Μαθηµατικά & Στοιχεία Στατιστικής Γενικής Παιδείας Γ Λυκείου 2001

Σχετικά έγγραφα
Μαθηµατικά & Στοιχεία Στατιστικης Γενικής Παιδείας Γ Λυκείου 2001 ÈÅÌÅËÉÏ

1 και Ρ(Β) = τότε η Ρ (Α Β) είναι ίση µε: 2 δ και Ρ(Α Β) = 4

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 14 ΙΟΥΝΙΟΥ 2001 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΤΑΞΗ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΤΑΞΗ

ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2012 ΕΚΦΩΝΗΣΕΙΣ

Θέµατα Μαθηµατικών & Στ. Στατ/κής Γενικής Παιδείας Γ Λυκείου 2000

ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2010 ΕΚΦΩΝΗΣΕΙΣ

Θέµατα Μαθηµατικών & Στ. Στατ/κής Γενικής Παιδείας Γ Λυκείου 2000 ÈÅÌÅËÉÏ

Μαθηµατικά & Στοιχεία Στατιστικής Γενικής Παιδείας Γ Λυκείου 2001 ΕΚΦΩΝΗΣΕΙΣ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ' ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2006 ΕΚΦΩΝΗΣΕΙΣ

ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ

P A B P(A) P(B) P(A. , όπου l 1

Επαναληπτικό Διαγώνισµα Μαθηµατικά Γενικής Παιδείας Γ Λυκείου

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2004

ΑΠΑΝΤΗΣΕΙΣ ΙΟΥΛΙΟΥ Β. α. ΛΑΘΟΣ, β. ΣΩΣΤΟ, γ. ΣΩΣΤΟ, δ. ΛΑΘΟΣ, ε. ΣΩΣΤΟ, στ. ΣΩΣΤΟ. α = 1 δ. im( f (x) x ) = im - 2βx x = - 4β 8 = 4α - 32β =

F είναι ίσος µε ν. i ÏÅÖÅ ( ) h 3,f 3.

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ

Ω ισχύει: P A B P(A) P(B) P(A (Μονάδες 7 ) του πεδίου ορισμού της; (Μονάδες 4 ) ii. Να δώσετε τον ορισμό της μέσης τιμής ενός συνόλου ν παρατηρήσεων.

ΘΕΜΑ Α Α1. Αν οι συναρτήσεις f, g είναι παραγωγίσιμες στο, να αποδείξετε ότι ( f (x) + g(x)

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2005

Αν Α και Β είναι δύο ενδεχόμενα ενός δειγματικού χώρου να αποδείξετε ότι: Αν Α Β τότε Ρ(Α) Ρ(Β)

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ

Μονάδες 10. x. (μονάδες 2) ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ 1 Ο Α1. Απάντηση από το Σχολικό βιβλίο σελίδα 28

ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑ.Λ. Β 20 ΜΑΪΟΥ 2013 ΑΠΑΝΤΗΣΕΙΣ. x x x 4

ÖÑÏÍÔÉÓÔÇÑÉÏ ÈÅÌÅËÉÏ ÇÑÁÊËÅÉÏ ÊÑÇÔÇÓ

, και για h 0, . Άρα. Α2. Μια συνάρτηση f λέγεται γνησίως αύξουσα σε ένα διάστημα Δ του πεδίου ορισμού της, όταν για οποιαδήποτε σημεία x.

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2011 ΕΚΦΩΝΗΣΕΙΣ

ΜΑΘΗΜΑΤΙΚΑ. 1 ο ΔΙΑΓΩΝΙΣΜΑ. ΘΕΜΑ 1 ο Δίνεται η συνάρτηση f x. Ι. Το πεδίο ορισμού της f είναι:., 1 υ -1, B. 1, Γ. -1,., 1.

ΘΕΜΑ Α Α1. Αν οι συναρτήσεις f, g είναι παραγωγίσιμες στο, να αποδείξετε ότι ( f (x) + g(x)

ΛΥΚΕΙΟ ΠΕΤΡΟΥΠΟΛΗΣ ΠΕΜΠΤΗ 26 ΑΠΡΙΛΙΟΥ 2012 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ : ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ

Α4. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν, γράφοντας στο τετράδιό σας δίπλα στο γράµµα που αντιστοιχεί σε κάθε πρόταση, τη λέξη Σωστό, αν η

ΠΡΟΤΕΙΝΟΜΕΝΑ ΘΕΜΑΤΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΤΡΙΤΗ 25 ΜΑΪΟΥ 2004 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

x. Αν ισχύει ( ) ( )

