Επίλυση Υποδειγμάτων με Ορθολογικές Προσδοκίες. Το Πρωτοβάθμιο και Δευτεροβάθμιο Υπόδειγμα

Σχετικά έγγραφα
Επίλυση Υποδειγμάτων με Ορθολογικές Προσδοκίες. Το Πρωτοβάθμιο Υπόδειγμα

Μαθηµατικό Παράρτηµα 5 Επίλυση Υποδειγµάτων µε Ορθολογικές Προσδοκίες

Παράρτηµα 3 Εξισώσεις Διαφορών και Στοχαστικές Διαδικασίες

Ενα Νέο Κλασσικό Υπόδειγμα Χωρίς Κεφάλαιο. Μακροοικονομικές Διακυμάνσεις και Νομισματικοί Παράγοντες

Το Βασικό Κεϋνσιανό Υπόδειγμα και η Σταδιακή Προσαρμογή του Επιπέδου Τιμών. Καθ. Γιώργος Αλογοσκούφης

Ανεργία, Πληθωρισμός και Ορθολογικές Προσδοκίες. Καθ. Γιώργος Αλογοσκούφης

Πληθωρισμός, Ανεργία και Αξιοπιστία της Νομισματικής Πολιτικής. Το Πρόβλημα του Πληθωρισμού σε ένα Υπόδειγμα με Υψηλή Ανεργία Ισορροπίας

Μαθηµατικό Παράρτηµα 2 Εξισώσεις Διαφορών

Το Νέο Κεϋνσιανο Υπόδειγμα. Ένα Δυναμικό Στοχαστικό Υπόδειγμα Γενικής Ισορροπίας με Κεϋνσιανά Χαρακτηριστικά

Μαθηµατικό Παράρτηµα 2 Εξισώσεις Διαφορών

Νομισματική και Συναλλαγματική Πολιτική σε μια Μικρή Ανοικτή Οικονομία. Σταθερές ή Κυμαινόμενες Ισοτιμίες;

Ενα Νέο Κεϋνσιανό Υπόδειγμα με Περιοδικό Καθορισμό των Ονομαστικών Μισθών. Καθορισμός των Ονομαστικών Μισθών και Ανεργία

Η Νέα Κλασσική Θεώρηση των Οικονομικών Διακυμάνσεων

1. Ποιες είναι οι διαφορές μεταξύ αυτοπαλίνδρομων υποδειγμάτων (AR) και υποδειγμάτων κινητού μέσου (MA);

Οι ιδιότητες και οι µέθοδοι επίλυσης διαφορικών εξισώσεων παρουσιάζονται σε µία σειρά εγχειριδίων µαθηµατικών

Χρονικές σειρές 5 Ο μάθημα: Γραμμικά στοχαστικά μοντέλα (1) Αυτοπαλίνδρομα μοντέλα Εαρινό εξάμηνο Τμήμα Μαθηματικών ΑΠΘ

Το Βασικό Κεϋνσιανό Υπόδειγμα και η Σχέση Μεταξύ Ανεργίας και Πληθωρισμού. Καθ. Γιώργος Αλογοσκούφης

Το Βασικό Κεϋνσιανό Υπόδειγμα και η Σχέση Μεταξύ Ανεργίας και Πληθωρισμού

Η Νέα Κλασσική Θεώρηση των Οικονομικών Διακυμάνσεων. Το Υπόδειγμα των Πραγματικών Οικονομικών Κύκλων

Κεφάλαιο 8 Το Βασικό Κεϋνσιανό Υπόδειγµα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ

Κεφάλαιο 6 Η Νοµισµατική Προσέγγιση

Η Διαχρονική Προσέγγιση στο Ισοζύγιο Πληρωμών. Διεθνής Οικονομική Καθ. Γιώργος Αλογοσκούφης

1 ης εργασίας ΕΟ Υποδειγματική λύση

Το Υπόδειγμα του Αντιπροσωπευτικού Νοικοκυριού

Κεφάλαιο 14 Ατελής Ανταγωνισµός, Κλιµακωτή Προσαρµογή των Τιµών και Μακροοικονοµικές Διακυµάνσεις

Κεφάλαιο 12 Το Βασικό Κεϋνσιανό Υπόδειγµα Οικονοµικών Διακυµάνσεων

Η Διαχρονική Προσέγγιση στο Ισοζύγιο Πληρωμών

ΤΜΗΜΑ ΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥ ΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ

Κεφάλαιο 8 Ένα Δυναµικό Υπόδειγµα Επενδύσεων

ΤΜΗΜΑΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝΣΥΣΤΗΜΑΤΩΝ

y 1 (x) f(x) W (y 1, y 2 )(x) dx,

Περιεχόμενα. Κεφάλαιο 3 Οι ιδιότητες των αριθμών Αριθμητικά σύνολα Ιδιότητες Περισσότερες ιδιότητες...

