Κεφάλαιο 6 Παράγωγος



Σχετικά έγγραφα
5 Παράγωγος συνάρτησης

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙ ΕΥΤΙΚΟ Ι ΡΥΜΑ ΥΤΙΚΗΣ ΕΛΛΑ ΑΣ

A2. ΠΑΡΑΓΩΓΟΣ-ΚΛΙΣΗ-ΜΟΝΟΤΟΝΙΑ

4 Συνέχεια συνάρτησης

Κεφάλαιο 3 ΠΑΡΑΓΩΓΟΣ. 3.1 Η έννοια της παραγώγου. y = f(x) f(x 0 ), = f(x 0 + x) f(x 0 )

όπου D(f ) = (, 0) (0, + ) = R {0}. Είναι Σχήµα 10: Η γραφική παράσταση της συνάρτησης f (x) = 1/x.

4.3 Παραδείγµατα στην συνέχεια συναρτήσεων

Κεφάλαιο 7 Βασικά Θεωρήµατα του ιαφορικού Λογισµού

4 Συνέχεια συνάρτησης

ΚΕΦΑΛΑΙΟ 3 ΠΑΡΑΓΩΓΟΣ ΣΥΝΑΡΤΗΣΕΩΝ


ΙΙ ιαφορικός Λογισµός πολλών µεταβλητών. ιαφόριση συναρτήσεων πολλών µεταβλητών

Κανόνες παραγώγισης ( )

11 Το ολοκλήρωµα Riemann

Σχολικός Σύµβουλος ΠΕ03

ΣΗΜΕΙΩΣΕΙΣ ΜΑΘΗΜΑΤΙΚΗΣ ΑΝΑΛΥΣΗΣ Ι ( )

f (x + h) f (x) h f (x) = lim h 0 f (z) f (x) z x df (x) dx, df dy dx,

ΠΑΡΑΓΩΓΟΣ ΣΥΝΑΡΤΗΣΗ. Εφαπτοµένη ευθεία

αx αx αx αx 2 αx = α e } 2 x x x dx καλείται η παραβολική συνάρτηση η οποία στο x

(a) = lim. f y (a, b) = lim. (b) = lim. f y (x, y) = lim. g g(a + h) g(a) h g(b + h) g(b)

dy df(x) y= f(x) y = f (x), = dx dx θ x m= 1

Σηµειώσεις στις συναρτήσεις

f (x) = l R, τότε f (x 0 ) = l. = lim (0) = lim f(x) = f(x) f(0) = xf (ξ x ). = l. Εστω ε > 0. Αφού lim f (x) = l R, υπάρχει δ > 0

ΣΥΓΚΡΙΤΙΚΗ ΣΤΑΤΙΚΗ ΑΝΑΛΥΣΗ ΠΑΡΑΓΩΓΟΣ- ΚΑΝΟΝΕΣ ΠΑΡΑΓΩΓΙΣΗΣ

5.1 Συναρτήσεις δύο ή περισσοτέρων µεταβλητών

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

1 Οι πραγµατικοί αριθµοί

Μαθηματική Εισαγωγή Συναρτήσεις

1 Οι πραγµατικοί αριθµοί

Λύσεις των ϑεµάτων, ΑΠΕΙΡΟΣΤΙΚΟΣ ΛΟΓΙΣΜΟΣ Ι, 3/2/2010

Ακρότατα υπό συνθήκη και οι πολλαπλασιαστές του Lagrange

Μαθηματική Ανάλυση Ι


ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

4.1 Το αόριστο ολοκλήρωµα - Βασικά ολοκληρώ-

< 1 για κάθε k N, τότε η σειρά a k συγκλίνει. +, τότε η η σειρά a k αποκλίνει.

Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Β. Διαφορικός Λογισμός

Μαθηματική Εισαγωγή Συναρτήσεις

( ) Κλίση και επιφάνειες στάθµης µιας συνάρτησης. x + y + z = κ ορίζει την επιφάνεια µιας σφαίρας κέντρου ( ) κ > τότε η

Γραμμική Άλγεβρα και Μαθηματικός Λογισμός για Οικονομικά και Επιχειρησιακά Προβλήματα

( ) Κλίση και επιφάνειες στάθµης µιας συνάρτησης. x + y + z = κ ορίζει την επιφάνεια µιας σφαίρας κέντρου ( ) κ > τότε η

6 ΠΑΡΑΓΩΓΟΙ. 6.1 Ορισµοί. Συναρτήσεις

Κεφάλαιο 2 ΣΥΝΑΡΤΗΣΕΙΣ ΜΙΑΣ ΜΕΤΑΒΛΗΤΗΣ. 2.1 Συνάρτηση

Η Θεωρία στα Μαθηματικά κατεύθυνσης της Γ Λυκείου

Thanasis Xenos ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΠΑΡΑΡΤΗΜΑ ΗΜΑΘΙΑΣ

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2016 Β ΦΑΣΗ Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΣ: ΘΕΤΙΚΩΝ ΣΠΟΥ ΩΝ / ΣΠΟΥ ΩΝ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ


Αριθµητική Παραγώγιση και Ολοκλήρωση

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Ο.Ε.Φ.Ε ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ-ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΑΠΑΝΤΗΣΕΙΣ. f x > κοντά στο x0.

