ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑIΟΥ & ΑΕΙ ΠΕΙΡΑΙΑ Τ.Τ. Τμήματα Ναυτιλίας και Επιχειρηματικών Υπηρεσιών & Μηχ. Αυτοματισμού ΤΕ Εισαγωγή στην Τεχνολογία Αυτοματισμού Ενότητα # 10: Λύση εξισώσεων κατάστασης Δ. Δημογιαννόπουλος, dimogian@teipir.gr Επ. Καθηγητής Τμήματος Μηχανικών Αυτοματισμού Τ.Ε. Σ. Βασιλειάδου, svasil@teipir.gr Καθηγήτρια Εφαρμογών Τμήματος Μηχανικών Αυτοματισμού Τ.Ε.
Περιεχόμενα ενότητας Λύση εξισώσεων κατάστασης με χρήση μετασχηματισμού Laplace Ελεύθερη & εξαναγκασμένη απόκριση Τροχιές κατάστασης 2
Εξισώσεις στο χώρο κατάστασης Η εσωτερική δομή (inner structure) ενός συστήματος n-οστής τάξης περιγράφεται μαθηματικά από n γραμμικές διαφορικές εξισώσεις πρώτης τάξης, που ονομάζονται εξισώσεις εσωτερικής κατάστασης: x t = Ax t + Bu t x 0 y t = Cx t + Du t
Εξισώσεις στο χώρο κατάστασης Οι πίνακες A, B, C, D είναι οι πίνακες του συστήματος: A (n n) χαρακτηριστικός πίνακας συστήματος, καθορίζει την ελεύθερη συμπεριφορά του B (n 1) πίνακας εισόδου, εκφράζει τη σχέση της εισόδου προς το σύστημα C (1 n) πίνακας εξόδου, εκφράζει τη σχέση του συστήματος προς την έξοδο D (1 1) συντελεστής εισόδου-εξόδου, εκφράζει την άμεση σχέση της εισόδου προς την έξοδο
Λύση εξισώσεων κατάστασης Η ολική λύση των εξισώσεων κατάστασης προκύπτει από άθροισμα δύο επί μέρους λύσεων: Η πρώτη οφείλεται μόνο στην αρχική συνθήκη x 0, αποτελεί την ομογενή λύση του συστήματος με είσοδο u t = 0 και ονομάζεται ελεύθερη απόκριση του συστήματος. Η δεύτερη οφείλεται μόνο στην είσοδο u t, αποτελεί τη μη ομογενή λύση του συστήματος όταν η αρχική συνθήκη x 0 = 0 και ονομάζεται εξαναγκασμένη απόκριση του συστήματος.
Ελεύθερη απόκριση Λύση της ομογενούς εξίσωσης κατάστασης Ένα σύστημα με είσοδο u t = 0 χαρακτηρίζεται από την ομογενή διαφορική εξίσωση με μορφή πινάκων: x t = Ax t x 0 Η λύση της εξίσωσης αυτής είναι η ελεύθερη απόκριση των μεταβλητών κατάστασης του συστήματος.
Ελεύθερη απόκριση Λύση της ομογενούς εξίσωσης κατάστασης Στο πεδίο s, μετασχηματίζοντας κατά Laplace: x t = Ax t x 0 sx s x 0 = AX s si A X s = x 0 X s = si A 1 x 0 ή X s = Φ s x 0 όπου Φ s = (si A) 1 Στο πεδίο t: x t = Φ t x 0 Ελεύθερη απόκριση όπου Φ t = { si A 1 } ο πίνακας μετάβασης που χαρακτηρίζει τη μετάβαση του διανύσματος εσωτερικής κατάστασης από την αρχική τιμή x 0 στην τρέχουσα τιμή x t
Ελεύθερη απόκριση Παράδειγμα 1 Ομογενές σύστημα με πραγματικούς πόλους Έστω σύστημα με εξισώσεις κατάστασης: x = 1 4 x, x 5 8 0 = 3 Α 9 Πεδίο s: X ελ. s = Φ s x 0 Πίνακας μετάβασης: Φ s = (si A) 1 = s 1 4 5 s + 8 1 = 1 Δ s + 8 4 5 s 1 όπου: Δ = s 1 s + 8 + 20 = s 2 + 7s + 12 = (s + 3)(s + 4) Φ s = s + 8 (s + 3)(s + 4) 5 (s + 3)(s + 4) 4 (s + 3)(s + 4) s 1 (s + 3)(s + 4)
Ελεύθερη απόκριση Παράδειγμα 1 Ομογενές σύστημα με πραγματικούς πόλους Αναλύοντας σε κλάσματα: s + 8 4 (s + 3)(s + 4) (s + 3)(s + 4) Φ s = 5 s 1 (s + 3)(s + 4) (s + 3)(s + 4) = Α 11 s + 3 + Α 12 s + 4 Α 31 s + 3 + Α 32 s + 4 Α 21 s + 3 + Α 22 s + 4 Α 41 s + 3 + Α 42 s + 4 Με τη μέθοδο των υπολοίπων: Φ 11 = Φ 12 = Φ 21 = Φ 22 = s + 8 (s + 3)(s + 4), Α 11 = s + 8 s + 4 s= 3 = 5 και Α 12 = s + 8 s + 3 s= 4 = 4 4 (s + 3)(s + 4), Α 21 = 4 s + 4 s= 3 = 4 και Α 22 = 4 s + 3 s= 4 = 4 5 (s + 3)(s + 4), Α 31 = 5 = 5 και Α s + 4 32 = 5 = 5 s= 3 s + 3 s= 4 s 1 (s + 3)(s + 4), Α 41 = s 1 s + 4 s= 3 = 4 και Α 42 = s 1 s + 3 s= 4 = 5
Παράδειγμα 1 Ομογενές σύστημα με πραγματικούς πόλους Άρα Φ s = 5 s + 3 + 4 s + 4 5 s + 3 + 5 s + 4 Ελεύθερη απόκριση 4 s + 3 + 4 s + 4 4 s + 3 + 5 s + 4 Με αντίστροφο μετασχηματισμό Laplace: Φ t = 5e 3t 4e 4t 4e 3t + 4e 4t 5e 3t 5e 4t 4e 3t + 5e 4t Η ελεύθερη απόκριση του συστήματος είναι: x ελ. t = 5e 3t 4e 4t 4e 3t + 4e 4t 5e 3t 5e 4t 4e 3t + 5e 4t 3 9 = 21e 3t + 24e 4t 21e 3t + 30e 4t Φ t x 0
Ελεύθερη απόκριση Παράδειγμα 1 Ομογενές σύστημα με πραγματικούς πόλους Χρονικές αποκρίσεις Τροχιά κατάστασης x 1ελ. t = 21e 3t + 24e 4t x 2ελ. t = 21e t + 30e 4t
Εξαναγκασμένη απόκριση Λύση της μη ομογενούς εξίσωσης κατάστασης Ένα σύστημα με είσοδο u t 0 και αρχική συνθήκη x 0 = 0 χαρακτηρίζεται από τη μη ομογενή εξίσωση με μορφή πινάκων: x t = Ax t + Bu t x 0 = 0 Η λύση της εξίσωσης αυτής είναι η εξαναγκασμένη απόκριση των μεταβλητών κατάστασης του συστήματος.