ΚΕΦΑΛΑΙΟ 6 ΠΡΟΒΛΕΨΕΙΣ ΜΕ ΥΠΟΔΕΙΓΜΑΤΑ ΧΡΟΝΟΣΕΙΡΩΝ

Κεφάλαιο 17 Ένα Υπόδειγµα Δηµοσιονοµικών Κρίσεων

5 Ο προσδιορισμός του εισοδήματος: Εξαγωγές και εισαγωγές

A N A B P Y T A ΑΣΚΗΣΕΙΣ ΠΟΛΥΩΝΥΜΩΝ. 1 (α + β + γ) [(α-β) 2 +(α-γ) 2 +(β-γ) 2 ] και τις υποθέσεις

Περιεχόμενα. Κεφάλαιο 3 Οι ιδιότητες των αριθμών Αριθμητικά σύνολα Ιδιότητες Περισσότερες ιδιότητες...

Συνολοκλήρωση και VAR υποδείγματα

Μαθηματικά. Ενότητα 6: Ασκήσεις Ορίων Συνάρτησης. Σαριαννίδης Νικόλαος Τμήμα Λογιστικής και Χρηματοοικονομικής

Ανεργία και Τριβές στην Αγορά Εργασίας. Καθ. Γιώργος Αλογοσκούφης

Ανεργία και Τριβές στην Αγορά Εργασίας. Ένα Υπόδειγμα Αναζήτησης και Σύζευξης στην Αγορά Εργασίας

Υποδείγματα Ενδογενούς Οικονομικής Μεγέθυνσης. Εξωτερικότητες από τη Συσσώρευση Φυσικού Κεφαλαίου στην Αποδοτικότητα της Εργασίας

Γενικά Μαθηματικά. , :: x, :: x. , :: x, :: x. , :: x, :: x

Χρονικές σειρές 2 Ο μάθημα: Εισαγωγή στις χρονοσειρές

Συναλλαγματικές ισοτιμίες και επιτόκια

a n = 3 n a n+1 = 3 a n, a 0 = 1

Κεφάλαιο 12 Το Βασικό Κεϋνσιανό Υπόδειγµα και η Σταδιακή Προσαρµογή του Επιπέδου των Τιµών

Μαθηματικά. Ενότητα 2: Διαφορικός Λογισμός. Σαριαννίδης Νικόλαος Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη)

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ. ΜΑΘΗΜΑ 5ο

Συνολική Ζήτηση, ΑΕΠ και Συναλλαγματικές Ισοτιμίες. Βραχυχρόνιοι Προσδιοριστικοί Παράγοντες του ΑΕΠ και της Συναλλαγματικής Ισοτιμίας

ΔΕΟ 31 1 η γραπτή εργασία Τελική έκδοση με παρατηρήσεις

- ΟΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΕΝΟΤΗΤΑ 6: ΜΗ ΠΕΠΕΡΑΣΜΕΝΟ ΟΡΙΟ ΣΤΟ

Μακροοικονομική. Η ζήτηση χρήματος

ΤΕΛΕΣΤΕΣ ΚΑΙ ΣΤΑΤΙΣΤΙΚΑ ΕΡΓΑΛΕΙΑ ΑΝΑΛΥΣΗΣ ΧΡΟΝΟΣΕΙΡΩΝ

Αξιολόγηση Επενδύσεων

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ: ΠΛΗΡΟΦΟΡΙΚΗ ΘΕ: ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΤΗΝ ΠΛΗΡΟΦΟΡΙΚΉ Ι (ΠΛΗ 12) ΛΥΣΕΙΣ ΕΡΓΑΣΙΑΣ 3

ΥΠΟΣΤΗΡΙΚΤΙΚΑ ΜΑΘΗΜΑΤΑ ΕΑΠ ΔΕΟ 31 ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗ ΔΙΟΙΚΗΣΗ ΔΕΟ 31 ΤΟΜΟΣ Β ΘΕΩΡΙΑ ΚΑΙ ΜΕΘΟΔΟΛΟΓΙΑ

ΜΑΚΡΟΟΙΚΟΝΟΜΙΚΗ Ενότητα 7 : Συνολική Προσφορά - Συνολική Ζήτηση και η μακροοικονομική ισορροπία

Χρονικές σειρές 10 Ο μάθημα: Μη στάσιμα μοντέλα ARIMA Μεθοδολογία Box-Jenkins Εαρινό εξάμηνο Τμήμα Μαθηματικών ΑΠΘ

Αριθμητική Ανάλυση και Εφαρμογές

1.Μια εταιρία αναμένεται να αποδώσει μέρισμα στο τέλος του έτους ίσο με D 1=2

Συνολοκλήρωση και μηχανισμός διόρθωσης σφάλματος

Διαχρονικές Επιπτώσεις της Δημοσιονομικής Πολιτικής. Δημόσιες Δαπάνες, Δημόσιο Χρέος και Φορολογικοί Συντελεστές