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2016 Β ΦΑΣΗ ΜΑΘΗΜΑΤΙΚΑ ΑΠΑΝΤΗΣΕΙΣ. lim = 0. Βλέπε σελίδα 171 σχολικού. σχολικού βιβλίου.


Άσκηση 1. i) ============================================================== Πρέπει αρχικά να είναι συνεχής στο x = 1: lim. lim. 2 x + x 2.

Υπολογισµός διπλών ολοκληρωµάτων µε διαδοχική ολοκλήρωση

ΤΟ ΟΛΟΚΛΗΡΩΜΑ ΕΙΣΑΓΩΓΗ

1 Οι πραγµατικοί αριθµοί

Η f(x) y είναι συνεχής στο [0, 2α], σαν διαφορά των συνεχών f(x) και y = 8αx 8α 2

( ) = inf { (, Ρ) : Ρ διαµέριση του [, ]}

Μαθηµατικά Θετικής και Τεχνολογικής Κατεύθυνσης ΚΕΦΑΛΑΙΟ. 1 ο :Μιγαδικοί Αριθµοί

Ρυθµοί µεταβολής Παράγωγος σε σηµείο Όρια. Γιάννης Σαριδάκης Σχολή Μ.Π.Δ., Πολυτεχνείο Κρήτης

Κριτήριο Παρεμβολής. και. άρα από το παραπάνω κριτήριο παρεµβολής το l im f ( x) (x 1) 2 f (x) 2x (x 1) 2 2x (x 1) 2 f (x) 2x + (x 1) 2

ΜΙΓΑ ΙΚΟΣ ΛΟΓΙΣΜΟΣ ΚΑΙ ΟΛΟΚΛ. ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ ΓΡΑΠΤΕΣ ΕΞΕΤΑΣΕΙΣ ΣΕΠΤΕΜΒΡΙΟΥ 2010 ΛΥΣΕΙΣ ΤΩΝ ΘΕΜΑΤΩΝ

I.1 ΣΥΝΑΡΤΗΣΕΙΣ-ΕΞΙΣΩΣΕΙΣ: {f(x), y= f(x), y= y(x), F(x, y) = c}

ΑΠΑΝΤΗΣΕΙΣ ΔΙΑΓΩΝΙΣΜΑΤΟΣ ΠΡΟΣΟΜΟΙΩΣΗΣ ΤΗΣ 2/11/2018

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

Διαφορικός λογισµός. y(x + Δx) y(x) dy dx = lim Δy

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2017 Α ΦΑΣΗ

6 Εφαρµογές των παραγώγων στον υπολογισµό ορίων α- προσδιόριστων µορφών - Κανόνες L Hôpital

ΑΠΑΝΤΗΣΕΙΣ - ΥΠΟ ΕΙΞΕΙΣ ΣΤΙΣ ΕΡΩΤΗΣΕΙΣ

ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤEΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2016 Β ΦΑΣΗ

Γραμμική Άλγεβρα και Μαθηματικός Λογισμός για Οικονομικά και Επιχειρησιακά Προβλήματα

Άσκηση 1. i) α) ============================================================== α > 0. Πρέπει κατ αρχήν να ορίζεται ο λογάριθµος, δηλ.

13 Μέθοδοι υπολογισµού ολοκληρωµάτων Riemann

ΚΕΦΑΛΑΙΟ 5ο: ΕΚΘΕΤΙΚΗ-ΛΟΓΑΡΙΘΜΙΚΗ ΣΥΝΑΡΤΗΣΗ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ

Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΜΑΘΗΜΑΤΙΚΑ ΕΚΦΩΝΗΣΕΙΣ ÏÅÖÅ

8 Ακρότατα και µονοτονία

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 2008

Μιγαδική ανάλυση Μέρος Α Πρόχειρες σημειώσεις 1. Μιγαδικοί αριθμοί. ΤΕΤΥ Εφαρμοσμένα Μαθηματικά Μιγαδική Ανάλυση Α 1

