όπως φαίνεται στην εικόνα, μέσα στην γραμμή εισαγωγής ( κάτω μέρος). Προσοχή όσα πληκτρολογούμε πρέπει να είναι με Αγγλική γραμματοσειρά. Σχεδιάστε τη γραφική παράσταση στο πιο πάνω σύστημα αξόνων. www.commonmaths.weebly.com Σελίδα 16

ΑΣΚΗΣΗ 5 η i. Να δειχθεί ότι η εξίσωση χ2 +1 + χ3 +1 = 0, έχει μία χ 2 x 3 τουλάχιστον ρίζα. iii. Ανοίγουμε το πρόγραμμα GEOGEBRA και στην αρχική σελίδα πληκτρολογούμε την εντολή, όπως φαίνεται στην εικόνα, μέσα στην γραμμή εισαγωγής ( κάτω μέρος). Προσοχή όσα πληκτρολογούμε πρέπει να είναι με Αγγλική γραμματοσειρά. Σχεδιάστε τη γραφική παράσταση στο πιο πάνω σύστημα αξόνων. www.commonmaths.weebly.com Σελίδα 17

ΑΣΚΗΣΗ 6 η i. Δίνεται η εξίσωση lnx = 1 + 1, να δειχθεί ότι έχει ακριβώς μία x ρίζα. ii. Ανοίγουμε το πρόγραμμα GEOGEBRA και στην αρχική σελίδα πληκτρολογούμε την εντολή, όπως φαίνεται στην εικόνα, μέσα στην γραμμή εισαγωγής ( κάτω μέρος). Προσοχή όσα πληκτρολογούμε πρέπει να είναι με Αγγλική γραμματοσειρά. Σχεδιάστε τη γραφική παράσταση στο πιο πάνω σύστημα αξόνων. www.commonmaths.weebly.com Σελίδα 18

ΑΣΚΗΣΗ 7 η i. Έστω η συνάρτηση f : [0,1] (0,2) συνεχής.να δειχθεί ότι υπάρχει τουλάχιστον ένα ξ (0,1) τέτοιο ώστε: f 2 (ξ) = 2f(ξ) 3ξ. ii. Έστω μια συνάρτηση f, ορισμένη σ ένα διάστημα [α, β]. Αν : η f είναι συνεχής στο [α, β] και f(α) f(β) τότε για κάθε αριθμό (η) μεταξύ των f(α) και f(β) υπάρχει τουλάχιστον ένα x 0 ϵ (α, β) τέτοιο ώστε f(x 0 ) = η. Η τελευταία άσκηση αποτελεί το γνωστό Θεώρημα Ενδιάμεσων Τιμών (Θ.Ε.Τ.), που είναι η γενίκευση του Θ.Β. Να διαβαστούν οι σελίδες 192 (από το σχόλιο) και 193 ΑΣΚΗΣΕΙΣ για το σπίτι από το σχολικό βιβλίο: Α6/198, Α8, Β4/199, Β5/200 www.commonmaths.weebly.com Σελίδα 19

3 ο 2ωρο Θα συζητηθούν κάποιες απορίες και θα λυθούν ορισμένες δοσμένες ασκήσεις από το βιβλίο. ΕΡΩΤΗΣΗ 2 η Να διατυπωθεί και να αποδειχθεί το θεώρημα Ενδιάμεσων Τιμών. ΑΠΑΝΤΗΣΗ ΘΕΩΡΗΜΑ ΕΝΔΙΑΜΕΣΩΝ ΤΙΜΩΝ (Θ.Ε.Τ.) (ΓΕΝΙΚΕΥΣΗ ΘΕΩΡHΜΑΤΟΣ BOLZANO) Έστω μια συνάρτηση f, ορισμένη σ ένα διάστημα [α, β]. Αν : η f είναι συνεχής στο [α, β] και f(α) f(β) τότε για κάθε αριθμό (η) μεταξύ των f(α) και f(β) υπάρχει τουλάχιστον ένα x 0 ϵ (α, β) τέτοιο ώστε f(x 0 ) = η. ΑΠΟΔΕΙΞΗ Έστω f(α) < f(β). Τότε θα ισχύει: f(α) < η < f(β). Έστω η συνάρτηση g(x)=f(x)-η, χ [α, β] με : g συνεχής στο [α,β] και g(α) g(β) < 0 αφού g(α)=f(α)-η< 0 και g(β)=f(β)-η> 0 Άρα από Θ.Bolzano υπάρχει τουλάχιστον ένα x 0 ϵ (α, β) τέτοιο ώστε g(x 0 ) = 0 f(x 0 ) η = 0 f(x 0 ) = η. Μπορούμε να δούμε το Θ.Ε.Τ. και στο παρακάτω video.: http://www.youtube.com/watch?v=xnem5ylf5ym www.commonmaths.weebly.com Σελίδα 20

