f (x ) f (x ) f (x )f (x ) f (x ) f (x ) f (x ) f (x ) 1 f (x )f (x )

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "f (x ) f (x ) f (x )f (x ) f (x ) f (x ) f (x ) f (x ) 1 f (x )f (x )"

Transcript

1 ΘΕΜΑ Α ΜΑΘΗΜΑΤΙΚΑ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ 2 ο ΔΙΑΓΩΝΙΣΜΑ ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ A Βλέπε Σχολικό βιβλίο σελίδα 76 A2 Βλέπε Σχολικό βιβλίο σελίδα 74 2 Βλέπε Σχολικό βιβλίο σελίδες 7-7 Α α) Λ, β) Σ, γ) Σ, δ) Λ, ε) Λ ΘΕΜΑ Β Έστω,2 με Παίρνουμε τη διαφορά f ( ) f ( ) f ( ) f ( ) f ( ) f ( ) g( ) g( ) f ( 2) f ( ) f ( ) f ( 2) f ( ) f ( ) f ( )f ( ) f ( ) f ( ) f ( ) f ( ) f ( )f ( ) 2 f ( ) f ( 2) f ( ) f ( 2) αν η συνάρτηση f είναι γνησίως αύξουσα στο και 2 θα έχουμε: f( 2) f( ) f( 2) f( ), επίσης έχουμε f ( ), f( 2) f( )f( 2), οπότε η διαφορά f( 2) f ( ) f( 2)f ( ) g( ) g( ) g( ) g( ) f ( ) f ( 2) 2 Άρα η συνάρτηση g είναι γνησίως αύξουσα στο Oμοίως αν η συνάρτηση f είναι γνησίως φθίνουσα στο, η συνάρτηση g είναι γνησίως φθίνουσα στο Άρα έχουν οι f,g το ίδιο είδος μονοτονίας στο Σελίδα από 6

2 2 Έστω ότι οι συναρτήσεις f,g, έχουμε: g f είναι γνησίως αύξουσες στο Tότε αν 2,2 g g f g f g fog fog με Άρα η fog είναι γνησίως αύξουσα στο Έστω ότι οι συναρτήσεις f,g,2 R 2, έχουμε: g f είναι γνησίως φθίνουσες στο Tότε αν g( ) g( ) f (g( )) f(g( )) (fog)( ) (fog)( ) 2 Άρα η fog είναι γνησίως αύξουσα στο Αφού η fog είναι γνησίως αύξουσα στο θα είναι και - Η εξίσωση f (g( )) f (g(4 2)) γίνεται f g:' ' (f g)( ) (f g)(4 2) Θεωρούμε τη συνάρτηση πολυωνυμική Εφαρμόζουμε το Θ Bolzano στο διάστημα, h ή [,] ( ή) h(), h( ) 2 h() 4 2, η οποία είναι συνεχής στο σαν Bolzano υπάρχει τουλάχιστον ένα (,) : h( ) Εφαρμόζουμε το Θ Bolzano στο διάστημα, h ή [,] ( ή) h(), h() 4 Bolzano υπάρχει τουλάχιστον ένα 2 (,) : h( 2) Εφαρμόζουμε το Θ Bolzano στο,5 h ή [,5] ( ή) h() 4, h(5) 6 Bolzano υπάρχει τουλάχιστον ένα (,5) : h( ) και επειδή η εξίσωση h() 4 2 είναι πολυωνυμική ου θα έχει το πολύ τρεις ρίζες, άρα έχει ακριβώς τρεις τις, 2, Σελίδα 2 από 6

3 Επίσης έχουμε 2 5, δηλαδή έχουμε δύο θετικές και μια αρνητική Σχόλιο: ένας τρόπος για την επιλογή των κατάλληλων διαστημάτων είναι με δοκιμές 4 Από το ερώτημα (2) η συνάρτηση fog είναι γνησίως αύξουσα, οπότε η ανίσωση γίνεται: f g: 2 2 fog 4 fog Άρα, 2 2, ΘΕΜΑ Γ Πρέπει: Άρα A f (, ) 2 f () ln( ) ln( ) ln ln( ) ln ln f () ln Όμως ln ln f (), για κάθε (, ) Από τα προηγούμενα έχουμε: Έστω, 2(, ) Τότε: f () ln, για κάθε (, ) ln ln f ( ) f ( 2) Άρα η συνάρτηση f είναι γνησίως αύξουσα στο (, ) 4 Επειδή η συνάρτηση f σημαίνει ότι είναι αντιστρέψιμη με είναι γνησίως αύξουσα στο (, ) θα είναι -, που f : f (A) A H συνάρτηση f είναι συνεχής ως σύνθεση των συνεχών συναρτήσεων ln και στο A (, ), οπότε το σύνολο τιμών της (πεδίο ορισμού της f f ) είναι: Σελίδα από 6

4 f (A) lim f (), lim f () (,) γιατί: Θέτουμε Τότε u και έχουμε lim u lim lim f () lim ln lim ln u u Θέτουμε u και έχουμε Τότε lim u lim lim f () lim ln lim ln u u Mε y (,) η εξίσωση y y y ln ln y y y y ln ln Άρα f () ln, 5 Θεωρούμε τη συνάρτηση t() f() h() ln ln ln ln, t Η συνάρτηση είναι συνεχής, ως άθροισμα των συνεχών f (), ln και γνησίως αύξουσα στο (, ), οπότε το σύνολο τιμών της θα είναι t( ) lim t(), lim t() (, ) γιατί: lim t() lim f () ln ( ) ( ) και lim t() lim f () ln ( ) Επειδή το (, ) t(b) υπάρχει τέτοιο ώστε t( ) f( ) h( ) 6 Από το 2 ο ερώτημα έχουμε f() για κάθε (, ) Τότε f (), αφού f() και f(2) f (2) f () 2 f () f () f () lim lim lim ( ) f (2) f (2) f (2) f (2) 2 2 Σελίδα 4 από 6

5 ΘΕΜΑ Δ 2, (2), Έστω,2 με f( ) f( 2) 2f( ) 2f( 2), () και f ( ) f ( ) προσθέτουμε τις () και (2), έτσι έχουμε 2 2, άρα η συνάρτηση f 2 Θα αποδείξουμε ότι η ευθεία y δηλαδή η εξίσωση f() 2 f ( ) 2f ( ) f ( ) 2f ( ), οπότε έχει με τη έχει για κάθε είναι - C f ένα τουλάχιστον κοινό σημείο, λύση στο f () f() f () f () f() 2 f () 2f () 2 f () 2 f() δηλαδή για κάθε έχουμε λύση, άρα το σύνολο τιμών είναι το Θέτουμε όπου Άρα f () y y 2y y 2y f () 2, ος τρόπος: Στην f () 2, για έχουμε f () f () f( ) 2 ος τρόπος: Αφού η συνάρτηση f έχει σύνολο τιμών το και είναι - θα υπάρχει μοναδικό :f( ) έχουμε: Θέτουμε στην f 2f όπου και f 2f 2, οπότε f( ) Άρα η C f τέμνει τον άξονα στο σημείο A(,) 4 ος τρόπος: Έστω ότι υπάρχουν,2 με 2 και έστω f( ) f( 2) Τότε: f( ) f( 2) 2f( ) 2f( 2) () και Προσθέτοντας τις (), (4) έχουμε: 2 (4) f ( ) f ( ) f ( ) 2f ( ) f ( 2) 2f ( 2) 2 2 Άτοπο γιατί 2 Άρα για κάθε 2 f( ) f( 2), δηλαδή η f είναι γνησίως αύξουσα στο 2 ος τρόπος: Η συνάρτηση αυξουσών συναρτήσεων Οι συναρτήσεις f, f () 2 είναι γνησίως αύξουσα σαν άθροισμα των, 2 f είναι συμμετρικές ως προς την ευθεία y, άρα έχουν το ίδιο είδος μονοτονίας, δηλαδή η f είναι γνησίως αύξουσα στο Σελίδα 5 από 6

6 2 f 2 5 f 2f f f 2 f f, 2 f 2 έτσι έχουμε f() f() και επειδή lim ( ) lim, από το κριτήριο της παρεμβολής έχουμε: lim f f, άρα συνεχής στο 6 Έστω Έχουμε Αρκεί να αποδείξουμε ότι f () 2 f(), (5) και lim f () f( ) f ( ) 2f( ), (6), αφαιρούμε κατά μέλη τις σχέσεις (5) και (6) Έτσι έχουμε f f 2 f f f f f f f f 2 f f f f f f f f 2 f f f f f f 2 f f f f f f 2 f f f f και επειδή lim ( ) lim, τότε από το κριτήριο παρεμβολής lim f f lim f f, άρα η συνάρτηση f είναι συνεχής στο Η επιμέλεια των θεμάτων πραγματοποιήθηκε από τους Κωνσταντόπουλο Κωνσταντίνο και Μοτσάκο Βασίλειο Σελίδα 6 από 6

f (x ) f (x ) f (x )f (x ) f (x ) f (x ) f (x ) f (x ) 1 f (x )f (x )

f (x ) f (x ) f (x )f (x ) f (x ) f (x ) f (x ) f (x ) 1 f (x )f (x ) o ΔΙΑΓΩΝΙΣΜΑ ΝΟΕΜΒΡΙΟΣ 26: ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α ΜΑΘΗΜΑΤΙΚΑ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ ο ΔΙΑΓΩΝΙΣΜΑ ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ A Βλέπε