. Κουζούδης 1 ΠΑΡΑΓΩΓΟΙ

1 Ορισµός ακολουθίας πραγµατικών αριθµών

Το θεώρηµα πεπλεγµένων συναρτήσεων

Υπολογισµός διπλών ολοκληρωµάτων µε διαδοχική ολοκλήρωση

Η ΕΝΝΟΙΑ ΤΗΣ ΠΑΡΑΓΩΓΟΥ ΕΦΑΠΤΟΜΕΝΗ ΓΡΑΦΙΚΗΣ ΠΑΡΑΣΤΑΣΗΣ ΠΑΡΑΓΩΓΟΣ ΚΑΙ ΣΥΝΕΧΕΙΑ

Περιεχόμενα. Κεφάλαιο 1 ΣΥΣΤΗΜΑΤΑ ΣΥΝΤΕΤΑΓΜΕΝΩΝ ΣΕ ΜΙΑ ΕΥΘΕΙΑ Οι συντεταγμένες ενός σημείου Απόλυτη τιμή...14

Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α

Συνάρτηση f, λέγεται η διαδικασία µε βάση την. Παρατηρήσεις - Σχόλια f

Για να εκφράσουμε τη διαδικασία αυτή, γράφουμε: :

Κεφάλαιο 2. Παραγοντοποίηση σε Ακέραιες Περιοχές

( ) ( ) lim f x lim g x. z-3i 2-18= z-3 2 w-i =Im(w)+1. x x x x

f (x) = l R, τότε f (x 0 ) = l.

ΛΥΣΕΙΣ 6 ης ΕΡΓΑΣΙΑΣ - ΠΛΗ 12,

ΦΥΣ Διάλ Άλγεβρα. 1 a. Άσκηση για το σπίτι: Διαβάστε το παράρτημα Β του βιβλίου

Ανάλυση Γ Λυκείου όριο συνάρτησης στο xο. 0, τότε

Ασκήσεις για το µάθηµα «Ανάλυση Ι και Εφαρµογές» (ε) Κάθε συγκλίνουσα ακολουθία άρρητων αριθµών συγκλίνει σε άρρητο αριθµό.

1.1 ΣΥΝΑΡΤΗΣΕΙΣ. 1. Ορισµός. 2. Συµβολισµός. 3. Επεξήγηση συµβόλων. 4. Γραφική παράσταση της συνάρτησης f : A R

ΜΙΓΑ ΙΚΟΣ ΛΟΓΙΣΜΟΣ ΚΑΙ ΟΛΟΚΛ. ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ ΓΡΑΠΤΕΣ ΕΞΕΤΑΣΕΙΣ ΙΑΝΟΥΑΡΙΟΥ 2010 ΛΥΣΕΙΣ ΤΩΝ ΘΕΜΑΤΩΝ. =. Οι πρώτες µερικές u x y

1 Σύντομη επανάληψη βασικών εννοιών

ΧΡΗΣΙΜΑ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ ΟΡΙΩΝ

12 Το αόριστο ολοκλήρωµα

Transcript:

Σελίδα από 5 Κεφάλαιο 6 Παράγωγος Στο κεφάλαιο αυτό στόχος µας είναι να συνδέσουµε µία συγκεκριµένη συνάρτηση f ( ) µε µία δεύτερη συνάρτηση f ( ), την οποία και θα ονοµάζουµε παράγωγο της f. Η τιµή της f ( ), σε ένα συγκεκριµένο σηµείο πάνω στη συνάρτηση f ( ) έχει την ιδιότητά ότι είναι η κλίση της εφαπτοµένης στο συγκεκριµένο αυτό σηµείο.

6. Η Έννοια της Παραγώγου Σελίδα από 5 6. Η Έννοια της Παραγώγου Στην παράγραφο αυτή θα εισάγουµε την έννοια της παραγώγου δίνοντας την γεωµετρική της ερµηνεία. Εάν A και B είναι δύο σηµεία πάνω σε µία καµπύλη τότε Α Β η γραµµή που ενώνει τα σηµεία Α και Β ονοµάζεται χορδή η γραµµή που τέµνει την καµπύλη µόνο στο σηµείο Α ονοµάζεται εφαπτοµένη στο Α. Είναι γεγονός ότι µία καµπύλη δεν έχει σε όλα τα σηµεία της την ίδια κλίση. Η έννοια λοιπόν της παραγώγου µίας συνάρτησης προήλθε από την ανάγκη να προσδιοριστεί η εφαπτοµένη µίας καµπύλης σε ένα συγκεκριµένο σηµείο. Β Α Τ Ας υποθέσουµε λοιπόν ότι κινούµαστε πάνω στην καµπύλη αυτή, από το σηµείο B στο σηµείο A ( B A ), και στο σηµείο Α η κλίση αλλάζει και παραµένει σταθερή. Εάν αυτό συµβεί, τότε θα κινούµαστε πάνω στη ευθεία γραµµή ΑΤ, δηλαδή πάνω στη εφαπτοµένη στο σηµείο Α. Άρα η κλίση της καµπύλης στο σηµείο Α είναι η ίδια µε την κλίση της εφαπτοµένη στο σηµείο Α. Ας πάρουµε λοιπόν δύο σηµεία Α (, y ) και Β (, ) y πάνω στη καµπύλη y f( ) και ας υποθέσουµε ότι κινούµαστε πάνω στην καµπύλη αυτή, από το σηµείο B στο σηµείο A, και ότι θέλουµε να υπολογίσουµε την παράγωγο στο σηµείο Α. Την κίνηση αυτή µπορούµε να δούµε στο παρακάτω σχήµα.

