ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Πρόγραμμα Σπουδών Θεματική Ενότητα Διοίκηση Επιχειρήσεων & Οργανισμών ΔΕΟ 3 Ποσοτικές Μέθοδοι Ακαδημαϊκό Έτος 00-0 ΤΕΛΙΚΕΣ ΕΞΕΤΑΣΕΙΣ (/05/0, 9:00) Να απαντηθούν 4 από τα 5 θέματα. Όλα τα θέματα είναι ισότιμα και το κάθε θέμα αντιστοιχεί στο 5% του τελικού βαθμού. Η τελική βαθμολογία της εξέτασης δίδεται με άριστα το 0, με ένα δεκαδικό ψηφίο. Η σχετική βαρύτητα κάθε υπο-ερώτησης, δίνεται σε ποσοστό επί του συνολικού βαθμού. Η χρήση παραδειγμάτων και διαγραμμάτων συνιστάται ακόμη και όπου δεν απαιτείται ρητά. Η συνεργασία ή/και αντιγραφή επισύρουν μηδενισμό των γραπτών των εμπλεκομένων. ΑΠΑΓΟΡΕΥΟΝΤΑΙ ΤΑ ΚΙΝΗΤΑ ΤΗΛΕΦΩΝΑ
Θέμα (.A) Το κόστος παραγωγής ενός προϊόντος δίνεται από την συνάρτηση: 00 Cq ( ) = + 4800q. q Να βρεθεί η ποσότητα που ελαχιστοποιεί το κόστος παραγωγής. (0%) (.Β) Μια εταιρεία πώλησης Η/Υ διαθέτει μια υπηρεσία πελατειακής υποστήριξης που στελεχώνεται από έναν τεχνικό. Οι κλήσεις φθάνουν με ρυθμό κατά μέσο όρο 5 κλήσεις ανά ώρα και ακολουθούν την κατανομή Posson. Ο χρόνος που χρειάζεται ο τεχνικός για να εξυπηρετήσει μια κλήση είναι τυχαίος και ακολουθεί την εκθετική κατανομή με ρυθμό κατά μέσο όρο 7 κλήσεις ανά ώρα. Η εταιρεία έχει δεχθεί παράπονα για μεγάλο χρόνο αναμονής στο κέντρο βοηθείας. Για να διαπιστώσει την βασιμότητα ή μη των παραπόνων η εταιρεία προσπαθεί να προσδιορίσει τα παρακάτω μέτρα απόδοσης του τηλεφωνικού κέντρου βοήθειας: () Μέσος αριθμός κλήσεων σε αναμονή. (%) () Μέσος αριθμός κλήσεων σε αναμονή και σε εξυπηρέτηση. (%) (3) Μέσος χρόνος αναμονής μιας κλήσης (ενός πελάτη). Η εταιρεία επιθυμεί ο χρόνος αυτός να μην ξεπερνά τα 5 λεπτά. Επιτυγχάνεται με τις παρούσες συνθήκες ο στόχος αυτός; (%) (4) Μέσος συνολικός χρόνος παραμονής μιας κλήσης μέχρι και την εξυπηρέτησή της. (%) (5) Ποια η πιθανότητα μια εισερχόμενη κλήση να απαντηθεί άμεσα; (%) (6) Η εταιρεία προτίθεται να προσλάβει έναν ακόμη τεχνικό με στόχο ο μέσος χρόνος αναμονής μιας κλήσης να μην ξεπερνά τα λεπτά. Επιτυγχάνεται αυτό; Τι ποσοστό των πελατών εξυπηρετείται άμεσα; (Δίνεται ότι Ρ 0 =0.4737). (5%) Υπόδειξη: Να χρησιμοποιήσετε