Επαναληπτικό Διαγώνισμα Άλγεβρας Β Λυκείου. Θέματα. A. Να διατυπώσετε τον ορισμό μιας γνησίως αύξουσας συνάρτησης. (5 μονάδες)



Σχετικά έγγραφα
5. Να λυθεί η εξίσωση. 6. Δίνεται η συνάρτηση. 2f x ΛΥΣΗ: Τα x για τα οποία 2 x 0 x 0 x, δεν είναι λύσεις της εξίσωσης γιατί για

4.3 ΠΟΛΥΩΝΥΜΙΚΕΣ ΕΞΙΣΩΣΕΙΣ & ΑΝΙΣΩΣΕΙΣ

β) Αν επιπλέον το υπόλοιπο της διαίρεσης είναι υ(x) = - 3x + 5, τότε να βρείτε το Δ(x). (Απ. α) 5 ος β) Δ(x) = x 5 5x 4 + 6x 3 + 4x 2 11x + 5)

ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΑΛΓΕΒΡΑΣ B ΛΥΚΕΙΟΥ

( ) x 3 + ( λ 3 1) x 2 + λ 1

ΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ 106 Β' Λυκείου. Ύλη: Συστήματα Ιδιότητες Συναρτήσεων- Τριγωνομετρία Πολυώνυμα

Ημερομηνία: Κυριακή 29 Οκτωβρίου 2017 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ ΣΤΗΝ ΑΛΓΕΒΡΑ ΤΗΣ Β ΛΥΚΕΙΟΥ. , ισχύει ότι:. α. Να υπολογίσετε όλους τους τριγωνομετρικούς αριθμούς της γωνίας ω.

3 η δεκάδα θεµάτων επανάληψης

Προσομοίωση προαγωγικών εξετασεων Άλγεβρας Β Λυκείου Σχ. έτος

2.3 Πολυωνυμικές Εξισώσεις

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ ΣΤΗΝ ΑΛΓΕΒΡΑ ΤΗΣ Β ΛΥΚΕΙΟΥ. , ισχύει ότι:. α. Να υπολογίσετε όλους τους τριγωνομετρικούς αριθμούς της γωνίας ω.

Επαναληπτικά θέματα στα Μαθηματικά προσανατολισμού-ψηφιακό σχολείο ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ

2018 Φάση 2 ιαγωνίσµατα Επανάληψης ΑΛΓΕΒΡΑ. Β' Γενικού Λυκείου. Γενικής Παιδείας. Σάββατο 21 Απριλίου 2018 ιάρκεια Εξέτασης:3 ώρες ΘΕΜΑΤΑ

ΟΜΟΣΠΟΝΔΙΑ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑΔΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2019 Β ΦΑΣΗ

7. Αν υψώσουμε και τα δύο μέλη μιας εξίσωσης στον κύβο (και γενικά σε οποιαδήποτε περιττή δύναμη), τότε προκύπτει

ΠΡΟΤΥΠΟ ΠΕΙΡΑΜΑΤΙΚΟ ΓΕΝΙΚΟ ΛΥΚΕΙΟ ΗΡΑΚΛΕΙΟΥ

ΘΕΜΑ Α ΘΕΜΑ B. Β.1. Γνωρίζουμε ότι τα σημεία Α(π,4) και Β(-2π,6) ανήκουν στην ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ

ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ ΗΜΕΡΗΣΙΩΝ ΓΕΝΙΚΩΝ ΛΥΚΕΙΩΝ. f ( x) 0 0 2x 0 x 0

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ. Α2. Να διατυπώσετε το θεώρημα του Βolzano. Μονάδες 5

ΘΕΜΑΤΑ ΠΡΟΑΓΩΓΙΚΩΝ ΑΠΟΛΥΤΗΡΙΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΪΟΣ ΙΟΥΝΙΟΣ

Άλγεβρα Α Λυκείου. Επαναληπτικά θέματα από διαγωνίσματα ΟΕΦΕ Πραγματικοί αριθμοί

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

Επαναληπτικό Διαγώνισμα Άλγεβρας Β Λυκείου

( ) ( ) Τοα R σημαίνει ότι οι συντελεστές δεν περιέχουν την μεταβλητή x. αντικ σταση στο που = α. [ ο αριθµ ός πουτο µηδεν ίζει