Διαβάστε περισσότερα

Διαγωνίσματα ψηφιακού βοηθήματος σχολικού έτους

Διαγωνίσματα ψηφιακού βοηθήματος σχολικού έτους ΨΗΦΙΑΚΌ ΒΟΗΘΗΜΑ ΥΠΠΕΘ Διαγωνίσματα ψηφιακού βοηθήματος σχολικού έτους 7-8 Με τις λύσεις τους o ΔΙΑΓΩΝΙΣΜΑ ΝΟΕΜΒΡΙΟΣ 7: ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΣΠΟΥΔΩΝ

Διαβάστε περισσότερα

[Κεφάλαιο 1 Μέρος Β' του σχολικού βιβλίου] x είναι συνεχής στο σαν άθροισμα συνεχών συναρτήσεων. για x. άρα g(x) 0 και αφού είναι συνεχής

[Κεφάλαιο 1 Μέρος Β' του σχολικού βιβλίου] x είναι συνεχής στο σαν άθροισμα συνεχών συναρτήσεων. για x. άρα g(x) 0 και αφού είναι συνεχής ΜΑΘΗΜΑΤΙΚΑ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ 3 ο ΔΙΑΓΩΝΙΣΜΑ ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ (Κεφάλαιο ) [Κεφάλαιο 1 Μέρος Β' του σχολικού βιβλίου] ΘΕΜΑ

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ

ΜΑΘΗΜΑΤΙΚΑ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ o ΔΙΑΓΩΝΙΣΜΑ ΝΟΕΜΒΡΙΟΣ 06: ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ ο ΔΙΑΓΩΝΙΣΜΑ ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ (Κεφάλαιο )

Διαβάστε περισσότερα

f (x) 2e 5(x 1) 0, άρα η f

f (x) 2e 5(x 1) 0, άρα η f ΜΑΘΗΜΑΤΙΚΑ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ 8 ο ΔΙΑΓΩΝΙΣΜΑ ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ (Σε όλη την ύλη) ΘΕΜΑ Α 1 Βλέπε σχολικό βιβλίο σελίδα 14-143

Διαβάστε περισσότερα

x, οπότε για x 0 η g παρουσιάζει

x, οπότε για x 0 η g παρουσιάζει ΜΑΘΗΜΑΤΙΚΑ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ 9 ο ΔΙΑΓΩΝΙΣΜΑ ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ (Σε όλη την ύλη) ΘΕΜΑ Α A Βλέπε Σχολικό βιβλίο σελίδα 33 A

Διαβάστε περισσότερα

1. Βλέπε σχολικό βιβλίο «Μαθηματικά θετικής και τεχνολογικής Κατεύθυνσης», σελίδα

1. Βλέπε σχολικό βιβλίο «Μαθηματικά θετικής και τεχνολογικής Κατεύθυνσης», σελίδα 6 o ΔΙΑΓΩΝΙΣΜΑ ΑΠΡΙΛΙΟΣ 16: ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ 6 ο ΔΙΑΓΩΝΙΣΜΑ ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ (Σε όλη

Διαβάστε περισσότερα

Διαγώνισμα στις Συναρτήσεις και τα Όρια τους

Διαγώνισμα στις Συναρτήσεις και τα Όρια τους Διαγώνισμα στις Συναρτήσεις και τα Όρια τους 8-9 Θέμα Α Α Δίνεται η γραφική παράσταση της συνάρτησης f α) Να βρείτε το πεδίο ορισμού και το σύνολο τιμών της f β) Να βρείτε, αν υπάρχουν, τα παρακάτω όρια

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ 1 ο ΔΙΑΓΩΝΙΣΜΑ ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ

ΜΑΘΗΜΑΤΙΚΑ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ 1 ο ΔΙΑΓΩΝΙΣΜΑ ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ o ΔΙΑΓΩΝΙΣΜΑ ΔΕΚΕΜΒΡΙΟΣ 8: ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α ΜΑΘΗΜΑΤΙΚΑ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ ο ΔΙΑΓΩΝΙΣΜΑ ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ A Βλέπε

Διαβάστε περισσότερα

x είναι f 1 f 0 f κ λ

x είναι f 1 f 0 f κ λ 3 Ο ΔΙΑΓΩΝΙΣΜΑ ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ [Κεφάλαια, Μέρος Β' του σχολικού βιβλίου] ΘΕΜΑ Α.Βλέπε σχολικό βιβλίο, σελίδα 4.. Βλέπε σχολικό βιβλίο, σελίδα 88, 89. 3. α) ΣΩΣΤΟ, διότι αν η f παραγωγίσιμη στο χ

Διαβάστε περισσότερα

Επαναληπτικά θέματα στα Μαθηματικά προσανατολισμού-ψηφιακό σχολείο ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ

Επαναληπτικά θέματα στα Μαθηματικά προσανατολισμού-ψηφιακό σχολείο ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΚΕΦΑΛΑΙΟ 1 ο -ΣΥΝΑΡΤΗΣΕΙΣ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ Απο το Ψηφιακό Σχολείο του ΥΠΠΕΘ Επιμέλεια: Συντακτική Ομάδα mathpgr Συντονιστής:

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ. f (f )(x) x f (f )(x) x f (f )(x) (f ) (x)

ΜΑΘΗΜΑΤΙΚΑ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ. f (f )(x) x f (f )(x) x f (f )(x) (f ) (x) ΜΑΘΗΜΑΤΙΚΑ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ 4 Ο ΔΙΑΓΩΝΙΣΜΑ ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α A Βλέπε Σχολικό βιβλίο σελίδα 4 A α) Βλέπε Σχολικό βιβλίο

Διαβάστε περισσότερα

Απαντήσεις Διαγωνίσματος Μαθηματικών Προσανατολισμού Γ Λυκείου 03/11/2018

Απαντήσεις Διαγωνίσματος Μαθηματικών Προσανατολισμού Γ Λυκείου 03/11/2018 ΕΠΩΝΥΜΟ: ΟΝΟΜΑ: ΤΜΗΜΑ: ΤΣΙΜΙΣΚΗ &ΚΑΡΟΛΟΥ ΝΤΗΛ ΓΩΝΙΑ THΛ: 7077 594 ΑΡΤΑΚΗΣ - Κ ΤΟΥΜΠΑ THΛ: 993 9494 ΗΜΕΡΟΜΗΝΙΑ: Απαντήσεις Διαγωνίσματος Μαθηματικών Προσανατολισμού Γ Λυκείου 03//08 Θέμα Α A Σχολικό βιβλίο

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ ΑΠΑΝΤΗΣΕΙΣ ΣΤΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ 2016

ΜΑΘΗΜΑΤΙΚΑ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ ΑΠΑΝΤΗΣΕΙΣ ΣΤΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ 2016 ΜΑΘΗΜΑΤΙΚΑ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ ΑΠΑΝΤΗΣΕΙΣ ΣΤΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ 16 ΘΕΜΑ Α Α1 Σχολικό Βιβλίο σελ 6 Α Σχολικό Βιβλίο σελ 141 Α Σχολικό Βιβλίο σελ

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ (ενδεικτικές λύσεις)

ΔΙΑΓΩΝΙΣΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ (ενδεικτικές λύσεις) ΔΙΑΓΩΝΙΣΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ 04--07 (ενδεικτικές λύσεις) ΘΕΜΑ A Α. Θεωρία / Σχολικό Βιβλίο / Σελίδα 99 Α. Θεωρία / Σχολικό Βιβλίο / Σελίδα 3 Α3. α) Ο ισχυρισμός είναι Ψ (ψευδής). β)

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤ ΙΚΑ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ ΑΠΑΝΤ ΗΣΕΙΣ ΣΤ Α ΘΕΜΑΤ Α ΕΞΕΤ ΑΣΕΩΝ 2016.

ΜΑΘΗΜΑΤ ΙΚΑ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ ΑΠΑΝΤ ΗΣΕΙΣ ΣΤ Α ΘΕΜΑΤ Α ΕΞΕΤ ΑΣΕΩΝ 2016. ΜΑΘΗΜΑΤ ΙΚΑ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ ΑΠΑΝΤ ΗΣΕΙΣ ΣΤ Α ΘΕΜΑΤ Α ΕΞΕΤ ΑΣΕΩΝ 16 ΘΕΜΑ Α Α1 Σχολικό Βιβλίο σελ 6 Α Σχολικό Βιβλίο σελ 141 Α Σχολικό Βιβλίο

Διαβάστε περισσότερα

ΠΑΝΕΛΛΑ ΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΕΥΤΕΡΑ 10 ΙΟΥΝΙΟΥ 2019 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΑΠΑΝΤΗΣΕΙΣ

ΠΑΝΕΛΛΑ ΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΕΥΤΕΡΑ 10 ΙΟΥΝΙΟΥ 2019 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑ ΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΕΥΤΕΡΑ 10 ΙΟΥΝΙΟΥ 2019 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΜΑ Α ΑΠΑΝΤΗΣΕΙΣ Α1. α. Ορισμός στο σχολικό βιβλίο σελίδα 15. β. i) Μια συνάρτηση