Αποτίμηση Αξιογράφων. PhD

ΣΥΝΘΕΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ

a (x)y a (x)y a (x)y' a (x)y 0

Αξιολόγηση Επενδύσεων. Διάλεξη 6 Επιτόκια III

Χρηματοοικονομική Ι. Ενότητα 9: Αποτίμηση κοινών μετοχών. Ιωάννης Ταμπακούδης. Τμήμα Οργάνωσης και Διοίκησης Επιχειρήσεων ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗ Ι

Χρονικές σειρές 8 Ο μάθημα: Μοντέλα κινητού μέσου

ΣΤΑ ΚΕΦΆΛΑΙΑ ΠΟΥ ΑΚΟΛΟΥΘΟΎΝ ΘΑ ΑΣΧΟΛΗΘΟΎΜΕ με την αξιολόγηση διάφορων ΔΙΑΧΡΟΝΙΚΗ ΑΞΙΑ ΤΟΥ ΧΡΗΜΑΤΟΣ. κεφάλαιο 2

Κεφάλαιο 9 Μακροοικονοµική Πολιτική και Βραχυχρόνια Αλληλεξάρτηση στην Παγκόσµια Οικονοµία

2. Επίλυση μη Γραμμικών Εξισώσεων

Αριθμητικά Μοντέλα Επιλογής Έργων

Κεφάλαιο 1: Προβλήµατα τύπου Sturm-Liouville

Λ. Ζαχείλας. Επίκουρος Καθηγητής Εφαρμοσμένων Μαθηματικών Τμήμα Οικονομικών Επιστημών Πανεπιστήμιο Θεσσαλίας. Οικονομική Δυναμική 29/6/14

Αν έχουμε δύο μεταβλητές Χ και Υ και σύμφωνα με την οικονομική θεωρία η μεταβλητή Χ προσδιορίζει τη συμπεριφορά της Υ το ερώτημα που τίθεται είναι αν

Μαθηματικά Προσανατολισμού Γ Λυκείου Κανιστράς Δημήτριος. Συναρτήσεις Όρια Συνέχεια Μια πρώτη επανάληψη Απαντήσεις των ασκήσεων

ΑΡΘΡΟ: Επισκεφθείτε το Management Portal της Specisoft:

ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ΑΠΟΣΤΟΛΟΥ ΓΙΩΡΓΟΣ ΜΑΘΗΜΑΤΙΚΟΣ

( p) (1) (2) ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΟΡΓΑΝΩΣΗΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ. Α.Α.Δράκος

Χρονοσειρές Μάθημα 3. Γραμμικές στάσιμες διαδικασίες. Γραμμική χρονοσειρά (στοχαστική διαδικασία) Z Z ~ WN(0, ) είναι στάσιμη. Θεωρούμε μ=0 E[ X ] 0

Μέϑοδοι Εφαρμοσμένων Μαϑηματιϰών (ΜΕΜ 274) Λύσεις Θεμάτων Εξέτασης Ιούνη 2019

Η εξίσωση της γραμμής αγοράς χρεογράφων (SML) είναι η εξίσωση του υποδείγματος κεφαλαιακών και περιουσιακών στοιχείων (CAPM)

ΛΧ1004 Μαθηματικά για Οικονομολόγους

ΛΥΜΕΝΕΣ ΕΦΑΡΜΟΓΕΣ ΣΤΟ 2 ο ΚΕΦΑΛΑΙΟ

Ενότητα 10: Πληθωρισμός και ανεργία

ΕΠΕΚΤΑΣΕΙΣ ΤΟΥ ΝΕΟΚΛΑΣΙΚΟΥ ΥΠΟΔΕΙΓΜΑΤΟΣ

Β Λυκείου - Ασκήσεις Συστήματα. x = 38 3y x = 38 3y x = x = = 11

Απειροστικός Λογισμός Ι, χειμερινό εξάμηνο Λύσεις έβδομου φυλλαδίου ασκήσεων.

Κεφάλαιο 9 Μακροοικονοµική Πολιτική και Βραχυχρόνια Αλληλεξάρτηση στην Παγκόσµια Οικονοµία

Χρηματοοικονομική Ι. Ενότητα 8: Βασικές αρχές αποτίμησης μετοχών. Ιωάννης Ταμπακούδης. Τμήμα Οργάνωσης και Διοίκησης Επιχειρήσεων ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗ Ι

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΤΜΗΜΑ. Μαθηματικά 2. Σταύρος Παπαϊωάννου

Υποδείγματα Συσσώρευσης Ανθρωπίνου Κεφαλαίου, Ιδεών και Καινοτομιών και Ενδογενούς Μεγέθυνσης