ως στοιχειώδη μονάδα μέτρησης του χρόνου τη μία ώρα και να διατηρήσετε στις πράξεις είτε κλάσματα είτε τέσσερα δεκαδικά ψηφία. ΛΥΣΗ ΕΡΩΤΗΜΑ (.A) Κριτήριο Πρώτης Παραγώγου: 00 C = 0 + 4800 = 0 q = q * = q 4 Κριτήριο Δεύτερης Παραγώγου: 400 C = C ( q ) > 0 3 q Επομένως το κόστος παραγωγής ελαχιστοποιείται στην ποσότητα 0,5 μονάδων. Το ελάχιστο κόστος είναι C (0,5) = 4800 χρηματικές μονάδες. ΕΡΩΤΗΜΑ (.A) Πρόκειται για ένα σύστημα αναμονής τύπου Μ/Μ/ (απεριόριστος χώρος αναμονής, άπειρο πλήθος πελατών, διαδικασία Posson στην είσοδο και στην εξυπηρέτηση, FIFO προτεραιότητα, μία θέση εξυπηρέτησης). Ως στοιχειώδης μονάδα μέτρησης του χρόνου χρησιμοποιείται η μία ώρα. Ο μέσος ρυθμός άφιξης της Posson διαδικασίας είναι 5 πελάτες ανά ώρα (λ=5 πελάτες/ώρα) ενώ ο μέσος ρυθμός εξυπηρέτησης είναι μ=7 πελάτες ανά ώρα. Άρα λ/μ = 5/7 <, οπότε το σύστημα συγκλίνει σε κατάσταση (στατιστικής) ισορροπίας και επομένως μπορούμε να προχωρήσουμε στους υπολογισμούς σύμφωνα με τους τύπους του συστήματος ουρών αναμονής Μ/Μ/. Σε κατάσταση ισορροπίας έχουμε:
() Μέσος αριθμός κλήσεων σε αναμονή: λ 5 5 L q =,7857 μμ ( λ ) = 7(7 5) = 4 = δηλαδή στην αναμονή περιμένουν,7857 κλήσεις κατά μέσο όρο. () Μέσος αριθμός κλήσεων σε αναμονή και σε εξυπηρέτηση λ λ 5 L = = L + = q,7857 + =,5 κλήσεις-πελάτες. μ λ μ 7 (3) Μέσος χρόνος αναμονής μιας κλήσης (ενός πελάτη): 5 λ Lq Wq = = = 4 5 = = 0,357 της ώρας δηλαδή,4 λεπτά. μ( μ λ) λ 5 4 Λόγω του ότι,4 > 5 ο στόχος της εταιρείας δεν επιτυγχάνεται με έναν τεχνικό. (4) Μέσος συνολικός χρόνος παραμονής μιας κλήσης μέχρι και την εξυπηρέτησή της: W = = μ λ 7 5 = της ώρας δηλ. 30 λεπτά. (5) Άμεση απάντηση μιας κλήσης P 0 = - ρ = 5/7 = 0,857 δηλ. το 8,57% των κλήσεων στο τμήμα υποστήριξης εξυπηρετούνται άμεσα. ΕΠΑΛΗΘΕΥΣΗ στο WINQSB (6) Το σύστημα με την πρόσληψη ενός ακόμη τεχνικού είναι τύπου Μ/Μ/. Ο μέσος ρυθμός άφιξης της Posson διαδικασίας παραμένει 5 πελάτες ανά ώρα ενώ ο συνολικός μέσος ρυθμός εξυπηρέτησης