Διαβάστε περισσότερα

Διαγώνισμα Προσομοίωσης Εξετάσεων 2017

Διαγώνισμα Προσομοίωσης Εξετάσεων 2017 Ένα διαγώνισμα προετοιμασίας για τους μαθητές της Γ Λυκείου στα Μαθηματικά Προσανατολισμού Διαγώνισμα Προσομοίωσης Εξετάσεων 7 Μαθηματικά Προσανατολισμού Γ Λυκείου Κων/νος Παπασταματίου Μαθηματικός Φροντιστήριο

Διαβάστε περισσότερα

ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ ΗΜΕΡΗΣΙΩΝ ΓΕΝΙΚΩΝ ΛΥΚΕΙΩΝ. f ( x) 0 0 2x 0 x 0

ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ ΗΜΕΡΗΣΙΩΝ ΓΕΝΙΚΩΝ ΛΥΚΕΙΩΝ. f ( x) 0 0 2x 0 x 0 ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ ΗΜΕΡΗΣΙΩΝ ΓΕΝΙΚΩΝ ΛΥΚΕΙΩΝ ΑΠΑΝΤΗΣΕΙΣ ΤΩΝ ΘΕΜΑΤΩΝ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΚΑΙ ΟΙΚΟΝΟΜΙΚΩΝ ΣΠΟΥΔΩΝ Γ ΛΥΚΕΙΟΥ (ΝΕΟ ΣΥΣΤΗΜΑ) 8 ΜΑΪΟΥ 6 ΘΕΜΑ Α Α. Θεωρία, βλ. σχολικό βιβλίο

Διαβάστε περισσότερα

z i z 1 z i z 1 z i z i z 2 z 1 z zi iz 1 z 2 z 1 i z z 2 z i 2vi 2 k v v k v k 0 v 0

z i z 1 z i z 1 z i z i z 2 z 1 z zi iz 1 z 2 z 1 i z z 2 z i 2vi 2 k v v k v k 0 v 0 ΕΚΠ. ΕΤΟΥΣ -4 Λύσεις Θέμα ο α) H f παραγωγίσιμη στο (,) ως άθροισμα παραγωγίσιμων συναρτήσεων με: f() για κάθε (,). Αφού η f είναι συνεχής στο (,) και f() για κάθε (,) είναι γνησίως αύξουσα στο (,) άρα

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 3 ο ΔΙΑΓΩΝΙΣΜΑ ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ (Κεφάλαιο 1, 2, 3)

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 3 ο ΔΙΑΓΩΝΙΣΜΑ ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ (Κεφάλαιο 1, 2, 3) 3 o ΔΙΑΓΩΝΙΣΜΑ ΦΕΒΡΟΥΑΡΙΟΣ 0: ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 3 ο ΔΙΑΓΩΝΙΣΜΑ ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ (Κεφάλαιο,, 3) ΘΕΜΑ Α. (i) Βλέπε σχολικό βιβλίο «Μαθηματικά θετικής

Διαβάστε περισσότερα

(, ) ( x0, ), τότε να αποδείξετε ότι το. x, στο οποίο όμως η f είναι συνεχής. Αν f ( x) 0 στο

(, ) ( x0, ), τότε να αποδείξετε ότι το. x, στο οποίο όμως η f είναι συνεχής. Αν f ( x) 0 στο Λύσεις θεμάτων ΠΡΟΣΟΜΟΙΩΣΗΣ -4- Πανελλαδικών Εξετάσεων 6 Στο μάθημα: «Μαθηματικά Προσανατολισμού Θετικών Σπουδών και Σπουδών Οικονομίας και Πληροφορικής» Γ Λυκείου, /4/6 ΘΕΜΑ ο Α Πότε λέμε ότι μία συνάρτηση

Διαβάστε περισσότερα

Λύσεις των θεμάτων των Πανελλαδικών Εξετάσεων στα Μαθηματικά Προσανατολισμού 2016

Λύσεις των θεμάτων των Πανελλαδικών Εξετάσεων στα Μαθηματικά Προσανατολισμού 2016 Λύσεις των θεμάτων των Πανελλαδικών Εξετάσεων στα Μαθηματικά Προσανατολισμού 16 ΛΥΣΕΙΣ ΤΩΝ ΘΕΜΑΤΩΝ ΤΩΝ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ

Διαβάστε περισσότερα

Σ Υ Ν Α Ρ Τ Η Σ Ε Ι Σ

Σ Υ Ν Α Ρ Τ Η Σ Ε Ι Σ 33 Θ Ε Μ Α Τ Α με λύση Σ Υ Ν Α Ρ Τ Η Σ Ε Ι Σ Επιμέλεια: Νίκος Λέντζος Καθηγητής Μαθηματικών Δ/θμιας Εκπαίδευσης Από το βιβλίο ΜΑΘΗΜΑΤΙΚΑ (έκδοση 4) Γ ΛΥΚΕΙΟΥ τεύχος Α Αναστάσιου Χ. Μπάρλα μα προσφορά του

Διαβάστε περισσότερα

( ) f( x ) ΔΙΑΓΩΝΙΣΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ. Επώνυμο: Όνομα: Τμήμα: Ημερομηνία: Α Βαθ. Β Βαθ. Μ.Ο. (ενδεικτικές λύσεις)

( ) f( x ) ΔΙΑΓΩΝΙΣΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ. Επώνυμο: Όνομα: Τμήμα: Ημερομηνία: Α Βαθ. Β Βαθ. Μ.Ο. (ενδεικτικές λύσεις) Επώνυμο: Όνομα: Τμήμα: ΤΣΙΜΙΣΚΗ & ΚΑΡΟΛΟΥ ΝΤΗΛ ΓΩΝΙΑ ΤΗΛ : 777 594 ΑΡΤΑΚΗΣ Κ. ΤΟΥΜΠΑ ΤΗΛ : 99 9494 www.sygrono.gr Ημερομηνία: Α Βαθ. Β Βαθ. Μ.Ο. ΔΙΑΓΩΝΙΣΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ (ενδεικτικές

Διαβάστε περισσότερα

. Β2. Η συνάρτηση f είναι παραγωγίσιμη με: 1 1 1, και f ( x) ( ln(ln x) ).

. Β2. Η συνάρτηση f είναι παραγωγίσιμη με: 1 1 1, και f ( x) ( ln(ln x) ). 4 Ο ΔΙΑΓΩΝΙΣΜΑ ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ (Σε όλη την ύλη) ΘΕΜΑ Α Σχολικό βιβλίο, σελίδα 4 Σχολικό βιβλίο, σελίδα Σχολικό βιβλίο, σελίδα 6 4 α) Σωστό β) Λάθος γ) Σωστό δ) Σωστό ε) Λάθος ΘΕΜΑ Β Β Θέτουμε f()

Διαβάστε περισσότερα

#Ευθύνη_Μαθηματικά ΤΕΛΟΣ 1ΗΣ ΑΠΟ 11 ΣΕΛΙΔΕΣ

#Ευθύνη_Μαθηματικά ΤΕΛΟΣ 1ΗΣ ΑΠΟ 11 ΣΕΛΙΔΕΣ ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ ΠΡΟΣΟΜΟΙΩΣΗ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΥΡΙΑΚΗ 9 ΑΠΡΙΛΙΟΥ 018 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΕΝΤΕΚΑ (11) ΘΕΜΑ Α Α1. Σχολικό

Διαβάστε περισσότερα

AΠΑΝΤΗΣΕΙΣ. z z 0 που είναι τριώνυμο με διακρίνουσα. 2 Re z 4Im z R. x 2 y x y 2

AΠΑΝΤΗΣΕΙΣ. z z 0 που είναι τριώνυμο με διακρίνουσα. 2 Re z 4Im z R. x 2 y x y 2 AΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α Α Βλ σχολ βιβλίο σελ 5 Α Βλ σχολ βιβλίο σελ Α Σ Σ Σ 4 Σ 5 - Λ ΘΕΜΑ Β Β Η εξίσωση () z ισοδυναμεί με την z z που είναι τριώνυμο με διακρίνουσα 4 διότι 4 Άρα οι ρίζες είναι συζυγείς μιγαδικές

Διαβάστε περισσότερα

2 ο Διαγώνισμα Ύλη: Συναρτήσεις

2 ο Διαγώνισμα Ύλη: Συναρτήσεις ο Διαγώνισμα 08-9 Ύλη: Συναρτήσεις Θέμα Α Α. Θεωρήστε τον παρακάτω ισχυρισμό: «Αν μια συνάρτηση : είναι - τότε είναι και γνησίως μονότονη.» α) Να χαρακτηρίσετε τον ισχυρισμό γράφοντας στο τετράδιό σας

Διαβάστε περισσότερα

lim f ( x ) 0 gof x x για κάθε x., τότε

lim f ( x ) 0 gof x x για κάθε x., τότε Μαθηματικά Προσανατολισμού Γ Λυκείου, ο Κεφάλαιο-Συναρτήσεις ΓΕΝΙΚΟ ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΣΤΟ ΚΕΦΑΛΑΙΟ ο ΣΥΝΑΡΤΗΣΕΙΣ ΘΕΜΑ ο Α Πότε λέμε ότι μία συνάρτηση f είναι «-» στο πεδίο ορισμού της Α (Μονάδες7)

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2019 ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ

ΔΙΑΓΩΝΙΣΜΑ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2019 ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ ΛΥΣΕΙΣ ΣΤΟ ο ΠΡΟΣΟΜΟΙΩΜΕΝΟ ΔΙΑΓΩΝΙΣΜΑ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 9 ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ 5/4/9 ΘΕΜΑ Α Α. Θεωρία-Ορισμός,σχολικού

