( () () ()) () () ()

Σχετικά έγγραφα
( () () ()) () () ()

ΑΝΑΛΥΣΗ ΙΙ- ΠΟΛΙΤΙΚΟΙ ΜΗΧΑΝΙΚΟΙ ΦΥΛΛΑΔΙΟ 2/2012

ΜΑΘΗΜΑΤΙΚΑ ΙΙ ΠΑΡΑΔΕΙΓΜΑΤΑ Συναρτήσεις Πολλών Μεταβλητών

Μαθηματικά για μηχανικούς ΙΙ ΑΣΚΗΣΕΙΣ

Κανόνας της αλυσίδας. J ανοικτά διαστήματα) ώστε ( ), ( ) ( ) ( ) fog ' x = f ' g x g ' x, x I (2)

Μαθηματικά για μηχανικούς ΙΙ ΛΥΣΕΙΣ/ΑΠΑΝΤΗΣΕΙΣ ΑΣΚΗΣΕΩΝ

( ) ) V(x, y, z) Παραδείγματα. dt + "z ˆk + z d ˆk. v 2 =!x 2 +!y 2 +!z 2. F =! "p. T = 1 2 m (!x2 +!y 2 +!z 2

ΜΑΘΗΜΑΤΙΚΑ ΙΙ Παραδείγματα Στις Μερικές Παραγώγους Και τον Κανόνα Αλυσιδωτής Παραγώγισης

14 ΚΑΜΠΥΛΟΓΡΑΜΜΕΣ ΣΥΝΤΕΤΑΓΜΕΝΕΣ

ΜΗΧΑΝΙΣΜΟΙ ΕΙΣΑΓΩΓΗ ΣΤΟ ΣΧΕΔΙΑΣΜΟ ΜΗΧΑΝΩΝ

Εφαρμοσμένα Μαθηματικά ΙΙ

ds ds ds = τ b k t (3)

Εργασία 2. Παράδοση 20/1/08 Οι ασκήσεις είναι βαθμολογικά ισοδύναμες

Μετασχηματισμοί στον R 2 Μπορούν να παρασταθούν (και να υλοποιηθούν) με πολλαπλασιασμό πινάκων Ο πολλαπλασιασμός Ax μπορεί να ειδωθεί σαν μετασχηματισ

a ) a ) = lim f( a + h u ) f( a ) = lim (2) h = 0 f( a + h u ) f( a ) hdf( a )( u ) lim = 0 lim u ) f( a + h lim = 0 u ) = 0 lim = Df( a )( u ) lim

Εφαρμοσμένα Μαθηματικά ΙΙ

1. Κινηµατική. x dt (1.1) η ταχύτητα είναι. και η επιτάχυνση ax = lim = =. (1.2) Ο δεύτερος νόµος του Νεύτωνα παίρνει τη µορφή: (1.

Μαθηματική Ανάλυση ΙI

ΜΗΧΑΝΙΣΜΟΙ ΕΙΣΑΓΩΓΗ ΣΤΟ ΣΧΕΔΙΑΣΜΟ ΜΗΧΑΝΩΝ

Παραδείγματα τριπλών oλοκληρωμάτων Επιμέλεια: Ι. Λυχναρόπουλος

Ανασκόπηση-Μάθημα 29 Σφαιρικές συντεταγμένες- Εφαρμογές διπλού και τριπλού ολοκληρώματος- -Επικαμπύλιο ολοκλήρωμα α είδους

Λύσεις στο Επαναληπτικό Διαγώνισμα 2

Εισαγωγή στις Φυσικές Επιστήμες ( ) Ονοματεπώνυμο Τμήμα ΘΕΜΑ 1. x x. x x x ( ) + ( 20) + ( + 4) = ( + ) + ( 10 + ) + ( )

Εφαρμοσμένα Μαθηματικά ΙΙ 2ο Σετ Ασκήσεων (Λύσεις) Διανυσματικές Συναρτήσεις Επιμέλεια: Ι. Λυχναρόπουλος

10. Παραγώγιση διανυσµάτων

k ) 2 P = a2 x 2 P = 2a 2 x y 2 Q = b2 y 2 Q = 2b 2 y z 2 R = c2 z 2 R = 2c 2 z P x = 2a 2 Q y = 2b 2 R z = 2c 2 3 (a2 +b 2 +c 2 ) I = 64π

ΑΠΑΝΤΗΣΕΙΣ ΔΙΑΓΩΝΙΣΜΑΤΟΣ ΠΡΟΣΟΜΟΙΩΣΗΣ ΤΗΣ 2/11/2018

Απειροστικός Λογισμός ΙΙ, εαρινό εξάμηνο Φυλλάδιο ασκήσεων επανάληψης.