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ. ΜΑΘΗΜΑ 11ο

ΘΕΜΑ 3 Επομένως τα μερίσματα για τα έτη 2015 και 2016 είναι 0, 08 0,104

π = π e β(u-u n ) + ν

ΟΙΚΟΝΟΜΙΚΗ ΤΩΝ ΔΙΚΤΥΩΝ ΚΑΙ ΤΗΣ ΠΛΗΡΟΦΟΡΗΣΗΣ (ECΟ465) ΤΗΛΕΠΙΚΟΙΝΩΝΙΕΣ ΜΕΡΟΣ Α

ΜΑΚΡΟΟΙΚΟΝΟΜΙΚΗ. Διάλεξη 2 Χρήμα και Πληθωρισμός

Χρονοσειρές, Μέρος Β 1 Πρόβλεψη Χρονικών Σειρών

Transcript:

Επίλυση Υποδειγμάτων με Ορθολογικές Προσδοκίες Το Πρωτοβάθμιο και Δευτεροβάθμιο Υπόδειγμα Καθηγητής Γιώργος Αλογοσκούφης, Δυναμική Μακροοικονομική, 2014

Ορισμός των Ορθολογικών Προσδοκιών για Μία Περίοδο στο Μέλλον Η ορθολογική προσδοκία για την τιμή μιας μεταβλητής x την περίοδο t+1, βασισμένη στις διαθέσιμες πληροφορίες I στην περίοδο t, ορίζεται ως, x t+1 = E(x t+1 I t ) I είναι το σύνολο των διαθέσιμων πληροφοριών, το οποίο αποτελείται από την τρέχουσα και τις παλαιότερες τιμές της μεταβλητής x, καθώς και την τρέχουσα και τις παλαιότερες τιμές ενός συνόλου μεταβλητών z, οι οποίες ενδεχομένως βοηθούν στην πρόβλεψη των μελλοντικών τιμών της x. I t = {x t i,z t i,i = 0,1,2,..., } Καθηγητής Γιώργος Αλογοσκούφης, Δυναμική Μακροοικονομική, 2014 2

Ορισμός των Ορθολογικών Προσδοκιών Oρίζουμε την ορθολογική προσδοκία για την τιμή μιας μεταβλητής x την περίοδο t+s, βασισμένη στις διαθέσιμες πληροφορίες I στην περίοδο t, ως, x t+s = E(x t+s I t ),s = 0,1,2,... Προκειμένου να ορίσουμε πιο συγκεκριμένα τις ορθολογικές προσδοκίες για μία μεταβλητή δεν αρκεί να γνωρίζουμε το σύνολο των πληροφοριών, αλλά και το υπόδειγμα του πώς προσδιορίζεται και εξελίσσεται στο χρόνο αυτή η μεταβλητή. Καθηγητής Γιώργος Αλογοσκούφης, Δυναμική Μακροοικονομική, 2014 3

Ορθολογικές Προσδοκίες για Στάσιμες Αυτοπαλλίνδρομες Στοχαστικές Διαδικασίες Υποθέτουμε μία μεταβλητή x, η οποία ακολουθεί μία αυτοπαλίνδρομη στοχαστική διαδικασία πρώτου βαθμού, της μορφής, x t = (1 λ)x 0 + λx t 1 + ε t όπου, x 0 είναι μία σταθερά, -1<λ<1, και ε είναι μία στοχαστική διαδικασία λευκού θορύβου, με μέσο μηδέν και σταθερή διακύμανση. Καθηγητής Γιώργος Αλογοσκούφης, Δυναμική Μακροοικονομική, 2014 4

Ορθολογικές Προσδοκίες για Στάσιμες Αυτοπαλλίνδρομες Στοχαστικές Διαδικασίες Θα ορίσουμε τη μεταβλητή x ως απόκλιση από το μέσο της, ως εξής, x^ t = x t x 0 Ως απόκλιση από το μέσο της, η μεταβλητή ακολουθεί, x^ t = λ x^ t 1+ ε t Καθηγητής Γιώργος Αλογοσκούφης, Δυναμική Μακροοικονομική, 2014 5

Ορθολογικές Προσδοκίες για Στάσιμες Αυτοπαλλίνδρομες Στοχαστικές Διαδικασίες Μπορεί να δείξει κανείς με διαδοχικές αντικαταστάσεις ότι, x^ t+1 = λ x^ t, x^ t+2 = λ 2 x^ t,..., x^ t+s = λ s x^ t Η ορθολογική προσδοκία μίας αυτοπαλίνδρομης στοχαστικής διαδικασίας πρώτου βαθμού εξαρτάται μόνο από την τρέχουσα τιμή της, με συντελεστή που εξαρτάται από το λ. Εάν η στοχαστική διαδικασία είναι στάσιμη, δηλαδή εάν -1<λ<1, τότε η επίπτωση της τρέχουσας τιμής της μεταβλητής στην ορθολογική της προσδοκία βαίνει μειούμενη καθώς αυξάνεται το s. Καθηγητής Γιώργος Αλογοσκούφης, Δυναμική Μακροοικονομική, 2014 6

