x 1 vii) f(x) 5 x 4 viii) 2 + γ) f (x) = στ) f (x) = e x -1 Β. Γραφική παράσταση Γ. Ίσες συναρτήσεις x 3 x 3 f(x), g(x) ιι)

Σχετικά έγγραφα
1. Να προσδιορίσετε το πεδίο ορισμού των συναρτήσεων με τύπους. 2. Να βρεθεί ο λ R ώστε f(x) = ln ( x 2 +2λx+9) να έχει πεδίο ορισμού Α = R

1. Να προσδιορίσετε το πεδίο ορισμού των συναρτήσεων με τύπους. 2. Να βρεθεί ο λ R ώστε f(x) = ln ( x 2 +2λx+9) να έχει πεδίο ορισμού Α = R

ΑΣΚΗΣΕΙΣ ΣΥΝΑΡΤΗΣΕΩΝ (1o Γ Λυκείου) να ανήκουν στη γραφική παράσταση της συνάρτησης f( x)

<Πεδία ορισμού ισότητα πράξεις σύνθεση>

qwφιertyuiopasdfghjklzxερυυξnmηq σwωψerβνtyuςiopasdρfghjklzxcvbn mqwertyuiopasdfghjklzxcvbnφγιmλι qπςπζαwωeτrtνyuτioρνμpκaλsdfghςj

ΦΥΛΛΆΔΙΟ ΑΣΚΉΣΕΩΝ 2 ΣΥΝΑΡΤΗΣΕΙΣ

ΚΕΦΑΛΑΙΟ 1ο Συναρτήσεις - Όρια - Συνέχεια (Νο 1) ΕΠΙΜΕΛΕΙΑ : Π. Δ. ΤΡΙΜΗΣ ΜΑΘΗΜΑΤΙΚΟΣ. 1. Να υπολογίσετε το πεδίο ορισμού της συνάρτησης : ln

47 Να προσδιορίσετε τη συνάρτηση gof, αν α) f και g, β) f ηµ και π γ) f ( ) και g εφ 4 g 48 ίνονται οι συναρτήσεις f + και g Να προσδιορίσετε τις συνα

ΘΕΜΑ 151 ο. x -f(t) 2f(x)+f (x)= 2 e dt και f(0) = 0.

Mαθηματικά Θετικής - Τεχνολογικής Κατεύθυνσης Γ. Λυκείου Ανάλυση Κεφ. 1 ο ΣΥΝΑΡΤΗΣΕΙΣ

Οι ασκήσεις βασίζονται στο αξιόλογο φυλλάδιο του Μαθηματικού Μιλτ. Παπαγρηγοράκη, από τις σημειώσεις του για το 4ο Γενικό Λύκειο Χανίων [ <

ΑΣΚΗΣΕΙΣ ΣΤΙΣ ΣΥΝΑΡΤΗΣΕΙΣ. Να εξετάσετε αν είναι ίσες οι συναρτήσεις f, g όταν: x x 2 x x. x x g x. ln x ln x 1 και

αβ (, ) τέτοιος ώστε f(x

1. Να προσδιορίσετε το πεδίο ορισμού των συναρτήσεων με τύπους. 2. Να βρεθεί ο λ R ώστε f(x) = ln ( x 2 +2λx+9) να έχει πεδίο ορισμού Α = R

( ) 0, x 0. x 1, x Να μελετήσετε ως προς τη συνέχεια τη συνάρτηση f( x ) = x. 3. Να προσδιορίσετε το α R, ώστε η συνάρτηση f μεf(x)= π

ΣΥΝΑΡΤΗΣΕΙΣ-ΟΡΙΟ-ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΣΤΗ ΣΥΝΕΧΕΙΑ ΚΑΙ ΤΑ ΘΕΩΡΗΜΑΤΑ ΑΥΤΗΣ. x 0 για κάθε xεr και για την συνάρτηση g ισχύει i. Να βρείτε

