ΕΙΣΑΓΩΓΗ ΣΤΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΣΥΣΤΗΜΑΤΩΝ

Σχετικά έγγραφα
ΕΙΣΑΓΩΓΗ ΣΤΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΣΥΣΤΗΜΑΤΩΝ

ΕΙΣΑΓΩΓΗ ΣΤΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΣΥΣΤΗΜΑΤΩΝ

ΕΙΣΑΓΩΓΗ ΣΤΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΣΥΣΤΗΜΑΤΩΝ

ΕΙΣΑΓΩΓΗ ΣΤΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΣΥΣΤΗΜΑΤΩΝ

ΕΙΣΑΓΩΓΗ ΣΤΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΣΥΣΤΗΜΑΤΩΝ

Εισαγωγή στη Βελτιστοποίηση Συστημάτων

********* Β ομάδα Κυρτότητα Σημεία καμπής*********

ΕΙΣΑΓΩΓΗ ΣΤΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΣΥΣΤΗΜΑΤΩΝ

Πανεπιστήμιο Ιωαννίνων ΟΙΚΟΝΟΜΙΚΑ ΤΟΥ ΠΕΡΙΒΑΛΛΟΝΤΟΣ Διδάσκων:

2.8 ΚΥΡΤΟΤΗΤΑ ΣΗΜΕΙΑ ΚΑΜΠΗΣ ΣΥΝΑΡΤΗΣΗΣ

2.8 ΚΥΡΤΟΤΗΤΑ ΣΗΜΕΙΑ ΚΑΜΠΗΣ ΣΥΝΑΡΤΗΣΗΣ

Λύσεις του διαγωνίσματος στις παραγώγους

ΕΙΣΑΓΩΓΗ ΣΤΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΣΥΣΤΗΜΑΤΩΝ

ΕΙΣΑΓΩΓΗ ΣΤΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΣΥΣΤΗΜΑΤΩΝ

Χρήστος Ι. Σχοινάς Αν. Καθηγητής ΔΠΘ. Συμπληρωματικές σημειώσεις για το μάθημα: «Επιχειρησιακή Έρευνα ΙΙ»

ΕΙΣΑΓΩΓΗ ΣΤΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΣΥΣΤΗΜΑΤΩΝ

ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΟΙΚΟΝΟΜΟΛΟΓΟΥΣ

III.9 ΑΚΡΟΤΑΤΑ ΣΕ ΠΕΡΙΟΧΗ

Τύπος TAYLOR. f : [a, b] R f (n 1) (x) συνεχής x [a, b] f (n) (x) x (a, b) ξ μεταξύ x και x 0. (x x 0 ) k k! f(x) = f (k) (x 0 ) + R n (x)

ΜΑΘΗΜΑΤΙΚΑ. 1 ο ΔΙΑΓΩΝΙΣΜΑ ΘΕΜΑ 1 ο. ΘΕΜΑ 2 ο. 0, αν x

ΜΑΘΗΜΑ ΚΥΡΤΟΤΗΤΑ ΣΗΜΕΙΑ ΚΑΜΠΗΣ Κοίλα κυρτά συνάρτησης Σηµεία καµπής Θεωρία Σχόλια Μέθοδοι Ασκήσεις

ΕΙΣΑΓΩΓΗ ΣΤΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΣΥΣΤΗΜΑΤΩΝ

Εισαγωγικές έννοιες. Κατηγορίες προβλημάτων (σε μια διάσταση) Προβλήματα εύρεσης μεγίστου. Συμβολισμοί

ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΗΡΑΚΛΕΙΤΟΣ ΚΩΛΕΤΤΗ

13 Μονοτονία Ακρότατα συνάρτησης

Εφαρμοσμένη Βελτιστοποίηση

ΕΝΔΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ 2017

Μαθηματικά Θετικής και Τεχνολογικής Κατεύθυνσης Γ Λυκείου ΚΥΡΤΟΤΗΤΑ - ΣΗΜΕΙΑ ΚΑΜΠΗΣ ΣΥΝΑΡΤΗΣΗΣ

ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΗΡΑΚΛΕΙΤΟΣ ΚΩΛΕΤΤΗ

1 ο Τεστ προετοιμασίας Θέμα 1 ο

Διάλεξη 5- Σημειώσεις

ΤΟ ΘΕΜΑ Α ΤΩΝ ΕΞΕΤΑΣΕΩΝ

1. Τετραγωνικές μορφές. x y 0. 0x y 0 1α 1β 2α 2β 3. 0x + y 0

x, x (, x ], επειδή η f είναι γνησίως αύξουσα στο (, x0]