6. Η Έννοια της Παραγώγου Σελίδα από 5 Y Β (, y ) Τ Α (, y ) X Αυτό σηµαίνει ότι το µεν σηµείο Α παραµένει σταθερό, ενώ το σηµείο Β κινείται και πλησιάζει προς το σηµείο Α. Όσο πιο κοντά είναι το Β στο Α, τόσο καλύτερη είναι η προσέγγιση που θα πάρουµε. ηλαδή, B A ή η κλίση της ευθείας (χορδής) ΑΒ κλίση της εφαπτοµένης ΑΤ ή lim ( κλίση χορδής ΑΒ ) κλίση της εφαπτοµένης ΑΤ. B A Ας κοιτάξουµε τώρα µεταξύ δύο πολύ κοντινών σηµείων πάνω στην καµπύλη, Υ f( + ) Β f ( ) A + Χ όπου είναι ένας αριθµός πολύ κοντά στο µηδέν. Η κλίση της ευθείας (χορδής) ΑΒ δίνεται από τον τύπο Μεταβολη του Μεταβολη του y f ( + ) f( ) ( + ) ή f( + ) f( ) f

6. Η Έννοια της Παραγώγου Σελίδα από 5 f όπου είναι ο λόγος µεταβολής της συνάρτησης f ( ) και τείνει σε ένα συγκεκριµένο όριο. Ο ρυθµός µεταβολής της συνάρτησης στο σηµείο ονοµάζεται παράγωγος της συνάρτησης και ορίζεται ως f ( + ) f( ) f ( ) lim. 0 6.. Ορισµός Η παράγωγος µίας συνάρτησης y f( ) είναι η συνάρτηση f ( ) που η τιµή της σε κάθε ορίζεται από τον κανόνα f ( ) lim f ( + ) f( ) όταν υπάρχει αυτό το όριο. Το πεδίο ορισµού της f είναι το σύνολο των σηµείων του πεδίου ορισµού της f όπου υπάρχει το εν λόγω όριο. Οι συνηθέστεροι συµβολισµοί για την παράγωγο της συνάρτησης y f( ) είναι f ( ) y,,, f ( ), f. Το δηλώνει την παράγωγο ως προς το σηµείο. 6.. Παραδείγµατα ) Χρησιµοποιώντας τον ορισµό της παραγώγου να βρεθεί η παράγωγος της συνάρτησης f( ) +. Λύση [( + ) + ] ( + ) + + + f ( ) lim lim lim + lim ( + ).

6. Η Έννοια της Παραγώγου Σελίδα 5 από 5 ) Χρησιµοποιώντας τον ορισµό της παραγώγου να βρεθεί η παράγωγος της συνάρτησης f ( ) +. Λύση [( ) ( ) ] ( ) ( ) lim + + + f + lim + + + + + ( ) lim + + lim( + + ). ) Χρησιµοποιώντας τον ορισµό της παραγώγου να βρεθεί η παράγωγος της συνάρτησης f ( ). Λύση + ( + )( + + ) f ( ) lim lim ( + + ) ( + ) lim lim lim ( + + ) ( + + ) ( + + ). Παραγώγιση σε Ακραίο Σηµείο ιαστήµατος Έστω µία συνάρτηση f ( ) που ορίζεται στο διάστηµα [ α, β ] και που δεν ορίζεται έξω από αυτό. Τότε η παράγωγος της συνάρτησης f ( ) δεν ορίζεται στα δύο άκρα της α και β αφού η f ( + ) f( ) f ( ) lim είναι η γνωστή δίπλευρη παράγωγος και στα δύο άκρα µόνο µονόπλευρα όρια έχουν νόηµα. Για να αντεπεξέλθουµε στις εδικές αυτές περιπτώσεις ορίζουµε παραγώγους από αριστερά (αριστερή πλευρική παράγωγος) και δεξιά (δεξιά πλευρική παράγωγος). ηλαδή : f ( + ) f( ) f ( ) lim και αντίστοιχα. f ( ) lim + + f ( + ) f( )