Ορθολογικές Προσδοκίες για Στάσιμες Αυτοπαλλίνδρομες Στοχαστικές Διαδικασίες Καθώς το s τείνει στο άπειρο θα ισχύει, lim s x^ t+s = lim s λ s x^ t = 0 Κατά συνέπεια, lim s x t+s = x 0 Με την έννοια αυτή, ο μέσος της μεταβλητής x, ο οποίος αποτελεί το σημείο μακροχρόνιας ισορροπίας της, είναι και το όριο στο οποίο συγκλίνουν οι μελλοντικές προσδοκίες για την εξέλιξη μιας μεταβλητής που ακολουθεί μία στάσιμη στοχαστική διαδικασία. Καθηγητής Γιώργος Αλογοσκούφης, Δυναμική Μακροοικονομική, 2014 7

Ορθολογικές Προσδοκίες για Μη Στάσιμες Αυτοπαλλίνδρομες Στοχαστικές Διαδικασίες Εάν η διαδικασία δεν είναι στάσιμη αλλά τυχαίος περίπατος, δηλαδή εάν λ=1, τότε έχουμε, x^ t+1 = x^ t, x^ t+2 = x^ t, x^ t+3 = x^ t,..., x^ t+s = x^ t Στην περίπτωση αυτή, η ορθολογική προσδοκία για τη μελλοντική τιμή μιας μεταβλητής είναι η τρέχουσα τιμή της μεταβλητής, ανεξάρτητα από το s. Καθηγητής Γιώργος Αλογοσκούφης, Δυναμική Μακροοικονομική, 2014 8

Πρωτοβάθμια Υποδείγματα Ορθολογικών Προσδοκιών Ερχόμαστε τώρα στην επίλυση ενός γραμμικού υποδείγματος στο οποίο μία μεταβλητή εξαρτάται από την ορθολογική προσδοκία για τη μελλοντική της τιμή, και κάποια άλλη εξωγενή μεταβλητή. Το υπόδειγμα περιγράφεται από μία πρωτοβάθμια εξίσωση της μορφής, = a +1 + bx t Η υπόθεση των ορθολογικών προσδοκιών συνεπάγεται ότι οι οικονομικοί παράγοντες γνωρίζουν ότι η μεταβλητή y προσδιορίζεται από την εξίσωση αυτή. Υποθέτουμε επίσης ότι όλοι οι οικονομικοί παράγοντες έχουν στη διάθεσή τους το ίδιο σύνολο πληροφοριών. Καθηγητής Γιώργος Αλογοσκούφης, Δυναμική Μακροοικονομική, 2014 9

Μέθοδοι Επίλυσης Πρωτοβάθμιων Υποδειγμάτων Ορθολογικών Προσδοκιών Υπάρχουν μια σειρά από μέθοδοι για την επίλυση υποδειγμάτων όπως αυτό. Ολες οι μέθοδοι βασίζονται στον νόμο των επαναληπτικών προσδοκιών. Αυτός δεν λέει τίποτα άλλο παρά ότι η σημερινή προσδοκία για την αυριανή προσδοκία μιας μελλοντικής τιμής μιας μεταβλητής δεν είναι παρά η σημερινή προσδοκία της μελλοντικής τιμής της μεταβλητής. Δηλαδή, ότι, ( E x ) = E x t+1 t+s t t+s Καθηγητής Γιώργος Αλογοσκούφης, Δυναμική Μακροοικονομική, 2014 10

Η Μέθοδος των Διαδοχικών Αντικαταστάσεων Εφαρμόζοντας το νόμο των επαναληπτικών προσδοκιών, και αντικαθιστώντας διαδοχικά στην αρχική εξίσωση, E y = ae ( E y ) + be x = ae y + be x t t+1 t t+1 t+2 t t+1 t t+2 t t+1 = a 2 +2 + ab x t+1 + bx t = a T +1 +T +1 + b T s=0 a i x t+s Καθηγητής Γιώργος Αλογοσκούφης, Δυναμική Μακροοικονομική, 2014 11

Η Θεμελιώδης Λύση του Πρωτοβάθμιου Υποδείγματος Εάν ισχύει ότι, lim T a T +1 +T +1 = 0 τότε μία λύση της αρχικής εξίσωσης δίνεται από, = b s=0 a i x t+s Η λύση αυτή μας υποδεικνύει ότι η τρέχουσα τιμή της ενδογενούς μεταβλητής y είναι το προεξοφλημένο άθροισμα των προσδοκώμενων μελλοντικών τιμών της εξωγενούς μεταβλητής x, με συντελεστή προεξόφλησης a<1. Η λύση αυτή συνήθως αποκαλείται η θεμελιώδης λύση. Καθηγητής Γιώργος Αλογοσκούφης, Δυναμική Μακροοικονομική, 2014 12