ΑΡΧΗ 1ης ΣΕΛΙΔΑΣ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΜΑΘΗΜΑΤΙΚΑ ΤΑΞΗ / ΤΜΗΜΑ : ΘΕΤΙΚΩΝ & ΟΙΚΟΝΟΜΙΚΩΝ ΣΠΟΥΔΩΝ ΔΙΑΓΩΝΙΣΜΑ ΠΕΡΙΟΔΟΥ : ΤΕΛΙΚΟ ΕΠΑΝΑΛΗΠΤΙΚΟ 2018

ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΤΕΚΝΩΝ ΕΛΛΗΝΩΝ ΤΟΥ ΕΞΩΤΕΡΙΚΟΥ ΚΑΙ ΤΕΚΝΩΝ ΕΛΛΗΝΩΝ ΥΠΑΛΛΗΛΩΝ ΠΟΥ ΥΠΗΡΕΤΟΥΝ ΣΤΟ ΕΞΩΤΕΡΙΚΟ ΠΕΜΠΤΗ 6 ΣΕΠΤΕΜΒΡΙΟΥ 2018

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ

x, οπότε για x 0 η g παρουσιάζει

ΜΑΘΗΜΑΤΙΚΑ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ. f (f )(x) x f (f )(x) x f (f )(x) (f ) (x)

ή J (u * ) = 0 (2) J(u) = u 3 στο σηµείο u * = 0 J (1) = 3 u 2 = 0 J (2) = 6 u = 0 J (3) = 6 > 0

ΠΡΟΤΑΣΕΙΣ ΚΑΙ ΠΡΟΒΛΗΜΑΤΙΣΜΟΙ ΣΤΟ ΚΕΦΑΛΑΙΟ ΤΩΝ ΠΑΡΑΓΩΓΩΝ

Μαθηματικά Διοικητικών & Οικονομικών Επιστημών

Μαθηματικά Ο.Π. Γ ΓΕΛ 29/ 04 / 2018 ΘΕΜΑ Α. Α1. Σελίδα 216. Α2.i) Λ ii) Σελίδα 134. Α3. Σελίδα 128

Κεφάλαιο 3 ΠΑΡΑΓΩΓΟΣ. 3.1 Η έννοια της παραγώγου. y = f(x) f(x 0 ), = f(x 0 + x) f(x 0 )

ΠΡΟΤΑΣΕΙΣ ΚΑΙ ΠΡΟΒΛΗΜΑΤΙΣΜΟΙ ΣΤΟ ΚΕΦΑΛΑΙΟ ΤΩΝ ΠΑΡΑΓΩΓΩΝ

και δεν είναι παραγωγίσιμη σε αυτό, σχολικό βιβλίο σελ. 99 Α3. Ορισμός σελ. 73 Α4. α) Λ β) Σ γ) Λ δ) Σ ε) Σ , δηλαδή αρκεί x 1 x

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ ΝΕΟ & ΠΑΛΑΙΟ ΣΥΣΤΗΜΑ Γ ΗΜΕΡΗΣΙΩΝ

2.8. Ασκήσεις σχολικού βιβλίου σελίδας A Οµάδας. 1.i)

ΕΙΣΑΓΩΓΗ ΣΤΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΣΥΣΤΗΜΑΤΩΝ

ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ ΗΜΕΡΗΣΙΩΝ ΓΕΝΙΚΩΝ ΛΥΚΕΙΩΝ. f ( x) 0 0 2x 0 x 0

ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΚΑΙ ΜΑΘΗΜΑΤΙΚΗ ΔΙΑΤΥΠΩΣΗ, Διαλ. 2. Ανωτάτη Σχολή Παιδαγωγικής και Τεχνολογικής Εκπαίδευσης 8/4/2017

Γ ε ν ι κ έ ς εξ ε τ ά σ ε ι ς Μαθηματικά Γ λυκείου Θ ε τ ι κ ών και οικονομικών σπουδών

x R, να δείξετε ότι: i)

Μαθηματική Ανάλυση Ι

Λύσεις των θεμάτων των Πανελλαδικών Εξετάσεων στα Μαθηματικά Προσανατολισμού 2016

Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Β. Διαφορικός Λογισμός

ΜΑΘΗΜΑΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΙΙ

ΘΕΜΑ Α A1. Έστω μια συνάρτηση παραγωγίσιμη σε ένα διάστημα (α,β), με εξαίρεση ίσως ένα σημείο του x 0, στο οποίο όμως η f είναι συνεχής.

max f( x,..., x ) st. : g ( x,..., x ) 0 g ( x,..., x ) 0

Πανελλαδικές εξετάσεις 2017

Λύσεις θεμάτων προσομοίωσης 1-Πανελλαδικές Εξετάσεις 2016

Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ. Ημερομηνία: Πέμπτη 20 Απριλίου 2017 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ

Σημειώσεις διαλέξεων: Βελτιστοποίηση πολυδιάστατων συνεχών συναρτήσεων 1 / 20

Συνθήκες Θ.Μ.Τ. Τρόπος αντιμετώπισης: 1. Για να ισχύει το Θ.Μ.Τ. για μια συνάρτηση f σε ένα διάστημα [, ] (δηλαδή για να υπάρχει ένα τουλάχιστον (, )

ΕΠΙΛΥΣΗ ΕΞΙΣΩΣΕΩΝ ΚΑΙ ΑΝΙΣΩΣΕΩΝ ΣΥΝΑΡΤΗΣΙΑΚΩΝ ΜΟΡΦΩΝ MIAΣ ΜΕΤΑΒΛΗΤΗΣ

Θεώρημα Bolzano. Γεωμετρική Ερμηνεία του θ.bolzano. Θ. Bolzano και ύπαρξη ρίζας

Πρόβλημα 1 «Φασίνα» Εύρεση εκτέλεσης εργασιών με τον μικρότερο συνολικό χρόνο

ΘΕΩΡΗΜΑ (Μέσης Τιμής) Έστω f: [α, β] R συνεχής και παραγωγίσιμη στο (α, β). Τότε υπάρχει ξ (α, β)

Ασκήσεις Επανάληψης Γ Λυκείου

ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β. Να βρείτε τις ασύμπτωτες της γραφικής παράστασης της συνάρτησης f με τύπο

γ λυκειου κεφαλαιο 2 κεφαλαιο 2 κεφαλαιο 2 κεφαλαιο 2 κεφαλαιο 2 κεφαλαιο2 διαφορικος λογισμος επιμελεια : τακης τσακαλακος T Ш τ

ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΟΙΚΟΝΟΜΟΛΟΓΟΥΣ

ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΠΑΡΑΣΚΕΥΗ 9 ΙΟΥΝΙΟΥ 2017 Ενδεικτικές απαντήσεις

ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ Δευτέρα 11 Ιουνίου 2018 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ

Μονοτονία - Ακρότατα Αντίστροφη Συνάρτηση

ΕΙΣΑΓΩΓΗ ΣΤΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΣΥΣΤΗΜΑΤΩΝ

ΟΜΟΣΠΟΝΔΙΑ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑΔΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2019 Β ΦΑΣΗ

f κυρτή στο [1,5] f x x f η Επαναληπτική f [ 2,10], επιπλέον για την f ισχύουν lim 2 x f 8 1,0 και

ΜΕΛΕΤΗ ΚΑΙ ΧΑΡΑΞΗ ΓΡΑΦΙΚΗΣ ΠΑΡΑΣΤΑΣΗΣ ΣΥΝΑΡΤΗΣΗΣ

II. Συναρτήσεις. math-gr

Μαθηματικά Κατεύθυνσης Γ Λυκείου. Για το Θέμα Α: Ορισμοί. Συλλογή Από. Πανελλήνιες Επαναληπτικές Ομογενών

ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟΥ-ΛΑΘΟΥΣ

ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΣΥΝΟΠΤΙΚΗ ΘΕΩΡΕΙΑ ΜΕΘΟΔΟΛΟΓΙΑ ΛΥΜΕΝΑ ΠΑΡΑΔΕΙΓΜΑΤΑ

Μεθοδική Επανα λήψή. Επιμέλεια Κων/νος Παπασταματίου. Θεωρία - Λεξιλόγιο Βασικές Μεθοδολογίες. Φροντιστήριο Μ.Ε. «ΑΙΧΜΗ» Κ.