ΠΟΛΥΩΝΥΜΑ. Λυμένα Παραδείγματα

Α ΛΥΚΕΙΟ ΓΕΡΑΚΑ. ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ ΣΤΗΝ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ Σχολικό Έτος ΜΑΝΩΛΗ ΨΑΡΡΑ. Μανώλης Ψαρράς Σελίδα 1

Κεφάλαιο 4: Διαφορικός Λογισμός

4. Δίνεται το πολυώνυμο P(x) = x 3 2x 2 + x 12 α) Να αιτιολογήσετε γιατί το διώνυμο x 3 είναι παράγοντας του P(x) β) Να λύσετε την εξίσωση P(x) = 0

lnx ln x ln l x 1. = (0,1) (1,7].

Θέματα. Α1. Έστω μια συνάρτηση f παραγωγίσιμη σ ένα διάστημα (, ), με εξαίρεση ίσως ένα σημείο του x

ΚΕΦΑΛΑΙΟ 2 Ο «ΟΡΙΟ ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ»

2η ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ

Α Λ Γ Ε Β Ρ Α Β Λ Υ Κ Ε Ι Ο Υ. ΚΕΦΑΛΑΙΟ 4 ο ΠΟΛΥΩΝΥΜΑ-ΠΟΛΥΩΝΥΜΙΚΕΣ ΕΞΙΣΩΣΕΙΣ

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2017 Β ΦΑΣΗ ÅÐÉËÏÃÇ

Επαναληπτικές Ασκήσεις

Α Λ Γ Ε Β Ρ Α Σ Υ Σ Τ Η Μ Α Τ Α

ΤΕΤΡΑΚΤΥΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙ ΕΥΣΗΣ Αµυραδάκη 20, Νίκαια ( ) ΤΑΞΗ... Β ΛΥΚΕΙΟΥ... ΜΑΘΗΜΑ...ΑΛΓΕΒΡΑΣ... ΙΑΝΟΥΑΡΙΟΣ 2012 ΘΕΜΑ 1 Ο

Γ ε ν ι κ έ ς εξ ε τ ά σ ε ι ς Μαθηματικά Γ λυκείου Θ ε τ ι κ ών και οικονομικών σπουδών

ΦΥΛΛΆΔΙΟ ΑΣΚΉΣΕΩΝ 2 ΣΥΝΑΡΤΗΣΕΙΣ

Ημερομηνία: Παρασκευή 28 Οκτωβρίου 2016 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ

ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β. Να μελετήσετε ως προς τη μονοτονία και τα ακρότατα τις παρακάτω συναρτήσεις: f (x) = 0 x(2ln x + 1) = 0 ln x = x = e x =

Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ. Ημερομηνία: Πέμπτη 20 Απριλίου 2017 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ

4.1 ΕΝΝΟΙΑ ΠΟΛΥΩΝΥΜΟΥ -ΒΑΘΜΟΣ-ΙΣΟΤΗΤΑ-ΡΙΖΕΣ. ΛΥΣΗ 1 2 =κ κ κ 1+43κ κ = =0

f ( x) f ( x ) για κάθε x A

Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ. Ημερομηνία: Τρίτη 10 Απριλίου 2018 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ

ΠΟΛΥΩΝΥΜΑ ΠΟΛΥΩΝΥΜΙΚΕΣ ΕΞΙΣΩΣΕΙΣ

<Πεδία ορισμού ισότητα πράξεις σύνθεση>

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Ηµεροµηνία: Κυριακή 1 Απριλίου 2012 ΕΚΦΩΝΗΣΕΙΣ

1. Αν α 3 + β 3 + γ 3 = 3αβγ και α + β + γ 0, δείξτε ότι το πολυώνυµο P (x) = (α - β) x 2 + (β - γ) x + γ - α είναι

Τράπεζα Θεμάτων Άλγεβρα Α Λυκείου Κεφάλαιο 6 Θέμα 2. Επιμέλεια : Μιχάλης Γιάνναρος - Μαθηματικός