ΑΝΑΛΥΣΗ ΙΙ- ΜΗΧΑΝΟΛΟΓΟΙ ΜΗΧΑΝΙΚΟΙ ΦΥΛΛΑΔΙΟ 1/ Στον Ευκλείδειο χώρο ορίζουμε τις νόρμες: 0 2 xx, που ισχύει.

ΘΕΩΡΗΤΙΚΗ ΜΗΧΑΝΙΚΗ Ι Φεβρουάριος 2013

Homework#13 Trigonometry Honors Study Guide for Final Test#3

xsin ydxdy (α) Εάν το χωρίο R είναι φραγμένο αριστερά και δεξιά από τις ευθείες x=α και x=β και από πάνω και κάτω από τις καμπύλες dr = dxdy

ΕΡΓΑΣΙΑ 6. Ημερομηνία Παράδοσης: 29/6/09

(a) = lim. f y (a, b) = lim. (b) = lim. f y (x, y) = lim. g g(a + h) g(a) h g(b + h) g(b)

ΜΑΘΗΜΑΤΙΚΑ ΙΙ ΠΑΡΑΔΕΙΓΜΑΤΑ Διανύσματα - Διανυσματικές Συναρτήσεις

Εφαρμοσμένα Μαθηματικά ΙΙ

ΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 16/2/2012 ΤΜΗΜΑ ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ A ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ Ι

ΤΥΠΟΛΟΓΙΟ. q e = C Φορτίο Ηλεκτρονίου 1.1. Ηλεκτρικό Πεδίο 2.1. Ηλεκτρικό Πεδίο Σημειακού Φορτίου Q Ηλεκτρικό Πεδίο Σημειακού

Author : Πιθανώς έχει κάποιο λάθος Supervisor : Πιθανώς έχει καποιο λάθος.

ΚΑΡΤΕΣΙΑΝΟ ΣΥΣΤΗΜΑ ΣΕ ΔΥΟ ΔΙΑΣΤΑΣΕΙΣ

ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΜΑΘΗΜΑ : ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΣΜΟΣ I (Βασικό 3 ου Εξαμήνου) Διδάσκων : Δ.Σκαρλάτος ΜΑΘΗΜΑΤΙΚΟ ΤΥΠΟΛΟΓΙΟ. Α. Τριγωνομετρικές Ταυτότητες

ΔΙΑΝΥΣΜΑΤΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ

ΑΝΑΛΥΣΗ ΙΙ- ΜΗΧΑΝΟΛΟΓΟΙ ΜΗΧΑΝΙΚΟΙ ΦΥΛΛΑΔΙΟ 1/2012

Εφαρμοσμένα Μαθηματικά ΙΙ 4ο Σετ Ασκήσεων (Λύσεις) Διπλά Ολοκληρώματα Επιμέλεια: Ι. Λυχναρόπουλος

Εφαρμοσμένα Μαθηματικά ΙΙ Πρόοδος 18/4/2018 Διδάσκων: Ι. Λυχναρόπουλος

( ) Κλίση και επιφάνειες στάθµης µιας συνάρτησης. x + y + z = κ ορίζει την επιφάνεια µιας σφαίρας κέντρου ( ) κ > τότε η

8. ΜΑΓΝΗΤΙΣΜΟΣ. Φυσική ΙΙ Δ. Κουζούδης. Πρόβλημα 8.6.

ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 7: ΣΥΝΕΠΕΙΕΣ ΘΕΩΡΗΜΑΤΟΣ ΜΕΣΗΣ ΤΙΜΗΣ

Μαθηματική Ανάλυση ΙI

Π Ρ Ο Τ Ε Ι Ν Ο Μ Ε Ν Α Θ Ε Μ Α Τ Α Σ Τ Α Μ Α Θ Η Μ Α Τ Ι Κ Α Κ Α Τ Ε Υ Θ Υ Ν Σ Η Σ

ΚΕΦΑΛΑΙΟ 2. Τρισδιάστατες κινήσεις

Μ8 Η µερική παράγωγος

ΣΗΜΕΙΩΣΕΙΣ ΣΤΟΙΧΕΙΑ ΔΙΑΝΥΣΜΑΤΙΚΗΣ ΑΝΑΛΥΣΗΣ

ΦΥΣΙΚΗ Ι. ΤΜΗΜΑ Α Ευστάθιος. Στυλιάρης ΠΑΝΕΠΙΣΤΗΜΙΟN ΑΘΗΝΩΝ,,

Ηλεκτρομαγνητισμός. Χρήσιμες μαθηματικές έννοιες. Νίκος Ν. Αρπατζάνης

1.1.1 Εσωτερικό και Εξωτερικό Γινόμενο Διανυσμάτων

Κεφάλαιο Χώρος, Διανύσματα, Διανυσματικές εξισώσεις, Συστήματα Συντεταγμένων.

Να γίνουν οι γραφικές παραστάσεις των ακόλουθων συναρτήσεων σε χαρτί µιλιµετρέ αφού πρώτα φτιάξετε τους πίνακες των τιµών τους.

( ) Κλίση και επιφάνειες στάθµης µιας συνάρτησης. x + y + z = κ ορίζει την επιφάνεια µιας σφαίρας κέντρου ( ) κ > τότε η

Λύσεις στο επαναληπτικό διαγώνισμα 3

Κεφάλαιο 6 Παράγωγος

Τελευταία Επανάληψη. την ευθεία x=1 και τoν x x. 2 1 x. Λύση. x 2 1 x 0, άρα. x 1 x. x x 1. γ) x 1 e x x 1 x e ln x 1 x f x.

ΦΥΣΙΚΗ Ι. ΤΜΗΜΑ Α Ευστάθιος. Κωνσταντίνος Βελλίδης ΕΚΠΑ, ΤΜΗΜΑ ΧΗΜΕΙΑΣ, Στυλιάρης

8. Πολλαπλές μερικές παράγωγοι

Εφαρμοσμένα Μαθηματικά ΙΙ

b proj a b είναι κάθετο στο

Γενικά Μαθηματικά ΙΙ

σ (9) = i + j + 3 k, σ (9) = 1 6 k.

ΜΗΧΑΝΙΣΜΟΙ ΕΙΣΑΓΩΓΗ ΣΤΟ ΣΧΕΔΙΑΣΜΟ ΜΗΧΑΝΩΝ

και δεν είναι παραγωγίσιμη σε αυτό, σχολικό βιβλίο σελ. 99 Α3. Ορισμός σελ. 73 Α4. α) Λ β) Σ γ) Λ δ) Σ ε) Σ , δηλαδή αρκεί x 1 x

Ολοκληρώματα. Κώστας Γλυκός ΜΑΘΗΜΑΤΙΚΟΣ. Ασκήσεις για ΑΕΙ και ΤΕΙ. Kglykos.gr. σε Ολοκληρώματα. τεχνικές. 108 ασκήσεις. εκδόσεις.

ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 2: ΠΑΡΑΓΩΓΟΣ ΣΥΝΑΡΤΗΣΗΣ - ΚΑΝΟΝΕΣ ΠΑΡΑΓΩΓΙΣΗΣ - ΠΑΡΑΓΩΓΟΣ ΣΥΝΘΕΤΗΣ ΣΥΝΑΡΤΗΣΗΣ

Διαφορικές Εξισώσεις.

Κεφάλαιο 3 ΠΑΡΑΓΩΓΟΣ. 3.1 Η έννοια της παραγώγου. y = f(x) f(x 0 ), = f(x 0 + x) f(x 0 )

Παράδειγμα/πρόβλημα ( ) = y 1. O x. V = y 2. Να βρεθούν οι συντεταγμένες (x,y) συναρτήσει των ( x, y ) του περιστρεφόμενου συστήματος συντεταγμένων Y

Ανασκόπηση-Μάθημα 17 Κανόνας αλυσίδας - Παράγωγος κατά κατεύθυνση

ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 2: ΠΑΡΑΓΩΓΟΣ ΣΥΝΑΡΤΗΣΗΣ - ΚΑΝΟΝΕΣ ΠΑΡΑΓΩΓΙΣΗΣ - ΠΑΡΑΓΩΓΟΣ ΣΥΝΘΕΤΗΣ ΣΥΝΑΡΤΗΣΗΣ

ΘΕΜΑ 1 ο. Α1. Θεωρία, στη σελίδα 260 του σχολικού βιβλίου (Θ. Fermat). Α2. Θεωρία, στη σελίδα 169 του σχολικού βιβλίου.