6. Η Έννοια της Παραγώγου Σελίδα 6 από 5 6.. Ορισµός Μία συνάρτηση f θα λέγεται παραγωγίσιµη στο διάστηµα [ α, β ] εάν ισχύουν οι παρακάτω συνθήκες :. Η f είναι παραγωγίσιµη στο διάστηµα ( α, β ).. Η f είναι παραγωγίσιµη από τα αριστερά στο α.. Η f είναι παραγωγίσιµη από τα δεξιά στο β. Ασκήσεις 6. Με βάση τον ορισµό της παραγώγου να βρεθεί η παράγωγος f ( ), των παρακάτω συναρτήσεων. ) f ( ) 9 6) f ( ) ( + ) ) f( ) 9 + 6 7) f( ) ( ) ) f( ) ( )(+ 5) 8) f( ) + + + ) f( ) ( ) 9) f( ) α + β α,β σταθερές 5) ( + ) f( ) 0) f( ).

6. Τεχνικές Παραγώγισης Σελίδα 7 από 5 6. Τεχνικές Παραγώγισης Ευτυχώς κάθε φορά που θέλουµε να παραγωγίσουµε µία συνάρτηση δεν χρειάζεται να επαναλαµβάνουµε την παραπάνω διαδικασία (µε βάση τον ορισµό) αφού ειδικές κατηγορίες συναρτήσεων µπορούν να παραγωγιθούν χρησιµοποιώντας ορισµένους κανόνες. Τους κανόνες αυτούς θα εξετάσουµε στην συνέχεια. Παραγώγιση σταθεράς f ( ) c Έστω η συνάρτηση f ( ) c, όπου c είναι µία σταθερά, έχουµε δηλαδή την εξίσωση µίας ευθείας γραµµής παράλληλη στον άξονα των. ηλαδή Άρα, f( + ) f( ) c c f ( ) lim lim lim 0 0 0 0 0 Εποµένως η κλίση της f ( ) είναι 0. ηλαδή, f 0 Παράγωγος του a όπου a σταθερά Έστω η συνάρτηση f ( ) a, έχουµε δηλαδή την εξίσωση µίας ευθείας γραµµής µε κλίση a. Άρα, f( + ) f( ) ( a+ ) a f ( ) lim lim lim lim Εποµένως η κλίση της είναι. ηλαδή, f a

6. Τεχνικές Παραγώγισης Σελίδα 8 από 5 Παράγωγος του n όπου n ακέραιος y Από τον παραπάνω πίνακα συµπεραίνουµε τον ακόλουθο κανόνα, Πράγµατι, n ( ) n n n f ( + ) f( ) ( + ) f ( ) lim lim nn ( ) + n + + + n +! lim n n n n n n n n nn ( ) n n n n + + + n +! lim nn ( ) lim n n + + + +! n n n n Όταν το 0 όλοι οι παράγοντες εκτός του πρώτου πάνε στο µηδέν. Εποµένως, n f ( ) n Παράγωγος του Εάν f ( ), τότε ( ) Πράγµατι, f ( + ) f( ) + f ( ) lim lim

6. Τεχνικές Παραγώγισης Σελίδα 9 από 5 ( + )( + + ) + lim ( + + ) ( + + ) lim 0 lim lim ( + + ) + + lim + Σταθερά Πολλαπλάσια Έστω a µία σταθερά. Εάν η f ( ) είναι µία παραγωγίσιµη συνάρτηση του τότε ισχύει ( af ( ) ) a ( f ( ) ) Πράγµατι, af ( + ) af ( ) f ( + ) f ( ) f ( a) lim lima f ( + ) f( ) a lim 0 af ( ) Παραγώγιση αθροίσµατος και διαφοράς 6.. Θεώρηµα Εάν f και g είναι παραγωγίσιµες συναρτήσεις του, τότε το άθροισµα τους f είναι µία παραγωγίσιµη συνάρτηση του για την οποία ισχύει ο κανόνας + g ( f + g) f + g Απόδειξη ( f g) [ f ( + ) + g( + ) ] [ f( ) + g( ) ] + lim [ f ( + ) f( ) ] + [ g( + ) g( ) ] lim f ( + ) f( ) g( + ) g( ) lim + lim