γίνεται k μ= 7=4 πελάτες ανά ώρα. Άρα ρ=λ/μ = 5/4 <. Ο μέσος χρόνος αναμονής μιας κλήσης δίνεται από τη σχέση: k Lq ( λ/ μ) λμ Wq = όπου Lq = P με Ρ 0 0 =0,4737 λ ( k )!( kμ λ) (5 / 7) 5 7 Άρα L q = 0,4737 =0,044 κλήσεις. ( )!( 7 5) Επομένως Lq 0,044 Wq = = = 0,009 της ώρας δηλ.,54 λεπτά. λ 5 Άρα επιτυγχάνεται ο στόχος ο μέσος χρόνος αναμονής να μην ξεπερνά τα λεπτά. Ποσοστό πελατών που εξυπηρετείται άμεσα: ( λ μ P 0 +Ρ =0,4737+ ) 5 P0 = 0,4737 + 0,4737 =0,80! 7 δηλαδή τώρα το 8,% των κλήσεων στο τμήμα υποστήριξης εξυπηρετούνται άμεσα. ΕΠΑΛΗΘΕΥΣΗ στο WINQSB Θέμα Η βαθμολογία των διαγωνιζομένων για τις τελευταίες εξετάσεις στο δημόσιο τομέα (ΑΣΕΠ) ακολουθεί τη Κανονική κατανομή με μέσο 53 και τυπική απόκλιση 8 (η βαθμολογική κλίμακα είναι από 0 έως 00 μονάδες). Αν ένας υποψήφιος έχει βαθμολογηθεί με τουλάχιστον 65, τότε θεωρείται επιτυχών. Αν ένας υποψήφιος έχει βαθμολογία μεταξύ 60 και 65 εντάσσεται σε μία επετηρίδα, η οποία χρησιμοποιείται σε περιπτώσεις που οι θέσεις δεν καλυφθούν από τους επιτυχόντες του διαγωνισμού. Στον τελευταίο διαγωνισμό προσήλθαν 5 διαγωνιζόμενοι. (.Α) Πόσοι διαγωνιζόμενοι αναμένεται να είναι επιτυχόντες; (5%) (.Β) Πόσοι διαγωνιζόμενοι αναμένεται ότι θα ενταχθούν στην επετηρίδα; (0%)
(.Γ) Αν επιλεγούν τυχαία 0 διαγωνιζόμενοι, ποια η πιθανότητα ακριβώς 9 να έχουν αποτύχει; (0%) ΛΥΣΗ Έστω Χ η τ.μ. που αντιπροσωπεύει την βαθμολογία ενός διαγωνιζόμενου. Ισχύει X~N( μσ, ) δηλ. X ~ N(53,8 ). ΕΡΩΤΗΜΑ (.Α) Η ζητούμενη πιθανότητα είναι: X 53 65 53 P( X > 65) = P > = 8 8 = P( Z >,5) = P( Z <, 5)= 0,933 = 0, 0668 άρα περίπου 6,68%. Οπότε αναμένουμε περίπου διαγωνιζόμενους να πετύχουν βαθμολογία πάνω από 65. ΕΡΩΤΗΜΑ (.Β) 5 0,0668» 34 από τους Η ζητούμενη πιθανότητα είναι 60 53 P(60 < X < 65) = P < 8 X 53 < 8 65 53 = 8 ( Z <,5 ) P( < 0,875 = = P( 0,875 < Z <,5) = P Z ) = 0,933 0,8078 = 0,54 Δηλαδή περίπου,54%. Οπότε αναμένουμε περίπου 5 0,54» 64 ενταχθούν στην επετηρίδα (να επιτύχουν βαθμό από 50% μέχρι 65%) άτομα να ΕΡΩΤΗΜΑ (.Γ) Η πιθανότητα αποτυχίας δίνεται από την P( X < 65) = P( Z <,5) = 0,933 ή 93,3% Άρα η πιθανότητα να βρούμε ακριβώς 9 που έχουν αποτύχει - έστω Y «αριθμός αποτυχιών σε n τυχαία επιλεγμένα άτομα» - είναι 0 9 0 9 9 0 P( Y = 9) = (0,933) ( 0,933) = 0 0,933 0,0668 = 0,3585 9 το ενδεχόμενο ή περίπου 35,85%.