Μη Θεμελιώδεις Λύσεις του Πρωτοβάθμιου Υποδείγματος Η θεμελιώδης λύση δεν αποτελεί τη μοναδική λύση. Η θεμελιώδης λύση βασίζεται μόνο στον ελάχιστο αριθμό μεταβλητών (το x στην περίπτωσή μας), στα λεγόμενα θεμελιώδη. Υπάρχει και σωρεία άλλων, μη θεμελιωδών, λύσεων, οι οποίες όμως δεν ικανοποιούν τη συνθήκη, lim T a T +1 +T +1 = 0 Καθηγητής Γιώργος Αλογοσκούφης, Δυναμική Μακροοικονομική, 2014 13

Μη Θεμελιώδεις Λύσεις του Πρωτοβάθμιου Υποδείγματος Ας υποθέσουμε ότι υπάρχει μία εναλλακτική λύση του πρωτοβάθμιου υποδείγματος, η οποία συνίσταται από τη θεμελιώδη λύση σύν μία πρόσθετη μεταβλητή z. Η λύση αυτή λαμβάνει τη μορφή, = b Εάν η μεταβλήτη z ικανοποιεί, s=0 a i x t+s + z t z t = a z t+1 που συνεπάγεται ότι, z t+1 = 1 a z t τότε έχουμε μία επιπλέον λύση του πρωτοβάθμιου υποδείγματος. Καθηγητής Γιώργος Αλογοσκούφης, Δυναμική Μακροοικονομική, 2014 14

Μη Θεμελιώδεις Λύσεις του Πρωτοβάθμιου Υποδείγματος Ωστόσο, επειδή a<1, η μαθηματική προσδοκία του μελλοντικού z εκρήγνυται με την πάροδο του χρόνου. Αυτό μπορεί να αποδειχθεί αν λάβουμε το όριο της μαθηματικής προσδοκίας καθώς ο χρόνος τείνει προς το άπειρο., lim E z = 1 t t+s s a s z t = ± Λύσεις που βασίζονται σε μεταβλητές όπως το z αποκαλούνται φούσκες (bubbles), σε αντίθεση με λύσεις που βασίζονται μόνο στα θεμελιώδη. Στη συνέχεια θα επικεντρωθούμε μόνο σε θεμελιώδεις λύσεις αγνοώντας τις φούσκες. Καθηγητής Γιώργος Αλογοσκούφης, Δυναμική Μακροοικονομική, 2014 15

Ο Τελεστής των Μελλοντικών Μαθηματικών Προσδοκιών και η Μέθοδος της Παραγοντοποίησης Η δεύτερη μέθοδος επίλυσης υποδειγμάτων με ορθολογικές προσδοκίες είναι η μέθοδος της παραγοντοποίησης. Αυτή απαιτεί τη χρήση του τελεστή των μελλοντικών μαθηματικών προσδοκιών F, ο οποίος για μία μεταβλητή x, ορίζεται ως, Fx t = x t+1 F 2 x t = x t+2,..., F s x t = x t+s Επιπλεόν, ισχύει ότι ο τελεστής των μελλοντικών μαθηματικών προσδοκιών είναι το αντίστροφο του τελεστή των χρονικών υστερήσεων L F s x t = x t s = x t s = L s x t Καθηγητής Γιώργος Αλογοσκούφης, Δυναμική Μακροοικονομική, 2014 16

H Μέθοδος της Παραγοντοποίησης και η Επίλυση του Πρωτοβάθμιου Υποδείγματος Ορθολογικών Προσδοκιών Το πρωτοβάθμιο υπόδειγμα των ορθολογικών προσδοκιών έχει τη μορφή, = a +1 + bx t Χρησιμοποιώντας τον τελεστή των μαθηματικών προσδοκιών, και υποθέτωντας ότι -1<a<1, το πρωτοβάθμιο υπόδειγμα μπορεί να γραφεί ως, = af + bx t = Αυτή είναι όμως η θεμελιώδης λύση. b 1 af x = b a s F s x = b a s E x t s=0 t s=0 t t+s Καθηγητής Γιώργος Αλογοσκούφης, Δυναμική Μακροοικονομική, 2014 17