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ/ Γ ΛΥΚΕΙΟΥ ΗΜΕΡΟΜΗΝΙΑ: ΑΠΑΝΤΗΣΕΙΣ

ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ/ Γ ΛΥΚΕΙΟΥ ΗΜΕΡΟΜΗΝΙΑ: ΑΠΑΝΤΗΣΕΙΣ ΔΙΑΓΩΝΙΣΜΑ ΕΚΠ. ΕΤΟΥΣ 0 03 ΜΑΘΗΜΑ / ΤΑΞΗ : ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ/ Γ ΛΥΚΕΙΟΥ ΗΜΕΡΟΜΗΝΙΑ: 5 05 ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α Α. ΘΕΩΡΙΑ ΣΕΛ. 7 ΒΙΒΛΙΟ ΜΠΑΡΛΑ. Α. ΘΕΩΡΙΑ ΣΕΛ. 66 ΒΙΒΛΙΟ ΜΠΑΡΛΑ. Α3. α Σ, β Λ, γ Λ, δ

Διαβάστε περισσότερα

Μαθηματικά κατεύθυνσης Γ Λυκείου Διαγώνισμα διάρκειας 2 ωρών στις Συναρτήσεις

Μαθηματικά κατεύθυνσης Γ Λυκείου Διαγώνισμα διάρκειας 2 ωρών στις Συναρτήσεις ΘΕΜΑ Α Μαθηματικά κατεύθυνσης Γ Λυκείου Διαγώνισμα διάρκειας ωρών στις Συναρτήσεις 0 9-05 Να χαρακτηρίσετε τις παρακάτω προτάσεις ως σωστές (Σ) ή λανθασμένες (Λ).. Αν η συνάρτηση f είναι -, είναι και γνησίως

Διαβάστε περισσότερα

********* Β ομάδα Κυρτότητα Σημεία καμπής*********

********* Β ομάδα Κυρτότητα Σημεία καμπής********* ********* Β ομάδα Κυρτότητα Σημεία καμπής********* 5 Για την δύο φορές παραγωγίσιμη στο R συνάρτηση ισχύει: e για κάθε R. Να αποδείξετε ότι η γραφική παράσταση της δεν παρουσιάζει σημείο καμπής. Υποθέτουμε

Διαβάστε περισσότερα

ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 10: ΕΥΡΕΣΗ ΤΟΠΙΚΩΝ ΑΚΡΟΤΑΤΩΝ

ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 10: ΕΥΡΕΣΗ ΤΟΠΙΚΩΝ ΑΚΡΟΤΑΤΩΝ ΚΕΦΑΛΑΙΟ ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ : ΕΥΡΕΣΗ ΤΟΠΙΚΩΝ ΑΚΡΟΤΑΤΩΝ [Ενότητα Προσδιορισμός των Τοπικών Ακροτάτων - Θεώρημα Εύρεση Τοπικών Ακροτάτων του κεφ..7 Μέρος Β του σχολικού βιβλίου]. ΑΣΚΗΣΕΙΣ Άσκηση.

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝΔΙΑ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑΔΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2018 A ΦΑΣΗ

ΟΜΟΣΠΟΝΔΙΑ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑΔΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2018 A ΦΑΣΗ ΤΑΞΗ: Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΣ: ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ / ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ Ημερομηνία: Σάββατο 13 Ιανουαρίου 18 Διάρκεια Εξέτασης: 3 ώρες ΘΕΜΑ Α ΑΠΑΝΤΗΣΕΙΣ Α1. Απόδειξη

Διαβάστε περισσότερα

Ο μαθητής που έχει μελετήσει τo κεφάλαιο αυτό θα πρέπει να είναι σε θέση:

Ο μαθητής που έχει μελετήσει τo κεφάλαιο αυτό θα πρέπει να είναι σε θέση: Ο μαθητής που έχει μελετήσει τo κεφάλαιο αυτό θα πρέπει να είναι σε θέση:. Να μπορεί να βρίσκει απο τη γραφική παράσταση μιας συνάρτησης το πεδίο ορισμού της το σύνολο τιμών της την τιμή της σε ένα σημείο..

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Ο.Π. ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ

ΜΑΘΗΜΑΤΙΚΑ Ο.Π. ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ Κανάρη 36, Δάφνη Τηλ. 973934 & 9769376 ΜΑΘΗΜΑΤΙΚΑ Ο.Π. ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α Α. Σχολικό βιβλίο σελ. 6. Α. Σχολικό βιβλίο σελ. 8. Α3. α) Λ β) Σ γ) Λ δ)

Διαβάστε περισσότερα

f ( x) f ( x ) για κάθε x A

f ( x) f ( x ) για κάθε x A ΛΥΣΕΙΣ ΠΡΟΣΟΜΟΙΩΣΗ ΘΕΜΑΤΩΝ 3 3/04/06 ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΜΑ ο Α. Τι ονομάζουμε ρυθμό μεταβολής του y = f() ως προς το στο σημείο 0 ;

Διαβάστε περισσότερα

Να χαρακτηρίσετε ως σωστές (Σ) ή λάθος (Λ) τις παρακάτω προτάσεις :

Να χαρακτηρίσετε ως σωστές (Σ) ή λάθος (Λ) τις παρακάτω προτάσεις : Δ Ι Α Γ Ω Ν Ι Σ Μ Α Μ Α Θ Η Μ Α Τ Ι Κ Ω Ν Θ Ε Τ Ι Κ Η Σ Τ Ε Χ Ν Ο Λ Ο Γ Ι Κ Η Σ Κ Α Τ Ε Υ Θ Υ Ν Σ Η Σ Γ Λ Υ Κ Ε Ι Ο Υ Θ Ε Μ Α 1 Ο Έστω μια συνάρτηση, η οποία είναι ορισμένη σε ένα κλειστό διάστημα. Αν

Διαβάστε περισσότερα

2η ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ

2η ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ ΑΠΟ 3//7 ΕΩΣ 5//8 η ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ ΤΑΞΗ: ΜΑΘΗΜΑ: Γ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Ημερομηνία: Παρασκευή 5 Ιανουαρίου 8 Διάρκεια Εξέτασης: 3 ώρες ΘΕΜΑΤΑ ΘΕΜΑ Α Α. Αν μία συνάρτηση f είναι

Διαβάστε περισσότερα

αβ (, ) τέτοιος ώστε f(x

αβ (, ) τέτοιος ώστε f(x ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΚΕΦΑΛΑΙΟ ο: ΣΥΝΑΡΤΗΣΕΙΣ - ΟΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΘΕΜΑ Α Άσκηση α) Έστω μια συνάρτηση f, η οποία είναι ορισμένη σε ένα κλειστό διάστημα [ αβ., ] Αν η f είναι συνεχής στο [ αβ, ]

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝΔΙΑ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑΔΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2019 Β ΦΑΣΗ

ΟΜΟΣΠΟΝΔΙΑ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑΔΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2019 Β ΦΑΣΗ ΤΑΞΗ: Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΣ: ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ / ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ Ημερομηνία: Σάββατο Μαΐου 9 Διάρκεια Εξέτασης: 3 ώρες ΘΕΜΑ Α ΑΠΑΝΤΗΣΕΙΣ Α. Απόδειξη σχολικού

Διαβάστε περισσότερα

f(x) γν. φθίνουσα ολ.ελ. γν. αύξουσα

f(x) γν. φθίνουσα ολ.ελ. γν. αύξουσα ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΜΑ Α Α1. Σχολικό βιβλίο σελίδα 6 (i) Α. Σχολικό βιβλίο σελίδα 141 Α3. Σχολικό βιβλίο σελίδα 46-47 Α4. α. Λ β. Σ γ. Λ δ. Σ ε. Σ ΘΕΜΑ Β Β1. To πεδίο ορισμού της f είναι

Διαβάστε περισσότερα

ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β. 2x 1. είναι Τότε έχουμε: » τον χρησιμοποιούμε κυρίως σε θεωρητικές ασκήσεις.

ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β. 2x 1. είναι Τότε έχουμε: » τον χρησιμοποιούμε κυρίως σε θεωρητικές ασκήσεις. ΚΕΦΑΛΑΙΟ ο: ΣΥΝΑΡΤΗΣΕΙΣ - ΟΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΕΝΟΤΗΤΑ : ΣΥΝΑΡΤΗΣΗ - ΑΝΤΙΣΤΡΟΦΗ ΣΥΝΑΡΤΗΣΗ [Υποκεφάλαιο. Μονότονες συναρτήσεις Αντίστροφη συνάρτηση του σχολικού βιβλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ Παράδειγμα.

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ ΚΥΡΙΑΚΗ 18 ΔΕΚΕΜΒΡΙΟΥ 2016 ΑΠΑΝΤΗΣΕΙΣ. f x = x 6x + 3, x 1, 1. Η f είναι συ-

ΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ ΚΥΡΙΑΚΗ 18 ΔΕΚΕΜΒΡΙΟΥ 2016 ΑΠΑΝΤΗΣΕΙΣ. f x = x 6x + 3, x 1, 1. Η f είναι συ- ΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ ΚΥΡΙΑΚΗ 8 ΔΕΚΕΜΒΡΙΟΥ 06 ΘΕΜΑ Α Α. i. Σωστό ii. Λάθος iii. Λάθος iv. Λάθος v. Λάθος ΑΠΑΝΤΗΣΕΙΣ f = 6 +,,. Η f είναι συ- Α. Θεωρούμε συνάρτηση ( ) [ ]

Διαβάστε περισσότερα

ΘΕΜΑ 1 ο. Α1. Θεωρία, στη σελίδα 260 του σχολικού βιβλίου (Θ. Fermat). Α2. Θεωρία, στη σελίδα 169 του σχολικού βιβλίου.

