ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ & ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΟΜΕΑΣ ΜΑΘΗΜΑΤΙΚΩΝ 3η Σειρά Ασκήσεων στη Μιγαδική Ανάλυση. Υποθέτουμε ότι η f : C C είναι ακέραια συνάρτηση και ότι το όριο Αποδείξτε ότι η f είναι σταθερή. Υπόδειξη. Γενικευμένο θεώρημα Liouville. Λύση. Αν lim Επομένως lim f( υπάρχει. + /2 ακαδ. έτος 2 2 f( a, για ε > υπάρχει M > τέτοιο ώστε για κάθε > M είναι + /2 f( + a /2 < ε. f( < a + ε + (a + ε /2 για κάθε > M. Τότε, από τη γενίκευση του θεωρήματος Liouville η f είναι πολυώνυμο βαθμού. Άρα, η f είναι σταθερή. 2. Εστω η συνάρτηση f : C C είναι ακέραια, δηλαδή f( a n n n n f (n ( n για κάθε C. n! Υποθέτουμε ότι η υπάρχει M > τέτοιο ώστε f( Me για κάθε C. Αν r >, χρησιμοποιώντας τον ολοκληρωτικό τύπο Cauchy για παραγώγους αποδείξτε ότι Να συμπεράνετε ότι a n M er r n για κάθε n N. a n M en n n για κάθε n N. Λύση. Από τον ολοκληρωτικό τύπο Cauchy για παραγώγους έχουμε a n f (n ( n! f( d, 2πi C + (, r n+ όπου C + (, r κύκλος με κέντρο και ακτίνα r >. Τότε, a n f( 2π C + (, r 2π C + (, r Me r 2π r n+ n+ d f( d n+ C + (, r Me r er 2πr M 2π rn+ r n. d ( f( Me
Επομένως Ομως η συνάρτηση r er r n e r a n M inf r> r n. παίρνει την ελάχιστη τιμή της για r n. Άρα, a n M en n n για κάθε n N. 3. Εστω η συνάρτηση f ( 2 ( +. Να βρεθεί το ανάπτυγμα Laurent της f σε όλους τους δυνατούς δακτυλίους με κέντρο το. Λύση. Ως γνωστόν / ( w n wn, w < (γεωμετρική σειρά. Παραγωγίζοντας τη γεωμετρική σειρά έχουμε ( w 2 nw n, w <. n η περίπτωση: { C : < + < }. Τότε, f ( 2 ( + [ ( + ] 2 ( + n ( + n + n n ( + n 2 n n (n + 2 ( + n. 2η περίπτωση: 2 { C : + > }. Τότε / ( + < και επομένως f ( 2 ( + [ / ( + ] 2 ( + 3 ( + 3 n n ( + n n ( + n+2 n 3 n (n + 2 ( + n. 4. Να βρεθεί το ανάπτυγμα Laurent της f( 2 + 4i ( ( 2 + 4i 2
με κέντρο το σ ένα δακτύλιο που περιέχει το 2i. Ποιός είναι ο μεγαλύτερος τέτοιος δακτύλιος στον οποίο το ανάπτυγμα Laurent της f ισχύει; Λύση. Είναι f( 2 + 4i ( ( 2 + 4i + 4i 4i ( ( 2 + 4i + 4i 2 + 4i. Τα μεμονωμένα ανώμαλα σημεία της f είναι:, 2( i και 2( + i. Επομένως το ανάπτυγμα κατά Laurent μπορεί να γίνει στους δακτυλίους { C : < } (ανάπτυγμα Taylor, 2 { C : < < 2} και 3 { C : 2 < < }. Επειδή το 2i 3, θα αναπτύξουμε την f στο δακτύλιο 3 : > 2. Ως γνωστόν, / ( w n wn και / ( + w n ( n w n, w < (γεωμετρική σειρά. Είναι f ( + 4i 2 + 4i / + 4i 2 + 4i/ 2 ( n + 4i ( n 4i 2 ( n 2 ( > 2 n n n+ + ( n (4in+ 2n+2. Το παραπάνω ανάπτυγμα ισχύει στο δακτύλιο 3 { C : 2 < < }. n 5. (αʹ Να βρεθεί το είδος του μεμονωμένου ανώμαλου σημείου 2 της συνάρτησης ( f( ( 3 sin + 2 και να υπολογιστεί το Res(f, 2. (βʹ Να βρεθεί το είδος του μεμονωμένου ανώμαλου σημείου της συνάρτησης και να υπολογιστεί το Res(g,. g( n sin cos 4 (γʹ Εστω η συνάρτηση h είναι αναλυτική στο διάτρητο δίσκο : < <. Υποθέτουμε ότι υπάρχει k > τέτοιο ώστε h( k /2 για κάθε. Λύση. Τι είδους μεμονωμένο ανώμαλο σημείο της h είναι το ; (αʹ Αν + 2 w 3 w 5, τότε και επομένως (w 5 sin w (w 5 ( w 3! w 3 + 5! w 5 5 w 3! f( 5 + 2 3! ( + 2 2 +. Το 2 είναι ουσιώδες ανώμαλο σημείο της f με Res(f, 2 5. w 2 + 3