Εφαρμοσμένα Μαθηματικά ΙΙ 1ο Σετ Ασκήσεων (Λύσεις) Διανύσματα, Ευθείες Επίπεδα, Επιφάνειες 2ου βαθμού Επιμέλεια: Ι. Λυχναρόπουλος

5.1 Συναρτήσεις δύο ή περισσοτέρων µεταβλητών

8. Πολλαπλές μερικές παράγωγοι

Λύση: Εξισώσεις βολής. Κάθετα δυο διανύσματα => εσωτερικό γινόμενο = 0. Δευτεροβάθμια ως προς t. Διακρίνουσα. Κρατάμε μόνο τον θετικό χρόνο

ΣΗΜΕΙΩΣΕΙΣ. x β. τo σύνολο των σημείων του Α στα οποία αυτή είναι παραγωγίσιμη. Αντιστοιχίζοντας κάθε x Α. = f (x)

lim Δt Δt 0 da da da dt dt dt dt Αν ο χρόνος αυξηθεί κατά Δt το διάνυσμα θα γίνει Εξετάζουμε την παράσταση

Ολοκληρώματα. Κώστας Γλυκός ΜΑΘΗΜΑΤΙΚΟΣ. Ασκήσεις για ΑΕΙ και ΤΕΙ. Kglykos.gr. σε Ολοκληρώματα. τεχνικές. 108 ασκήσεις. εκδόσεις.

Αλλαγή µεταβλητής στο τριπλό ολοκλήρωµα ( ) Β R Jordan µετρήσιµα υποσύνολα του U. R, ανοικτό µε. y y y συµβολίζει την ορίζουσα του πίνακα Jacobi

ΛΥΣΕΙΣ 6. a2 x 2 y 2. = y

f(x) x 3x 2, όπου R, y 2x 2

Εφαρμοσμένα Μαθηματικά ΙΙ Πρόοδος (Λύσεις) Ι. Λυχναρόπουλος

Ολοκληρώματα. ΗΥ111 Απειροστικός Λογισμός ΙΙ

Ιόνιο Πανεπιστήμιο - Τμήμα Πληροφορικής

Μαθηματική Ανάλυση ΙI

Διάνυσμα: έχει μέτρο, διεύθυνση και φορά

ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 10: ΕΥΡΕΣΗ ΤΟΠΙΚΩΝ ΑΚΡΟΤΑΤΩΝ

ΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΙΑΝΟΥΑΡΙΟΣ 2012 ΘΕΜΑΤΑ Α

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΤΟΜΕΑΣ ΟΜΟΣΤΑΤΙΚΗΣ & ΑΝΤΙΣΕΙΣΜΙΚΩΝ ΕΡΕΥΝΩΝ ΘΕΩΡΙΑ ΚΕΛΥΦΩΝ. Καθ. Βλάσης Κουµούσης

ΠΑΡΑΓΩΓΟΣ ΣΥΝΑΡΤΗΣΗ ΚΑΝΟΝΕΣ ΠΑΡΑΓΩΓΙΣΗΣ

< F ( σ(h(t))), σ (h(t)) > h (t)dt.

ΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 3//7/2013 ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΙΑΣ ΑΠΑΝΤΗΣΕΙΣ ΓΡΑΠΤΗΣ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ

Transcript:

ΑΝΑΛΥΣΗ ΙΙ- ΜΗΧΑΝΟΛΟΓΟΙ ΜΗΧΑΝΙΚΟΙ ΦΥΛΛΑΔΙΟ /011 1 Έστω r = r( t = ( x( t, ( t, z( t, t I = [ a, b] συνάρτηση C τάξης και r = r( t = r ( t = x ( t + ( t z ( t είναι μία διανυσματική + Nα αποδείξετε ότι: d 1 1 dr r ( t (α r = r, t I r r r d dr d r (β r = r, t I dr (γ Αν r = 0, για κάθε t I, τότε το r ( t έχει σταθερή διεύθυνση για κάθε t I d (δ ( r( t, r ( t, r ( t = r( t ( r ( t r ( t, t I d 1 1 dr d 1 1 dr r ( t (α r = + r = r, t I r r r r r d dr dr dr d dr d r (β r = + r = r, t I (γ d r d r dx, d, dz r = 0 = λr = λ( x, z, dx d dz = λx, = λ, = λz x= ce 1, = ce, z= c3e r= r( t = ( x,, z = e ( c1, c, c3 = e c, δηλαδή το διάνυσμα r ( t έχει σταθερή διεύθυνση d (δ ( r( t, r ( t, r ( t = dr d d =, r t, r t + r t, r t, r t + r t, r t, r t = ( r ( t, r ( t, r ( t + ( r( t, r ( t, r ( t + ( r( t, r ( t, r ( t = r t, r t, r t = r t r t r t, t I ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( Αν f,g,h : I 3 είναι παραγωγίσιμες διανυσματικές συναρτήσεις μεταβλητής t, να αποδείξετε ότι: d { f( t ( g( t h ( t } = { f ( t ( g( t h( t } + f( t ( g ( t h( t + f t g t h t { } { ( ( ( (}

Σύμφωνα με τον κανόνα παραγώγισης του εξωτερικού γινομένου δύο συναρτήσεων τριών μεταβλητών έχουμε: d d d { f( t ( g( t h( t } = f( t ( g( t h( t + f( t ( g( t h( t d d = { f ( t ( g( t h( t } + f( t g( t h( t + f( t g( t h( t = { f ( t ( g( t h( t } + { f( t ( g ( t h( t } + { f( t ( g( t h ( t } 3 Έστω ( ( ω ( ω r = r t = cos t a+ sin t b, t I όπου a,b σταθερά διανύσματα Να αποδείξετε ότι: dr d r (α r = ω ( a b (β + ω r = 0 (α Επειδή οι συναρτήσεις a, b είναι σταθερές, έχουμε r= r( t = ( cos ωt a+ ( sin ωt b, r ( t = ω( sinωt a+ ω( cos ωt b, t I, οπότε λαμβάνουμε: dr r = ( cos t ( sin t ( sin t ( cos ω a+ ω b ω ω a+ ω ωt b = ωcos ωt+ ωsin ωt a b = ω a b ( ( ( (β ( ω ( ω ω ( ω ω ( Έχουμε r t = cos t a sin t b= r t, t I 4 (α Να υπολογίσετε το ρυθμό μεταβολής, ανά μονάδα μήκους, της f x,, z x 4 Ρ 1, 0,, ως προς την 3 συνάρτησης ( = z, στο σημείο ( κατεύθυνση u = 1 ( 1,, 3 (β Ομοίως για τη συνάρτηση x, αν ( x, ( 0,0 f ( x, = x + 0, αν ( x, = ( 0,0 στο σημείο Ο(0,0, ως προς την κατεύθυνση που ορίζει το διάνυσμα ( u= u, u, u = 1 1 f x,, z =,, = 3 x, 4, 4, οπότε θα είναι z (α Έχουμε ( ( ( 1,0, ( 3, 4, 4 ( ( 3,0, 4 f == x = Επιπλέον, παρατηρούμε ότι 1,0, 1 4 4 u = + + = 1, οπότε έχουμε: 9 9 9