(, ) ( x0, ), τότε να αποδείξετε ότι το. x, στο οποίο όμως η f είναι συνεχής. Αν f ( x) 0 στο

Διαγώνισμα Προσομοίωσης Εξετάσεων 2017

Μαθηματικά προσανατολισμού

1 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ 2008

1 of 79 ΘΕΜΑ 2. Δίνεται η συνάρτηση f(x) = x 2 4x + 5, x R

Θέματα. Θέμα 1 Α. Να αποδείξετε ότι για δύο ενδεχόμενα Α και Β ενός δειγματικού χώρου Ω, ισχύει P(A-B)=P(A)-P( A B) (10 μονάδες)

ΑΣΚΗΣΕΙΣ ΣΤΙΣ ΣΥΝΑΡΤΗΣΕΙΣ. Να εξετάσετε αν είναι ίσες οι συναρτήσεις f, g όταν: x x 2 x x. x x g x. ln x ln x 1 και

ΘΕΜΑ 1ο Α. α) Να αποδείξετε ότι, αν z 1 =α+βi και. είναι δύο μιγαδικοί αριθμοί, τότε

Θέματα ενδοσχολικών εξετάσεων Άλγεβρας Β Λυκείου Σχ. έτος , Ν. Δωδεκανήσου ΘΕΜΑΤΑ ΕΝΔΟΣΧΟΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΤΑΞΗ: Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ

ln 1. ( ) vii. Να βρείτε το εμβαδόν του χωρίου που περικλείεται από τη C f, τον άξονα η οποία είναι συνεχής στο και για την οποία ισχύει

ΑΣΚΗΣΕΙΣ Β ΛΥΚΕΙΟΥ -- ΑΛΓΕΒΡΑ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ

f (x ) f (x ) f (x )f (x ) f (x ) f (x ) f (x ) f (x ) 1 f (x )f (x )

5 η δεκάδα θεµάτων επανάληψης

Θεώρημα Βolzano. Κατηγορία 1 η Δίνεται η συνάρτηση:

4.3. ΠΟΛΥΩΝΥΜΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΚΑΙ ΑΝΙΣΩΣΕΙΣ

Πολυωνυμική εξίσωση βαθμού ν ονομάζεται κάθε εξίσωση της μορφής α ν x ν +α ν-1 x ν α 1 x+α 0 =0,με α 0,α 1,...

1.1 ΒΑΣΙΚΕΣ ΤΡΙΓΩΝΟΜΕΤΡΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ 1.2 ΒΑΣΙΚΕΣ ΤΡΙΓΩΝΟΜΕΤΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ

Β. Στο διπλανό σχήμα παρουσιάζεται η γραφική παράσταση της

Τράπεζα Θεμάτων Άλγεβρα Α Λυκείου Κεφάλαιο 4 Θέμα 2. Επιμέλεια : Μιχάλης Γιάνναρος - Μαθηματικός

1ο Κεφάλαιο: Συστήματα

Άλγεβρα Β Λυκείου Επαναληπτικά θέματα ΟΕΦΕ α φάση

Θέματα. Α1. Έστω μια συνάρτηση f παραγωγίσιμη σ ένα διάστημα (, ), με εξαίρεση ίσως ένα σημείο του x,

ΟΜΟΣΠΟΝΔΙΑ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑΔΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2018 Β ΦΑΣΗ

ΚΕΦΑΛΑΙΟ 4ο: ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 4: ΕΜΒΑΔΟΝ ΕΠΙΠΕΔΟΥ ΧΩΡΙΟΥ [Κεφ.3.7 Μέρος Β του σχολικού βιβλίου]. ΑΣΚΗΣΕΙΣ