ÖÑÏÍÔÉÓÔÇÑÉÏ ÈÅÌÅËÉÏ ÇÑÁÊËÅÉÏ ÊÑÇÔÇÓ

Για το Θέμα 1 στα Μαθηματικά Γενικής Παιδείας Γ Λυκείου

ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2015 ΕΚΦΩΝΗΣΕΙΣ

(f (x) g(x)) = f (x) g(x)+f (x) g (x) (μονάδες 2)

ÈÅÌÁÔÁ 2007 ÏÅÖÅ ( ) Γ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ

Α. α) ίνεται η συνάρτηση F(x)=f(x)+g(x). Αν οι συναρτήσεις f, g είναι παραγωγίσιµες, να αποδείξετε ότι: F (x)=f (x)+g (x).

ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΕΠΑΝΑΛΗΠΤΙΚΩΝ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2013 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2012

ΘΕΜΑ Α Α1. Αν οι συναρτήσεις f, g είναι παραγωγίσιμες στο, να αποδείξετε ότι ( f (x) + g(x)

ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝ. ΠΑΙΔΕΙΑΣ - Γ ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2003

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2003

3 η ΕΚΑ Α ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ 21. (1)

Λύσεις των θεμάτων ΔΕΥΤΕΡΑ 19 ΙΟΥΝΙΟΥ 2017 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

(f(x)+g(x)) =f (x)+g (x), x R

ΘΕΜΑ Α Α1. Έστω t 1,t 2,...,t ν οι παρατηρήσεις μιας ποσοτικής μεταβλητής Χ ενός δείγματος μεγέθους ν, που έχουν

ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2012 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ

4 η ΕΚΑ Α ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ 31.

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ΘΕΜΑ ΕΞΕΤΑΣΕΩΝ Γ ΛΥΚΕΙΟΥ ΒΑΣΙΛΕΙΟΣ ΝΤΑΙΦΩΤΗΣ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2014

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ

1% = 100% 25 = 100. v 400. v = 6v v = 6 40 v = 240. = = 360 v v v + v + v + v = v v = 400

Α) Να γράψετε με τη βοήθεια των πράξεων των συνόλων το ενδεχόμενο που παριστάνει το σκιασμένο εμβαδόν σε καθένα από τα παρακάτω διαγράμματα Venn.

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ΘΕΜΑ 1o A. Η συνάρτηση f είναι παραγωγίσιμη στο ΙR. και c πραγματική σταθερά. Να αποδείξετε ότι

Απαντήσεις. Θέμα 1 ο. Α. α) v1. Άρα v1

ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΜΑΘΗΜΑΤΙΚΑ- 1 o ΔΙΑΓΩΝΙΣΜΑ

Γ ε ν ι κ έ ς εξ ε τ ά σ ε ι ς Μαθηματικά και Στοιχεία Στατιστικής Γ λυκείου γ ε ν ι κ ή ς π α ι δ ε ί α ς

ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2013 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΤΑΞΗ

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ΘΕΜΑ Α Α1. Αν οι συναρτήσεις f, g είναι παραγωγίσιμες στο, να αποδείξετε ότι ( f (x) + g(x)

2 η ΕΚΑ Α ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ και. Έστω Α, Β ενδεχόµενα ενός δειγµατικού χώρου Ω µε Ρ(Α) = 8

Γ. Ε. ΛΥΚΕΙΟ 2008 ΜΑΘ. ΚΑΙ ΣΤ. ΣΤΑΤ. ΤΑΞΗ Γ

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 22 ΜΑΪΟΥ 2008 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

f x g x f x g x, x του πεδίου ορισμού της; Μονάδες 4 είναι οι παρατηρήσεις μιας ποσοτικής μεταβλητής Χ ενός δείγματος μεγέθους ν και w

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 4 ΣΕΛΙ ΕΣ

ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑ.Λ. Β 20 ΜΑΪΟΥ 2013 ΑΠΑΝΤΗΣΕΙΣ. x x x 4

ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ Θέματα και Απαντήσεις

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ. A. Η συνάρτηση f είναι παραγωγίσιμη στο ΙR. και c πραγματική σταθερά. Να αποδείξετε ότι (c f(x)) =c f (x), x ΙR.

(f(x) + g(x)) = f (x) + g (x).

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 3 ΣΕΛΙΔΕΣ

ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΕΞΕΤΑΣΕΙΣ ΓΙΑ ΤΑ ΑΝΩΤΕΡΑ ΚΑΙ ΑΝΩΤΑΤΑ ΕΚΠΑΙΔΕΥΤΙΚΑ ΙΔΡΥΜΑΤΑ

= +. ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑ ΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2016 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ (ΝΕΟ ΚΑΙ ΠΑΛΑΙΟ ΣΥΣΤΗΜΑ) ΘΕΜΑ Α. Μονάδες 7.

