5 ο ΛΥΚΕΙΟ ΠΕΤΡΟΥΠΟΛΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ-ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤEΥΘΥΝΣΗ Ορισμός Παραγώγου - Κανόνες Παραγώγισης - Εφαπτομένη καμπύλης Ρυθμός μεταβολής Επιμέλεια: Γιάννης Κυριακόπουλος Θέμα 1 ο : Δίνεται η συνάρτηση f:r R,η οποία είναι παραγωγίσιμη, f(0)=0 και για κάθε x,y R ισχύει: f(x+y) f(x)+f(y)+2xy. Na αποδειχθεί ότι: f (x)=2x+f (0), για κάθε x R. Θέμα 2 ο 2xx+ (xx+1) 2 +ββ 1 xx > 0 : Δίνεται η συνάρτηση με τύπο: f(x)= 1+ee xx ααxx 2 + ηηηη(ααxx) xx 0 α,β R και α 0. Να βρείτε τις τιμές των α και β ώστε η f να είναι παραγωγίσιμη στο xx 0 =0 όπου Θέμα 3 ο : Αν η συνάρτηση f είναι παραγωγίσιμη στο σημείο xx 0 =2 με f(2)= 3 και f (2)=5, να υπολογίσετε το όριο: lim xx 2 ff 2 (xx) 9 xx 2 5xx+6. Θέμα 4 ο : Έστω οι συναρτήσεις f,g : R R τέτοιες ώστε για κάθε x R να ισχύει: ff 2 (xx)+gg 2 (x)=xx 4 2xx 2 +1. Aν οι συναρτήσεις είναι παραγωγίσιμες στο xx 0 =1, να αποδείξετε ότι ισχύει: [ff (1)] 2 +[gg (1)] 2 =4. Θέμα 5 ο : Η συνάρτηση f είναι συνεχής στο σημείο xx 0 =3 και ισχύει lim xx 3 ff(xx) 6xx xx 2 9 =10. a)βρείτε την τιμή f(3) β)δείξτε ότι η f είναι παραγωγίσιμη στο xx 0 =3. γ)υπολογίστε το όριο: lim xx 3 ff(xx) 2xx 2 4xx 2 12xx. δ) βρείτε την εξίσωση της εφαπτομένης της CC ff στο xx 0 =3. Θέμα 6 ο : Έστω η συνάρτηση f:r R και για κάθε x,y R ισχύει: f(x+y) xyy 3 f(x)+xy. Aν η f είναι παραγωγίσιμη στο xx 0, βρείτε τον αριθμό f (xx 0 ) Θέμα 7 ο : Εστω συνάρτηση f για την οποία ισχύει: f(1)=0 και ff(xx) > 1 (xx 1) 2. Δείξτε ότι η f δεν είναι παραγωγίσιμη στο xx 0 =1. Θέμα 8 ο : Έστω συνάρτηση f:a R συνεχής και 1-1 και xx 0 A τέτοιο ώστε f (xx 0 )=0. Αν yy 0 =f(xx 0 ), τότε η ff 1 δεν είναι παραγωγίσιμη στο yy 0.
Θέμα 9 ο : Να εξεταστεί αν υπάρχει η παράγωγος στο xx 0 =1 της συνάρτησης f(x)= (xx 1)2 ηηηη αα, xx (0,1) (1,2) ηηηηηη xx 0 xx = 1. Θέμα 10 ο : Έστω ότι οι συναρτήσεις f,g είναι παραγωγίσιμες στο xx 0 =0 και για κάθε x R ισχύει ότι (ff(aaaa) + gg(ββxx)) 2 f(2βx) g(ax), με α,β 0.Να δειχθεί ότι οι f,g έχουν στο xx 0 =0 κοινή εφαπτομένη. Θέμα 11 ο : Αν η f(x) είναι παραγωγίσιμη στο xx 0 =α>0, να υπολογιστούν τα: lim xx aa ff 2 (xx) ff 2 (aa) ηηηη (xx aa) και lim xx aa aaaa (xx) xxxx (aa) xx aa Θέμα 12 ο : Έστω f παραγωγίσιμη στο R με ff 3 (x)+2xf(xx 2 ) xx 2 f(x)+xx 3 =xx 2 ημx, για κάθε x R. Να βρεθεί η εξίσωση της εφαπτόμενης της f στο 0. Θέμα 13 ο : Θεωρούμε τις παραγωγίσιμες συναρτήσεις f,g :R R, με g(x) 0 για κάθε x R.