Ειδικά Θέµατα Υπολογιστικής Όρασης & Γραφικής Εµµανουήλ Ζ. Ψαράκης & Αθανάσιος Τσακαλίδης Πολυτεχνική Σχολή Τµήµα Μηχανικών Η/Υ & Πληροφορικής
Μωσαϊκά-Συρραφή Εικόνων Εµµανουήλ Ζ. Ψαράκης Πολυτεχνική Σχολή Τµήµα Μηχανικών Η/Υ & Πληροφορικής 2
Επισκόπιση Μαθήµατος Μωσαϊκά-Συρραφή Εικόνων Επαναπροβολή -Στοίχιση εικόνων Γεωµετρικές Παραµορφώσεις Εικόνων Μετασχηµατισµοί Συγγένειας Μετασχηµατισµοί Προβολής Σύνθεση Μετασχηµατισµών 3
Μωσαϊκά: Συρραφή Εικόνων Συρραφή Εικονική Ευρυγώνια Κάµερα 4
Μωσαϊκά: Συρραφή Εικόνων 5
Μωσαϊκά: Συρραφή Εικόνων Ας δηµιουργήσουµε µία ακολουθία εικόνων από την ίδια θέση l Στροφή της κάµερας l Βασική Διαδικασία Συρραφής: Υπολογισµός Γεωµετρικού Μετασχηµατισµού ανάµεσα στην δεύτερη και την πρώτη εικόνα Μετασχηµατισµός της δεύτερης εικόνας ώστε να επικαλύπτεται µε την πρώτη Αν υπάρχουν παραπάνω εικόνες, επαναλάβετε την διαδικασία. 6
Μωσαϊκά: Συρραφή Εικόνων l Όµως γιατί θα πρέπει να δίνει το αναµενόµενο αποτέλεσµα η παραπάνω διαδικασία; Πώς µπορούµε να συνθέτουµε χωρίς τη χρήση της 3-Δ γεωµετρίας της σκηνής; 7
Μωσαϊκά: Επαναπροβολή Εικόνων Επίπεδο Προβολής Μωσαϊκού 8
Μωσαϊκά: Επαναπροβολή Εικόνων Το Μωσαϊκό έχει µία φυσική εξήγηση στις 3-Δ Οι εικόνες επαναπροβάλλονται πάνω σε ένα κοινό επίπεδο προβολής Το Μωσαϊκό δηµιουργείται πάνω σε αυτό το (εικονικό) επίπεδο Το Μωσαϊκό είναι το αποτέλεσµα προβολής της σκηνής µέσω µίας ευρυγώνιας κάµερας. Πώς όµως µπορούµε να επαναπροβάλουµε; 9
Μωσαϊκά: Επαναπροβολή Εικόνων Βασική Ερώτηση Πώς µπορούµε να σχετίσουµε δύο εικόνες που έχουν προβληθεί από το ίδιο οπτικό κέντρο; Πώς να αντιστοιχίσουµε ένα piel από το PP στο PP2; Απάντηση Ας διαδώσουµε µία ακτίνα από κάθε piel στο PP, και ας σηµειώσουµε το piel που αυτή η ακτίνα τέ- µνει το PP2. PP PP2
Μωσαϊκά: Επαναπροβολή Εικόνων Όµως δεν χρειάζεται να γνωρίζουµε την γεωµετρία των δύο εικόνων σε σχέση µε το µάτι; Παρατήρηση Αντί να αντιµετωπίσουµε το παραπάνω πρόβληµα σαν ένα πρόβληµα 3-Δ επαναπροβολής, ας το σκεφτούµε σαν ένα 2-Δ πρόβληµα Γεωµετρικής παραµόρφωσης εικόνων!!!!!