Μονάδες 10 ΦΡΟΝΤΙΣΤΗΡΙΑ ΦΛΩΡΟΠΟΥΛΟΥ Σελίδα 1

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ. B. Πώς ορίζεται ο συντελεστής μεταβολής ή συντελεστής. μεταβλητότητας μιας μεταβλητής X, αν x > 0 και πώς, αν

,,, και τα ενδεχόμενα

Θέμα Α. Θέμα Β. ~ 1/9 ~ Πέτρος Μάρκου. % σχεδιάζουμε το πολύγωνο αθροιστικών σχετικών συχνοτήτων τοις

Οµάδα (I): Οµάδα (II): Οµάδα (III):

ΑΠΑΝΤΗΣΕΙΣ. Επιµέλεια: Οµάδα Μαθηµατικών της Ώθησης

ΓΕΛ ΜΑΘΗΜΑΤΙΚΑ Γ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ

ΘΕΜΑΤΑ ΠΑΝΕΛΛΗΝΙΩΝ ΕΞΕΤΑΣΕΩΝ σε μια σελίδα Α4 ανά έτος προσαρμοσμένα στις επιταγές του ΔΝΤ (IMF: 4o μεσοπρόθεσμο.) ( WWF:.εξοικονόμηση πόρων.

ΘΕΜΑ 1ο Α. Να αποδειχθεί ότι για δύο ενδεχόμενα Α και Β ενός δειγματικού χώρου Ω ισχύει: P(A B) = P(A) + P(B) P(A B). Μονάδες 10

ΘΕΜΑΤΑ ΓΕΝΙΚΩΝ ΕΞΕΤΑΣΕΩΝ

Transcript:

Μαθηµατικά & Στοιχεία Στατιστικής Γενικής Παιδείας Γ Λυκείου 2001 ΕΚΦΩΝΗΣΕΙΣ Ζήτηµα 1ο Α.1. Να αποδείξετε ότι για δύο ενδεχόµενα Α και Β ενός δειγµατικού χώρου Ω ισχύει ότι: Ρ (Α Β) = Ρ (Α) Ρ (Α Β). Μονάδες 8,5 Α.2. Β.1. Να µεταφέρετε στο τετράδιό σας τις παρακάτω σχέσεις και να συµπληρώσετε καθεµιά από αυτές µε το κατάλληλο σύµβολο, (=,, ) έτσι ώστε να είναι αληθής: α. Ρ (Α )... 1 Ρ(Α) Μονάδες 2 β. αν Α Β τότε Ρ(Β)... Ρ(Α). Μονάδες 2 Να χαρακτηρίσετε τις προτάσεις που ακολουθούν γράφοντας στο τετράδιό σας την ένδειξη Σωστό ή Λάθος δίπλα στο γράµµα που αντιστοιχεί σε κάθε πρόταση. Τα Α και Β είναι ενδεχόµενα του ίδιου δειγµατικού χώρου Ω και Α το αντίθετο του ενδεχοµένου Α. α. Αν Α Β τότε Ρ(Α) + Ρ(Β) < 1. β. Αν Ρ(Α) = Ρ(Α ) τότε 2Ρ(Α) = Ρ(Ω). Μονάδες 4 Β.2. Να γράψετε στο τετράδιό σας το γράµµα που αντιστοιχεί στη σωστή απάντηση. Αν Α Β, Ρ(Α) = 1/4 και Ρ(Β) = 5/12 τότε η Ρ (Α Β) είναι ίση µε: α. 1/4 β. 5/12 γ. 2/3 δ. 1/6. Μονάδες 2,5 Β.3. Να γράψετε στο τετράδιό σας τα γράµµατα της Στήλης Α και δίπλα σε κάθε γράµµα τον αριθµό της Στήλης Β, που αντιστοιχεί στη σωστή απάντηση. Τα Α και Β είναι ενδεχόµενα του ίδιου δειγµατικού χώρου Ω και ισχύει ότι: Ρ(Α) = 1/3, Ρ(Β) =1/4 και Ρ(Α Β) =1/5. Στήλη Α Στήλη Β α. Ρ (Α Β) 1. 1/20 β. Ρ ( B A ) ) ( 2. 2/15 γ. Ρ ( A B) ) ( 3. 4/5 4. 1/12 5. 19/20 Τεχνική Επεξεργασία: Keystone 1