Λύσεις των θεμάτων των Πανελλαδικών Εξετάσεων στα Μαθηματικά Προσανατολισμού 2016

Η Θεωρία στα Μαθηματικά κατεύθυνσης της Γ Λυκείου

Τεστ Θεωρίας Στα Μαθηματικά Προσανατολισμού Γ Λυκείου

ΕΙΣΑΓΩΓΗ ΣΤΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΣΥΣΤΗΜΑΤΩΝ

ΔΙΑΓΩΝΙΣΜΑ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ- ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΠΕΝΤΕ (5)

Θεωρία. έχει το γράφηµα του παραπλεύρως σχήµατος.

ΕΝΝΟΙΕΣ ΚΑΙ ΕΦΑΡΜΟΓΕΣ, διαλ. 4. Ανωτάτη Σχολή Παιδαγωγικής και Τεχνολογικής Εκπαίδευσης 6/5/2017

ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ. Το 1ο Θέμα στις πανελλαδικές εξετάσεις

ΔΙΑΓΩΝΙΣΜΑ 11. (δ). Να βρεθεί η λύση της διαφορικής εξίσωσης: y = xy, που έχει θετικές τιμές: y 0 και ικανοποιεί: y(0) = 1. 2.

ΜΑΘΗΜΑΤΙΚΑ - ΠΛΗΡΟΦΟΡΙΚΗ

Ακρότατα πραγματικών συναρτήσεων

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ

ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ Δευτέρα 10 Ιουνίου 2019 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ. (Ενδεικτικές Απαντήσεις)

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ. Β κύκλος

την αρχή των αξόνων και ύστερα να υπολογίσετε το εμβαδόν του

ΜΕΡΟΣ 1 ΣΥΝΑΡΤΗΣΕΙΣ. f : A R και στη συνέχεια δίνουμε τον τύπο της συνάρτησης, π.χ.

Transcript:

ΥΠΕΥΘΥΝΟΣ ΚΑΘΗΓΗΤΗΣ Α. Ντούνης ΔΙΔΑΣΚΩΝ ΑΚΑΔ. ΥΠΟΤΡΟΦΟΣ Χ. Τσιρώνης ΕΙΣΑΓΩΓΗ ΣΤΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΣΥΣΤΗΜΑΤΩΝ ΜΑΘΗΜΑ ΤΕΤΑΡΤΟ - Καμπυλότητα συνάρτησης - Γενικές συνθήκες (NC) - Παραδείγματα

Κατηγορίες των συνόλων: ΚΥΡΤΟΤΗΤΑ ΣΥΝΟΛΩΝ Το τμήμα που ενώνει κάθε Κυρτό ζεύγος σημείων βρίσκεται όλο εντός του συνόλου. Μη κυρτό Κάθε άλλο σύνολο. Πράξεις ανάμεσα στα κυρτά σύνολα: Τομή κυρτών συνόλων Κυρτό σύνολο. Ένωση κυρτών συνόλων Κυρτό σύνολο??? Κυρτός συνδυασμός Αν S R n κυρτό σύνολο, X ι S και λ ι 0 (ι = 1,, k) με σk ι=1 λ ι = 1, τότε και σk ι=1 λ ι Χ ι S. 2

ΚΑΜΠΥΛΟΤΗΤΑ ΣΥΝΑΡΤΗΣΗΣ Ορισμός καμπυλότητας (παρόμοια με τα σύνολα): Η f είναι κυρτή όταν το τμήμα που ενώνει τυχαίο ζεύγος σημείων δε βρίσκεται ποτέ κάτω από το γράφημά της. Η f είναι κοίλη στην ακριβώς αντίθετη περίπτωση. Ορισμός κυρτότητας: Έστω κυρτό S R n και f: S R. (X 1,X 2 ) S και λ [0,1], η f είναι κυρτή (κοίλη) αν f(λx 1 + (1 λ)x 2 ) ( ) λf(x 1 )+(1 λ)f(x 2 ). Αν δεν ισχύει το =, το είδος καμπυλότητας λέγεται γνήσιο. 3

ΠΑΡΑΔΕΙΓΜΑ ΠΡΩΤΟ Kάθε συνάρτηση v: R n R λέγεται νόρμα αν είναι μη αρνητική στο R n, θετική στο R n {0} και ικανοποιεί τις σχέσεις v(ax) = a v(x) και v(x+υ) v(x) + v(υ). Δείξτε ότι η νόρμα είναι κυρτή συνάρτηση. Για X 1, X 2 R n και λ [0, 1], από τη 2 η ιδιότητα της νόρμας: v λx 1 + 1 λ X 2 v λx 1 ) + v( 1 λ X 2. Με βάση τώρα την 1 η ιδιότητα της νόρμας: v λx 1 + 1 λ X 2 v λx 1 ) + v( 1 λ X 2 = λv X 1 ) + 1 λ v(x 2. Ισχύει το κριτήριο κυρτού συνδυασμού v(x) κυρτή. 4