6. Τεχνικές Παραγώγισης Σελίδα 0 από 5 f g + Το θεώρηµα 6.. ισχύει και για διαφορά δύο συναρτήσεων. ηλαδή, ( f g) f g 6.. Παραδείγµατα Να βρεθεί η παράγωγος των παρακάτω συναρτήσεων ) y, ) 5 y ) y + 8 5 +, ) y Λύση ) 0, ) 5, ) 6 6 6 5 +, ) Παραγώγιση γινοµένου 6.. Θεώρηµα Εάν δύο συναρτήσεις f και g είναι παραγωγίσιµες ως προς τότε το γινόµενο τους f g είναι µία παραγωγίσιµη συνάρτηση του για την οποία ισχύει ο κανόνας ( fg) f g + g f Απόδειξη f( + ) g( + ) f( ) g( ) ( fg ) lim Προσθέτοντας και αφαιρώντας f ( + ) g( ) στον αριθµητή παίρνουµε f( + g ) ( + ) f( + g ) ( ) + f( + g ) ( ) f( g ) ( ) ( fg ) lim g ( + ) g ( ) f( + ) f( ) lim f( ) g( ) + +

6. Τεχνικές Παραγώγισης Σελίδα από 5 g ( + ) g ( ) f( + ) f( ) lim f( + )lim + lim g( ) lim g f lim f( + ) + lim g( ) Το όριο lim g ( ) g ( ) αφού δεν εξαρτάτε από το. Η f() είναι παραγωγίσιµη στο και εποµένως και συνεχής στο. Άρα lim f ( + ) f( ). Εποµένως, g f ( fg) f + g 6.. Παραδείγµατα Να βρεθεί η παράγωγος των παρακάτω συναρτήσεων ) y ( )( 7 + ), ) y ( ), ) y ( + )( ) Λύση ) ( 7 + ) ( ) + ( ) ( 7 + ) ( )( ) ( ) + + + 7 8 ( ) 0 9 + ) ( ) ( ) ( 9 ) + ( ) 9 7 + + ) ( ) ( + ) + ( + ) ( )

6. Τεχνικές Παραγώγισης Σελίδα από 5 ( )( ) ( )( ) + + + 5 6 Παραγώγιση πηλίκου 6..5 Θεώρηµα Εάν δύο συναρτήσεις f και g, όπου g 0 είναι παραγωγίσιµες ως προς τότε το πηλίκο y f / g είναι µία παραγωγίσιµη συνάρτηση του για την οποία ισχύει ο κανόνας f g g f f g g Απόδειξη f ( + ) f( ) f g ( + ) g ( ) lim g lim f ( + g ). ( ) f( ). g ( + ) g. ( + ). g( ) Προσθέτοντας και αφαιρώντας f ( ). g( ) στον αριθµητή παίρνουµε f f( + ) g( ) f( ) g( ) f( ) g( + ) + f( ) g( ) lim ( + ) ( ) g g g f ( + ) f( ) g( + ) g( ) g ( ) f( ) lim g ( + g ) ( ) f ( + ) f( ) g( + ) g( ) lim g ( )lim lim f( )lim lim g ( + )lim g ( ) f g lim g ( ) lim f( ) lim g ( + ) lim g ( ) Το όριο lim g ( ) g ( ) και το lim f ( ) f( ) αφού δεν εξαρτώνται από το.

6. Τεχνικές Παραγώγισης Σελίδα από 5 Η g() είναι παραγωγίσιµη στο και εποµένως και συνεχής στο. Άρα lim g ( + ) g ( ). Εποµένως, f g g f f g g 6..6 Παραδείγµατα Να βρεθεί η παράγωγος των παρακάτω συναρτήσεων ) y +, ) y +, ) + y 5 Λύση ) ( ) ( + ) ( + ) ( ) ( ) ( )( ) ( + )( ) ( ) ( ) ) ( + ) ( ) ( ) ( + ) ( + ) 5 ( )( ) ( )( ) ( + ) ( + ) + + + ) ( 5) ( + ) ( + ) ( 5) ( 5) ( )( ) ( )( ) 5 + 0 ( 5) ( 5)

6. Τεχνικές Παραγώγισης Σελίδα από 5 6..7 Θεώρηµα Εάν η συνάρτηση f ( ) είναι παραγωγίσιµη στο και f( ) 0 τότε η συνάρτηση f ( ) είναι παραγωγίσιµη στο και ( f ( ) ) f ( ) f( ) ( ) Ο αναγνώστης µπορεί πολύ εύκολα να απόδείξη το θεώρηµα 6..7 χρησιµοποιώντας το θεώρηµα 6..5 (παραγώγιση πηλίκου). 6..8 Παραδείγµατα Να βρεθεί η παράγωγος των παρακάτω συναρτήσεων ) y, ) y + Λύση ) ) ( ) ( + ) + + + ( ) ιαδοχική παραγώγιση Εάν η παράγωγος της συνάρτησης y f( ) είναι παραγωγίσιµη στο, και την παραγωγίσουµε για άλλη µία φορά, τότε η νέα συνάρτηση θα µας δώσει την δεύτερη παράγωγο της y f( ). Οι συνηθέστεροι συµβολισµοί για την δεύτερη παράγωγο της y f( ) είναι y f( ) y,,, f ( ), f. Γενικότερα το αποτέλεσµα της διαδοχικής παραγώγισης µίας συνάρτησης y f( ) n -φορές δηλώνεται ως :

6. Τεχνικές Παραγώγισης Σελίδα 5 από 5 y f( ) y f f n n ( n) ( n) ( n),,, ( ), n n. 6..9 Παράδειγµα Εάν y 5 6 + 8 τότε, y + 5 y y 0 y () y 0 y () y 0 ( ) (5) (6) ( n) y 0, y 0,, y 0 n.