Ζήτηµα 2ο ίνεται η συνάρτηση f() = συν+ηµ. A. Να αποδείξετε ότι f() + f''() = 0. Μονάδες 8 Β. Να βρείτε την εξίσωση της εφαπτοµένης της γραφικής παράστασης της f στο σηµείο Α (0,1). Μονάδες 8 Γ. Να βρείτε την τιµή λ IR για την οποία ισχύει η σχέση: λ π 2 π = 2. f 2 f 2 Μονάδες 9 Ζήτηµα 3ο Στον παρακάτω πίνακα δίνεται η κατανοµή των αθροιστικών σχετικών συχνοτήτων του βάρους 80 µαθητών της Γ τάξης ενός Λυκείου. Τα δεδοµένα έχουν οµαδοποιηθεί σε 4 κλάσεις. Βάρος σε κιλά [ ) Αθροιστική Σχετική Συχνότητα F i 45-55 0,2 55-65 0,5 65-75 75-85 Α. Αν γνωρίζετε ότι η σχετική συχνότητα της τρίτης κλάσης είναι διπλάσια της σχετικής συχνότητας της πρώτης κλάσης, να βρείτε τις τιµές της αθροιστικής σχετικής συχνότητας που αντιστοιχούν στην τρίτη και τέταρτη κλάση. Μονάδες 8 Β. Να υπολογίσετε τη µέση τιµή των παραπάνω δεδοµένων. Μονάδες 9 Γ. Επιλέγουµε τυχαία από το δείγµα των 80 µαθητών ένα µαθητή. α. Να βρείτε την πιθανότητα να έχει βάρος µικρότερο από 65 κιλά. Μονάδες 4 β. Να βρείτε την πιθανότητα ο µαθητής να έχει βάρος µεγαλύτερο ή ίσο των 55 κιλών και µικρότερο των 75 κιλών. Μονάδες 4 Τεχνική Επεξεργασία: Keystone 2

Ζήτηµα 4ο Σε έρευνα που έγινε στους µαθητές µιας πόλης, για τον χρόνο που κάνουν να πάνε από το σπίτι στο σχολείο, διαπιστώθηκε ότι το 50% περίπου των µαθητών χρειάζεται περισσότερο από 12 λεπτά, ενώ το 16% περίπου χρειάζεται λιγότερο από 10 λεπτά. Υποθέτουµε ότι η κατανοµή του χρόνου της διαδροµής είναι κατά προσέγγιση κανονική. Α. Να βρείτε το µέσο χρόνο διαδροµής των µαθητών και την τυπική απόκλιση του χρόνου διαδροµής τους. Β. Να εξετάσετε, αν το δείγµα είναι οµοιογενές. Γ. Αν οι µαθητές της πόλης είναι 4.000, πόσοι µαθητές θα κάνουν χρόνο διαδροµής από 14 έως 16 λεπτά.. Μια µέρα, λόγω έργων στον κεντρικό δρόµο της πόλης, κάθε µαθητής καθυστέρησε 5 λεπτά. Να βρείτε πόσο µεταβάλλεται ο συντελεστής µεταβολής (CV). Μονάδες 7 Τεχνική Επεξεργασία: Keystone 3

ΑΠΑΝΤΗΣΕΙΣ Ζήτηµα 1ο Α.1. A.2. Επειδή τα ενδεχόµενα Α Β και Α Β είναι ασυµβίβαστα και (Α Β) U (Α Β) = A Έχουµε: P(A) = P(Α Β) + P(Α Β) P(Α Β) = P(Α) P(Α Β) α. P(A') = 1 P(A) β. Α B τότε: P(Β) P(Α) B.1. α. Αφού β. Επειδή: Α' Β P(A') P(B) 1 P(A) P(B) P(B) + P(A) 1 α. Λάθος P(A) = P(A') P(A) = 1 P(A) 2P(A) = 1 2P(A) = P(Ω) β. Σωστό Β.2. Αφού: οπότε: Eποµένως: Α B Α Β = Α P(Α Β) = P(A) = 1/4 P(AUB) = P(A) + P(B) P(Α Β) = 1/4 + 5/12-1/4 = 5/12 β. Σωστό Β.3. P(A B) = P(A) P(Α Β) = 1/3-1/5 = 2/15 P((B - A)') = 1 P(B A) = 1 [P(B) P(Α Β)] = = 1 P(B) + P(Α Β) = 1-1/4 + 1/5 = 3/4 + 1/5 = 19/20 P((A Β)') = 1 P(A Β) = 1-1/5 = 4/5 α. 2 β. 5 γ. 3 Τεχνική Επεξεργασία: Keystone 4