ΕΡΩΤΗΣΗ 3 η Να γραφτεί η γεωμετρική ερμηνεία του θεωρήματος των Ενδιάμεσων Τιμών. ΑΠΑΝΤΗΣΗ Αφού ο αριθμός (η) είναι μεταξύ του f(α) και του f(β) τότε σίγουρα η ευθεία y=η θα τέμνει την C f σε τουλάχιστον ένα σημείο. Προφανώς αν η C f δεν ήταν συνεχής τότε μπορεί να μην είχαμε κανένα κοινό σημείο με την ευθεία : y=η www.commonmaths.weebly.com Σελίδα 21

ΑΣΚΗΣΗ 8 η Αν f(x) = x 8 + x + 4, να δείξετε ότι υπάρχει ξ (1,2) τέτοιο ώστε f(ξ)=250. (Με 2 τρόπους)... www.commonmaths.weebly.com Σελίδα 22

ΑΣΚΗΣΗ 9 η i. Nα αποδειχθεί ότι οι γραφικές παραστάσεις των συναρτήσεων f(x) = x 4 + x 3 2x + 1 και g(x) = 3x 3 5x + 2 έχουν ένα τουλάχιστον κοινό σημείο με τετμημένη χ 0.... ii. Ανοίγουμε το πρόγραμμα GEOGEBRA και στην αρχική σελίδα πληκτρολογούμε τις κατάλληλες εντολές για κάθε συνάρτηση μέσα στην γραμμή εισαγωγής ( κάτω μέρος). Προσοχή όσα πληκτρολογούμε πρέπει να είναι με Αγγλική γραμματοσειρά. Πάμε, τώρα να δούμε τις Συνέπειες του Θ.Ε.Τ. ΕΡΩΤΗΣΗ 4 η Πότε λέμε ότι η εικόνα μιας συνάρτησης f είναι ένα διάστημα; ΑΠΑΝΤΗΣΗ Έστω f μία συνεχής μη σταθερή συνάρτηση σε ένα διάστημα Δ. Το σύνολο τιμών της f, το f(δ) είναι ένα διάστημα. www.commonmaths.weebly.com Σελίδα 23

Προφανώς το f( [α,β] )=[κ,λ]. Παρατηρούμε ότι η f δεν είναι συνεχής στο χ 0 και άρα η εικόνα της f στο [α,β] είναι 2 διαστήματα τα [κ,f(α)], (f(β),λ]. Να διαβαστεί η θεωρία από τις σελίδες του σχολικού βιβλίου : 194 και 195 (χωρίς το θεώρημα Μεγίστης και Ελαχίστης τιμής) και να λυθούν οι ασκήσεις : Α9/199, Β6, Β7/200 www.commonmaths.weebly.com Σελίδα 24

4 ο 2ωρο Θα συζητηθούν κάποιες απορίες και θα λυθούν ορισμένες δοσμένες ασκήσεις από το βιβλίο. ΕΡΩΤΗΣΗ 5 η Να διατυπωθεί το Θεώρημα Μέγιστης και Ελάχιστης τιμής. ΑΠΑΝΤΗΣΗ Αν f είναι συνεχής συνάρτηση στο [α,β] τότε η f παίρνει στο [α,β] μία μέγιστη τιμή Μ και μία ελάχιστη τιμή m. Δηλαδή υπάρχουν χ 1, χ 2 [α, β] τέτοια ώστε m=f(χ 1 ), M= f(χ 2 ) και ισχύει : m f(x) M, για κάθε χ [α, β]. ΓΕΩΜΕΤΡΙΚΗ ΕΡΜΗΝΕΙΑ Παρατηρούμε ότι όλες οι τιμές της f(χ) βρίσκονται στο διάστημα [m,μ], το οποίο και αποτελεί το σύνολο τιμών της f με Πεδίο Ορισμού το [α,β]. www.commonmaths.weebly.com Σελίδα 25