6. Τεχνικές Παραγώγισης Σελίδα 6 από 5 Ασκήσεις 6. Να βρεθεί η f ( ) και η f ( ) των παρακάτω συναρτήσεων ) ) f ( ) f ( ) 5 5) 6) + f( ) 5 f( ) ( + ) ) f ( ) 7) f( ) π ) f ( ) 8) f( ) α + β + γ+ δ, α,β,γ,δ σταθερές + 5) f ( ) ( ) 9) f( ) 5 6) f ( ) + 0) f ( ) ( + ) 7) f( ) ( )( + ) ) f ( ) ( 5) + 8) f( ) ) f( ) ( 7)( + + ) 9) f ( ) + + 7+ ) f( ) + + 0) f( ) ) f( ) 5 ) f( ) + 5) f( ) + + ( + )( 5) ) f( ) + 6) f( ) 7 + ) f( ) ( 6) + 7) f( ) + + + 8 ) f ( ) + 8) f( ) ( + )

6. Παράγωγος Τριγωνοµετρικών Συναρτήσεων Σελίδα 7 από 5 6. Παράγωγος Τριγωνοµετρικών Συναρτήσεων Η παράγωγος της τριγωνοµετρικής συνάρτησης ορισµό της παραγώγου, είναι το όριο y sin ως προς και µε βάση τον sin( + ) sin lim. Χρησιµοποιώντας την τριγωνοµετρική ταυτότητα sin( + ) sin cos + cos sin καθώς και τα ακόλουθα δύο γνωστά όρια ότι sin( + ) sin lim sin cos + cos sin sin lim 0 [ ] sin cos + cossin lim sin lim και cos lim 0 έχουµε cos sin lim sin + lim cos cos sin sin lim + cos lim sin 0 + cos cos. Με τον ίδιο τρόπο ο αναγνώστης µπορεί να αποδείξει ότι η παράγωγος της συνάρτησης y cos είναι y sin και η παράγωγος της συνάρτησης y tan είναι sec. y cos

6. Παράγωγος Τριγωνοµετρικών Συναρτήσεων Σελίδα 8 από 5 6.. Παραδείγµατα Να βρεθεί η παράγωγος των παρακάτω συναρτήσεων ) y tan, ) sin y, ) + cos y cos Λύση + + ) ( ) ( ) tan tan tan sec ) ( + cos) ( sin) sin ( + cos) ( + cos) ( + cos)( cos) sin( sin) ( + cos) cos + cos + sin cos + + ( + cos) ( + cos) cos ) cos cos cos () ( ) 0 ( sin ) sin cos cos cos sin sec tan cos cos.

6. Παράγωγος Τριγωνοµετρικών Συναρτήσεων Σελίδα 9 από 5 Ασκήσεις 6. Να βρεθεί η f ( ) των παρακάτω συναρτήσεων ) y cos 6) ) y + 7sin tan 7) ) y sin 8) ) sin cos y + tan sin y + cos y sin y + cos sin 9) ( )( ) 5) ( sin ) y + sec 0) y cos + sin

6. Παράγωγος Εκθετικών και Λογαριθµικών Συναρτήσεων Σελίδα 0 από 5 6. Παράγωγος Εκθετικών και Λογαριθµικών Συναρτήσεων Παράγωγος εκθετικών συναρτήσεων Στην άλγεβρα, οι ακέραιοι εκθέτες και οι ρητοί εκθέτες ενός αριθµού a µπορούν να οριστούν ως, n a, n a n a a a a n φορε ς p 0 p/ q q p q a, a a ( a), a p/ q. p/ q a Το γράφηµα της συνάρτησης y a εξαρτάται από τις τιµές που µπορεί να πάρει το a. Το παρακάτω γράφηµα µας δείχνει την συνάρτηση y a για 0 < a <, a και a >. 6.. Πρόταση Έστω a > 0. Αν f : R (0, + ) µε f ( ) a, τότε f ( ) a lna. Ειδικά, για a e παίρνουµε: ( e ) e. Απόδειξη Έχουµε την ανισότητα: + e, για κάθε (,). Για αρκούντως µικρό κατ απόλυτη τιµή ( < ln a, για a, ενώ για a το µπορεί να είναι οτιδήποτε) έχουµε ln a (,). Άρα, ln + a lna e lna, ήτοι lna + lna a lna a. lna lna a lna Εάν > 0, παίρνουµε ln a και επειδή lna a (από το κριτήριο της παρεµβολής) ότι lim ln a. 0 + ln a lim ln a, έπεται 0 lna