H Μέθοδος των Μη Προσδιορισμένων Συντελεστών και η Επίλυση του Πρωτοβάθμιου Υποδείγματος Ορθολογικών Προσδοκιών Η μέθοδος των μη προσδιορισμένων συντελεστών συνίσταται στο να χρησιμοποιηθεί μια εικαζόμενη μορφή της λύσης με μη προσδιορισμένους συντελεστές, να ληφθεί η μαθηματική προσδοκία της εικαζόμενης λύσης, η οποία, αφού αντικατασταθεί στο αρχικό υπόδειγμα θα οδηγήσει σε σύγκριση των συντελεστών μεταξύ της εικαζόμενης λύσης, και της εξίσωσης που θα προκύψει από την αντικατάσταση. Ετσι θα προσδιοριστούν οι αρχικά μη προσδιορισμένοι συντελεστές. Καθηγητής Γιώργος Αλογοσκούφης, Δυναμική Μακροοικονομική, 2014 18

H Μέθοδος των Μη Προσδιορισμένων Συντελεστών και η Επίλυση του Πρωτοβάθμιου Υποδείγματος Ορθολογικών Προσδοκιών Η εικαζόμενη λύση είναι, = σ µ s s=0 x t+s όπου σ και μ είναι μη προσδιορισμένοι συντελεστές. Από τη λύση αυτή προκύπτει, +1 = σ µ s s=0 x t+1+s Αντικαθιστώντας στο αρχικό υπόδειγμα και συγκρίνοντας συντελεστές μεταξύ της εξίσωσης που προκύπτει και της εικαζόμενης λύσης, βρίσκουμε ότι σ=b και μ=a. Αυτό επιβεβαιώνει την εικασία μας, και η λύση είναι ακριβώς η ίδια όπως και με τις δύο άλλες μεθόδους. Καθηγητής Γιώργος Αλογοσκούφης, Δυναμική Μακροοικονομική, 2014 19

Παράδειγμα: Εξίσωση Αποδόσεων σε Μία Ανταγωνιστική Αγορά Κεφαλαίου Στο πρώτο μας παράδειγμα υποθέτουμε μία κεφαλαιαγορά στην οποία οι επενδυτές είναι ουδέτεροι απέναντι στον κίνδυνο. Οι επενδυτές επιλέγουν μεταξύ μιας μετοχής και μιας ασφαλούς τοποθέτησης με ποσοστό απόδοσης r. Στην ισορροπία, η προσδοκώμενη απόδοση της μετοχής θα ισούται με το ποσοστό απόδοσης της ασφαλούς τοποθέτησης. p t+1 p t p t + d t p t = r όπου p είναι η τιμή της μετοχής και d είναι το μέρισμα. Το ποσοστό απόδοσης της μετοχής ισούται με το προσδοκώμενο κεφαλαιακό κέρδος, συν το μέρισμα ως ποσοστό της τιμής της μετοχής. Καθηγητής Γιώργος Αλογοσκούφης, Δυναμική Μακροοικονομική, 2014 20

Ο Προσδιορισμός της Τιμής της Μετοχής Από την εξίσωση μεταξύ της απόδοσης της μετοχής με το πραγματικό επιτόκιο, το υπόδειγμα έχει τη μορφή του πρωτοβάθμιου υποδείγματος που αναλύσαμε, με a=b=1/(1+r)<1. Η θεμελιώδης λύση του είναι, p = 1 ( t 1+ r E p + d ) t t+1 t p t = 1 1+ r s=0 1 1+ r Καθηγητής Γιώργος Αλογοσκούφης, Δυναμική Μακροοικονομική, 2014 21 s d t+s Η τιμή της μετοχής είναι η παρούσα αξία των προσδοκώμενων μελλοντικών μερισμάτων, με συντελεστή προεξόφλησης που εξαρτάται από το ποσοστό απόδοσης της ασφαλούς τοποθέτησης.

Παράδειγμα: Ισορροπία στην Αγορά Χρήματος Στο δεύτερο μας παράδειγμα υποθέτουμε καταναλωτές και επιχειρήσεις που επιλέγουν μεταξύ της διακράτησης χρηματικών διαθεσίμων και αγαθών. Στην περίπτωση αυτή, η ζήτηση χρήματος είναι αρνητική συνάρτηση του προσδοκώμενου πληθωρισμού, και η ισορροπία στην αγορά χρήματος απαιτεί, = exp α P t+1 P t P t M t P t όπου M είναι η προσφορά χρήματος, P το επίπεδο τιμών και α>0 η ημι-ελαστικότητα της ζήτησης χρήματος σε σχέση με τον προσδοκώμενο πληθωρισμό. Καθηγητής Γιώργος Αλογοσκούφης, Δυναμική Μακροοικονομική, 2014 22

Προσδιορισμός του Επιπέδου Τιμών Λαμβάνοντας λογαρίθμους και στις δύο πλευρές, και υποδηλώνοντας με m το λογάριθμο της προσφοράς χρήματος και με p το λογάριθμό του επιπέδου τιμών, το υπόδειγμα μπορεί να γραφεί ως, m t p t = α( p t+1 p t ) Επιλύοντας ως προς p, p t = α 1+ α p t+1 + 1 1+ α m t Κατά συνέπεια, με ορθολογικές προσδοκίες, p t = 1 1+ α s=0 α 1+ α Καθηγητής Γιώργος Αλογοσκούφης, Δυναμική Μακροοικονομική, 2014 23 s m t+s