- 11 ΑΣΚΗΣΕΙΣ ΣΤΙΣ ΣΥΝΑΡΤΗΣΕΙΣ

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ. Β κύκλος

ΣΥΝΑΡΤΗΣΕΙΣ. 3. Μια μπάλα πέφτει από την κορυφή ενός πυργου. Το ύψος στο οποίο βρίσκετε μετά από t sec δίνεται από τη συνάρτηση f () x 75 3

Οι ασκήσεις βασίζονται στο αξιόλογο φυλλάδιο του Μαθηματικού Μιλτ. Παπαγρηγοράκη, από τις σημειώσεις του για το 4ο Γενικό Λύκειο Χανίων [ <

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Α ΜΕΡΟΣ

Μονοτονία - Ακρότατα Αντίστροφη Συνάρτηση

ΣΥΝΘΕΤΗ & ΑΝΤΙΣΤΡΟΦΗ ΣΥΝΑΡΤΗΣH

( x) ( ) ( ) ( ) ( ) Η ΕΝΝΟΙΑ ΤΗΣ ΣΥΝΑΡΤΗΣΗΣ. f x+ h f x. 5x 3 2. x x 2x. 3 x 2. x 2x. f x = log x. f x = ln x 4. log 9. 2x 7x 15. x x.

f(x 2) 5 x 1 α) Να αποδείξετε ότι: i) f (3) = 5 και ii) f (3) = 6 x 2 f(x)

II. Συναρτήσεις. math-gr

Να βρείτε ποιες από τις παρακάτω συναρτήσεις είναι γνησίως αύξουσες και ποιες γνησίως φθίνουσες. i) f(x) = 1 x. ii) f(x) = 2ln(x 2) 1 = (, 1] 1 x

1 ο Τεστ προετοιμασίας Θέμα 1 ο

ΘΕΜΑΤΑΚΙΑ ΓΕΝΙΚΑ. x 0. 2 x

Μαθηματικά κατεύθυνσης Γ Λυκείου Διαγώνισμα διάρκειας 2 ωρών στις Συναρτήσεις

Μαθηματικά Προσανατολισμού Γ Λυκείου Κανιστράς Δημήτριος. Συναρτήσεις Όρια Συνέχεια Μια πρώτη επανάληψη Απαντήσεις των ασκήσεων

ΟΡΙΑ ΣΥΝΕΧΕΙΑ: Τύποι - Βασικές έννοιες

ΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ (1 η σειρά)

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ ΛΥΚΕΙΟΥ

ΣΥΝΘΕΤΑ ΘΕΜΑΤΑ ΜΙΓΑΔΙΚΟΙ ΣΥΝΑΡΤΗΣΕΙΣ

Φ2: ΣΥΝΑΡΤΗΣΕΙΣ ΕΠΙΜΕΛΕΙΑ: ΓΙΑΝΝΗΣ ΧΡΑΣ

Ι. Πραγματικές ΣΥΝΑΡΤΗΣΕΙΣ πραγματικής μεταβλητής (έως και ΑΝΤΙΣΤΡΟΦΗ)

ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ. Παύλος Βασιλείου

Επαναληπτικά Θέματα Μαθηματικών Γ Λυκείου Κατεύθυνσης

Ερωτήσεις ανάπτυξης. 2. ** Να βρείτε το ευρύτερο δυνατό υποσύνολο του R στο οποίο ορίζεται καθεμιά από τις παρακάτω συναρτήσεις: α) f (x) = 2 +

e 1 1. Μια συνάρτηση f: R R έχει την ιδιότητα: (fof)(x)=2-x για κάθε χє R. Να δείξετε ότι: α) f(1)=1, β) η f αντιστρέφεται, γ) f x lim

ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΑΛΓΕΒΡΑΣ B ΛΥΚΕΙΟΥ

α) ( ) β) ( ) γ) ( ) δ) ( ) ( ) β) ( ) ( ) δ) ( ) ( ) ( )

- ΟΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΕΝΟΤΗΤΑ 2: ΜΟΝΟΤΟΝΙΑ ΣΥΝΑΡΤΗΣΗΣ ΑΚΡΟΤΑΤΑ ΣΥΝΑΡΤΗΣΗΣ

Η ΕΝΝΟΙΑ ΤΗΣ ΣΥΝΑΡΤΗΣΗΣ 1η κατηγορία: ΕΥΡΕΣΗ ΠΕΔΙΟΥ ΟΡΙΣΜΟΥ

ΜΑΘΗΜΑ ΜΟΝΟΤΟΝΕΣ ΣΥΝΑΡΤΗΣΕΙΣ

Συναρτήσεις. Ισότητα - Πράξεις Συναρτήσεων Σύνθεση συναρτήσεων Αντίστροφη συνάρτηση. Φιλεκπαιδευτική Εταιρεία Αρσάκεια - Τοσίτσεια Σχολεία

OΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ

Άλγεβρα Β Λυκείου Επαναληπτικά θέματα ΟΕΦΕ α φάση

ΣΥΝΘΕΣΗ ΣΥΝΑΡΤΗΣΕΩΝ. 5η κατηγορια: ΣΥΝΘΕΣΗ ΣΥΝΑΡΤΗΣΕΩΝ

ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΣΤΙΣ ΣΥΝΑΡΤΗΣΕΙΣ

(2 x) ( x 5) 2(2x 11) 1 x 5

1. Να προσδιορίσετε το πεδίο ορισμού των συναρτήσεων με τύπους. ii) f(x) = δ) f (x) = ζ) f (x) =

ΜΑΘΗΜΑΤΙΚΑ Θετικής & Τεχνολογικής Κατεύθυνσης Β ΜΕΡΟΣ (ΑΝΑΛΥΣΗ) ΚΕΦ 1 ο : Όριο Συνέχεια Συνάρτησης

1. Να βρείτε το πεδίο ορισμού των παρακάτω συναρτήσεων : 2. Να βρείτε το πεδίο ορισμού των παρακάτω συναρτήσεων:

x 1 δίνει υπόλοιπο 24

Γ Ε Ν Ι Κ Ο Δ Ι Α Γ Ω Ν Ι Σ Μ Α Ο Ι Κ Ο Ν Ο Μ Ι Α Σ - Θ Ε Τ Ι Κ Η Σ Γ Τ Α Ξ Η Β. Ρ.

ΜΟΝΟΤΟΝΙΑ ΑΚΡΟΤΑΤΑ - ΑΝΤΙΣΤΡΟΦΗ ΣΥΝΑΡΤΗΣΗ

Ο μαθητής που έχει μελετήσει τo κεφάλαιο αυτό θα πρέπει να είναι σε θέση:

- ΟΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΕΝΟΤΗΤΑ 2: ΜΟΝΟΤΟΝΙΑ ΣΥΝΑΡΤΗΣΗΣ ΑΚΡΟΤΑΤΑ ΣΥΝΑΡΤΗΣΗΣ

Ερωτήσεις πολλαπλής επιλογής. 1. * Από τα παρακάτω διαγράµµατα, γραφική παράσταση συνάρτησης είναι το

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ ΣΤΗΝ ΑΛΓΕΒΡΑ ΤΗΣ Β ΛΥΚΕΙΟΥ. , ισχύει ότι:. α. Να υπολογίσετε όλους τους τριγωνομετρικούς αριθμούς της γωνίας ω.

ΜΑΘΗΜΑΤΙΚΑ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤEΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

40 Ασκήσεις στον ΟΛΟΚΛΗΡΩΤΙΚΟ ΛΟΓΙΣΜΟ ( Επεξεργασία του ΜΑΝΩΛΗ ΨΑΡΡΑ)

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Β ΜΕΡΟΣ

Σ Υ Ν Α Ρ Τ Η Σ Ε Ι Σ

ΤΡΥΦΩΝ ΠΑΥΛΟΣ Μαθηµατικά Γ Λυκείου - Κατεύθυνσης

f ( x) x EΠΙΛΕΓΜΕΝΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ Γ ΛΥΚΕΙΟΥ Συναρτήσεις ( ) 1. Έστω συνάρτηση f γνησίως αύξουσα στο R τέτοια ώστε να ισχύει

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ ΣΤΗΝ ΑΛΓΕΒΡΑ ΤΗΣ Β ΛΥΚΕΙΟΥ. , ισχύει ότι:. α. Να υπολογίσετε όλους τους τριγωνομετρικούς αριθμούς της γωνίας ω.

ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ. 1 ο ΔΙΑΓΩΝΙΣΜΑ ΘΕΜΑ 1 ο. ΘΕΜΑ 2 ο. 0, αν x

Μαθηματικά Προσανατολισμού Γ Λυκείου Κανιστράς Δημήτριος. Συναρτήσεις Όρια Συνέχεια Μια πρώτη επανάληψη Απαντήσεις των ασκήσεων.

1. ** Να βρεθεί το ευρύτερο δυνατό υποσύνολο του R στο οποίο ορίζεται καθεµιά από τις παρακάτω συναρτήσεις: , x [0, 2π] εφx -1

lim f ( x ) 0 gof x x για κάθε x., τότε

ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ. σε µια σελίδα Α4 ανά έτος.. προσαρµοσµένα στις επιταγές του ΝΤ MΑΘΗΜΑΤΙΚΑ ΟΜΟΓΕΝΩΝ 05 ΣΕΠΤΕΜΒΡΙΟΥ

ΦΕΒΡΟΥΑΡΙΟΣ Ο συντελεστής διεύθυνσης της εφαπτοµένης της γραφικής παράστασης τη f(x) στο σηµείο x ο είναι f x ) (Μονάδες 4)

ΣΥΝΔΥΑΣΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΣΤΙΣ ΕΚΘΕΤΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ. και 1. και. με λ Z,είναι γνησίως αύξουσα στο R. f x και g x. 2 f x y f x f y g x g y.

h ln 1 γ) Αν η συνάρτηση f είναι συνεχής στο Δ, τότε είναι και παραγωγίσιμη στο Δ.

ΜΕΘΟΔΟΙ ΠΟΥ ΧΡΕΙΑΖΟΝΤΑΙ ΜΙΑ ΔΕΥΤΕΡΗ ΜΑΤΙΑ

ΜΟΝΟΤΟΝΙΑ ΣΥΝΑΡΤΗΣΗΣ

Συνέχεια συνάρτησης σε κλειστό διάστημα

Επαναληπτικά θέματα στα Μαθηματικά προσανατολισμού-ψηφιακό σχολείο ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ

Α ΛΥΚΕΙΟ ΓΕΡΑΚΑ. ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ ΣΤΗΝ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ Σχολικό Έτος ΜΑΝΩΛΗ ΨΑΡΡΑ. Μανώλης Ψαρράς Σελίδα 1

ΣΥΝΕΠΕΙΕΣ Θ.Μ.Τ. ΣΤΑΘΕΡΗ ΣΥΝΑΡΤΗΣΗ ΕΥΡΕΣΗ ΣΥΝΑΡΤΗΣΗΣ

ΘΕΜΑ 101 ο. α. Να δείξετε ότι ο γεωμετρικός τόπος του z είναι η ευθεία (ε): x 2y 3 = 0.

Πολλά ψέματα λίγες αλήθειες. ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΜΕΡΟΣ 1 ο

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ. Β κύκλος

2 ο Διαγώνισμα Ύλη: Συναρτήσεις

Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος ΜEd: «Σπουδές στην εκπαίδευση»

Εισαγωγή στην ανάλυση

1.1 ΒΑΣΙΚΕΣ ΤΡΙΓΩΝΟΜΕΤΡΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ 1.2 ΒΑΣΙΚΕΣ ΤΡΙΓΩΝΟΜΕΤΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ

ΕΝΝΟΙΑ ΤΗΣ ΠΑΡΑΓΩΓΟΥ - ΟΡΙΣΜΟΣ

g(x) =α x +β x +γ με α= 1> 0 και

i. Οι αντίθετες γωνίες έχουν το ίδιο ημίτονο Σ Λ iii. Ένα πολυώνυμο P(x) διαιρείται με το x-ρ αν και μόνο αν Ρ(ρ)=0 Σ Λ