(βʹ Αν ϕ ( : sin cos, είναι ϕ ( ϕ ( ϕ ( και ϕ ( 2. Επομένως, το είναι ρίζα τάξης 3 του αριθμητή της g και ρίζα τάξης 4 του παρανομαστή της g. Άρα, το είναι απλός πόλος της g. Επειδή για κάθε > g( [( ] ( 4 3 3! + 5 5! ( 2 2! + 4 4! 2! ( 3! 4! +, 5! είναι Res(g, 2! 3! 3. Σημείωση. Επειδή το είναι απλός πόλος της g, το Res(g, υπολογίζεται και από τον τύπο sin cos Res(g, lim 4 sin cos lim 3 sin lim 3 2 3 lim sin 3. (κανόνας L Hôpital (γʹ Είναι h( k /2 για κάθε και κατά συνέπεια lim h(. Άρα, το είναι επουσιώδες (απαλείψιμο ανώμαλο σημείο της h. 6. Να υπολογιστεί το ολοκλήρωμα I C + ( i, 2 [ e π 2 + + sin + ] d, e 2 όπου C + ( i, 2 είναι ο κύκλος με κέντρο i, ακτίνα 2 και θετική φορά διαγραφής. Λύση. Τα σημεία ±i είναι απλοί πόλοι της συνάρτησης w e π /( 2 +. Μόνο το σημείο i βρίσκεται στο εσωτερικό του κύκλου C + ( i, 2. Είναι ( e π Res 2 +, i e π ( 2 + e πi i 2i 2 i. Επειδή sin 3! 3 + 5! 5, είναι Res(sin,. Άρα, από το θεώρημα ολοκληρωτικών υπολοίπων έχουμε [ ( e π I 2πi Res 2 +, i + Res (sin ], 2πi [ 2 ] i + π + 2πi. Ας σημειωθεί ότι η συνάρτηση w /e 2 είναι αναλυτική στο C και επομένως από το θεώρημα Cauchy d. e 2 C + ( i, 2 4
7. Εστω 2 e 2i n a n n το ανάπτυγμα Laurent της συνάρτησης f( 2 /(e 2i στο δακτύλιο { C : π < < 2π} με κέντρο το. Χρησιμοποιώντας το θεώρημα Laurent καθώς επίσης και το θεώρημα ολοκληρωτικών υπολοίπων να υπολογιστούν οι συντελεστές a n, n. Λύση. Επειδή e 2i e 2i 2i 2kπi kπ, k Z, τα k kπ, k Z \ {}, είναι απλοί πόλοι της συνάρτησης f( 2 /(e i. Επειδή το είναι ρίζα τάξης 2 του αριθμητή και απλή ρίζα του παρανομαστή της f, το είναι επουσιώδης (απαλείψιμη ανωμαλία. Από το θεώρημα Laurent οι συντελεστές a n δίνονται από τον τύπο a n 2πi C + (, r 2 /(e 2i n+ d 2πi C + (, r n+ e 2i d, όπου ο κύκλος C + (, r με κέντρο, ακτίνα r, π < r < 2π και θετική φορά διαγραφής ανήκει στο δακτύλιο. Αν g( : n+ e 2i, τα ανώμαλα σημεία π και π της g βρίσκοντα στο εσωτερικό του κύκλου C + (, r και είναι απλοί πόλοι. (i n : Σ αυτή την περίπτωση τα ανώμαλα σημεία π, και π της g( /(e i βρίσκονται στο εσωτερικό του κύκλου C + (, r και είναι απλοί πόλοι. Από το θεώρημα ολοκληρωτικών υπολοίπων έχουμε a ( ( ( 2πi C + (, r e 2i d Res e 2i, π + Res e 2i, + Res e 2i, π (e 2i + π (e 2i + (e 2i π 2ie 2iπ + 2i + 2ie 2iπ 3 2i 3 2 i. (ii n : Σ αυτή την περίπτωση είναι g( n+ e 2i