3 D f 1 11 1, 0, = 1, 0, = 3, 0, 4,, = 3 3 3 3 r t = 0,0 + t u, u = tu, tu, t και τη ( f ( ( u u (β Θεωρούμε τη καμπύλη ( ( ( ( 1 1 συνάρτηση 3 tuu 1 tu1u, αν t 0, αν 0 t F( t = f ( r ( t = tu u 1 + tu = 1 + u 0, αν t 0 = 0, αν t = 0 της οποίας προσδιορίζουμε τη παράγωγο για t = 0 Επειδή είναι F( t F( 0 tu1u u1u lim = lim =, t 0 t 0 t t u + u u + u uu 0,0 = F 0 = u + u έχουμε ότι: ( ( 1 D f u 1 ( 1 5 Δίνεται η συνάρτηση f ( x ( x ( x 1 π π, = cos,, Α=, (α Να βρεθούν οι μερικές παράγωγοι:, στο Α (β Να αποδείξετε ότι ο ρυθμός μεταβολής της συνάρτησης f, ανά μονάδα μήκους, ως προς την κατεύθυνση ( u= u, u, u = 1, στα σημεία των αξόνων 1 x x και που ανήκουν στο Α, ισούται με 0 (α Έχουμε ( (, cos ln cos x π π f x = x = e, ( x, Α=,, οπότε: ln cos x ( sin x sin x π π = e = f ( x,, ( x, Α=, cos x cos x ln cos x π π = e lncosx= ln(cos xf ( x,, ( x, Α=, π π (β Θεωρούμε σημείο ( ab, με a= 0, b ή b = 0, a,, οπότε θα b είναι cos a > 0 και f ( a b ln cos a π π, =e = 1, αφού είναι a= 0, b ή b = 0, a, Άρα έχουμε sin x Du f ( a, b = f ( a, b u= f ( x,,ln(cos x f ( x, u cos x ( ab, = cos a b sin a f a b b a f a b u 1 u ( ( (,, ln(cos (, (, 0,0 u1, u = 0, αν a= 0, b = π π ( 0,0 ( u1, u = 0, αν b= 0, a,

4 6 Δίνεται η C τάξης συνάρτηση (,, [ f xz με x = ρ cos θ, = ρsin θ, z = z, όπου ρ > 0, θ 0, π, z (κυλινδρικές συντεταγμένες Να αποδείξετε ότι: f f f f 1 1 f f + + = + + + z ρ ρ ρ ρ θ z (Λαπλασιανή της f σε κυλινδρικές συντεταγμένες Λόγω των δεδομένων συναρτήσεων x = ρ cos θ, = ρsin θ, z = zυπολογίζουμε πρώτα τις μερικές παραγώγους = + = cosθ + sin θ (1 ρ ρ ρ = + = ( ρsinθ + ρcos θ ( θ θ θ cosθ sinθ Επειδή είναι ρ 0 ρsinθ ρcosθ = >, από τις (1 και ( προκύπτουν sinθ sinθ = cosθ = cos θ f (3 ρ θ ρ ρ ρ θ cosθ cosθ = sinθ + = sin θ + f (4 ρ θ ρ ρ ρ θ Με χρήση των (3 και (4 λαμβάνουμε f sinθ sinθ = cosθ cosθ = = ρ ρ θ ρ ρ θ sinθ sinθ sinθ = cosθ cosθ cosθ ρ ρ ρ θ ρ θ ρ ρ θ f cosθsinθ cosθsinθ f θ ρ ρ θ ρ ρ θ = cos + sinθcosθ f sin θ sin θ f sinθcosθ + + + ρ θ ρ ρ ρ ρ θ ρ θ f cosθ cosθ = = sinθ sinθ + = + ρ ρ θ ρ ρ θ cosθ cosθ cosθ = sinθ sinθ + + sinθ + ρ ρ ρ θ ρ θ ρ ρ θ f cosθsinθ cosθsinθ f θ ρ ρ θ ρ ρ θ = sin + sinθcosθ f cos θ cos θ f sinθcosθ + + + ρ θ ρ ρ ρ ρ θ ρ θ Από τις παραπάνω σχέσεις έχουμε