5ο Επαναληπτικό διαγώνισμα στα Μαθηματικά κατεύθυνσης της Γ Λυκείου Θέμα A

Μαθηματικά κατεύθυνσης Γ Λυκείου Διαγώνισμα διάρκειας 2 ωρών στις Συναρτήσεις

- ΟΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΕΝΟΤΗΤΑ 3: ΣΥΝΑΡΤΗΣΗ 1-1 ΑΝΤΙΣΤΡΟΦΗ ΣΥΝΑΡΤΗΣΗ

2ογελ ΣΥΚΕΩΝ 2ογελ ΣΥΚΕΩΝ ΠΟΛΥΩΝΥΜΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ Β Λυκει(ου ΠΟΛΥΩΝΥΜΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (ΟΕΦΕ) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 06 Β4 Έστω η συνάρτηση f ( ) = A( ) B( ) Βρείτε τη µέγιστη

Μαθηματικά Θετικής και Τεχνολογικής Κατεύθυνσης Γ Λυκείου ΚΥΡΤΟΤΗΤΑ - ΣΗΜΕΙΑ ΚΑΜΠΗΣ ΣΥΝΑΡΤΗΣΗΣ

Μεθοδική Επανα λήψή. Επιμέλεια Κων/νος Παπασταματίου. Θεωρία - Λεξιλόγιο Βασικές Μεθοδολογίες. Φροντιστήριο Μ.Ε. «ΑΙΧΜΗ» Κ.

Ασκήσεις Επανάληψης Γ Λυκείου

ii) Να ποια τιμή του ώστε η εξίσωση (1) έχει μία διπλή πραγματική ρίζα; Έπειτα να βρεθεί η ρίζα αυτή. Ασκήσεις Άλγεβρας

Γιώργος Μπαρακλιανός τηλ ( ) Κώστας Τζάλλας τηλ ( ) Παραγγελίες : τηλ.

II. Συναρτήσεις. math-gr

f (x ) f (x ) f (x )f (x ) f (x ) f (x ) f (x ) f (x ) 1 f (x )f (x )

ΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ ΚΥΡΙΑΚΗ 18 ΔΕΚΕΜΒΡΙΟΥ 2016 ΑΠΑΝΤΗΣΕΙΣ. f x = x 6x + 3, x 1, 1. Η f είναι συ-

Διαγωνίσματα ψηφιακού βοηθήματος σχολικού έτους

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΑΛΓΕΒΡΑΣ Α ΛΥΚΕΙΟΥ Δ Ι Α Γ Ω Ν Ι Σ Μ Α 1

K. Μυλωνάκης Αλγεβρα B Λυκείου

θετικοί αριθμοί, να δείξετε ότι

ΟΜΟΣΠΟΝΔΙΑ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑΔΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2019 Β ΦΑΣΗ

2.8 ΚΥΡΤΟΤΗΤΑ ΣΗΜΕΙΑ ΚΑΜΠΗΣ ΣΥΝΑΡΤΗΣΗΣ

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 3 ο ΔΙΑΓΩΝΙΣΜΑ ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ (Κεφάλαιο 1, 2, 3)

ΑΣΚΗΣΕΙΣ ΘΕΜΑ Β. 0και 4 x 3 0.

ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΤΕΚΝΩΝ ΕΛΛΗΝΩΝ ΤΟΥ ΕΞΩΤΕΡΙΚΟΥ ΚΑΙ ΤΕΚΝΩΝ ΕΛΛΗΝΩΝ ΥΠΑΛΛΗΛΩΝ ΠΟΥ ΥΠΗΡΕΤΟΥΝ ΣΤΟ ΕΞΩΤΕΡΙΚΟ ΠΕΜΠΤΗ 6 ΣΕΠΤΕΜΒΡΙΟΥ 2018

( e ) 2. 4 η δεκάδα θεµάτων επανάληψης 31.

7.1 ΜΕΛΕΤΗ ΤΗΣ ΣΥΝΑΡΤΗΣΗΣ

Θέματα. Α1. Να δώσετε τον ορισμό της συχνότητας και της σχετικής συχνότητας μιας παρατήρησης x i. Σ Λ

Transcript:

Θέμα 1 Θέματα A. Να διατυπώσετε τον ορισμό μιας γνησίως αύξουσας συνάρτησης. (5 μονάδες) B. Να χαρακτηρίσετε ως σωστή (Σ) ή λάθος (Λ) τις παρακάτω προτάσεις: i) Ο βαθμός του υπολοίπου της διαίρεσης P(x) με το x-ρ είναι μηδέν. Σ Λ ii) 2 1 iii) Η συνάρτηση είναι περιττή Σ Λ iv) Η γραφική παράσταση των συναρτήσεων και, 0 < a 1 είναι συμμετρικές ως προς τον άξονα yy. Σ Λ v) Για κάθε x 0 ισχύει 0 Σ Λ Γ. Να αντιστοιχήσετε τη στήλη Α με κάθε σωστή απάντηση της στήλης Β Α. 1., 0 B. 2 1 2. 0, Γ. 3., Δ. 2 5 4., 7 Σ Λ (2 μονάδες/ ερώτημα) E. 1 5. 0, (2 μονάδες/ ερώτημα) Επιμέλεια Θεμάτων και Λύσεων : Σταματίνα Κατσίγιαννη (Μαθηματικός) Σελίδα 1

Θέμα 2 Έστω η συνάρτηση 3 2 5 1 και το σύστημα (Σ): 1 1 23 1 21 i) Να υπολογίσετε τις ορίζουσες D, D x, D y του συστήματος. (7 μονάδες) ii) Να δείξετε ότι το σύστημα έχει μοναδική λύση για κάθε λ και να την προσδιορίσετε. (5 μονάδες) iii) Αν το σημείο (1, 2) ανήκει στη γραφική παράσταση της f, να βρείτε το k και να γράψετε τον τύπο της f. (5 μονάδες) iv) Εάν η λύση του συστήματος είναι η,,, όπου, οι συντεταγμένες του ακροτάτου της f, να προσδιορίσετε το λ. (8 μονάδες) Θέμα 3 Αν το πολυώνυμο 2 17 19 3 έχει παράγοντα το 3 και το υπόλοιπο της διαίρεσης :1 είναι 72, i. Να βρείτε τους α και β. ii. Να λύσετε την εξίσωση 5 στο διάστημα θ0, 2. iii. Να βρείτε τα διαστήματα στα οποία η πολυωνυμική συνάρτηση βρίσκεται πάνω από τον άξονα x x. Θέμα 4 Δίνεται το πολυώνυμο 6 6 με 0 και και η συνάρτηση 1. Α) i. Αν το 1 είναι παράγοντας του πολυωνύμου Q(x) να βρείτε το α. ii. Για την τιμή που βρήκατε για το α να λύσετε τις εξισώσεις 0 και 2 0. Β) Για, να λύσετε την εξίσωση 2 10, 0, Εύχομαι Επιτυχία! Επιμέλεια Θεμάτων και Λύσεων : Σταματίνα Κατσίγιαννη (Μαθηματικός) Σελίδα 2

Θέμα 1 Α) Σχολικό βιβλίο σελ. 31 Απαντήσεις B) i) Λ ii) Λ iii) Σ iv) Σ v) Σ Γ) Θέμα 2 i) D 1 λ 1 λλ1 λ1 λ λλ 2λ12λ λ1 λ1 λ 2 3 λ 1 λ2λ 3 12λ 1 4λ 4λ1 2λ 1 λ 1 λ1 23 12λ 1 λ12λ 3 8λ2 2λ1 ii) Για το τριώνυμο 2λ λ1 έχουμε: 1 4 2 170 Άρα το τριώνυμο δε μηδενίζεται για κάθε λ, άρα και το σύστημα έχει μοναδική λύση για κάθε λ την (x, y) όπου: D 4λ 4λ1 2λ λ1 y Α Β Γ Δ Ε 5 3 1 4 2 iii) Αφού το σημείο (1, 2) ανήκει στη γραφική παράσταση της f έχουμε: 1 2 3 1 2 5 12 Επιμέλεια Θεμάτων και Λύσεων : Σταματίνα Κατσίγιαννη (Μαθηματικός) Σελίδα 3