Θέμα 3 Μία διαφημιστική εταιρεία έχει αναλάβει την προώθηση ενός νέου προϊόντος μέσα από δύο μέσα ενημέρωσης: το ραδιόφωνο και την τηλεόραση. Από έρευνες αγοράς που διεξάγει η εταιρεία έχουν διαπιστωθεί τα στοιχεία του πίνακα 3., που αφορούν στο κόστος της διαφήμισης σε κάθε μέσο και στον αριθμό των ατόμων που επηρεάζονται. Η εταιρεία έχει στόχο οι αποδέκτες των διαφημίσεων να είναι τουλάχιστον 65000 άτομα στην ηλικιακή ομάδα >40 ετών και τουλάχιστον 80000 άτομα στην ηλικιακή ομάδα 5-40 ετών. Οι αποδέκτες στην ομάδα <5 ετών δεν θα πρέπει να είναι λιγότεροι από 70000 άτομα. Πίνακας 3.. Αποδέκτες διαφήμισης ανά λεπτό διαφημιστικού χρόνου και ηλικιακή ομάδα (χιλιάδες άτομα) < 5 ετών 5 40 ετών > 40 ετών Κόστος ανά λεπτό διαφημιστικού χρόνου (χιλιάδες ευρώ) Τηλεόραση 8,6.5 6 7 Ραδιόφωνο 4 8 4,5,5 (3.Α) Να διαμορφωθεί το μαθηματικό μοντέλο που προσδιορίζει το διαφημιστικό σχήμα προώθησης του νέου προϊόντος με το ελάχιστο δυνατό κόστος. Να εξηγηθούν με σαφήνεια τα στοιχεία του μοντέλου. (5%) (3.Β) Να χρησιμοποιηθεί η γραφική μέθοδος επίλυσης προβλημάτων γραμμικού προγραμματισμού για να βρεθεί η άριστη λύση και η άριστη τιμή του μοντέλου. Να διατυπωθούν τα αποτελέσματα με βάση τα στοιχεία της εκφώνησης του προβλήματος. (0%) ΛΥΣΗ ΕΡΩΤΗΜΑ (3.A) Έστω: x = Ο χρόνος σε λεπτά διαφημίσεων στην τηλεόραση, x = Ο χρόνος σε λεπτά διαφημίσεων στο ραδιόφωνο. Τότε με βάση τα δεδομένα του προβλήματος, η αντικειμενική συνάρτηση (που εκφράζει συνολική διαφημιστική δαπάνη) και οι περιορισμοί μπορούν να διατυπωθούν μαθηματικά ως εξής: Mn Z = 7 x +,5 x με περιορισμούς: 6x +4,5 x > 65 (τουλάχιστον 65.000 στην ομάδα άνω των 40 ετών),5x + 8x > 80 (τουλάχιστον 80.000 στη μεσαία ηλικιακή ομάδα) 8,6x + 4x > 70 (έως 5 ετών δεν θα πρέπει να υπολείπονται των 70.000) x, x 0 (περιορισμοί μη αρνητικότητας) ΕΡΩΤΗΜΑ (3.Β) Γραφικά οι παραπάνω περιορισμοί μπορούν να παρασταθούν όπως φαίνεται στο παρακάτω Σχήμα, δίνοντας την εφικτή περιοχή της λύσης ως το γραμμοσκιασμένο τμήμα.
Σχήμα Ο υπολογισμός της τιμής της αντικειμενικής συνάρτησης Z = 7x +,5x σε κάθε κορυφή της εφικτής περιοχής, οδηγεί στην εύρεση της βέλτιστης λύσης στον πίνακα που ακολουθεί: Κορυφή Α (0, 4,44) 36, Β (,3, 6,5) 3,9 Γ (5,7,,76) 4,9 Δ (8,4, 0) 56,98 Τιμή της αντικειμενικής συνάρτησης Επομένως, η βέλτιστη λύση βρίσκεται στην κορυφή Β με τετμημένη και τεταγμένη, αντίστοιχα: x =,3 και x = 6,5. Εκφρασμένη με όρους της εκφώνησης σημαίνει ότι θα πρέπει να αφιερωθούν,3 λεπτά διαφημιστικού χρόνου στην τηλεόραση και 6,5 λεπτά διαφημιστικού χρόνου στο ραδιόφωνο. Η τιμή της αντικειμενικής συνάρτησης είναι 3,9 (χιλιάδες) ευρώ ή ισοδύναμα 3.900 ευρώ που αντιστοιχεί στην ελάχιστη διαφημιστική δαπάνη που απαιτείται ώστε να ικανοποιηθούν οι απαιτήσεις των περιορισμών. Θέμα 4 (4.