ΘΕΜΑ 1 ο. Α1. Θεωρία, στη σελίδα 260 του σχολικού βιβλίου (Θ. Fermat). Α2. Θεωρία, στη σελίδα 169 του σχολικού βιβλίου. ΛΥΣΕΙΣ ΤΩΝ ΘΕΜΑΤΩΝ ΤΩΝ ΕΠΑΝΑΛΗΠΤΙΚΩΝ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΗΜΕΡΗΣΙΩΝ ΓΕΝΙΚΩΝ ΛΥΚΕΙΩΝ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ Πέμπτη, 9/6/6 ΘΕΜΑ ο Α. Θεωρία,

Διαβάστε περισσότερα

Κεφάλαιο 4: Διαφορικός Λογισμός

Κεφάλαιο 4: Διαφορικός Λογισμός ΣΥΓΧΡΟΝΗ ΠΑΙΔΕΙΑ ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ Κεφάλαιο 4: Διαφορικός Λογισμός Μονοτονία Συνάρτησης Tζουβάλης Αθανάσιος Κεφάλαιο 4: Διαφορικός Λογισμός Περιεχόμενα Μονοτονία συνάρτησης... Λυμένα παραδείγματα...

Διαβάστε περισσότερα

Λύσεις των θεμάτων προσομοίωσης -2- Σχολικό Έτος

Λύσεις των θεμάτων προσομοίωσης -2- Σχολικό Έτος Λύσεις θεμάτων ΠΡΟΣΟΜΟΙΩΣΗΣ -- Πανελλαδικών Εξετάσεων 6 Στο μάθημα: «Μαθηματικά Προσανατολισμού Θετικών Σπουδών και Σπουδών Οικονομίας και Πληροφορικής» Γ Λυκείου, 3/3/6 ΘΕΜΑ ο : Α. Τι ονομάζουμε αρχική

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 5: ΘΕΩΡΗΜΑ ROLLE [Θεώρημα Rolle του κεφ.2.5 Μέρος Β του σχολικού βιβλίου]. ΑΣΚΗΣΕΙΣ

ΚΕΦΑΛΑΙΟ 3ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 5: ΘΕΩΡΗΜΑ ROLLE [Θεώρημα Rolle του κεφ.2.5 Μέρος Β του σχολικού βιβλίου]. ΑΣΚΗΣΕΙΣ ΚΕΦΑΛΑΙΟ 3ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 5: ΘΕΩΡΗΜΑ ROLLE [Θεώρημα Rolle του κεφ..5 Μέρος Β του σχολικού βιβλίου]. ΑΣΚΗΣΕΙΣ ΘΕΜΑ Β Άσκηση 1. Να δείξετε ότι η εξίσωση 7 3 + + + 3= (1) έχει ακριβώς μία πραγματική

Διαβάστε περισσότερα

ΣΥΝΑΡΤΗΣΕΙΣ-ΟΡΙΟ-ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ

ΣΥΝΑΡΤΗΣΕΙΣ-ΟΡΙΟ-ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΣΥΝΑΡΤΗΣΕΙΣ-ΟΡΙΟ-ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΣΥΝΑΡΤΗΣΕΙΣ -ΟΡΙΟ ΣΥΝΕΧΕΙΑ Τι ονομάζουμε πραγματική συνάρτηση; Έστω Α ένα υποσύνολο τουr Ονομάζουμε πραγματική συνάρτηση με πεδίο ορισμού το Α μια διαδικασία (κανόνα)

Διαβάστε περισσότερα

Μονοτονία - Ακρότατα - 1 1 Αντίστροφη Συνάρτηση

Μονοτονία - Ακρότατα - 1 1 Αντίστροφη Συνάρτηση 4 Μονοτονία - Ακρότατα - Αντίστροφη Συνάρτηση Α. ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ Μονοτονία συνάρτησης Μια συνάρτηση f λέγεται: Γνησίως αύξουσα σ' ένα διάστημα Δ του πεδίου ορισμού της, όταν για οποιαδήποτε,

Διαβάστε περισσότερα

Λύσεις των θεμάτων των Πανελλαδικών Εξετάσεων στα Μαθηματικά Προσανατολισμού 2016

Λύσεις των θεμάτων των Πανελλαδικών Εξετάσεων στα Μαθηματικά Προσανατολισμού 2016 Λύσεις των θεμάτων των Πανελλαδικών Εξετάσεων στα Μαθηματικά Προσανατολισμού 16 ΛΥΣΕΙΣ ΤΩΝ ΘΕΜΑΤΩΝ ΤΩΝ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΗΜΕΡΗΣΙΩΝ ΓΕΝΙΚΩΝ ΛΥΚΕΙΩΝ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ

Διαβάστε περισσότερα

M z ισαπέχουν από τα 4,0, 4,0

M z ισαπέχουν από τα 4,0, 4,0 Επιμέλεια: Κωνσταντίνος Λ. Κωνσταντόπουλος Σχολικός Σύμβουλος Μαθηματικών Απαντήσεις- Υποδείξεις 5 ου Επαναληπτικού Διαγωνίσματος ΘΕΜΑ 1 ο Α1: Σχολικό βιβλίο σελ.. Α: Σχολικό βιβλίο σελ. A3: α) Λάθος Το

Διαβάστε περισσότερα

4ο Επαναληπτικό διαγώνισμα στα Μαθηματικά προσανατολισμού της Γ Λυκείου

4ο Επαναληπτικό διαγώνισμα στα Μαθηματικά προσανατολισμού της Γ Λυκείου 4ο Επαναληπτικό διαγώνισμα στα Μαθηματικά προσανατολισμού της Γ Λυκείου 8-9 Θέμα A A Αν οι συναρτήσεις,g είναι παραγωγίσιμες στο, να αποδείξετε ότι η συνάρτηση και ισχύει: g g παραγωγίσιμη στο μονάδες

Διαβάστε περισσότερα

Α4. δ. Α5. (i) Λάθος (ii) Λάθος (iii) Λάθος (iv) Σωστό (v) Λάθος. Φροντιστήρια ΣΥΣΤΗΜΑ Σελίδα 1. g x. και. f x g x έχουμε: Για την συνάρτηση

Α4. δ. Α5. (i) Λάθος (ii) Λάθος (iii) Λάθος (iv) Σωστό (v) Λάθος. Φροντιστήρια ΣΥΣΤΗΜΑ Σελίδα 1. g x. και. f x g x έχουμε: Για την συνάρτηση ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ ΎΛΗ: Συναρτήσεις Όρια Συνέχεια Συνάρτησης ΗΜΕΡΟΜΗΝΙΑ: Οκτωβρίου 07 Θερινά Τμήματα Απαντήσεις ΘΕΜΑ Α Α. Σχολικό Βιβλίο Σελίδα 5 (Μονάδες 5) Α. Σχολικό Βιβλίο Σελίδα

Διαβάστε περισσότερα

Μαθηματικά Προσανατολισμού Γ Λυκείου Κανιστράς Δημήτριος. Συναρτήσεις Όρια Συνέχεια Μια πρώτη επανάληψη Απαντήσεις των ασκήσεων.

Μαθηματικά Προσανατολισμού Γ Λυκείου Κανιστράς Δημήτριος. Συναρτήσεις Όρια Συνέχεια Μια πρώτη επανάληψη Απαντήσεις των ασκήσεων. Άσκηση Μαθηματικά Προσανατολισμού Γ Λυκείου Κανιστράς Δημήτριος Συναρτήσεις Όρια Συνέχεια Μια πρώτη επανάληψη Απαντήσεις των ασκήσεων Μέρος ο i. Δίνεται η γνησίως μονότονη συνάρτηση f : A IR. Να αποδείξετε

Διαβάστε περισσότερα

Λύσεις των θεμάτων προσομοίωσης -2- Σχολικό Έτος

Λύσεις των θεμάτων προσομοίωσης -2- Σχολικό Έτος Λύσεις των θεμάτων προσομοίωσης -- Σχολικό Έτος 5-6 Λύσεις θεμάτων ΠΡΟΣΟΜΟΙΩΣΗΣ -- Πανελλαδικών Εξετάσεων 6 Στο μάθημα: «Μαθηματικά Προσανατολισμού Θετικών Σπουδών και Σπουδών Οικονομίας και Πληροφορικής»

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ & ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ

ΜΑΘΗΜΑΤΙΚΑ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ & ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ 5 Σεπτεμβρίου 7 ΜΑΘΗΜΑΤΙΚΑ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ & ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ Απαντήσεις Θεμάτων Επαναληπτικών Πανελλαδικών Εξετάσεων Ημερησίων και Εσπερινών Γενικών Λυκείων ΘΕΜΑ

Διαβάστε περισσότερα

2 (1) 1 0 ln( (2)) 3 (2) 3 0. e f και f f. f( g( x)) 3x 4, για κάθε x. συνx 5. ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ 1 ου ΚΕΦΑΛΑΙΟΥ