Μέθοδος Α. Β 3. Η γραφική παράσταση της f τέμνει τον άξονα των xx σε ένα σημείο με τετμημένη ξ [α,β],

Συναρτήσεις Θεωρία Ορισμοί - Παρατηρήσεις

ΟΡΙΑ ΣΥΝΕΧΕΙΑ ΒΑΣΙΚΕΣ ΑΣΚΗΣΕΙΣ. 2 f (x) =, να βρεθεί ο k Î R, ώστε να. . β) Να βρείτε το. , αν για κάθε x Î U(, á) όρια lim fx ( ) και lim gx ( ).

ΟΙ πιο πάνω έννοιες εκφράζουν όπως λέμε τη μονοτονία της συνάρτησης.

f(x) = 2x+ 3 / Α f Α.

Transcript:

Α.Πεδίο ορισμού. Να προσδιορίσετε το πεδίο ορισμού των συναρτήσεων με τύπους ι) f() = v) f() 4 6 6 5 log 4 ii) f() = iii) f() = log ( ) iv) f() = log ( log 4(- )) vi) f() = 4 vii) f() 5 4 viii) f() ημ. Να βρεθεί ο λ R ώστε f() = ln ( +λ+9) να έχει πεδίο ορισμού Α = R. Να βρείτε το ευρύτερο δυνατό υποσύνολο του R στο οποίο ορίζεται καθεμιά από τις παρακάτω συναρτήσεις: 4 - α)f ()= β) f ()= ( -) ε) f () = log ( + - ) + log - - - + 4 - - γ) f () = - + - - - 8 στ) f () = e - + - ln ζ) f () = Β. Γραφική παράσταση - συν ημ - δ) f () = + 5 - -, [0, π] εφ - 4. Για ποιες τιμές του χ η C f βρίσκεται πάνω, η κάτω από των χχ όταν: I) f() = -5+6 ii) f() e iii) f() log 5( ) iv) f() 5. Έστω η συνάρτηση f () = - +. α) Να βρείτε τις τιμές f (), f (0), f (-), f () β) Να βρείτε τα σημεία τομής της C f με τους άξονες γ) Να βρείτε τις τιμές f (t), f (t), f ( + h),, t, h R. 6. Δίνεται η συνάρτηση f () = ln. α) Να βρείτε το πεδίο ορισμού της f. β) Να αποδείξετε ότι f () = e για κάθε του πεδίου ορισμού της. γ) Να κάνετε τη γραφική παράσταση Γ. Ίσες συναρτήσεις 7. Εξετάστε ποιες από τις επόμενες συναρτήσεις είναι ίσες και σε ποιο σύνολο ι) f(), g() ιιι) f() 4 5, g() 5 4 8. Δίνεται η συνάρτηση f () = +. ιι) f(), g() α) Να εξετάσετε ποιες από τις συναρτήσεις του παρακάτω πίνακα είναι ίσες με τη συνάρτηση f. f () = - - f ()= - f () = f 4 () = ( + ) f 5 () = lne + f 6 () = eln (+) β) Να βρείτε το ευρύτερο δυνατό υποσύνολο του R στο οποίο οι παραπάνω συναρτήσεις είναι όλες ίσες. 9. Δίνονται οι συναρτήσεις 7