ΙΔΙΟΤΗΤΕΣ ΚΥΡΤΟΤΗΤΑΣ f κοίλη (κυρτή) - f κυρτή (κοίλη). Αν λ ι 0, σk ι=1 λ ι = 1 και f ι κυρτές συναρτήσεις, τότε f Χ) = σk ι=1 f ι (X κυρτή και f σk ι=1 λ ι X ι σk ι=1 λ ι f(x ι ). Αν f 1, f 2 είναι κυρτές και f 2 (γνησίως) αύξουσα, τότε η σύνθεση [f 2 f 1 ](Χ) = f 2 (f 1 (Χ)) είναι (γνήσια) κυρτή. f κυρτή f X 1 X 2 X 1 f X 2 f X 1. Αν ο 2 f 0 (> 0), τότε η f είναι (γνήσια) κυρτή. Κάθε κρίσιμο σημείο (γνήσια) κυρτής συνάρτησης f είναι και (το μοναδικό) ολικό ελάχιστο της f. 5

ΠΑΡΑΔΕΙΓΜΑ ΔΕΥΤΕΡΟ Δείξτε ότι οι συναρτήσεις f 1 X = ln e x 1 + e x 2 και f 2 X = x 1 2 4x 1 x 2 + 5x 2 2 ln x 1 x 2 είναι κυρτές. Για την f 1 αρκεί να δείξουμε ότι 2 f 1 0: 2 f 1 = ex 1+x2 e x 1+e x 2 1 1 1 1 0. f 2 = g 3 + g 4, με g 3 X = x 1 2 4x 1 x 2 + 5x 22 και g 4 X = ln x 1 x 2. Αρκεί να είναι οι g 3, g 4 κυρτές. Για τις ιδιοτιμές του 2 g 3 : 2 g 3 = 2 4 4 10 γ 3Ι 2 g 3 = γ 3 2 4 4 γ 3 10 = γ 3 2 12 γ 3 + 4 = 0. Θετικές ρίζες (s = 12, p = 4) 2 g 3 0 g 3 κυρτή. g 5 (y) = ln(y) κυρτή ( 2 g 5 y = y 2 > 0) g 4 κυρτή. 6

ΠΡΟΣΕΓΓΙΣΤΙΚΗ ΚΥΡΤΟΤΗΤΑ Υπάρχουν συναρτήσεις κυρτές σε υποσύνολο του συνόλου στο οποίο αναζήτουμε βέλτιστη λύση. Σχεδόν κυρτή Ενδεχόμενη αλλαγή καμπυλότητας. Ψευδοκυρτή Σαγματικά σημεία εντός του συνόλου. Κριτήριο προσεγγιστικά κυρτών συναρτήσεων: Για κάθε ζεύγος (X 1, X 2 ) του κυρτού συνόλου S R n και κάθε λ [0, 1], η συνάρτηση f: S R θα καλείται σχεδόν κυρτή αν ισχύει η σχέση f(λx 1 + (1 λ)x 2 ) max{f(x 1 ), f(x 2 )}. Στην περίπτωση όπου ισχύει f(x 1 ) (X 2 -X 1 ) 0, η f θα καλείται ψευδοκυρτή εάν συγχρόνως ισχύει ότι f(x 2 ) f(x 1 ). 7

ΣΥΝΘΗΚΕΣ ΕΛΑΧΙΣΤΟΠΟΙΗΣΗΣ Εύρεση τοπικών ακροτάτων: Έλεγχος για κρίσιμα σημεία σε όλο το σύνολο τιμών? Εν γένει, αρκετά χρονοβόρο! Στην περίπτωση που η f έχει συγκεκριµένες ιδιότητες, η διαδικασία απλοποιείται. Κατηγορίες των συνθηκών ελαχιστοποίησης Ικανές: Aρκεί να ισχύουν για να υπάρχει το ακρότατο. Aναγκαίες: Απαραίτητες προϋποθέσεις για το ακρότατο. 8

