Η έννοια και χρήση των εσωτερικών δεσμεύσεων

Σχετικά έγγραφα
Η έννοια και χρήση των εσωτερικών δεσμεύσεων

Τοπογραφικά Δίκτυα & Υπολογισμοί

Παράδειγμα συνόρθωσης οριζόντιου δικτύου

Σχηματισμός κανονικών εξισώσεων δικτύου και το πρόβλημα ορισμού του συστήματος αναφοράς

Παράδειγμα συνόρθωσης οριζόντιου δικτύου

Σύγκριση λύσεων δικτύου μέσω μετασχηματισμού συντεταγμένων

Παραδείγματα ανάλυσης ακρίβειας συντεταγμένων από συνορθώσεις δικτύου

Τοπογραφικά Δίκτυα & Υπολογισμοί

Σύντομη σύγκριση μεθόδων ένταξης δικτύου

Σύγκριση λύσεων δικτύου μέσω μετασχηματισμού συντεταγμένων

Ανάλυση ακρίβειας συντεταγμένων από διαφορετικά σενάρια συνόρθωσης δικτύου

Παραδείγματα ανάλυσης αξιοπιστίας δικτύου

Αλγόριθμοι συνόρθωσης δικτύων

Τοπογραφικά Δίκτυα & Υπολογισμοί

Παραδείγματα ανάλυσης αξιοπιστίας τοπογραφικού δικτύου

Αλγόριθμοι συνόρθωσης δικτύων

Γενική λύση συνόρθωσης δικτύου

Παράδειγμα συνόρθωσης υψομετρικού δικτύου

Ανάλυση αξιοπιστίας δικτύων (μέρος ΙΙ)

Ανάλυση πινάκων συμ-μεταβλητοτήτων σε επιμέρους συνιστώσες

Ανάλυση πινάκων συμ-μεταβλητοτήτων σε παραμετρικές συνιστώσες

Αξιολόγηση ακρίβειας στη συνόρθωση δικτύων (μέρος Ι)

Ανάλυση αξιοπιστίας δικτύων (μέρος ΙΙ)

Εξισώσεις παρατηρήσεων στα τοπογραφικά δίκτυα

Μοντελοποίηση δικτύου μέσω εξισώσεων παρατήρησης

Τοπογραφικά Δίκτυα & Υπολογισμοί

Παράδειγμα δημιουργίας συστήματος εξισώσεων παρατηρήσεων & πίνακα βάρους σε οριζόντιο δίκτυο

Ανασκόπηση θεωρίας ελαχίστων τετραγώνων και βέλτιστης εκτίμησης παραμέτρων

Ανασκόπηση θεωρίας ελαχίστων τετραγώνων και βέλτιστης εκτίμησης παραμέτρων

Περί ανώμαλων πινάκων συμ-μεταβλητοτήτων

Μερικά διδακτικά παραδείγματα

Μερικά διδακτικά παραδείγματα

Ανάλυση αξιοπιστίας δικτύων (μέρος Ι)

ΕΡΩΤΗΣΕΙΣ ΓΙΑ ΤΟ ΜΑΘΗΜΑ ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ 5 ο εξάμηνο

Τοπογραφικά Δίκτυα & Υπολογισμοί

Περί ανώμαλων πινάκων συμ-μεταβλητοτήτων

ΕΡΩΤΗΣΕΙΣ ΓΙΑ ΤΟ ΜΑΘΗΜΑ ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ 5 ο εξάμηνο

Αξιολόγηση ακρίβειας στη συνόρθωση δικτύων (μέρος IΙ)

ΕΡΩΤΗΣΕΙΣ ΓΙΑ ΤΟ ΜΑΘΗΜΑ ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ 5 ο εξάμηνο

Αξιολόγηση ακρίβειας στη συνόρθωση δικτύων (μέρος IΙ)

Παράδειγμα δημιουργίας συστήματος εξισώσεων παρατηρήσεων & πίνακα βάρους σε οριζόντιο δίκτυο