f () = - f () = f () = - f 4()= ( -) - f 5 ()= f 6 () = - α) Να βρείτε τα πεδία ορισμού καθεμιάς συνάρτησης. β)να εξετάσετε αν υπάρχουν ζεύγη ίσων συναρτήσεων. γ) Να βρείτε το ευρύτερο δυνατό υποσύνολο του R στο οποίο οι παραπάνω συναρτήσεις είναι όλες ίσες. α α 0. Δίνονται οι συναρτήσεις f () =, g()=,α R, > 0. - ( -) α) Να βρείτε τα πεδία ορισμού των f, g β) Για ποια τιμή του α ισχύει f = g; Δ. Πραξεις με συναρτήσεις, [0,], (,). Δίνονται οι συναρτήσεις f() g() 6, (,6) [,] Να ορίσετε τις συναρτήσεις f+g, f.g, f g. Δίνονται οι συναρτήσεις f () =,, και g () = ln, -, Ε. ύνθεση συναρτήσεων 0 Να βρείτε τις συναρτήσεις: α) f + g β) f g. Έστω οι συναρτήσεις f() και g() ln( ) Να βρείτε τις συναρτήσεις ι. f g ιι. g f ιιι. f f ιv. g g 4. Να ορισθούν οι συναρτήσεις f g, g f, f f, g g όταν, [, ) f(), g() 5. Βρείτε συνάρτηση f τέτοια ώστε i) (f g)(), αν g()=- ii) 4 (f g)(), αν g() = iii) (g f)() 5 4,αν g() 7 6 6. Δίνεται συνάρτηση f : [0,] R. Να βρεθεί το πεδίο ορισμού των συναρτήσεων I) f( ), ii) f( ) iii) f( ) 7.ίνεται η συνάρτηση f με πεδίο ορισμού το διάστημα [0, ]. Ποιο είναι το πεδίο α) f ( ) β) f ( - 4) γ) f (ln) ορισμού των συναρτήσεων: 8. Δίνονται οι συναρτήσεις: f () =, 0 X. (,), 0 -, g () =. α) Να βρείτε τα πεδία ορισμού τους. β) Να βρείτε - τις συναρτήσεις f + g, f g. γ) Χρησιμοποιώντας τις f, g να δικαιολογήσετε ότι (gof) () g () f (). 8

δ) Να εξετάσετε αν για τις παραπάνω συναρτήσεις f, g οι συναρτήσεις fog και gof είναι ίσες. 9. Ποια καμπύλη είναι η γραφική παράσταση της συνάρτησης g () = f (f (f ())), αν f () = 0.Να γράψετε τη συνάρτηση f () =, > 0 ως σύνθεση δύο άλλων συναρτήσεων.. Αν για κάθε R ισχυει f() α να δειχθει ότι f f () ; -. Δινεται η συναρτηση f, τετοια ώστε f() f, R Βρειτε το τυπο της f.. Δινεται η συναρτηση f, για την οποια ισχυει η σχεση f( χ + ψ) = f()+ f(ψ), χ,ψ R. Δειξτε I) ότι f(0)=0 ii) f( k)=kf(), k N iii) Η f είναι περι τ τη 4. Εστω η αρτια συναρτηση f : R R, για την οποια ισχυει f(α β) f(α) f(β), να δειξτε ότι. Ι) f() 0. ιι) f(α) f(β) f(α β) α,β R. e 5. Αν f g () και g() ln, 0. Να βρεθει ο τυπος της f e 6. Αν f() g() και g() f(), R, να δειχθει ότι (f g)() (g f)() f() 7. Δινεται η συναρτηση f : R R για την οποια ισχυει Ι) f() f( ) ιι) f( ) f( ), R. να δειχθει ότι f( ) f() 6 0. Ιιι) Να βρεθει ο τυπος της f 8. Δίνεται η συνάρτηση f : R R για την οποία ισχύει f ( + y) + f ( - y) = f () + f (y) για κάθε, y R. α) Να αποδείξετε ότι η γραφική παράσταση της f περνά από την αρχή των αξόνων. β) Να αποδείξετε ότι η f είναι άρτια. γ) Να αποδείξετε ότι για κάθε R ισχύει ότι f ( ) = f (). 9. Αν για μια συνάρτηση f ισχύει f () - f ( ) =, 0,ναβρείτετο f (). 0. Αν f(f()) να βρεθει η f().. Αν f(f()) να δειχθει ότι f( ) f(), R. Θεωρουμε τη συναρτηση f με Σ. Μονοτονια υναρτησης f() 4. Ι) Να δειχθει ότι η f είναι γνησιως αυξουσα στο Α= 0, Ιι) Να δειχθει ότι η εξισωση f() 0 εχει μοναδικη λυση στο Α. Ιιι) Να λυθει η ανισωση f() 0 στο Α. α. Να βρεθουν οι τιμες του α R ώστε η f() να είναι Ι) γνησιως αυξουσα στο R α ιι) γνησιως φθινουσα στο R 4. Δίνονται οι συναρτήσεις f, g ορισμένες στο R, οι οποίες είναι γνησίως μονότονες και έχουν το ίδιο είδος μονοτονίας (είναι και οι δύο γνησίως αύξουσες ή και οι δύο γνησίως φθίνουσες). α) Να δείξετε ότι η συνάρτηση fog είναι γνησίως αύξουσα. β) Να εξετάσετε τη μονοτονία των συναρτήσεων fof και gog. γ) Να εξετάσετε τη μονοτονία της συνάρτησης f () = ln [ln ()], >. 9