2 (1) 1 0 ln( (2)) 3 (2) 3 0. e f και f f. f( g( x)) 3x 4, για κάθε x. συνx 5. ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ 1 ου ΚΕΦΑΛΑΙΟΥ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ου ΚΕΦΑΛΑΙΟΥ. Δίνονται οι συναρτήσεις f, g με πεδίο ορισμού το R, για τις οποίες ισχύει η σχέση: f( g( )) 4, για κάθε. a. Να δείξετε ότι η συνάρτηση g είναι αντιστρέψιμη. β. Να δείξετε

Διαβάστε περισσότερα

ΟΡΙΑ ΣΥΝΕΧΕΙΑ: Τύποι - Βασικές έννοιες

ΟΡΙΑ ΣΥΝΕΧΕΙΑ: Τύποι - Βασικές έννοιες Τύποι - Βασικές έννοιες Όρια - Συνέχεια 37. ΟΡΙΑ ΣΥΝΕΧΕΙΑ: Τύποι - Βασικές έννοιες Με τη βοήθεια του παρακάτω θεωρήματος διευκολύνεται ο υπολογισμός ορίων (άλγεβρα ορίων): Αν τα όρια lim f () και lim g()

Διαβάστε περισσότερα

ΑΠΑΝΤΗΣΕΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΘΕΡΙΝΩΝ ΤΜΗΜΑΤΩΝ

ΑΠΑΝΤΗΣΕΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΘΕΡΙΝΩΝ ΤΜΗΜΑΤΩΝ ΚΕΝΤΡΟ Αγίας Σοφίας 9 1044444 ΝΤΕΠΩ Β Όλγας 168 1048400 ΕΥΟΣΜΟΣ ΜΑλεξάνδρου 45 1077060 ΑΠΑΝΤΗΣΕΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΘΕΡΙΝΩΝ ΤΜΗΜΑΤΩΝ 05-01-018 ΘΕΜΑ Α 1 Σελίδα 95 και 104

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ. D x D / h x D δηλαδή. ισχύει για x 1, e ln x 1 e. e ln x e ln x e ln x e ln x 1 e ln x 1 f x f x

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ. D x D / h x D δηλαδή. ισχύει για x 1, e ln x 1 e. e ln x e ln x e ln x e ln x 1 e ln x 1 f x f x Λύση (ΘΕΜΑ ο ) Γ. Έστω οι συναρτήσεις : h ln με D 0, h f με D, h h h με 3 0, 0, ln h h D D / h D δηλαδή h3 h h ή D 0, h h h με 4 f,, h 3 D D / h D δηλαδή h4 h h ή D, Έτσι η εξίσωση h ln h f h 4 ισχύει

Διαβάστε περισσότερα

Διαγώνισμα (Μονάδες 2) β. Μια συνάρτηση f μπορεί να μην είναι συνεχής στα άκρα ακαι β αλλά να είναι συνεχής στο [ α, β ].

Διαγώνισμα (Μονάδες 2) β. Μια συνάρτηση f μπορεί να μην είναι συνεχής στα άκρα ακαι β αλλά να είναι συνεχής στο [ α, β ]. ΘΕΜΑ Α Διαγώνισμα 1 A 1. Έστω μια συνάρτηση f, η οποία είναι συνεχής σε ένα διάστημα Δ. Αν f () > σε κάθε εσωτερικό σημείο του Δ, τότε να αποδείξετε ότι η f είναι γνησίως αύξουσα σε όλο το Δ. (Μονάδες

Διαβάστε περισσότερα

, να αποδείξετε ότι και η συνάρτηση f+g είναι παραγωγίσιμη στο x. και ισχύει. Μονάδες 9 Α2. Έστω μια συνάρτηση f με πεδίο ορισμού το Α και [, ]

, να αποδείξετε ότι και η συνάρτηση f+g είναι παραγωγίσιμη στο x. και ισχύει. Μονάδες 9 Α2. Έστω μια συνάρτηση f με πεδίο ορισμού το Α και [, ] ΔΙΑΓΩΝΙΣΜΑ ΕΚΠ. ΕΤΟΥΣ 6-7 ΜΑΘΗΜΑ / ΤΑΞΗ : ΣΕΙΡΑ: ΗΜΕΡΟΜΗΝΙΑ: ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: Μαθηματικά Προσανατολισμού Γ' Λυκείου Θέμα Α Α. Αν οι συναρτήσεις, g είναι παραγωγίσιμες στο, να αποδείξετε ότι και

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ

ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ 9 ΧΡΟΝΙΑ ΕΜΠΕΙΡΙΑ ΣΤΗΝ ΕΚΠΑΙΔΕΥΣΗ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΜΑΤΑ ΘΕΜΑ Α A Να αποδείξετε ότι, αν μια συνάρτηση είναι παραγωγίσιμη σε ένα σημείο 0,

Διαβάστε περισσότερα

Μαθηματικά προσανατολισμού

Μαθηματικά προσανατολισμού ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 06 Μαθηματικά προσανατολισμού Α Σχολικό βιβλίο, σελ: 60 ΘΕΜΑ Α Α Σχολικό βιβλίο, σελ: 69 Α Σχολικό βιβλίο, σελ: 80 Α4 α) Λάθος β) Λάθος γ) Σωστό δ) Λάθος ε) Λάθος ΘΕΜΑ

Διαβάστε περισσότερα

ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β. Να μελετήσετε ως προς τη μονοτονία και τα ακρότατα τις παρακάτω συναρτήσεις: f (x) = 0 x(2ln x + 1) = 0 ln x = x = e x =

ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β. Να μελετήσετε ως προς τη μονοτονία και τα ακρότατα τις παρακάτω συναρτήσεις: f (x) = 0 x(2ln x + 1) = 0 ln x = x = e x = ΚΕΦΑΛΑΙΟ ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 0: ΕΥΡΕΣΗ ΤΟΠΙΚΩΝ ΑΚΡΟΤΑΤΩΝ [Ενότητα Προσδιορισμός των Τοπικών Ακροτάτων - Θεώρημα Εύρεση Τοπικών Ακροτάτων του κεφ..7 Μέρος Β του σχολικού βιβλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ

Διαβάστε περισσότερα

Πολλά ψέματα λίγες αλήθειες. ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΜΕΡΟΣ 1 ο

Πολλά ψέματα λίγες αλήθειες. ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΜΕΡΟΣ 1 ο Πολλά ψέματα λίγες αλήθειες. ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΜΕΡΟΣ ο ΕΚΦΩΝΗΣΕΙΣ Οι απαντήσεις βρίσκονται μετά τις εκφωνήσεις Εξετάστε αν είναι αληθείς ή ψευδείς οι παρακάτω προτάσεις και αιτιολογήστε.

Διαβάστε περισσότερα

ΤΩΝ ΟΜΑΔΩΝ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ

ΤΩΝ ΟΜΑΔΩΝ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ ΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΤΩΝ ΟΜΑΔΩΝ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ ΒΑΣΙΚΕΣ ΙΔΙΟΤΗΤΕΣ, ΟΡΙΟ, ΣΥΝΕΧΕΙΑ ΚΑΙ ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ

Διαβάστε περισσότερα

ΜΑΘΗΜΑ 14 1.3 ΜΟΝΟΤΟΝΕΣ ΣΥΝΑΡΤΗΣΕΙΣ

ΜΑΘΗΜΑ 14 1.3 ΜΟΝΟΤΟΝΕΣ ΣΥΝΑΡΤΗΣΕΙΣ ΜΑΘΗΜΑ 4. ΜΟΝΟΤΟΝΕΣ ΣΥΝΑΡΤΗΣΕΙΣ ΑΝΤΙΣΤΡΟΦΗ ΣΥΝΑΡΤΗΣΗ Μονοτονία συνάρτησης Ακρότατα συνάρτησης Θεωρία Σχόλια Μέθοδοι Ασκήσεις ΘΕΩΡΙΑ. Ορισµός Συνάρτηση f λέγεται γνησίως αύξουσα σε διάστηµα, όταν για οποιαδήποτε,

Διαβάστε περισσότερα

ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑΤΩΝ ΠΑΝΕΛΛΗΝΙΩΝ 2012 ΣΤΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ

ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑΤΩΝ ΠΑΝΕΛΛΗΝΙΩΝ 2012 ΣΤΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑΤΩΝ ΠΑΝΕΛΛΗΝΙΩΝ ΣΤΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ Α Α Aπόδειξη σχολικού βιβλίου σελίδα 53 Α Ορισμός σχολικού βιβλίου σελίδα 9 Α3 Ορισμός σχολικού βιβλίου σελίδα 58 Α4 α) Σ β) Σ γ)

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ - ΠΛΗΡΟΦΟΡΙΚΗ

ΜΑΘΗΜΑΤΙΚΑ - ΠΛΗΡΟΦΟΡΙΚΗ ΘΕΜΑ Α ΜΑΘΗΜΑΤΙΚΑ - ΠΛΗΡΟΦΟΡΙΚΗ ΑΠΑΝΤΗΣΕΙΣ ΣΤΑ ΘΕΜΑΤΑ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ Α. Θεωρία (Θεώρημα σελίδα 5 σχολικού βιβλίου) Α. Α) ΨΕΥΔΗΣ Β) Θα δώσουμε ένα αντιπαράδειγμα Έστω η συνάρτηση