Σημείωση Είναι σημαντικό να πληρούνται όλες οι προϋποθέσεις για να ισχύει το Θεώρημα Μεγίστης και Ελαχίστης τιμής, δηλ. η f να ορίζεται και να είναι συνεχής στο κλειστό διάστημα [α,β]. Π.χ. αν η f ορίζεται στο [α,β] και είναι συνεχής στο (α,β] τότε δεν είναι απαραίτητο ότι θα πάρει μία μέγιστη και ελάχιστη τιμή. 1, αν χ (0,1] Πράγματι : f(x) = { x 1, αν χ = 0 Το πεδίο ορισμού της f είναι το [0,1],ενώ η f είναι συνεχής στο (0,1], οπότε βλέπουμε, στο σχήμα πιο κάτω, ότι δεν έχει μέγιστο η f. www.commonmaths.weebly.com Σελίδα 26

ΑΣΚΗΣΗ 10 η Δίνεται η συνεχής συνάρτηση f:[2,10] R. Να δειχθεί ότι υπάρχει χ 0 [2,10], ώστε : f(x 0 ) = 3f(3)+5f(5)+2f(8). 10 ΑΣΚΗΣΗ 11 η Δίνεται η συνεχής και γν. αύξουσα συνάρτηση f:[2005,2008] R. Να δειχθεί ότι υπάρχει ακριβώς ένα χ 0 (2005, 2008) ώστε : 3f(x 0 ) = f(2006) + f(2007) + f(2008). www.commonmaths.weebly.com Σελίδα 27

ΕΡΩΤΗΣΗ 6 η Ποιο το Σύνολο Τιμών μιας γνησίως μονότονης και συνεχούς συνάρτησης σε ένα διάστημα Δ; ΑΠΑΝΤΗΣΗ Αν μία συνάρτηση f είναι γν.αύξουσα και συνεχής σε ένα διάστημα (α,β) τότε το Σ.Τ. της στο διάστημα αυτό είναι το (Α,Β) με Α = lim χ α + f(x) και Β = lim χ β f(x) f: (α, β) f (Α, Β) Αν μία συνάρτηση f είναι γν.φθίνουσα και συνεχής σε ένα διάστημα (α,β) τότε το Σ.Τ. της στο διάστημα αυτό είναι το (Β,Α) με Α = lim χ α + f(x) και Β = lim χ β f(x) f: (α, β) f (Β, Α) www.commonmaths.weebly.com Σελίδα 28

ΑΣΚΗΣΗ 12 η i. Να βρεθεί το σύνολο τιμών της συνάρτησης f(x) = 6 x 5x + 1 που είναι ορισμένη στο [1,3]. ii. Ανοίγουμε το πρόγραμμα GEOGEBRA και στην αρχική σελίδα πληκτρολογούμε την εντολή, όπως φαίνεται στην εικόνα, μέσα στην γραμμή εισαγωγής ( κάτω μέρος). Προσοχή όσα πληκτρολογούμε πρέπει να είναι με Αγγλική γραμματοσειρά. Σχεδιάστε τη γραφική παράσταση στο πιο πάνω σύστημα αξόνων. www.commonmaths.weebly.com Σελίδα 29

ΑΣΚΗΣΗ 13 η i. Να βρεθεί το σύνολο τιμών της συνάρτησης f(x) = χ 4 6 χ. ii. Ανοίγουμε το πρόγραμμα GEOGEBRA και στην αρχική σελίδα πληκτρολογούμε την εντολή, όπως φαίνεται στην εικόνα, μέσα στην γραμμή εισαγωγής ( κάτω μέρος). Προσοχή όσα πληκτρολογούμε πρέπει να είναι με Αγγλική γραμματοσειρά. Σχεδιάστε τη γραφική παράσταση στο πιο πάνω σύστημα αξόνων Να διαβαστούν οι σελίδες του σχολικού βιβλίου : 195(από Θ.Μεγ. και Ελαχ. Τιμής) και 196. και να λυθούν οι ασκήσεις : Α10/199 και 2 διαφορετικές τις Β8, Β9 /200 καθώς και οι παρακάτω ασκήσεις. www.commonmaths.weebly.com Σελίδα 30