με n + και επομένως τα ανώμαλα σημεία π και π της g βρίσκοντα στο εσωτερικό του κύκλου C + (, r και είναι απλοί πόλοι. Επειδή το είναι ρίζα τάξης του αριθμητή και απλή ρίζα του παρανομαστή της g( n+ /(e 2i, το είναι επουσιώδης (απαλείψιμη ανωμαλία της g. Άρα, από το θεώρημα ολοκληρωτικών υπολοίπων έχουμε a n 2πi C + (, r n+ ( ( n+ n+ e 2i d Res e 2i, π + Res e 2i, π n+ (e 2i + n+ (e 2i ( π n+ 2ie 2iπ π n+ π + π n+ 2ie 2iπ [ ( n+ + ] π { 2i αν n, 2, 4,..., iπ n+ αν n, 3, 5,.... 5
8. Αν a >, αποδείξτε ότι π Λύση. Είναι π π a 2 + cos 2 θ dθ 2π a 2 + cos 2 θ dθ 2 2π 2a 2 + + cos 2θ dθ Αν e iφ, τότε cos φ eiφ + e iφ 2 2 π a 2 + cos 2 θ dθ 2a 2 + + 2 2a 2 + + cos φ dφ π a + a 2. 2a 2 dφ. (αντικατάσταση φ 2θ + + cos φ ( + και d ie iφ dφ idφ dφ d ( + d i 2 i i. Επομένως, 2 + 2 ( + 2a 2 + d. Επειδή,2 2a 2 ± 2a + a 2 είναι απλές ρίζες της εξίσωσης 2 + 2( + 2a 2 +, τα σημεία 2a 2 ± 2a + a 2 είναι απλοί πόλοι της συνάρτησης g( /( 2 + 2( + 2a 2 +. Το 2a 2 + 2a + a 2 βρίσκεται στο εσωτερικό του κύκλου, ενώ το 2a 2 2a + a 2 βρίσκεται εξωτερικά του κύκλου. Άρα, από το θεώρημα ολοκληρωτικών υπολοίπων έχουμε π a 2 + cos 2 θ dθ 2 i 2 + 2 ( + 2a 2 + d 2 ( i 2πi Res 2 + 2( + 2a 2 +, 2a2 + 2a + a 2 4π ( 2 + 2( + 2a 2 + 2a 2 +2a +a 2 4π 2( 2a 2 + 2a + a 2 + 2( + 2a 2 π a + a. 2 9. Εστω γ R με εξίσωση (θ Re iθ, θ π, το ημικύκλιο του άνω ημιεπιπέδου με κέντρο και ακτίνα R > και έστω a, b >, a b. Να αποδειχθεί ότι lim R γ R ( 2 + a 2 ( 2 + b 2 d. Στη συνέχεια χρησιμοποιώντας το θεώρημα των ολοκληρωτικών υπολοίπων να υπολογιστεί το γενικευμένο ολοκλήρωμα (x 2 + a 2 (x 2 + b 2 dx. Λύση. Για κάθε γ R είναι ( 2 + a 2 ( 2 + b 2 ( 2 a 2 ( 2 b 2 (R 2 a 2 (R 2 b 2, R > a, b. Το μήκος του ημικύκλιου γ R είναι πr και επομένως ( 2 + a 2 ( 2 + b 2 d πr (R 2 a 2 (R 2 b 2. R γ R 6
Άρα, lim R γ R ( 2 + a 2 ( 2 + b 2 d. Τα ±ai, ±bi είναι απλοί πόλοι της f( /( 2 + a 2 ( 2 + b 2. Ολοκληρώνουμε τη συνάρτηση f πάνω στην τμηματικά λεία καμπύλη που αποτελείται από το ημικύκλιο του άνω ημιεπιπέδου γ R με εξίσωση (θ Re iθ, θ π και το ευθύγραμμο τμήμα [ R, R]. Παίρνουμε το R αρκετά μεγάλο έτσι ώστε το ανώμαλο σημεία ai και bi της f να βρίσκονται στο εσωτερικό του ημικύκλιου γ R. Από το θεώρημα των ολοκληρωτικών υπολοίπων έχουμε Είναι και R R (x 2 + a 2 (x 2 + b 2 dx + γ R ( 2 + a 2 ( 2 + b 2 d 2πi [Res (f, ai + Res (f, bi]. ( Επομένως, από την ( προκύπτει ότι Res (f, ai lim ( ai ai ( ai( + ai( 2 + b 2 2ai(b 2 a 2 Res (f, bi lim ( bi bi (x 2 + a 2 ( bi( + bi 2bi(a 2 b 2. R (x 2 + a 2 (x 2 + b 2 dx lim R R ( 2πi 2i π ab(a + b. (x 2 + a 2 (x 2 + b 2 dx a(b 2 a 2 + b(a 2 b 2 Άρα, (x 2 + a 2 (x 2 + b 2 dx 2 (x 2 + a 2 (x 2 + b 2 dx π 2ab(a + b. Παράδοση των ασκήσεων έως 5/7/22 7