Τοπογραφικά Δίκτυα & Υπολογισμοί

ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ Η ΣΥΝΟΡΘΩΣΗ ΤΩΝ ΟΡΙΖΟΝΤΙΩΝ ΔΙΚΤΥΩΝ (Η ΕΝΝΟΙΑ ΤΟΥ ΣΥΣΤΗΜΑΤΟΣ ΑΝΑΦΟΡΑΣ ΚΑΙ Η ΑΞΙΟΛΟΓΗΣΗ ΤΗΣ ΠΟΙΟΤΗΤΑΣ ΤΟΥ ΔΙΚΤΥΟΥ)

Μέθοδος αιχμηρής εκτίμησης σε ασταθή γραμμικά μοντέλα

ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ Η ΣΥΝΟΡΘΩΣΗ ΤΩΝ ΟΡΙΖΟΝΤΙΩΝ ΔΙΚΤΥΩΝ (ΤΟ ΣΥΣΤΗΜΑ ΤΩΝ ΚΑΝΟΝΙΚΩΝ ΕΞΙΣΩΣΕΩΝ)

Οδηγός λύσης θέματος 4

AΣΚΗΣΕΙΣ ΓΙΑ ΤΟ ΜΑΘΗΜΑ ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ 5 ο εξάμηνο

ΕΓΧΕΙΡΙΔΙΟ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΥ ΟΜΟΙΟΤΗΤΑΣ

Οδηγός λύσης για το θέμα 2

Οδηγός λύσης θέματος 2

Οδηγός λύσης θέματος 3

ΕΓΧΕΙΡΙΔΙΟ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΥ ΟΜΟΙΟΤΗΤΑΣ

Σύντομος οδηγός του προγράμματος DEROS

Εισαγωγή στα Δίκτυα. Τοπογραφικά Δίκτυα και Υπολογισμοί. 5 ο εξάμηνο, Ακαδημαϊκό Έτος Χριστόφορος Κωτσάκης

Τοπογραφικά Δίκτυα & Υπολογισμοί

ΛΥΣΕΙΣ AΣΚΗΣΕΩΝ ΓΙΑ ΤΟ ΜΑΘΗΜΑ ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ 5 ο εξάμηνο

Μοντέλο μετασχηματισμού μεταξύ του ΕΓΣΑ87 και του συστήματος αναφοράς του HEPOS

Εντάξεις δικτύων GPS. 6.1 Εισαγωγή

Συνόρθωση κατά στάδια και αναδρομικοί αλγόριθμοι βέλτιστης εκτίμησης

AΣΚΗΣΕΙΣ ΓΙΑ ΤΟ ΜΑΘΗΜΑ ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ 5 ο εξάμηνο

Εισαγωγή στα Δίκτυα. Τοπογραφικά Δίκτυα και Υπολογισμοί. 5 ο εξάμηνο, Ακαδημαϊκό Έτος Χριστόφορος Κωτσάκης

Γεωδαιτικό Υπόβαθρο για τη χρήση του HEPOS

ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΞΙΟΛΟΓΗΣΗ ΤΗΣ ΠΟΙΟΤΗΤΑΣ

Οδηγίες για τις μετρήσεις πεδίου, βασικές συμβουλές και γενική περιγραφή εργασιών

HEPOS και μετασχηματισμοί συντεταγμένων

Αναλυτική Φωτογραμμετρία

ΤΕΙ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ

Οδηγίες για τις μετρήσεις πεδίου, βασικές συμβουλές και γενική περιγραφή εργασιών

Σχεδίαση με Ηλεκτρονικούς Υπολογιστές

Σύντομος οδηγός του μαθήματος

ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ ΓΕΝΙΚΑ ΠΕΡΙ ΔΙΚΤΥΩΝ

Ανάλυση χωροσταθμικών υψομέτρων στο κρατικό τριγωνομετρικό δίκτυο της Ελλάδας

ΦΩΤΟΓΡΑΜΜΕΤΡΙΑ ΙΙ ΕΠΑΝΑΛΗΨΗ. Ανδρέας Γεωργόπουλος Καθηγητής Ε.Μ.Π.

ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ Η ΣΥΝΟΡΘΩΣΗ ΤΩΝ ΥΨΟΜΕΤΡΙΚΩΝ ΔΙΚΤΥΩΝ

Προ-επεξεργασία, συνόρθωση και στατιστική ανάλυση δικτύων Μεταλλικού

Προ-επεξεργασία και έλεγχος μετρήσεων δικτύου

Αυτοματοποιημένη χαρτογραφία

Συνόρθωση κατά στάδια και αναδρομικοί αλγόριθμοι βέλτιστης εκτίμησης

Συνόρθωση κατά στάδια και αναδρομικοί αλγόριθμοι βέλτιστης εκτίμησης

Βέλτιστη παρεμβολή και πρόγνωση άγνωστης συνάρτησης με τη μέθοδο της σημειακής προσαρμογής

Προ-επεξεργασία και έλεγχος μετρήσεων δικτύου

Αξιολόγηση ακρίβειας του μοντέλου μετασχηματισμού μεταξύ HTRS07 & ΕΓΣΑ87

ΑΠΟΤΥΠΩΣΕΙΣ - ΧΑΡΑΞΕΙΣ Η ΕΝΝΟΙΑ ΤΟΥ ΓΕΩΔΑΙΤΙΚΟΥ DATUM

Τα δίκτυα GPS 5.1 Γενικά περί των δικτύων GPS

Σύντομος οδηγός του μαθήματος

ΤΕΧΝΙΚΗ ΕΚΘΕΣΗ - ΠΑΡΑΔΟΤΕΟ ΠΕ1. Διαχρονική επίλυση του δικτύου METRICANET GNSS και ποιοτικός έλεγχος

ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ Η ΠΡΟΕΠΕΞΕΡΓΑΣΙΑ ΤΩΝ ΓΩΝΙΟΜΕΤΡΗΣΕΩΝ

Σύντομος οδηγός του μαθήματος

ΑΣΚΗΣΕΙΣ ΥΠΑΙΘΡΟΥ ΕΙΔΙΚΕΣ ΟΔΗΓΙΕΣ. προς τους φοιτητές/τριες που θα πάρουν μέρος στις ΑΣΚΗΣΕΙΣ ΥΠΑΙΘΡΟΥ 2016

Παρεμβολή & πρόγνωση άγνωστης συνάρτησης μέσω σημειακής προσαρμογής

Στην ουσία η Φωτογραµµετρία: Χ, Υ, Ζ σηµείων Γραµµικό σχέδιο Εικονιστικό προϊόν

ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ ΑΝΑΣΚΟΠΗΣΗ ΘΕΩΡΙΑΣ ΣΥΝΟΡΘΩΣΕΩΝ

ΤΟΜΕΑΣ ΓΕΩΔΑΙΣΙΑΣ ΚΑΙ ΤΟΠΟΓΡΑΦΙΑΣ Τμήμα Αγρονόμων και Τοπογράφων Μηχανικών. Στέφανος Βαζακίδης και Κατερίνα Σαχίνογλου

Αυτοματοποιημένη χαρτογραφία

10. ΓΕΩΔΑΙΤΙΚΕΣ ΕΦΑΡΜΟΓΕΣ

Σύγκριση υψομετρικών τεχνικών στο δίκτυο Μεταλλικού

Συνόρθωση του δικτύου SmartNet Greece και ένταξη στο HTRS07 του HEPOS. Συγκρίσεις και εφαρμογές NRTK στην πράξη.

ΓΕΩΔΑΙΣΙΑ 4η παρουσίαση

Προ-επεξεργασία, συνόρθωση και στατιστική ανάλυση δικτύου Μεταλλικού

Απόλυτος Προσανατολισµός

Transcript:

Τοπογραφικά Δίκτυα και Υπολογισμοί 5 ο εξάμηνο, Ακαδημαϊκό Έτος 2016-2017 Η έννοια και χρήση των εσωτερικών δεσμεύσεων Χριστόφορος Κωτσάκης Τμήμα Αγρονόμων Τοπογράφων Μηχανικών Πολυτεχνική Σχολή, ΑΠΘ

Η λογική των εσωτερικών δεσμεύσεων Η συμβατότητα μεταξύ 2 σετ συντεταγμένων, x και x', ως προς το ΣΑ τους εξασφαλίζεται όταν οι παράμετροι μετασχηματισμού ομοιότητας μεταξύ τους είναι μηδέν. x x x x θ 0 θ 0

2Δ μετασχηματισμός ομοιότητας (γραμμικοποιημένο μοντέλο) T x x G θ x1 x1 1 0 y x y1 y1 0 1 x y x x 1 0 y x y y 0 1 x y x x 1 1 t x 1 1 t y s T G θ