Θεωρούμε συνάρτηση h(x)= ff(xx) gg(xx). Δείξτε ότι αν ισχύει h (ρ)=0, τότε είναι h(ρ)= ff (ρρ) gg (ρρ), όπου ρ R με gg (ρρ) 0. Θέμα 14 ο : Έστω συνάρτηση f συνεχής στο R και τέτοια ώστε να ισχύει: lim xx 2 ff(xx) 1 xx 2 =3. Για κάθε x R, ισχύει xx ff(xx) + ηηηη(ππxx) <xx2 ηηηη 2 x. α)δείξτε ότι f (2)=3 β)nα υπολογιστεί το όριο lim xx 2 xx 3 ff(xx) 8 ff(xx) 1 γ)δείξτε ότι η εξίσωση f(x)=0 έχει μια τουλάχιστο ρίζα στο (0,2). Θέμα 15 ο : Αν η συνάρτηση f είναι συνεχής στο xx 0 =2 και η g είναι παραγωγίσιμη στο xx 0 =2 με g (2)=5 και lim xx 2 ff(xx)+gg(xx) xx 2 =3 να βρείτε τον αριθμό f (2)
Θέμα 16 ο : Έστω συνάρτηση f:(0,+ ) R και για κάθε x,y>0 ισχύει: f xx =f(x) f(y). Δείξτε ότι: yy α) f(1)=0 β) f 1 = f(x), x>0 xx γ)f(x y)= f(x)+f(y) δ)αν f (1)=1 δείξτε ότι η f είναι παραγωγίσιμη στο (0,+ ) και είναι f (x)= 1 xx. Θέμα 17 ο : Αν το πολυώνυμο f(x)=αxx 2 +βx+γ, α 0 έχει ρίζες ρρ 1 <ρρ 2, να αα ρρ αποδείξετε ότι: 1 + αα ρρ 2 =1. ff ( ρρ 1 ) ff ( ρρ 2 ) Θέμα 18 ο : Έστω οι συναρτήσεις f,g που είναι 2 φορές παραγωγίσιμες στο R και για κάθε x R ισχύει: f(x) g(x)=c xx 4, c 0. Αν ρρ 1, ρρ 2 είναι οι ετερόσημες ρίζες της εξίσωσης f (x)=0 δείξτε ότι η εξίσωση g (x)=0 έχει ρίζα στο (ρρ 1, ρρ 2 ). Θέμα 19 ο : Η συνάρτηση f:(0,+ ) R είναι 2 φορές παραγωγίσιμη και ισχύει x f 1 = 1, για κάθε x (0,+ ).Δείξτε ότι: ff (xx) = 1 + ff (xx), για κάθε x (0,+ ). xx ff (xx) ff (xx) xx ff(xx) Θέμα 20 ο : Δίνονται οι παραγωγίσιμες συναρτήσεις f,g: R R για τις οποίες ισχύει f(xx 2 )=(2xx 3 + 3xx 2 ) 2 g(x) για κάθε x R. Aν η ευθεία (ε): y=3x 1 εφάπτεται στη γραφική παράσταση της f στο σημείο της Α(1,f(1)), τότε να βρείτε την εξίσωση της εφαπτομένης της CC gg στο σημείο της Β( 1,g( 1)). Θέμα 21 ο : Δίνονται οι συναρτήσεις f:r R και g:r R, από τις οποίες η f είναι μια φορά και η g δύο φορές παραγωγίσιμη στο R.Αν ακόμα ισχύει gg 2 (x)+(gg (xx)) 2 =1 για κάθε x R και Μ(α,β) είναι κοινό σημείο των γραφικών παραστάσεων των συναρτήσεων f και h(x)=f(x) gg (x), x R, δείξτε ότι: α) gg (α)=1 και g(α)+gg (α)=0 β)g(α)=0 γ)οι CC ff CC h εχουν στο σημείο Μ κοινή εφαπτομένη.