Δευτεροβάθμια Δυναμικά Υποδείγματα Ορθολογικών Προσδοκιών Ερχόμαστε τώρα στις μεθόδους επίλυσης ενός δευτεροβάθμιου δυναμικού υποδείγματος. Στο υπόδειγμα αυτό, μία μεταβλητή εξαρτάται από τη μελλοντική προσδοκία για την εξέλιξή της, από το επίπεδο στο οποίο βρισκόταν την προηγούμενη περίοδο καθώς και από μία εξωγενή μεταβλητή. Αυτό το υπόδειγμα συνδυάζει ορθολογικές προσδοκίες για τη μελλοντική τιμή μιας μεταβλητής, με επιπτώσεις των τιμών της μεταβλητής με χρονική υστέρηση. Το υπόδειγμά μας είναι γραμμικό και έχει τη μορφή, = a +1 + b 1 + cx t όπου, a, b>0, a+b<1 Καθηγητής Γιώργος Αλογοσκούφης, Δυναμική Μακροοικονομική, 2014 24

Επίλυση με τη Μέθοδο της Παραγοντοποίησης = af + bf 1 + cx t ( 1 af bf 1 ) = cx t Πολλαπλασιάζοντας και τις δύο πλευρές με -F/a, F 2 1 a F + b a = c a Fx t F 2 1 a F + b a = (F λ)(f µ) = y ( t F 2 (λ + µ)f + λµ ) = c a Fx t Καθηγητής Γιώργος Αλογοσκούφης, Δυναμική Μακροοικονομική, 2014 25

Το Χαρακτηριστικό Πολυώνυμο και οι Ρίζες λ και μ είναι οι δύο ρίζες του χαρακτηριστικού πολυωνύμου της, F 2 1 a F + b a ισχύει ότι, λ+μ=1/a, λμ=b/a. Είναι απλό να δείξει κανείς ότι η μία ρίζα, είναι μικρότερη από τη μονάδα (θα υποθέσουμε ότι αυτή είναι η λ) και η άλλη (η μ) είναι μεγαλύτερη από τη μονάδα. Φ(φ) = φ 2 1 a φ + b a Καθηγητής Γιώργος Αλογοσκούφης, Δυναμική Μακροοικονομική, 2014 26

Το Χαρακτηριστικό Πολυώνυμο και οι Ρίζες Φ(φ) = φ 2 1 a φ + b a Φ(0) = b a > 0, 1 a b Φ(1) = a Συνεπώς υπάρχει μία ρίζα λ μεταξύ μηδενός και μονάδας για την οποία Φ(λ)=0. Η δεύτερη ρίζα μ προσδιορίζεται από, μ=b/aλ. Θα έχουμε μ>1, εάν λ<b/a. Αυτό πράγματι ισχύει διότι, < 0 Φ b a = b(1 a b) a 2 < 0 Καθηγητής Γιώργος Αλογοσκούφης, Δυναμική Μακροοικονομική, 2014 27

Επίλυση του Δευτεροβάθμιου Υποδείγματος με Ορθολογικές Προσδοκίες (F λ)(f µ) = c a Fx t Διαιρώντας τις δύο πλευρές με F(F-μ), λαμβάνουμε, ( 1 λf 1 ) = c a 1 µ F x t = c 1 aµ 1 µ 1 F x t = λc b 1 1 µ 1 F x t Κατά συνέπεια, = λ 1 + λc b 1 1 µ 1 F x = λy + λc t t 1 b s=0 1 µ s x t+s Καθηγητής Γιώργος Αλογοσκούφης, Δυναμική Μακροοικονομική, 2014 28

Η Θεμελιώδης Λύση του Δευτεροβάθμιου Υποδείγματος με Ορθολογικές Προσδοκίες Η θεμελιώδης λύση του δευτεροβάθμιου υποδείγματος με ορθολογικές προσδοκίες υποδεικνύει ότι η τρέχουσα τιμή της ενδογενούς μεταβλητής y είναι το προεξοφλημένο άθροισμα των προσδοκώμενων μελλοντικών τιμών της εξωγενούς μεταβλητής x, με συντελεστή προεξόφλησης 1/μ<1, ενώ η τιμή της ενδογενούς μεταβλητής εξαρτάται και από την τιμή της την προηγούμενη περίοδο, με συντελεστή λ<1. Για την επίλυση γενικότερων γραμμικών υποδειγμάτων με ορθολογικές προσδοκίες βλ. Blanchard and Kahn (1980). Καθηγητής Γιώργος Αλογοσκούφης, Δυναμική Μακροοικονομική, 2014 29