3Δ μετασχηματισμός ομοιότητας (γραμμικοποιημένο μοντέλο) T x x G θ x1 x1 1 0 0 0 z y x y1 y 1 0 1 0 z 0 x y z1 z 1 0 0 1 y x 0 z x x 1 0 0 0 z y x y y 0 1 0 z 0 x y z z 0 0 1 y x 0 z x x G 1 1 1 1 1 1 1 1 1 T t t t x y z x y z s θ

1Δ μετασχηματισμός ομοιότητας (γραμμικοποιημένο μοντέλο) T x x G θ H H 1 H H H 1 H x 1 1 1 H s x T G t θ

Να θυμάστε ότι Η χρήση του γραμμικοποιημένου μοντέλου του μετασχηματισμού ομοιότητας (μετασχ/μός Helmert) T x x G θ βασίζεται σε δύο σημαντικές προϋποθέσεις: o η διαφορά κλίμακας των ΣΑ για τα δύο σετ συντεταγμένων είναι σχετικά μικρή (π.χ. -10-4 < δs < 10-4 ). o η διαφορά προσανατολισμού των ΣΑ για τα δύο σετ συντεταγμένων είναι σχετικά μικρή (π.χ. -1'< ε < 1').

Παράμετροι μετασχ/μού ομοιότητας μεταξύ δύο σετ συντεταγμένων ˆ T 1 ( ) ( ) θ GG G x x x Εκτίμηση (μέσω ΜΕΤ) των παραμέτρων μετασχηματισμού ομοιότητας. x Εκφράζουν το κατά πόσο τα δύο σετ συντεταγμένων υλοποιούν το ίδιο ΣΑ.

Παράμετροι μετασχ/μού ομοιότητας μεταξύ δύο σετ συντεταγμένων ˆ T 1 ( ) ( ) θ GG G x x Αν ισχύει ότι G ( xx) 0 x θˆ 0 x Τα σετ συντεταγμένων x και x' υλοποιούν το ίδιο ΣΑ!

Συμπέρασμα Αν ισχύει η παρακάτω συνθήκη μεταξύ δύο διαφορετικών σετ συντεταγμένων x και x', G ( xx) 0 τότε αυτά αναφέρονται στο ίδιο σύστημα αναφοράς (ή, πιο σωστά, υλοποιούν το ίδιο σύστημα αναφοράς)!

Σε ποιες εξισώσεις δεσμεύσεων αντιστοιχεί η συνθήκη G ( xx) 0 ; i1 i1 x i y i x y i i 0 0 π.χ. για 2Δ δίκτυο o-net translation i1 y ( x x ) x ( y y ) 0 i i i i i i o-net rotation i1 x ( x x ) y ( y y ) 0 i i i i i i o-net scale difference

Σε ποιες εξισώσεις δεσμεύσεων αντιστοιχεί η συνθήκη G ( xx) 0 ; i1 x i x i 0 1 1 x i i1 i1 x i i1 y i y i 0 1 1 y i i1 i1 y i i1 i1 y ( x x ) x ( y y ) 0 i i i i i i x ( x x ) y ( y y ) 0 i i i i i i Διατήρηση του κέντρου βάρους του δικτύου

Τι σχέση έχουν τα προηγούμενα με τη συνόρθωση δικτύων;

Συνόρθωση δικτύου & μετασχηματισμός ομοιότητας Ο ορισμός του ΣΑ σε ένα δίκτυο μπορεί να γίνει μέσω δεσμεύσεων που εξασφαλίζουν τον μηδενισμό των παραμέτρων μετασχηματισμού μεταξύ των: o συνορθωμένων συντεταγμένων του δικτύου o κάποιων αρχικών γνωστών συντεταγμένων για (όλες ή ορισμένες από) τις κορυφές του. π.χ. o G ( xˆ x ) Gδxˆ 0 (*) οι παραπάνω δεσμεύσεις εξασφαλίζουν ότι το συνορθωμένο δίκτυο θα αναφέρεται στο ίδιο ΣΑ που υλοποιούν οι προσεγγιστικές συντεταγμένες σε όλες τις κορυφές του!