Διαβάστε περισσότερα

ΜΑΘΗΜΑ ΕΞΕΤΑΖΟΜΕΝΗ ΥΛΗ

ΜΑΘΗΜΑ ΕΞΕΤΑΖΟΜΕΝΗ ΥΛΗ ΜΑΘΜΑ ΕΞΕΤΑΖΟΜΕΝ ΥΛ ΜΑΘΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ /6/9 ΛΥΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΘΕΜΑ Α Α α) Σχολικό βιβλίο σελίδα 5 β) i) Σχολικό βιβλίο σελίδα 5 ii) Σχολικό βιβλίο σελίδα 5-6 Α Σχολικό βιβλίο σελίδα 4 Α Σχολικό

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ & ΤΕΧΝΟΛΟΓΙΚΩΝ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ ΑΠΑΝΤΗΣΕΙΣ ΣΤΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ 2019

ΜΑΘΗΜΑΤΙΚΑ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ & ΤΕΧΝΟΛΟΓΙΚΩΝ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ ΑΠΑΝΤΗΣΕΙΣ ΣΤΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ 2019 ΜΑΘΗΜΑΤΙΚΑ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ & ΤΕΧΝΟΛΟΓΙΚΩΝ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ ΑΠΑΝΤΗΣΕΙΣ ΣΤΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ 9 ΘΕΜΑ Α Α α Σχολικό σελ 5 β i Σχολικό σελ 35 ii Σχολικό σελ 36 Α Σχολικό σελ

Διαβάστε περισσότερα

ΕΝΔΕΙΚΤΙΚΕΣ ΠΛΗΡΕΙΣ ΑΠΑΝΤΗΣΕΙΣ. Α4. α) Λάθος. Το θεώρημα ισχύει για διάστημα και όχι για ένωση διαστημάτων που είναι το σύνολο Α. Π.χ.

ΕΝΔΕΙΚΤΙΚΕΣ ΠΛΗΡΕΙΣ ΑΠΑΝΤΗΣΕΙΣ. Α4. α) Λάθος. Το θεώρημα ισχύει για διάστημα και όχι για ένωση διαστημάτων που είναι το σύνολο Α. Π.χ. ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΕΥΤΕΡΑ ΙΟΥΝΙΟΥ 9 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ:ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ENNIA (9) ΕΝΔΕΙΚΤΙΚΕΣ ΠΛΗΡΕΙΣ ΑΠΑΝΤΗΣΕΙΣ Α. α) Θεωρία σχολικού βιβλίου

Διαβάστε περισσότερα

ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ Δευτέρα 11 Ιουνίου 2018 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ

ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ Δευτέρα 11 Ιουνίου 2018 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ Δευτέρα Ιουνίου 08 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ (Ενδεικτικές Απαντήσεις) ΘΕΜΑ Α Α Απόδειξη θεωρήματος σελ 99 σχολικού βιβλίου

Διαβάστε περισσότερα

( x) β ], παρουσιάζει ελάχιστη τιµή α, δηλαδή υπάρχει. ξ µε g( ξ ) = 0. Το ξ είναι ρίζα της δοσµένης εξίσωσης.

( x) β ], παρουσιάζει ελάχιστη τιµή α, δηλαδή υπάρχει. ξ µε g( ξ ) = 0. Το ξ είναι ρίζα της δοσµένης εξίσωσης. . Έστω συνάρτηση f, δύο φορές παραγωγίσιµη στο R, µε συνεχή δεύτερη παράγωγο και σύνολο τιµών το διάστηµα [, ] a β, όπου a< < β. Να αποδείξετε ότι: i) υπάρχουν δύο τουλάχιστον σηµεία,, µε, ώστε f ( ) =

Διαβάστε περισσότερα

0x2 = 2. = = δηλαδή η f δεν. = 2. Άρα η συνάρτηση f δεν είναι συνεχής στο [0,3]. Συνεπώς δεν. x 2. lim f (x) = lim (2x 1) = 3 και x 2 x 2

0x2 = 2. = = δηλαδή η f δεν. = 2. Άρα η συνάρτηση f δεν είναι συνεχής στο [0,3]. Συνεπώς δεν. x 2. lim f (x) = lim (2x 1) = 3 και x 2 x 2 ΚΕΦΑΛΑΙΟ ο: ΣΥΝΑΡΤΗΣΕΙΣ - ΟΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΕΝΟΤΗΤΑ 8: ΘΕΩΡΗΜΑ BOLZANO - ΠΡΟΣΗΜΟ ΣΥΝΑΡΤΗΣΗΣ - ΘΕΩΡΗΜΑ ΕΝΔΙΑΜΕΣΩΝ ΤΙΜΩΝ - ΘΕΩΡΗΜΑ ΜΕΓΙΣΤΗΣ ΚΑΙ ΕΛΑΧΙΣΤΗΣ ΤΙΜΗΣ - ΣΥΝΟΛΟ ΤΙΜΩΝ ΣΥΝΕΧΟΥΣ ΣΥΝΑΡΤΗΣΗΣ

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΤΕΚΝΩΝ ΕΛΛΗΝΩΝ ΤΟΥ ΕΞΩΤΕΡΙΚΟΥ ΚΑΙ ΤΕΚΝΩΝ ΕΛΛΗΝΩΝ ΥΠΑΛΛΗΛΩΝ ΠΟΥ ΥΠΗΡΕΤΟΥΝ ΣΤΟ ΕΞΩΤΕΡΙΚΟ ΠΕΜΠΤΗ 6 ΣΕΠΤΕΜΒΡΙΟΥ 2018

ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΤΕΚΝΩΝ ΕΛΛΗΝΩΝ ΤΟΥ ΕΞΩΤΕΡΙΚΟΥ ΚΑΙ ΤΕΚΝΩΝ ΕΛΛΗΝΩΝ ΥΠΑΛΛΗΛΩΝ ΠΟΥ ΥΠΗΡΕΤΟΥΝ ΣΤΟ ΕΞΩΤΕΡΙΚΟ ΠΕΜΠΤΗ 6 ΣΕΠΤΕΜΒΡΙΟΥ 2018 ΘΕΜΑ Α ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΤΕΚΝΩΝ ΕΛΛΗΝΩΝ ΤΟΥ ΕΞΩΤΕΡΙΚΟΥ ΚΑΙ ΤΕΚΝΩΝ ΕΛΛΗΝΩΝ ΥΠΑΛΛΗΛΩΝ ΠΟΥ ΥΠΗΡΕΤΟΥΝ ΣΤΟ ΕΞΩΤΕΡΙΚΟ ΠΕΜΠΤΗ 6 ΣΕΠΤΕΜΒΡΙΟΥ 8 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΑΠΑΝΤΗΣΕΙΣ Α Απόδειξη

Διαβάστε περισσότερα

Συνέχεια συνάρτησης σε κλειστό διάστημα

Συνέχεια συνάρτησης σε κλειστό διάστημα 8 Συνέχεια συνάρτησης σε κλειστό διάστημα Α ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ 1 Μια συνάρτηση f θα λέμε ότι είναι: i Συνεχής σε ένα ανοιχτό διάστημα (α,β) όταν είναι συνεχής σε κάθε σημείο του διαστήματος (α,β)

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝΔΙΑ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑΔΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2019 Β ΦΑΣΗ

ΟΜΟΣΠΟΝΔΙΑ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑΔΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2019 Β ΦΑΣΗ ΤΑΞΗ: Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΣ: ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ / ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ Ημερομηνία: Σάββατο 11 Μαΐου 19 Διάρκεια Εξέτασης: 3 ώρες ΘΕΜΑ Α ΕΚΦΩΝΗΣΕΙΣ Α1. Έστω f μια

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Ο.Π. ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ

ΜΑΘΗΜΑΤΙΚΑ Ο.Π. ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ Κανάρη 6, Δάφνη Τηλ 9794 & 976976 ΜΑΘΗΜΑΤΙΚΑ ΟΠ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ ΑΠΑΝΤΗΣΕΙΣ Θέμα Α Α Σχολικό βιβλίο σελ 99 Α Σχολικό βιβλίο σελ 8 Α Σχολικό βιβλίο σελ 6 Α4 α) Σ β)

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ ΝΕΟ & ΠΑΛΑΙΟ ΣΥΣΤΗΜΑ Γ ΗΜΕΡΗΣΙΩΝ

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ ΝΕΟ & ΠΑΛΑΙΟ ΣΥΣΤΗΜΑ Γ ΗΜΕΡΗΣΙΩΝ ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ ΝΕΟ & ΠΑΛΑΙΟ ΣΥΣΤΗΜΑ Γ ΗΜΕΡΗΣΙΩΝ ΘΕΜΑ Α ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΤΕΤΑΡΤΗ 18 ΜΑΪΟΥ 16 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ

Διαβάστε περισσότερα

Πανελλαδικές εξετάσεις 2017

Πανελλαδικές εξετάσεις 2017 Πανελλαδικές εξετάσεις 7 Ενδεικτικές απαντήσεις στο μάθημα «Μαθηματικά ΟΠ» Θέμα Α Α Θεωρία σχολικού βιβλίου σελ 36 Α α) Λ β) H συνάρτηση ( ) είναι παραγωγίσιμη σε αυτό αφού: ( ) () lim lim είναι συνεχής

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΣΤΙΣ ΣΥΝΑΡΤΗΣΕΙΣ. Να εξετάσετε αν είναι ίσες οι συναρτήσεις f, g όταν: x x 2 x x. x x g x. ln x ln x 1 και

ΑΣΚΗΣΕΙΣ ΣΤΙΣ ΣΥΝΑΡΤΗΣΕΙΣ. Να εξετάσετε αν είναι ίσες οι συναρτήσεις f, g όταν: x x 2 x x. x x g x. ln x ln x 1 και Α ΟΜΑΔΑ ΑΣΚΗΣΕΙΣ ΣΤΙΣ ΣΥΝΑΡΤΗΣΕΙΣ Να εξετάσετε αν είναι ίσες οι συναρτήσεις, όταν: () με R και (). Σ Υ Ν Α Ρ Τ Η Σ Ε Ι Σ Το πεδίο ορισμού της είναι A R. Επομένως A A R Α Θα εξετάσουμε αν για κάθε R ισχύει.