Γεωµετρική Παραµόρφωση Εικόνων 2
Παραµόρφωση Εικόνων-Φιλτράρισµα Φιλτράρισµα Εικόνας: Αλλαγή του Πεδίου Τιµών της εικόνας. I() T (.) I ˆ( ) I ˆ( ) T ( I( )) 3
Γεωµετρική Παραµόρφωση Εικόνων Γεωµετρική Παραµόρφωση Εικόνας: Αλλαγή του Πεδίου Ορισµού της Εικόνας. I() T (.) I ˆ( ) Iˆ ( ) I( T ( )) 4
Παραµόρφωση Εικόνων Iˆ (, ) I (, ) T (.) 5
Γεωµετρική Παραµόρφωση Εικόνων p [ ] t p ' [ ' ' ] t T (.) l Ο Μετασχηµατισµός T(.) ουσιαστικά είναι µία µηχανή αλλαγής συντεταγµένων: p' T ( p) l Τι σηµαίνει ότι ο T (.) είναι «ολικός»; Ο ίδιος µετασχηµατισµός εφαρµόζεται σε όλα τα εικονοστοιχεία της εικόνας. 6
Γεωµετρική Παραµόρφωση Εικόνων 7
Γεωµετρική Παραµόρφωση Εικόνων 8
Γεωµετρική Παραµόρφωση Εικόνων 9
Γεωµετρική Παραµόρφωση Εικόνων 2
Μπορεί να περιγραφεί από µερικούς αριθµούς (παράµετροι). Από τα στοιχεία ενός µητρώου!!! ή ισοδύναµα: M ' ' p p T p M ) ( ' 2 Υπολογιστική Όραση Γραµµική Γεωµετρική Παραµόρφωση Εικόνων
l Κλιµάκωση: Πολλαπλασιασµός κάθε στοιχείου των συντεταγµένων µε ένα βαθµωτό. Υπολογιστική Όραση Παραµετρική Παραµόρφωση-Κλιµάκωση b a ' ' b a ' ' 22
Παραµετρική Παραµόρφωση-Κλιµάκωση l Οµοιόµορφη ή Ισοτροπική Κλιµάκωση: Πολλαπλασιασµός κάθε στοιχείου των συντεταγµένων µε τον ίδιο βαθµωτό. M 2 2 23
Παραµετρική Παραµόρφωση-Κλιµάκωση l Μη-οµοιόµορφη Κλιµάκωση: Πολλαπλασιασµός κάθε στοιχείου των συντεταγµένων µε διαφορετικό βαθµωτό. M 2.5 24
Παραµετρική Παραµόρφωση-Περιστροφή p ' [ ' ' ] t p [ ] t ' ' cos( θ ) sin( θ ) sin( θ ) + cos( θ ) θ 25
Παραµετρική Παραµόρφωση-Περιστροφή θ φ p ' [ ' ' ] t p [ ] t r cos (φ) r sin (φ) r cos (φ + θ) r sin (φ + θ) Ταυτότητα r cos(φ) cos(θ) r sin(φ) sin(θ) r sin(φ) cos(θ) + r cos(φ) sin(θ) Αντικατάσταση cos(θ) - sin(θ) sin(θ) + cos(θ) 26
Παραµετρική Παραµόρφωση-Περιστροφή l Περιστροφή σε µητρική µορφή: ' ' cos sin ( θ ) sin( θ ) ( θ ) cos( θ ) l Αν και το sin(θ) και το cos(θ) είναι µη γραµµικές συναρτήσεις του θ, τα: είναι ένας γραµµικός συνδυασµός των και είναι ένας γραµµικός συνδυασµός των και R 27
Παραµετρική Παραµόρφωση-Περιστροφή l Ποιός είναι ο αντίστροφος µετασχηµατισµός ; Περιστροφή κατά θ. ' cos( θ ) sin( θ ) cos( θ ) ' sin( θ ) ' ' sin( θ ) + cos( θ ) -sin( θ ) ' cos( θ ) ' Από την Γραµµική Άλγεβρα γνωρίζουµε ότι: T R R 28
Γραµµική Γεωµετρική Παραµόρφωση Εικόνων 22 Μητρώα l Τι τύποι µετασχηµατισµών µπορούν να αναπαρασταθούν µε ένα 22 µητρώο; 2-Δ Ταυτοτικός ' ' ' ' 29
l Τι τύποι µετασχηµατισµών µπορούν να αναπαρασταθούν µε ένα 22 µητρώο; 2-Δ Κλιµάκωση s s ' ' s s ' ' 22 Μητρώα 3 Υπολογιστική Όραση Γραµµική Γεωµετρική Παραµόρφωση Εικόνων
Γραµµική Γεωµετρική Παραµόρφωση Εικόνων 22 Μητρώα l Τι τύποι µετασχηµατισµών µπορούν να αναπαρασταθούν µε ένα 22 µητρώο; 2-Δ Περιστροφή ' cosθ sin Θ ' sin Θ + cosθ ' ' cosθ sin Θ sin Θ cosθ 3
Γραµµική Γεωµετρική Παραµόρφωση Εικόνων 22 Μητρώα l Τι τύποι µετασχηµατισµών µπορούν να αναπαρασταθούν µε ένα 22 µητρώο; 2-Δ Στρέβλωση ' ' + sh sh + ' ' sh sh 32
Γραµµική Γεωµετρική Παραµόρφωση Εικόνων 22 Μητρώα l Τι τύποι µετασχηµατισµών µπορούν να αναπαρασταθούν µε ένα 22 µητρώο; 2-Δ αντικατοπτρισµός ως προς τον άξονα Y ' ' ' ' 33
Γραµµική Γεωµετρική Παραµόρφωση Εικόνων 22 Μητρώα l Τι τύποι µετασχηµατισµών µπορούν να αναπαρασταθούν µε ένα 22 µητρώο; 2-Δ αντικατοπτρισµός ως προς το (, ) ' ' ' ' 34