Ζήτηµα 2ο Α. Η συνάρτηση f είναι ορισµένη και παραγωγίσιµη 2 φορές στο R µε: f () = (συν + ηµ ) = ηµ + συν. f '' () = ( ηµ + συν ) = συν ηµ f () + f '' () = συν + ηµ συν ηµ = 0. B. Έστω ψ = α + β η εξίσωση της εφαπτοµένης της C f στο σηµείο Α (0,1). Τότε θα είναι: f (0) = α και 1 = β. Όµως f () = ηµ + συν, οπότε: f (0) = ηµ 0 + συν 0 = 1 Άρα η εξίσωση της εφαπτοµένης είναι: y = + 1 Γ. Είναι: π π π f = ηµ + συν = 1. 2 2 2 π π π f = συν + ηµ = 1. 2 2 2 Εποµένως: π π λ f 2 f = 2 2 2 λ ( 1) 2 1 = 2 λ 2 = 2 λ = 4 Τεχνική Επεξεργασία: Keystone 5

Ζήτηµα 3ο A. Επειδή η σχετική συχνότητα f 3 είναι διπλάσια της f 1 = F 1 = 0,2 Έχουµε: Ακόµα: f 3 = 2 f 1 = 2 0,2 = 0,4 F 2 = f 1 + f 2 0,5 = 0,2 + f 2 f 2 = 0,3 Από την σχέση f 1 + f 2 + f 3 + f 4 = 1 Έχουµε: 0,2 + 0,3 + 0,4 + f 4 = 1 f 4 = 1 0,9 = 0,1 f 1 = 0,2, f 2 = 0,3, f 3 = 0,4 και f 4 =0,1 F 3 = f 1 + f 2 + f 3 = 0,9 και F 4 = 1 Β. Είναι: vi fi = vi = v fi v Επειδή το µέγεθος του δείγµατος είναι ν = 80, οι αντίστοιχες συχνότητες ν i µε i = 1, 2, 3, 4 είναι: ν 1 = 80 0,2 = 16 ν 2 = 80 0,3 = 24 ν 3 = 80 0,4 = 32 ν 4 = 80 0,1 = 8 Κατασκευάζουµε τον παρακάτω πίνακα: [ ) i ν i f i F i ν i i 45 55 50 16 0,2 0,2 50 16 = 800 55 65 60 24 0,3 0,5 60 24 = 1440 65 75 70 32 0,4 0,9 70 32 = 2240 75 85 80 8 0,1 1 80 8 = 640 v = 80 1 4 1 1 = v i i = (800 + 1440 + 2240 + 640) = v i= 1 80 1 = 5120 = 64 80 Γ. α. Αν Α είναι το ενδεχόµενο "βάρος µικρότερο από 65 κιλά" τότε η πιθανότητα P(A) είναι: 16 + 24 40 1 P(A) = = = 80 80 2 β. Αν Β είναι το ενδεχόµενο "βάρος µεγαλύτερο ή ίσο των 55 κιλών και µικρότερο των 75 κιλών" τότε η πιθανότητα P(B) είναι: 24 + 32 56 7 P(B) = = = 80 80 10 Τεχνική Επεξεργασία: Keystone 6

Ζήτηµα 4ο Α. Αφού το 50% των µαθητών χρειάζεται περισσότερο από 12 λεπτά, προκύπτει ότι: = 12. Επειδή το 16% χρειάζεται λιγότερο από 10 λεπτά, προκύπτει ότι από 10 έως 12 λεπτά χρειάζεται το (50 16)% = 34% = (68/2)% των µαθητών. s = 10 12 s = 10 s = 2 Β. Είναι: CV s = 2 12 1 = = 1 6 περίπου 16,6%. Επειδή 16,6% > 10%, προκύπτει ότι το δείγµα είναι ανοµοιογενές. Γ. Έχουµε: = 12 + s = 14 + 2 s = 16 Το ποσοστό των µαθητών που κάνουν χρόνο διαδροµής από 14 έως 16 λεπτά θα είναι: Άρα το ζητούµενο πλήθος είναι: 95 68 % = 13,5% 2 13,5 40000 = 40 13,5 = 540 100. Αφού η καθυστέρηση για κάθε µαθητή είναι 5 λεπτά έχουµε σύµφωνα µε την εφαρµογή 3 σελίδα 99 του σχολ. βιβλίου ότι: Η νέα µέση τιµή είναι: ψ = + 5 = 12 + 5 = 17 Η νέα τυπική απόκλιση είναι: S ψ = S = 2 οπότε: ψ 2 CV 2 = s = περίπου 11,7%. ψ 17 Άρα η µεταβολή είναι περίπου 5%. Τεχνική Επεξεργασία: Keystone 7