ΣΥΝΘΗΚΕΣ ΝΟΤ CONSTRAINED Οι συνθήκες ελαχιστοποίησης για προβλήματα που έχουν περιορισμούς δεν είναι ίδιες με εκείνες για προβλήματα απουσία περιορισμών. Στα προβλήματα χωρίς περιορισμούς, οι συνθήκες εκφράζονται με βάση τις παραγώγους της f. Δυο αναγκαίες συνθήκες εξασφαλίζουν ότι για σηµείο που είναι τοπικό ελάχιστο ισχύουν συγκεκριµένες ιδιότητες. Μια ικανή συνθήκη εξασφαλίζει την ύπαρξη ελαχίστου. Οι συνθήκες χαρακτηρίζονται ως 1 ης ή 2 ης τάξης (ανάλογα με την τάξη της εμπλεκόμενης παραγώγου). 9

ΔΙΑΤΥΠΩΣΗ ΤΩΝ ΣΥΝΘΗΚΩΝ Αναγκαία συνθήκη ΝC 1 ης τάξης: Έστω f: S R n R συνεχώς διαφορίσιµη. Αν το X* S είναι τοπικό ελάχιστο της f, τότε ισχύει f(x*) = 0. Αναγκαία συνθήκη ΝC 2 ης τάξης: Έστω f: S R n R συνεχώς διαφορίσιµη με παραγώγους 1 ης και 2 ης τάξης. Αν το X* S είναι τοπικό ελάχιστο της f, τότε f(x*) = 0 και ο πίνακας 2 f(x*) είναι θετικά ημιορισμένος. Ικανή συνθήκη ΝC 2 ης τάξης: Έστω f: S R n R συνεχώς διαφορίσιµη με παραγώγους 1 ης και 2 ης τάξης, και X* S. Αν f(x*) = 0 και ο 2 f(x*) είναι θετικά ημιορισμένος, τότε το X* είναι τοπικό ελάχιστο της f. 10

ΕΦΑΡΜΟΓΗ ΤΩΝ ΣΥΝΘΗΚΩΝ Χρήση του θεωρήματος Sylvester: Αν η f: S R n R έχει κρίσιμο σημείο X* S και D i είναι η i-υποορίζουσα του 2 f(x*), τότε: - D i (X*) > 0 για κάθε i Χ* τοπικό ελάχιστο. - D i (X*) < 0 για κάθε i X* τοπικό μέγιστο. - D i (X*) <> 0 ανά το i X* σημείο καμπής. - D i (X*) = 0 X* ιδιάζον ( Συνθήκες 3 ης τάξης). Εύρεση ακροτάτων με χρήση μόνο των f, 2 f!!! Αν η f είναι κυρτή, για να βεβαιώσουμε την ύπαρξη ενός ελαχίστου αρκεί το πρώτο τμήμα της ικανής συνθήκης. Υπενθύμιση: f κυρτή Kρίσιμο σημείο = Oλικό ελάχιστο. 11

ΠΑΡΑΔΕΙΓΜΑ ΤΡΙΤΟ Να ελαχιστοποιηθεί η f X = x 1 2 x 1 x 2 + x 2 2 3x 2. Οι αναγκαίες συνθήκες 1 ης τάξης: f x 1 = 2x 1 x 2 = 0, f x 2 = x 1 + 2x 2 3 = 0. Λύση συστήματος Χ*=(x 1 *,x 2 *)=(1,2). Ικανή συνθήκη (υποορίζουσες του 2 f): f f 2 f = x 1 x 2 x 1 f x 1 x 1 x 2 x 2 D f 1 = D 2 = 2 > 0. x 2 Και οι δύο θετικές Χ* τοπικό ελάχιστο. 12

ΣΥΝΘΗΚΕΣ ΜΕ CONSTRAINTS Ιδιαιτερότητες των προβλημάτων με περιορισμούς: H λύση, πλέον του ότι οφείλει να είναι ακρότατο της f, θα πρέπει να ικανοποιεί και τους περιορισμούς. Οι περιορισμοί (ισοτικοί ή/και ανισοτικοί) θα πρέπει να «ενσωματωθούν» κατάλληλα στις συνθήκες. Επιπτώσεις στη μεθοδολογία? Αλλαγές στις συνθήκες ή/και τις αντικειμενικές συναρτήσεις??? Starting point? Οι (όποιες) λύσεις βρίσκονται εντός των λύσεων του προβλήματος χωρίς περιορισμούς. 13

ΕΡΩΤΗΣΕΙΣ - ΣΥΖΗΤΗΣΗ Καμπυλότητα συνάρτησης Γενικές συνθήκες (ΝC) Παραδείγματα 14