Α) Το κόστος παραγωγής ενός προϊόντος δίνεται από την συνάρτηση: Cq ( ) = 8000 +,5q Η τιμή πώλησης του προϊόντος είναι p = 3000 χρηματικές μονάδες. Να βρεθεί η ποσότητα που μεγιστοποιεί το συνολικό κέρδος της επιχείρησης. (0%) (4.Β) Δίνονται οι συναρτήσεις ζήτησης και προσφοράς :
Q d = 0-P, Q s =3P+P Να βρεθούν: ) Οι ελαστικότητες προσφοράς και ζήτησης στο σημείο ισορροπίας. (5%) ) Οι ελαστικότητες προσφοράς και ζήτησης όταν P=3. (5%) ) Να δείξετε διαγραμματικά το σημείο ισορροπίας. (5%) ΛΥΣΗ ΕΡΩΤΗΜΑ (4.A) Η συνάρτηση συνολικού κέρδους είναι: π = TR C = 3000q 8000,5q. Κριτήριο Πρώτης Παραγώγου: π = 0 3000,5q = 0 q* = 00. Κριτήριο Δεύτερης Παραγώγου: π =,5 π ( q*) < 0. Επομένως το κέρδος της επιχείρησης μεγιστοποιείται στην ποσότητα των 00 μονάδων. Το μέγιστο κέρδος ισούται με π (00) = 79000 χρηματικές μονάδες. ΕΡΩΤΗΜΑ (4.Β) () Στο σημείο ισορροπίας ισχύει Q d = Q s ή 0-P= 3P+P => 0-P-3P-P =0=>0-5P-P =0 Δ= (-5) - 4 *(-) * 0 = 5+40=65 P, = (5 ± 65) / (-) η P =.53 και P = -6.53 (η οποία απορρίπτεται) Στη τιμή ισορροπίας P=.53 η ποσότητα ισορροπίας είναι (αντικαθιστώ στην συνάρτηση ζήτησης η προσφοράς ) Q =6.94 Ετσι στο σημείο ισορροπίας έχουμε: Συντελεστή ελαστικότητας ζήτησης ως προς την τιμή : e d = (-)* (.53/6.94) = -0.44 Συντελεστή ελαστικότητας προσφοράς ως προς την τιμή e s = (3+P) * (.53/6.94) = (3+*.53) (.53/6.94)= (6.06)*(0.) =.33 () Όταν P=3, η Q d = 4 και Q s = 8 e d =(-) * (3/4) =-6/4 = -3/ και e s = (3+P)*(3/8) =(3+*3) *(3/8) =7/8=3/
() Qd και Qs 5 0 ΠΟΣΟΤΗΤΑ 5 0 Qd Qp 5 0 0 0. 0.4 0.6 0.8..4.6.8..4.6.8 3 3. 3.4 ΤΙΜΗ Θέμα 5 Δίνεται η παρακάτω κατανομή των μηνιαίων εισοδημάτων, σε χιλιάδες νομισματικές μονάδες (ν.μ.), 9 ανώτερων στελεχών επιχειρήσεων του ιδιωτικού τομέα. Μηνιαίο εισόδημα (σε χιλιάδες ν.μ.) Αριθμός στελεχών [0 0) [0 0) [0 30) 54 [30-40) [40 50) 6 [50 60) 7 [60 70) [70 80) 6 (5.Α) Να υπολογισθεί ο αριθμητικός μέσος, η διακύμανση, η τυπική απόκλιση και η επικρατούσα τιμή των εισοδημάτων των στελεχών. (%)
(5.Β) Να υπολογισθεί ο συντελεστής ασυμμετρίας Pearson. Συμφωνείτε με την άποψη ενός ερευνητή ο οποίος υποστηρίζει ότι η κατανομή των μηνιαίων εισοδημάτων παρουσιάζει αρνητική ασυμμετρία; (5%) (5.Γ) Συμφωνείτε με την άποψη ενός αναλυτή ο οποίο σχολίασε ότι το 5% των συγκεκριμένων στελεχών λαμβάνει τουλάχιστον 65000 ν.