5.Μια συνάρτηση f με πεδίο ορισμού το R είναι περιττή. Αν η f είναι γνησίως αύξουσα στo διάστημα [α, β] με α, β > 0, να αποδείξετε ότι η f είναι γνησίως αύξουσα και στο διάστημα [- β, - α]. 6. Έστω f, g δύο συναρτήσεις με κοινό πεδίο ορισμού το διάστημα Δ, οι οποίες παίρνουν θετικές τιμές για κάθε Δ και οι οποίες είναι γνησίως αύξουσες στο Δ. Να αποδείξετε ότι η συνάρτηση f g είναι γνησίως φθίνουσα στο Δ. 7. Δίνεται η γνησίως φθίνουσα συνάρτηση f: Δ. Αν,,. 00 Δ με. 00 ισχύει: f( )+ f( ). f ( 00), να δείξετε ότι: f( ) 0,0 8. Εστω η συναρτηση f : (0, ) R με f(0) 0, η οποια είναι γνησίως αύξουσα και η συναρτηση f() g(), 0. ln( ) Να αποδείξετε ότι g() 0 για κάθε χ > 0. Ζ. υναρτηση - 9. Αν f(f()), R.Να αποδειξετε ότι ι) f()= ii) αν g()= f()+, η g δεν είναι - 40. Δίνεται η συνάρτηση f() = e - +χ +. ί) Να αποδείξετε ότι η f είναι -. Ιι) Να λύσετε την εξίσωση f() = 4. Ιιι) Να λύσετε την ανίσωση e - + χ - > 0 4. Να αποδείξετε ότι δεν υπάρχει - συνάρτηση f: R >R με την ιδιότητα f () < f()f(a - ), για κάθε R, όπου α σταθερός μη μηδενικός πραγματικός αριθμός. 4. Δίνονται οι συναρτήσεις f: Α R και g : f(a) R. Αν η συνάρτηση g ο f είναι -, να αποδείξετε ότι: ΐ) η f είναι - ii) η g είναι - 4. Αν η f, g είναι - να δειξετε ότι η g f είναι -. Η. Αντιστροφη υναρτηση 44. Έστω μια συνάρτηση f με πεδίο ορισμού το R, για τηνοποίαισχύει (fof) () - f () =, για κάθε R. Να αποδείξετε ότι υπάρχει η αντίστροφη της f. 45. Να βρείτε όλες τις συναρτήσεις της μορφής f () = α + β, α 0, σε καθεμιά από τις περιπτώσεις: α) f = f - β) f = - f - γ) f = f - + c (c 0, σταθερά) 46. Δίνεται η συνάρτηση f () = 47.Να βρεθεί η αντίστροφη της συνάρτησης f() = 4 48. Δινεται η συναρτηση f() = ln - e ιι) Να λυθει η εξισωση f (). α) Νααποδείξετε ότι η f είναι -. β) Να βρείτε την f -. I) Να αποδειχθει ότι αντιστρεφεται 49. Βρειτε αν υπαρχουν τις αντιστροφες των επομενων συναρτησεων ι) ιιι) f() ιv) f(), 5, v) f(), [0,], [,] f() 50. Δινεται η συναρτηση f :R + R τετοια ώστε f(χ+ψ)=f()+f(ψ). Αν η f είναι αντιστρεψιμη να ιι) f() 4 0