ΑΣΚΗΣΗ 1 η Έστω f: συνεχής και γν. αύξουσα στο [0,1] με f(0)=1, f(0)=3. Να δειχθεί ότι υπάρχει χ 0 (0,1) τέτοιο ώστε 3f(x 0 ) = f ( 1 4 ) + f (2 4 ) + f (3 4 ). ΑΣΚΗΣΗ 2 η Έστω f: συνεχής στο [α,β] και χ 1, χ 2 [α, β]. Να δειχθεί ότι υπάρχει ξ [α, β] τέτοιο ώστε 3f(x 1 ) + 5f(x 2 ) = 8f(ξ). ΕΒΔΟΜΑΔΙΑΙΑ ΕΡΓΑΣΙΑ ΜΕΘΟΔΟΣ ΔΙΧΟΤΟΜΗΣΗΣ Η μέθοδος της διχοτόμησης είναι μία απευθείας εφαρμογή του Θ.Β. Ψάχνω να βρω τη ρίζα της f, η οποία δεν είναι ρητός αριθμός. Εντοπίζω δύο τιμές α,β που ανήκουν στο Πεδίο Ορισμού της f τέτοιες ώστε f(α).f(β)<0. Βρίσκω το μέσο χ 1 του διαστήματος που ορίζουν τα α,β από τον τύπο χ 1 = α+β 2 Αν f( χ 1 ).f(β)<0 τότε βρίσκω το μέσο χ 2 του διαστήματος που ορίζουν τα χ 1, β από τον γνωστό τύπο. Αν f( χ 1 ).f(α)<0 τότε βρίσκω το μέσο χ 2 του διαστήματος που ορίζουν τα χ 1, α από τον γνωστό τύπο. Ακολουθούμε την ίδια διαδικασία έως ότου τα δύο άκρα των διαστήματος στο οποίο εφαρμόζουμε το τελευταίο Θ.Β. πληρούν την παρακάτω απαίτηση: a β < 10 3 (εγώ θέτω τον αριθμό 2 10 3, θα μπορούσα να βάλω άλλο μικρότερο αριθμό.). Η ζητούμενη ρίζα θα είναι το μέσο του διαστήματος που πληροί την πιο πάνω απαίτηση. Η συνάρτηση της οποίας θα βρούμε τη ρίζα με προσέγγιση χιλιοστού είναι η : f(x) = x 3 + x + 1 Για πιο εύκολους υπολογισμούς να χρησιμοποιηθεί το υπολογιστικό φύλλο EXCEL. www.commonmaths.weebly.com Σελίδα 31

Ένα παράδειγμα υπολογιστικού φύλλου EXCEL για την δοσμένη συνάρτηση δίνεται παρακάτω. ΒΗΜΑ α f(α) β f(β) μέσο χi f(xi) Iα-βI/2 αλλαγή ορίου 1ο -1-1 0 1-0,5 0,375 0,5 β=-0,5 2o -1-1 -0,5 0,375-0,75-0,17188 0,25 α=-0,75 3ο -0,75-0,17188-0,5 0,375-0,625 0,130859 0,125 β=-0,625 Η όλη διαδικασία τελειώνει όταν στην προτελευταία στήλη ο αριθμός που προκύπτει είναι μικρότερος του 0,001. Μόλις ολοκληρωθεί η διαδικασία καλό είναι να παρουσιάσουμε γραφικά τα ζεύγη α,β σε ένα γράφημα με τη βοήθεια του EXCEL. Στον οριζόντιο άξονα θα έχουμε τον αριθμό των βημάτων και στον κατακόρυφο τις τιμές των α, β, όπως φαίνεται παρακάτω. 0-0,2 1ο 2o 3ο -0,4-0,6 Σειρά1 Σειρά2-0,8-1 -1,2 Μπορείτε να δείτε την μέθοδο της διχοτόμησης και στο παρακάτω video : http://www.youtube.com/watch?v=ozfuihxtbta www.commonmaths.weebly.com Σελίδα 32