Εξαναγκασμένη απόκριση Λύση της μη ομογενούς εξίσωσης κατάστασης Στο πεδίο s, μετασχηματίζοντας κατά Laplace: x t = Ax t + Bu t si A X s = BU s X s = si A 1 BU s ή X s = Φ s BU s t Στο πεδίο t: x t = Φ t τ Bu τ dτ 0 Εξαναγκασμένη απόκριση
Εξαναγκασμένη απόκριση Παράδειγμα 2 Μη ομογενές σύστημα με πραγματικούς πόλους Έστω σύστημα με εξισώσεις κατάστασης: x = 1 4 x + 6 u, x 5 8 Α 3 0 = 0 και μοναδιαία βηματική είσοδο Β Πεδίο s: X εξαν. s = Φ s BU s Οπότε X εξαν. s = Φ s BU s = s + 8 (s + 3)(s + 4) 5 (s + 3)(s + 4) 4 (s + 3)(s + 4) s 1 (s + 3)(s + 4) 6 3 1 s = 6s + 36 s(s + 3)(s + 4) 3s + 27 s(s + 3)(s + 4) Φ s B U(s)
Εξαναγκασμένη απόκριση Παράδειγμα 2 Μη ομογενές σύστημα με πραγματικούς πόλους Εξαναγκασμένες αποκρίσεις: Χ 1εξαν. s = Χ 2εξαν. s = 6s + 36 s(s + 3)(s + 4) = Α 11 s + Α 12 s + 3 + Α 13 s + 4 3s + 27 s(s + 3)(s + 4) = A 21 s + Α 21 s + 3 + Α 23 s + 4 με τη μέθοδο υπολοίπων: A 11 = 3, A 12 = 6, A 13 = 3 A 21 = 2.25, A 22 = 6, A 23 = 3.75 Με αντίστροφο μετασχηματισμό Laplace: x 1εξαν. t = 3 6e 3t + 3e 4t x 1εξαν. 0 = 0, x 1εξαν. = 3 x 2εξαν. t = 2.25 6e 3t + 3.75e 4t x 2εξαν. 0 = 0, x 2εξαν. = 2.25
Εξαναγκασμένη απόκριση Παράδειγμα 2 Μη ομογενές σύστημα με πραγματικούς πόλους Χρονικές αποκρίσεις Τροχιά κατάστασης x 1εξαν. t = 3 6e 3t + 3e 4t x 2εξαν. t = 2.25 6e 3t + 3.75e 4t
Λύση εξισώσεων κατάστασης Η ολική λύση των εξισώσεων κατάστασης προκύπτει από το άθροισμα της ελεύθερης και της εξαναγκασμένης απόκρισης: Στο πεδίο s όπου Φ s X s = (si A) 1 = Φ s x 0 + Φ s BU(s) Στο πεδίο t t x t = Φ t x 0 + Φ t τ Bu τ dτ 0 όπου Φ(t) ο πίνακας μετάβασης
Ολική απόκριση Παράδειγμα 3 Πλήρες σύστημα με πραγματικούς πόλους Έστω σύστημα με εξισώσεις κατάστασης: x = 1 4 x + 6 u, x 5 8 Α 3 0 = 3 Β 9 και μοναδιαία βηματική είσοδο Ολικές χρονικές αποκρίσεις: x t = x ελ. t + x εξαν. t x 1ολ. t = 21e 3t + 24e 4t + 3 6e 3t + 3e 4t = 3 27e 3t + 27e 4t X 1ελ. (s) X 1εξαν. (s) x 1 0 = 3 x 1 = 3 x 2ολ. t = 21e 3t + 30e 4t + 2.25 6e 3t + 3.75e 4t = 2.25 27e 3t + 33.75e 4t X 2ελ. (s) X 2εξαν. (s) x 2 0 = 9 x 2 = 2.25
Ολική απόκριση Παράδειγμα 3 Πλήρες σύστημα με πραγματικούς πόλους Χρονικές αποκρίσεις Τροχιά κατάστασης x 1ολ. t = 3 27e 3t + 27e 4t x 2ολ. t = 2.25 27e 3t + 33.75e 4t
Τέλος Ενότητας