Οπότε 3 61 32512 11 2 iv) Επειδή 3 61 με α = 3 < 0 η συνάρτηση θα παρουσιάζει μέγιστο Όμως με συντεταγμένες: 1 και 3 1 6 112 1 4λ 4λ12λ λ1 2λ 3λ20 λ = 2 ή 2 4λ 2λ28λ2 4λ 10λ 4 0 λ = 2 ή Οπότε λ = 2 Θέμα 3 i) Το πολυώνυμο έχει παράγοντα το 3 ισχύει: 3 0 2 3 17 3 193 3 0 54 153 57 3 0 99 57 3 0 33 19 0 Το υπόλοιπο της διαίρεσης :1 είναι 72 άρα: 1 72 2 1 17 1 191 372 Επιμέλεια Θεμάτων και Λύσεων : Σταματίνα Κατσίγιαννη (Μαθηματικός) Σελίδα 4

2 17 19 3 72 53 19 3 0 Από (1) + (2) κατά μέλη έχουμε: 20 4 0 Από (1) έχουμε: ii) Για α = 2 και β = 5 έχουμε: Επειδή θ0, 2 έχουμε: 33 19 5 0 19 38 5 5 2 5521 5 5 2 2 2 530 (απορ.) ή 1 (δεκτή) iii) Για να βρούμε τα διαστήματα στα οποία η πολυωνυμική συνάρτηση βρίσκεται πάνω από τον άξονα x x θα λύσουμε την ανίσωση 0 Για α = 2 και β = 5 το πολυώνυμο γίνεται: 2 17 38 15 Αρχικά θα παραγοντοποιήσουμε το πολυώνυμο Πιθανές ακέραιες ρίζες του πολυωνύμου: ±1, ±3, ±5, ±15 Θα κάνουμε Horner για ρ = 3 2-17 38-15 3 6-33 15 2-11 5 0 Το πολυώνυμο γίνεται: 32 11 5 Άρα έχουμε την ανίσωση: 0 32 11 5 0 Επιμέλεια Θεμάτων και Λύσεων : Σταματίνα Κατσίγιαννη (Μαθηματικός) Σελίδα 5

30 3 2 11 5 0 Δ11 4 2 512140810 5 ή Οπότε Θέμα 4,3 5, i. Αφού το 1 είναι παράγοντας του πολυωνύμου Q(x) έχουμε: 1 0 1 6 1 160 6 60 6 60 61060 2 0 1 Θέτουμε (2) Η (1) λόγω της (2) γίνεται: 2 0 3 Πιθανές ακέραιες ρίζες: 1, 2 Επιμέλεια Θεμάτων και Λύσεων : Σταματίνα Κατσίγιαννη (Μαθηματικός) Σελίδα 6

Κάνουμε Horner για ρ=1 1 0 1 2 1 1 1 2 1 1 2 0 Η (3) γίνεται: Για 1 η (2) γίνεται: 1 1 2 0 10 1 ή 2 0, Δ 7 δεν έχει πραγματικές ρίζες ii. Για έχουμε: 6 6 6 6 6 11 6 Λύνουμε την εξίσωση 0 6 11 6 0 (1) Πιθανές ακέραιες ρίζες: 1, 2, Κάνουμε Horner για ρ=1 3, 6 1 6 11 6 1 1 5 6 1 5 6 0 Η (1) γίνεται: 1 56 0 10 1 ή Επιμέλεια Θεμάτων και Λύσεων : Σταματίνα Κατσίγιαννη (Μαθηματικός) Σελίδα 7

5 6 0 2 ή 3 Λύνουμε την εξίσωση: 2 0 2 62 11 2 60 Παρατηρούμε ότι η εξίσωση 2 0 είναι η 0 με άγνωστο το 2 Οπότε 2 1 0 ή 2 2 1 ή 2 3 3 Β) Έχουμε 1 οπότε η εξίσωση 2 10 γίνεται: Για η (Ι) γίνεται: Θέτουμε 1 21 1 0 Ι 2 0 (III) 1 2 1 10 3 1 231 10 2 2 2 10 2 2 2 10 2 22 0 Άρα η (ΙΙ) γίνεται: 20 1 ή ή 2. ΙΙ Για 2 από (ΙΙΙ) έχουμε: 2 1 0 1, αφού 0, Επιμέλεια Θεμάτων και Λύσεων : Σταματίνα Κατσίγιαννη (Μαθηματικός) Σελίδα 8