Θέμα 22 ο : Έστω η συνάρτηση f(x)= aa, α 0, Μ ένα σημείο της CC xx ff και (ε) η εφαπτομένη της CC ff στο Μ. Δείξτε ότι: α) η (ε) έχει με τη CC ff μοναδικό κοινό σημείο το (σημείο επαφης) Μ. β) η (ε) σχηματίζει με τους άξονες τρίγωνο σταθερού εμβαδού. γ) το Μ είναι μέσο του τμήματος που έχει άκρα τα σημεία τομής της (ε) με τους άξονες. Θέμα 23 ο : Δίνονται οι f(x)=αxx 2 x και g(x)=ee aaaa. Nα βρεθεί ο α ώστε η εφαπτομένη της g στο xx 0 =0 να εφάπτεται και στην f. Θέμα 24 ο : Έστω f,g παραγωγίσιμες για τις οποίες ισχύει g(x)=f(x) x για κάθε x R.Nα δείξτε ότι οι εφαπτόμενες των f,g στα Α(xx 0,f(xx 0 )) και Β(xx 0,g(xx 0 )) περνούν από το ίδιο σημείο του άξονα yy y. Θέμα 25 ο ee ff(xx) : Έστω f παραγωγίσιμη.αν η εφαπτομένη της g(x)= στο xx xx 0 0 είναι παράλληλη στον άξονα xx x, να δειχτεί ότι η f και η h(x)=ln xx, έχουν στο xx 0 παράλληλες εφαπτόμενες. Θέμα 26 ο : Θεωρούμε συνάρτηση f, η οποία έχει πρώτη και δεύτερη παράγωγο στο R, με ff (x) 0 για κάθε x R. Aν η CC gg με g(x)= ff(xx), τέμνει τον άξονα ff (xx) xx x, τότε τον τέμνει υπό γωνία ππ. 4 Θέμα 27 ο : Οι εφαπτόμενες στις CC ff, CC gg των συναρτήσεων f(x)=αxx 2 και g(x)=xx 2 +x, α 0 που άγονται από τα σημεία τους με τετμημένη xx 0 0, τέμνονται στο σημείο Μ. Να βρεθεί ο α R, ώστε το Μ να ανήκει στην ευθεία y=2x. Θέμα 28 ο : Δίνονται οι συναρτήσεις f,g: R R ώστε: ff 2 (x)+gg 4 (x) 2f(x) gg 2 (x), για κάθε x R.Aν η g είναι παραγωγίσιμη και το σημείο Α(α,0) ανήκει στη CC gg, να δείξετε ότι η CC ff έχει στο σημείο Β(α,f(α)) οριζόντια εφαπτομένη. Θέμα 29 ο : Σκάλα ύψους 10m τοποθετείται πλάγια σ έναν τοίχο.αν η βάση της σκάλας γλιστράει με ρυθμό 4m/s τη χρονική στιγμή tt 0 που η βάση απέχει από τον τοίχο 6m, να βρεθούν: α) ο ρυθμός πτώσης της κορυφής της σκάλας. β) ο ρυθμός μεταβολής της γωνίας θ που σχηματίζει η σκάλα με τον τοίχο. γ) ο ρυθμός μεταβολής του εμβαδού του τριγώνου που σχηματίζει η σκάλα με το έδαφος και τον τοίχο.
Θέμα 30 ο : Δίνεται η συνάρτηση f(x)= 1 3 xx3. α) Βρείτε το σημειο τομής της εφαπτομένης (ε) της CC ff στο Μ(αα, ff(αα)) με τον άξονα xx x. β) Αν ο ρυθμός μεταβολής της τετμημένης του Μ δίνεται από τον τύπο αα (t)=3α(t) να βρεθούν: i) o ρυθμός μεταβολής της τετμημένης του σημείου τομής της εφαπτομένης της CC ff στο Μ με τον άξονα xx x τη στιγμή που το Μ έχει τετμημένη 1. ii) o ρυθμός μεταβολής της γωνίας θ που σχηματίζει η εφαπτομένη με τον άξονα xx x τη στιγμή που το Μ έχει τετμημένη 1. Θέμα 31 ο : Κινητό Κ βρίσκεται τη χρονική στιγμή t=0 sec στην αρχή των αξόνων και αρχίζει να κινείται πάνω στον άξονα xx x με ταχύτητα υ= 2m/s. Σε κάθε χρονική στιγμή φέρνουμε εφαπτόμενη από το Κ στην f(x)= xx και έστω Α(α,f(α)) το σημείο επαφής. Να βρεθούν: α)η συνάρτηση θέσης του κινητού Κ. β) Η ταχύτητα της τετμημένης α του σημείου Α. γ)η στιγμή που η εφαπτομένη σχηματίζει θ=45 οο γωνία με τον άξονα xx x. δ) Ο ρυθμός μεταβολής της γωνίας θ κατά την χρονική στιγμή του ερωτήματος γ). Θέμα 32 ο : Μια μεταβλητή ορθή γωνία ΑΑΑΑΑΑ τέμνει την παραβολή με εξίσωση y=xx 2 στα σημεία Α και Β. Η τετμημένη xx ΑΑ του Α μεταβάλλεται με ρυθμό 3cm/s. Βρείτε: α) τις συντεταγμένες των σημείων Α και Β ως συνάρτηση του xx ΑΑ, β) το εμβαδό του τριγώνου ΑΟΒ ως συνάρτηση του xx ΑΑ, γ) το ρυθμό μεταβολής του εμβαδού του τριγώνου ΑΟΒ τη χρονική στιγμή κατά την οποία είναι xx ΑΑ =2cm.