Διαβάστε περισσότερα

Πανελλαδικές εξετάσεις 2015

Πανελλαδικές εξετάσεις 2015 Πανελλαδικές εξετάσεις 5 Ενδεικτικές απαντήσεις στο μάθημα «MΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ» Θέμα Α Α Απόδειξη βιβλίο σχολείου σελ(94) Α Ορισμός βιβλίο σχολείου σελ(88) Α Ορισμός βιβλίο

Διαβάστε περισσότερα

= R {x συν x = 0} ισχύει: 1 ( εφ x)' = συν

= R {x συν x = 0} ισχύει: 1 ( εφ x)' = συν ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑ Α Α. Έστω μια συνάρτηση f ορισμένη σε ένα διάστημα Δ και ένα εσωτερικό σημείο

Διαβάστε περισσότερα

Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ. Ημερομηνία: Σάββατο 11 Νοεμβρίου 2017 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ

Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ. Ημερομηνία: Σάββατο 11 Νοεμβρίου 2017 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ ΤΑΞΗ: ΜΑΘΗΜΑ: Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Ημερομηνία: Σάββατο Νοεμβρίου 7 Διάρκεια Εξέτασης: ώρες ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α Α Να διατυπώσετε το θεώρημα του Bolzano και να δώσετε τη γεωμετρική

Διαβάστε περισσότερα

με f f κ)κάθε συνάρτηση ορισμένη σε κλειστό διάστημα έχει μέγιστη και ελάχιστη τιμή στο διάστημα αυτό. λ)αν μια συνάρτηση f είναι συνεχής στο,

με f f κ)κάθε συνάρτηση ορισμένη σε κλειστό διάστημα έχει μέγιστη και ελάχιστη τιμή στο διάστημα αυτό. λ)αν μια συνάρτηση f είναι συνεχής στο, Μαθηματικά κατεύθυνσης Γ Λυκείου Διαγώνισμα διάρκειας 3 ωρών στις Συναρτήσεις και τα Όρια 9-5 Θέμα Α Να χαρακτηρίσετε τις προτάσεις που ακολουθούν, γράφοντας στο τετράδιό σας την ένδειξη Σωστό ή Λάθος

Διαβάστε περισσότερα

ln 1. ( ) vii. Να βρείτε το εμβαδόν του χωρίου που περικλείεται από τη C f, τον άξονα η οποία είναι συνεχής στο και για την οποία ισχύει

ln 1. ( ) vii. Να βρείτε το εμβαδόν του χωρίου που περικλείεται από τη C f, τον άξονα η οποία είναι συνεχής στο και για την οποία ισχύει Μαθηματικά Γ Λυκείου Θέμα 4o Α Δίνεται η συνάρτηση h ( ), η οποία είναι συνεχής και γνησίως αύξουσα στο διάστημα [, ] β αβ Να δείξετε ότι h d hαβα Β Δίνεται η συνάρτηση f α ( ) ln i Να βρείτε το πεδίο

Διαβάστε περισσότερα

x, x (, x ], επειδή η f είναι γνησίως αύξουσα στο (, x0]

x, x (, x ], επειδή η f είναι γνησίως αύξουσα στο (, x0] Απαντήσεις στο ο Διαγώνισμα Μαθηματικών Κατεύθυνσης Γ Λυκείου Θέμα ο Α Έστω ότι f( ), για κάθε (, ) (, ) Επειδή η f είναι συνεχής στο θα είναι γνησίως αύξουσα σε κάθε ένα από τα διαστήματα (, ] και [,

Διαβάστε περισσότερα

Θεώρημα Βolzano. Κατηγορία 1 η. 11.1 Δίνεται η συνάρτηση:

Θεώρημα Βolzano. Κατηγορία 1 η. 11.1 Δίνεται η συνάρτηση: Κατηγορία η Θεώρημα Βolzano Τρόπος αντιμετώπισης:. Όταν μας ζητούν να εξετάσουμε αν ισχύει το θεώρημα Bolzano για μια συνάρτηση f σε ένα διάστημα [, ] τότε: Εξετάζουμε την συνέχεια της f στο [, ] (αν η

Διαβάστε περισσότερα

Απαντήσεις στα Μαθηματικά Κατεύθυνσης 2016

Απαντήσεις στα Μαθηματικά Κατεύθυνσης 2016 ΘΕΜΑ Α Απαντήσεις στα Μαθηματικά Κατεύθυνσης 6 Α.. Σχολ. Βιβλίο, Θεωρία, σελ.6-(i) Α.. Σχολ. Βιβλίο, Θεωρία, σελ. 4 Α. Σχολ. Βιβλίο, Θεωρία, σελ. 46,47 Α.4. α. Λ β. Σ γ. Λ δ. Σ ε. Σ ΘΕΜΑ Β B. Η συνάρτηση

Διαβάστε περισσότερα

2.6 ΣΥΝΕΠΕΙΕΣ ΤΟΥ ΘΕΩΡΗΜΑΤΟΣ ΜΕΣΗΣ ΤΙΜΗΣ

2.6 ΣΥΝΕΠΕΙΕΣ ΤΟΥ ΘΕΩΡΗΜΑΤΟΣ ΜΕΣΗΣ ΤΙΜΗΣ 6 ΣΥΝΕΠΕΙΕΣ ΤΟΥ ΘΕΩΡΗΜΑΤΟΣ ΜΕΣΗΣ ΤΙΜΗΣ ΜΕΘΟΔΟΛΟΓΙΑ : ΣΤΑΘΕΡΗ ΣΥΝΑΡΤΗΣΗ Αν θέλουμε να δείξουμε ότι μια συνάρτηση είναι σταθερή σε ένα διάστημα Δ αποδεικνύουμε ότι η είναι συνεχής στο Δ και ότι για κάθε

Διαβάστε περισσότερα

9 ο Επαναληπτικό διαγώνισμα στα Μαθηματικά προσανατολισμού της Γ Λυκείου

9 ο Επαναληπτικό διαγώνισμα στα Μαθηματικά προσανατολισμού της Γ Λυκείου 9 ο Επαναληπτικό διαγώνισμα στα Μαθηματικά προσανατολισμού της Γ Λυκείου 7-8 ΘΕΜΑ Α (α) Δίνεται η συνάρτηση, συνεχής στο διάστημα [ ].Αν η G είναι μια παράγουσα της στο [ ], τότε να αποδείξετε ότι : d

Διαβάστε περισσότερα

f(x) x 3x 2, όπου R, y 2x 2

f(x) x 3x 2, όπου R, y 2x 2 Δίνεται η συνάρτηση με τύπο,. Μαθηματικά κατεύθυνσης f(), όπου R, α) Να αποδειχθεί ότι η f παρουσιάζει ένα τοπικό μέγιστο, ένα τοπικό ελάχιστο και ένα σημείο καμπής. β) Να αποδειχθεί ότι η εξίσωση f()

Διαβάστε περισσότερα

Μαθηματικά Προσανατολισμού Γ Λυκείου Ημερομηνία: 03 Μαρτίου 2019 Απαντήσεις

Μαθηματικά Προσανατολισμού Γ Λυκείου Ημερομηνία: 03 Μαρτίου 2019 Απαντήσεις Θέμα Α Α. Σχολικό Βιβλίο Α. Σχολικό Βιβλίο Α. Σχολικό Βιβλίο Α. i - >Σ ii->λ iii-> Λ iv -> Λ v->λ Θέμα Β Df = R Μαθηματικά Προσανατολισμού Γ Λυκείου Ημερομηνία: 0 Μαρτίου 09 Απαντήσεις Β. H f είναι συνεχής

Διαβάστε περισσότερα

Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ. Ημερομηνία: Τρίτη 3 Ιανουαρίου 2017 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ

Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ. Ημερομηνία: Τρίτη 3 Ιανουαρίου 2017 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ ΑΠΟ 8//06 έως τις 05/0/07 η ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ ΤΑΞΗ: ΜΑΘΗΜΑ: Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Ημερομηνία: Τρίτη Ιανουαρίου 07 Διάρκεια Εξέτασης: ώρες ΘΕΜΑ Α ΕΚΦΩΝΗΣΕΙΣ Α Έστω η συνάρτηση ()

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΠΑΝΕΛΛΗΝΙΩΝ 2014 ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΘΕΜΑΤΑ ΠΑΝΕΛΛΗΝΙΩΝ 2014 ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑΤΑ ΠΑΝΕΛΛΗΝΙΩΝ 4 ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ Α Α. Έστω μια συνάρτηση f ορισμένη σε ένα διάστημα Δ. Αν Η f είναι συνεχής στο Δ και f = για κάθε εσωτερικό σημείο του Δ τότε να αποδείξετε

Διαβάστε περισσότερα