Συνόρθωση δικτύου & μετασχηματισμός ομοιότητας Οι προηγούμενες δεσμεύσεις μπορούν επίσης να εφαρμοστούν σε ορισμένα μόνο από τα σημεία του δικτύου (π.χ. μόνο στους σταθμούς αναφοράς) xˆ x ˆ xˆ 1 2 σταθμοί αναφοράς νέα σημεία 1 ˆ o ( 1 1 ) 1 ˆ1 G x x G δx 0 (*) οι παραπάνω δεσμεύσεις εξασφαλίζουν ότι το συνορθωμένο δίκτυο θα αναφέρεται στο ίδιο ΣΑ που υλοποιείται από τις προσεγγιστικές συντεταγμένες στους σταθμούς αναφοράς!

Δομή του πίνακα G x1 x2 G G G 1 2 θ - Οι γραμμές του πίνακα G αναφέρονται στις βασικές παραμέτρους του ΣΑ (μεταθέσεις, στροφές, κλίμακα). - Οι στήλες του πίνακα G αναφέρονται στις συντεταγμένες όλων των σημείων του δικτύου. - Οι υποπίνακες G 1 και G 2 αντιστοιχούν σε διαφορετικές ομάδες σημείων (π.χ. σταθμοί αναφοράς και νέα σημεία).

Δομή του πίνακα G (π.χ. οριζόντιο δίκτυο) G 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 y x y x y x y x 1 1 k k k+1 k+1 x y x y x y x y 1 1 k k k+1 k+1 G1 G2 1 η γραμμή: μετάθεση κατά x 2 η γραμμή: μετάθεση κατά y 3 η γραμμή: στροφή/προσανατολισμός 4 η γραμμή: κλίμακα

Δομή του πίνακα G x1 x2 G G G 1 2 θ Δεσμεύσεις για τον ορισμό του συστήματος αναφοράς 1 xo 1 o 2 x 2 xˆ G 1 0 0 xˆ 1 xo 1 o 2 x 2 xˆ G 1 G2 0 xˆ χρήση ΟΛΩΝ των σημείων του δικτύου χρήση μόνο των σημείων της 1 ης ομάδας

Εποπτική αντίληψη y Gδxˆ 0 Μορφή ελεύθερου δικτύου yˆf x ˆ o ( δx ) x Οι παράμετροι μετασχηματισμού o ομοιότητας μεταξύ ˆx και x είναι μηδέν ˆ δx u

Εποπτική αντίληψη y C G δxˆ 0 1 1 C Β Μορφή ελεύθερου δικτύου Α A B yˆf x ˆ o ( δx ) Οι παράμετροι μετασχηματισμού ομοιότητας μεταξύ ˆx και x είναι μηδέν 1 x 1 o ˆ δx u

Σχόλια Αν χρησιμοποιηθούν οι δεσμεύσεις Gδxˆ 0 ή G δxˆ 0 για τη συνόρθωση του δικτύου, τότε 1 1 - η απόλυτη θέση του δικτύου, - ο προσανατολισμός του δικτύου, - η κλίμακα του δικτύου καθορίζονται εξ ολοκλήρου από τις γνωστές (προσεγγιστικές) συντεταγμένες των σημείων που συμμετέχουν στις εξισώσεις δεσμεύσεων.

Σχόλια Αν ορισμένα στοιχεία του ΣΑ του δικτύου καθορίζονται μέσω των παρατηρήσεων, π.χ. o κλίμακα/προσανατολισμός σε 3Δ δίκτυα GPS o κλίμακα σε 2Δ τοπογραφικά δίκτυα με μετρήσεις αποστάσεων o κλίμακα σε κατακόρυφα δίκτυα με μετρήσεις υψομετρικών διαφορών τότε ενδέχεται να μην θέλουμε να τα δεσμεύσουμε εκ νέου μέσω πρόσθετων δεσμεύσεων.

Εσωτερικές δεσμεύσεις o Είναι μια μικρή παραλλαγή των δεσμεύσεων Gδxˆ 0 ή G δx ˆ 0. 1 1 o Εξασφαλίζουν το μηδενισμό των παραμέτρων μετασχηματισμού μεταξύ του συνορθωμένου δικτύου και κάποιων γνωστών συντεταγμένων αναφοράς αλλά μόνο για τις παραμέτρους του ΣΑ που εμπλέκονται στην αδυναμία βαθμού του δικτύου. o Είναι ελάχιστες δεσμεύσεις δεν παραμορφώνουν το συνορθωμένο δίκτυο.