5 f f f f 1 1 f f + + = + + + x z ρ ρ ρ ρ θ z 7 Δίνεται η C τάξης συνάρτηση f (,, xz με x ρ cosθsin φ, ρsinθsin φ, z ρcos ρ > 0, θ 0, π, φ 0, π (σφαιρικές συντεταγμένες Να αποδείξετε ότι: f f f 1 f 1 f 1 sin f + + = ρ φ + + z ρ ρ ρ ρ sin φ θ ρ sin φ φ φ (Λαπλασιανή της f σε σφαιρικές συντεταγμένες = = = φ με [ [ ] Εργαζόμενοι όπως στην άσκηση 8 βρίσκουμε: sinθ cosθcosφ = cosθsinφ + ρ θ ρsinφ φ ρ sinθ cosθcosφ cos θ sin φ = + f (3 ρ ρ sin φ θ ρ φ cosθ sinθcosφ = sinθsinφ+ + ρ θ ρsinφ φ ρ cos sin cos sin θ sin φ θ θ φ = + + f (4 ρ ρ sin φ θ ρ φ sinφ sinφ sinθsinφ = + = sinθsin φ + f (5 z ρ φ ρ ρ ρ φ Στη συνέχεια μέσω των σχέσεων (3, (4 και (5 υπολογίζουμε τις δεύτερες μερικές f f f παραγώγους,, από τις οποίες τελικά μετά τις σχετικές πράξεις z προκύπτει η ζητούμενη σχέση 8 Η συνάρτηση f ( x, είναι C τάξης στο δηλαδή, για κάθε ( x, Α και t με (, f ( tx, t = t m f ( x, Να αποδείξετε ότι: (α x + = mf f f f (β x + x + = m ( m 1 f Α και ομογενής βαθμού m, tx t ισχύει (α Παραγωγίζουμε ως προς t και τα δύο μέλη της σχέσης ( ( οπότε λαμβάνουμε f tx, t = t f x,, m

6 ( ( tx ( ( t (, = ( m (, + = t t tx t t t (, m 1 f tx t t f x mt f x + = ( tx ( t (, m 1 x mt f x Όμως έχουμε ακόμη ότι ( tx ( t = = t και = = t, ( ( tx ( tx ( t ( t οπότε, από τις (1 και ( προκύπτει ότι: m m t x+ t = mt f ( x, x + = mt f ( x,, tx t ( ( για κάθε t με (,, από την οποία, για σχέση tx t t = 1 προκύπτει η ζητούμενη (β Γράφουμε τη σχέση (1 στη μορφή 1 1 m 1 = x + = mt f ( x,, t t t και με παραγώγιση ως προς t των δύο μελών αυτής λαμβάνουμε f 1 1 m 1 = x + = ( mt f ( x, t t t x t t 1 1 1 1 1 1 x x + + x + = m( m 1 t f ( x, t t t t t t x f x f f m + + = m ( m 1 t f ( x,, t x t x t για κάθε t με (, Από την τελευταία σχέση για (1 m tx t t = 1 προκύπτει f f f x + x + = m ( m 1 f ( x, x x 9 Δίνεται η συνάρτηση f ( x gux ( ( vx (, =,,,, όπου g διαφορίσιμη συνάρτηση C τάξης και 1 1 u= ux (, = x v, = vx (, = x+ 3 (α Να εκφράσετε τις μερικές παραγώγους, συναρτήσει των μερικών g g παραγώγων, u v f f f (β Πως μετασχηματίζεται η εξίσωση: + 6 = ( x +, ως προς τις μεταβλητές uv, ; (α Χρησιμοποιώντας τον κανόνα της αλυσίδας λαμβάνουμε:

7 f g u g v g g 1 1, f g u g v g = + = + = + = + g u v u v u v 3 u v (β Με παραγώγιση των παραπάνω σχέσεων λαμβάνουμε f g g g f 1 g 1 g 1 g = + +, = + u u v v 9 u 3 u v 4 v, f 1 g 1 g 1 g = + + x 3 u 6 u v v Επομένως η δεδομένη εξίσωση γίνεται: g 1 1 1 1 1 1 g g g g g 6 g g g + + + + v + = 4 u u v v 3 u 6 u v v 9 u 3 u v 4 v g 4 = v uv 5 10 Να υπολογίσετε την παράγωγο της συνάρτησης ( x, = ( x 3 3, x σημείο ( x, = ( 0 0,1 F στο Η συνάρτηση F ( x ( x 3 3, x, = έχει πολυωνυμικές συνιστώσες, οπότε C είναι διαφορίσιμη και ορίζεται η παράγωγος αυτής που είναι ο πίνακας 3 3 ( x ( x 3x F ( x, = = 3 3 3 x ( x ( x Άρα είναι 3 1 1 1 F (,1 = = 31 1 3 4 είναι τάξης στο Επομένως σε κάθε σημείο του πεδίου ορισμού της