μ. μηνιαίως; (8%) ΛΥΣΗ ΕΡΩΤΗΜΑ (5.A) Μηνιαίο εισόδημα Αριθμός στελεχών (συχνότητα) Κεντρική τιμή (σε χιλιάδες ευρώ) f m fm [0 0) 5 5 [0 0) 5 30 [0 30) 54 5 350 [30-40) 35 385 [40 50) 6 45 70 [50 60) 7 55 485 [60 70) 65 780 [70 80) 6 75 450 Μέσος k fm = 505 X = = = 40,34 k 9 f = χιλιάδες ν.μ. Μηνιαίο Αριθμός στελεχών Κεντρική εισόδημα (συχνότητα) τιμή (σε χιλιάδες f m fm ν.μ.) ( m X) f m - X [0 0) 5 5 49.54 49.54 [0 0) 5 30 64.5635 85.7 [0 30) 54 5 350 35.5868 7.69 [30-40) 35 385 8.6006 34.707 [40 50) 6 45 70.6333 346.33 [50 60) 7 55 485 4.6566 5795.77 [60 70) 65 780 607.6798 79.58 [70 80) 6 75 450 00.703 704.8 - ( ) Διακύμανση
S k ( ) ( 40,34) 8 f m X f m 3609,0 = = = = 8,885 8 8 f = = n = Τυπική απόκλιση S =+ S = 8,885 = 6,89 χιλιάδες ν.μ. Επικρατούσα τιμή Το κατώτερο όριο της τάξης της επικρατούσας τιμής είναι T 0 0 συχνότητα παρατηρείται στην τάξη [0,30) με f 3 = 54 τάξης της επικρατούσας τιμής και της συχνότητας της προηγούμενης τάξης είναι L = αφού η μεγαλύτερη. Η διαφορά μεταξύ της συχνότητας της Δ = 54 ενώ η διαφορά μεταξύ της συχνότητας της τάξης της επικρατούσας τιμής και της συχνότητας της επόμενης τάξης Δ = 54. Τέλος το εύρος της τάξης είναι δ = 0. Συνεπώς η επικρατούσα τιμή εκτιμάται, Δ (54 ) 5 T 0 = L T + δ = 0 + 0* = 0 + 0* = 5,47 χιλιάδες ν.μ. 0 Δ + Δ (54 ) + (54 ) 95 ΕΡΩΤΗΜΑ (5.Β) Ο συντελεστής ασυμμετρίας Pearson δίνεται από τη σχέση: X - T0 40,34-5,47 S p = = = 0,8844. S 6,8 Επειδή S p = 0,8844 > 0 η κατανομή του μηνιαίου εισοδήματος παρουσιάζει θετική συμμετρία άρα δεν συμφωνούμε με τον ερευνητή. ΕΡΩΤΗΜΑ (5.Γ) Πρέπει να υπολογίσουμε το 3 ο τεταρτημόριο Q 3 αφού αντιστοιχεί στην τιμή η οποία χωρίζει το σύνολο των παρατηρήσεων σε δύο μέρη έτσι ώστε το πολύ 75% να είναι μικρότερες και το πολύ 5% να είναι μεγαλύτερες από την τιμή αυτή. Εντοπισμός της θέσης του 3 ου τεταρτημορίου: 3( n + ) 3(9 + = ) = 97,5 4 4 Μηνιαίο εισόδημα (σε χιλιάδες ν.μ.) Αριθμός (συχνότητα) f στελεχών Κεντρική τιμή [0 0) 5 [0 0) 5 3 [0 30) 54 5 57 [30-40) 35 68 [40 50) 6 45 84 [50 60) 7 55 [60 70) 65 3 [70 80) 6 75 9 m Αθροιστική συχνότητα F
Άρα με βάση την αθροιστική συχνότητα F, το τρίτο τεταρτημόριο ανήκει στην 6 η Q3 τάξη, δηλαδή στο διάστημα [50 60). Έστω L το κατώτερο όριο της τάξης του 3 ου Q3 τεταρτημορίου, f Q 3 η συχνότητα της τάξης του 3 ου τεταρτημορίου, F Q 3 - η αθροιστική συχνότητα της προηγούμενης τάξης από αυτή του 3 ου τεταρτημορίου και n το πλήθος των παρατηρήσεων. δ 3n 0 3 9 Q = L + F = 50 + 84 = 54,7 4 7 4 3 Q3 Q3 fq 3 χιλιάδες ν.μ. Άρα το 75% των στελεχών έχει μηνιαίο εισόδημα το πολύ μέχρι 54,7 χιλιάδες ν.μ. ή το 5% των στελεχών λαμβάνουν τουλάχιστον 5470 ν.μ. άρα δεν συμφωνούμε με τον αναλυτή.