δειξτε ότι f (α).f (β) f (α β) ΤΝΑΡΣΗΕΙ 9o ΓΕΛ ΠΕΡΙΣΕΡΙΟΤ 5. Μια συνάρτηση f: IR IR έχει την ιδιότητα (f ο f)() + f 00 () = χ 00, για κάθε χ R. Να αποδείξετε ότι η f αντιστρέφεται. 5. Δίνεται η συνάρτηση f() = - χ- ln. i) Να αποδείξετε ότι η f είναι, γνησίως φθίνουσα. ii) Να,λύσετε την εξίσωση, f() = f() iii) Να λύσετε την ανίσωση χ + l ηχ >. 5. Δίνεται η συνάρτηση f() = e + χ + χ +. i) Να αποδείξετε ότι η f αντιστρέφεται, ii) Να λύσετε την εξισωση e + ( - ) + - χ = e + + (χ + ) + 54. Αν η συνάρτηση f: R R έχει την ιδιότητα f (f()) = + f() για κάθε R, να αποδειχθεί ότι: i) η f είναι αντιστρέψιμη ii) f(0) = 0 iii) f () f() f(r) 55. Αν η συναρτηση f : R R είναι γνησιως μονοτονη και η γραφικη της παρασταση διερχεται από τα σημεια Α(,) και Β(5,9) ι) Να λυθει η εξισωση f( f ( )) 9 ιι) Να λυθει η ανισωση 56. Δινεται η συναρτηση ιι) Να λυθει η εξισωση f(f ( 8) ) f ( ) ι) Να δειξετε ότι η f αντιστρεφεται f ( ) f ( ) ιιι) Να λυθει η ανισωση f ( ) 57. Οι συναρτήσεις f, g : R R έχουν την ιδιότητα (g ο f)() = + f() + για κάθε χ R. Να αποδείξετε ότι η f αντιστρέφεται. 58.Δίνεται η συνάρτηση f με πεδίο ορισμού το Α η οποία είναι γνησίως αύξουσα στο Α. α) Δείξτε ότι ορίζεται η f και ότι είναι γνησίως αύξουσα στο πεδίο ορισμού της. β) Δείξτε ότι το ρ είναι ρίζα της εξίσωσης f () = f() αν και μόνο αν είναι ρίζα της εξίσωσης f()=. Δώστε γεωμετρική ερμηνεία αυτής της πρότασης. γ) Λύστε την εξίσωση g () = g(), όπου g() = ln + 5. 59. Έστω μια συνάρτηση f με πεδίο ορισμού το R, για την οποία ισχύει (fof) () - f () =, για κάθε R. Να αποδείξετε ότι υπάρχει η αντίστροφη της f. 60. α) Δίνεται η συνάρτηση f γνησίως μονότονη στο πεδίο ορισμού της Α. Αποδείξτε ότι η εξίσωση f() = 0 έχει το πολύ μία ρίζα στο Α. β) Να δοθεί γεωμετρική ερμηνεία στο παραπάνω συμπέρασμα. γ) Να λύσετε τις εξισώσεις : i) e, ii) 6 8 0. 6. Αν f : με f(0)= και f(+y) e f(y) για κάθε,y, να δειχθεί ότι f()=e για κάθε 6. Έστω η συνάρτηση f: (,+ ), για την οποία ισχύει f () + = f() + e για κάθε χ. i) Να βρείτε τον τύπο της f και να αποδείξετε ότι είναι «-». ii) Να βρείτε τον τύπο της f -. 6. Έστω συνάρτηση f ορισμένη στο τέτοια ώστε να ισχύουν: ln[f()] + e = 0, και f() 0 για κάθε. i. Να δείξετε ότι η f αντιστρέφεται. Ιι)Βρείτε την f -. iii) Να βρείτε τα σημεία τομής της γραφικής παράστασης της f - με την ευθεία ψ =.