Γραµµική Γεωµετρική Παραµόρφωση Εικόνων 2-Δ Γραµµικοί Μετασχηµατισµοί l Οι Γραµµικοί Μετασχηµατισµοί είναι συνδυασµοί Κλιµακώσεων, Περιστροφών, Στρεβλώσεων και Αντικατοπτρισµών ' a a2 ' A a a ' 2 22 35
Γραµµική Γεωµετρική Παραµόρφωση Εικόνων l Ιδιότητες των Γραµµικών Μετασχηµατισµών: Η αρχή «απεικονίζεται» στην αρχή Γραµµές «απεικονίζονται» σε γραµµές Παράλληλες Γραµµές «παραµένουν» παράλληλες Οι λόγοι «διατηρούνται» Κλειστότητα στη Σύνθεση 36
Γραµµική Γεωµετρική Παραµόρφωση Εικόνων 22 Μητρώα l Τι Τύποι µετασχηµατισµών µπορούν να αναπαρασταθούν µε ένα 22 µητρώο; Μόνο Γραµµικοί 2-Δ Μετασχηµατισµοί 2-Δ Μετατοπίσεις; ' + t ' + t ΟΧΙ!!! 37
Οµογενείς Συντεταγµένες Σηµείου l Ερώτηση: Υπολογιστική Όραση Γεωµετρική Παραµόρφωση Εικόνων Πώς µπορούµε να παραστήσουµε την µετατόπιση ' + t ' + t µε ένα 33 µητρώο; 38
Γεωµετρική Παραµόρφωση Εικόνων Οµογενείς Συντεταγµένες Σηµείου l Οµογενείς Συντεταγµένες Παράσταση 2-Δ συντεταγµένων µε τη βοήθεια 3Χ διανυσµάτων Οµογενείς k k k 39
Γεωµετρική Παραµόρφωση Εικόνων Οµογενείς Συντεταγµένες Σηµείου l Πρόσθεση µιας τρίτης συντεταγµένης σε κάθε 2-Δ σηµείο (,, z) παριστάνει το σηµείο στη θέση (/z, /z) (,, ) παριστάνει το σηµείο στο άπειρο (,, ) δεν επιτρέπεται. 4
Γεωµετρική Παραµόρφωση Εικόνων Οµογενείς Συντεταγµένες Σηµείου 2 (2,,) ή (4,2,2) ή (6,3,3) 2 4
Οµογενείς Συντεταγµένες Σηµείου l Ερώτηση: Υπολογιστική Όραση Γεωµετρική Παραµόρφωση Εικόνων Πώς µπορούµε να παραστήσουµε την µετατόπιση ' + t ' + t µε ένα 33 µητρώο; 42
Γεωµετρική Παραµόρφωση Εικόνων Οµογενείς Συντεταγµένες Σηµείου t t 43
Μετατόπιση l Παράδειγµα Μετατόπισης + + ' ' t t t t t 2 t Οµογενείς Συντεταγµένες 44 Υπολογιστική Όραση Γεωµετρική Παραµόρφωση Εικόνων
Βασικοί 2-Δ Μετασχηµατισµοί l Βασικοί 2-Δ µετασχηµατισµοί ως 33 µητρώα ' ' t t Μετατόπιση ' ' s s Κλιµάκωση 45 Υπολογιστική Όραση Γεωµετρική Παραµόρφωση Εικόνων
Θ Θ Θ Θ cos sin sin cos ' ' ' ' sh sh Περιστροφή Στρέβλωση Βασικοί 2-Δ Μετασχηµατισµοί l Βασικοί 2-Δ µετασχηµατισµοί ως 33 µητρώα 46 Υπολογιστική Όραση Γεωµετρική Παραµόρφωση Εικόνων
Μετασχηµατισµοί Συγγένειας(Affine) l Υπολογιστική Όραση Γεωµετρική Παραµόρφωση Εικόνων Οι µετασχηµατισµοί συγγένειας είναι συνδυασµοί Γραµµικών Μετασχηµατισµών και Μετασχηµατισµών µετατοπίσεων ' ' w a a 2 a a 2 22 a a 3 23 w 47
Γεωµετρική Παραµόρφωση Εικόνων Μετασχηµατισµοί Συγγένειας(Affine) l Ιδιότητες των Μετασχηµατισµών Συγγενείας: Η αρχή δεν απεικονίζεται απαραίτητα στην αρχή Γραµµές «απεικονίζονται» σε γραµµές Παράλληλες Γραµµές «παραµένουν» παράλληλες Οι λόγοι «διατηρούνται» Κλειστότητα στη Σύνθεση 48
Γεωµετρική Παραµόρφωση Εικόνων Γενίκευση Μετασχηµατισµών Συγγένειας ' ' w a a a 2 3 a a a 2 22 32 a a 3 23 w l Ιδιότητες των Μετασχηµατισµών Συγγενείας: Η αρχή δεν απεικονίζεται απαραίτητα στην αρχή Γραµµές «απεικονίζονται» σε γραµµές Παράλληλες Γραµµές «δεν παραµένουν απαραίτητα» παράλληλες Οι λόγοι «δεν διατηρούνται» Κλειστότητα στη Σύνθεση 49
Σύνθεση l Οι µετασχηµατισµοί µπορούν να συνδυαστούν µε πολλαπλασιασµό µητρώων Θ Θ Θ Θ w s s t t w cos sin sin cos ' ' ' 5 Υπολογιστική Όραση Γεωµετρική Παραµόρφωση Εικόνων
Υπολογιστική Όραση Γεωµετρική Παραµόρφωση Εικόνων 5