Πίνακας των εσωτερικών δεσμεύσεων x1 x2 G G G 1 2 θ x1 x2 E E E 1 2 * θ Οι παράμετροι θ* αντιστοιχούν στις παραμέτρους του ΣΑ του δικτύου που δεν ορίζονται μέσω των παρατηρήσεων.

Πίνακας των εσωτερικών δεσμεύσεων x1 x2 G G G 1 2 θ x1 x2 E E E 1 2 * θ Ο πίνακας Ε δημιουργείται μέσω των γραμμών του πίνακα G που αντιστοιχούν στην αδυναμία βαθμού του δικτύου.

Παράδειγμα Οριζόντιο δίκτυο με μετρήσεις αποστάσεων (αδυναμία βαθμού = 3) G 1 0 1 0 0 1 0 1 y x y x 1 1 x y x y 1 1 t x t y s E 1 0 1 0 0 1 0 1 y x y x 1 1 Πίνακας εσωτερικών δεσμεύσεων

Παράδειγμα 3Δ δίκτυο GPS με συνιστώσες βάσεων (αδυναμία βαθμού = 3) G 1 0 0 1 0 0 0 1 0 0 1 0 0 0 1 0 0 1 0 z y 0 z y 1 1 z 0 x z 0 x 1 1 y x 0 y x 0 1 1 x y z x y z 1 1 1 t x t y t z x y z s E 1 0 0 1 0 0 0 1 0 0 1 0 0 0 1 0 0 1 Πίνακας εσωτερικών δεσμεύσεων

Παράδειγμα 1Δ υψομετρικό δίκτυο (αδυναμία βαθμού = 1) G 1 1 H H 1 t H s E 1 1 Πίνακας εσωτερικών δεσμεύσεων

Συνόρθωση δικτύου με εσωτερικές δεσμεύσεις Βασικές σχέσεις (ολικές) εσωτερικές δεσμεύσεις 1 xo 1 o 2 x 2 xˆ E 1 E2 0 xˆ E Eδxˆ 0 T 1 δxˆ ( E E) u ˆ ˆ o x x δx Θα ισχύει: Eδxˆ 0 ˆ δx u (*) Εξασφαλίζουν ότι το συνορθωμένο δίκτυο θα αναφέρεται στο ίδιο ΣΑ που υλοποιούν οι συντεταγμένες x ο

Συνόρθωση δικτύου με εσωτερικές δεσμεύσεις Βασικές σχέσεις (μερικές) εσωτερικές δεσμεύσεις 1 xo 1 o 2 x 2 xˆ E 1 0 0 xˆ K Kδxˆ E δxˆ 0 1 1 T 1 δxˆ ( K K) u ˆ ˆ o x x δx Θα ισχύει: Kδxˆ 0 ˆ δx u (*) Εξασφαλίζουν ότι το συνορθωμένο δίκτυο θα αναφέρεται στο ίδιο ΣΑ που υλοποιούν οι συντεταγμένες x 1 ο

Συνόρθωση δικτύου με εσωτερικές δεσμεύσεις Μια πιο γενική μορφή ext E ( xˆ x ) 0 ext Eδxˆ E( x x ) όπου x ext είναι κάποιες γνωστές συντεταγμένες αναφοράς για τις κορυφές του δικτύου. T 1 T ˆ ( ) ( ) δx E E u E c ˆ ˆ o x x δx (*) Εξασφαλίζουν ότι το συνορθωμένο δίκτυο θα αναφέρεται στο ίδιο ΣΑ που υλοποιούν οι συντεταγμένες x ext c o

Να θυμάστε ότι Αν σε ένα δίκτυο υπάρχουν διαθέσιμοι σταθμοί αναφοράς, τότε έχουμε διάφορες εναλλακτικές επιλογές δεσμεύσεων για να πάρουμε μια λύση συνόρθωσης που να αναφέρεται στο ίδιο ΣΑ με αυτό που υλοποιούν οι γνωστοί σταθμοί αναφοράς. y 3 2 1 x