6. Παράγωγος Εκθετικών και Λογαριθµικών Συναρτήσεων Σελίδα από 5 a lna a Εάν < 0, παίρνουµε ln a, οπότε lim ln a. lna 0 a Άρα f (0) lim ln a. 0 Με βάση τώρα, τον ορισµό της παραγώγου η παράγωγος της συνάρτηση y a δίνεται από τον τύπο + ( a a a a ) a f ( ) lim lim a lim a lna. Εάν, a e τότε η συνάρτηση γίνεται y e και η παράγωγός της ορίζεται ως ( e ) e 6.. Σηµείωση Ο αριθµός e ορίζεται ως ( ) / k e lim + lim + k + + + + + + + k 0!!! n!.788 Παράγωγος λογαριθµικών συναρτήσεων ίνεται η συνάρτηση f ( ) log b. Η f ( ) ορίζεται ως log ( + ) log ( ) log lim b b ( b ) lim log b( + ) log b( ) [ ] + lim log b ( ) loga XY loga X + logay lim logb + εάν u τότε u 0 όταν 0 και εποµένως, ( log ) lim log ( + u) b u 0 u b

6. Παράγωγος Εκθετικών και Λογαριθµικών Συναρτήσεων Σελίδα από 5 lim logb + u 0 u u 0 ( u) u lim log + b ( u) / u log b lim + ( u) / e lim( + ) / u 0 0 logb e Εποµένως, ( log ) b logbe, > 0 αλλάζοντας την βάση του λογαρίθµου παίρνουµε ( logb ), > 0 ln b log z log log a a z Στην περίπτωση όπου b e τότε ( ln( ) ), 0 > [ log ] a a

6. Παράγωγος Εκθετικών και Λογαριθµικών Συναρτήσεων Σελίδα από 5 Ασκήσεις 6. Να βρεθεί η παράγωγος, f ( ), των παρακάτω συναρτήσεων. ) f ( ) ln ) f( ) + ) f( ) ( ) ) f ( ) e sin e ) f( ) ) f( ) ln sin ) f ( ) sin cos ) f ( ) log e 5) f ( ) tan, 5) f( ) e e e 6) f( ) 6) f( ) + + 7) f( ) ( )ln( ) 7) f( ) 8) f ( ) sin ln 8) f( ) sin 9) f( ) 9) f( ) cos cos ln 0) f( ) 0) f( ) sin ln( )

6.5 Παράγωγος Σύνθετης Συνάρτησης Σελίδα από 5 6.5 Παράγωγος Σύνθετης Συνάρτησης Για να υπολογίσουµε την παράγωγο σύνθετων συναρτήσεων χρησιµοποιούµε τον κανόνα της αλυσιδωτής παραγώγισης ή κανόνα της αλυσίδας. 6.5. Πρόταση (κανόνας της αλυσίδας) Έστω g: A B παραγωγίσιµη στο σηµείο 0 A και f : B R παραγωγίσιµη στο σηµείο g ( 0) B, όπου Α, Β ανοικτά διαστήµατα του R. Τότε η f g είναι παραγωγίσιµη στο σηµείο 0 A και ισχύει: ( f g)( 0) f ( g( 0)) g ( 0). Απόδειξη Θεωρούµε τη συνάρτηση ϕ : A R µε τύπο f( g( )) f( g( 0 )), αν g ( ) g ( 0 ) ϕ( ) g ( ) g ( 0) f ( g ( 0)), αν g ( ) g ( 0) Πρώτα θα αποδείξουµε ότι η φ είναι συνεχής στο σηµείο 0. Έστω λοιπόν ε > 0. Εφόσον η f είναι παραγωγίσιµη στο σηµείο g ( 0), υπάρχει δ > 0 µε την ιδιότητα: f( y) f( g( 0)) y B και 0 < y g( 0) < δ f ( g( 0)) < ε. () y g( ) 0 Τώρα, εφόσον η g είναι συνεχής στο 0 (γιατί είναι παραγωγίσιµη στο σηµείο αυτό), υπάρχει δ > 0 µε την ιδιότητα: A και 0 < 0 < δ g( ) g( 0) < δ. Για κάθε A µε 0 < 0 < δ διακρίνουµε δύο περιπτώσεις: (i) Αν g ( ) g ( 0), τότε ϕ( ) f ( g( 0)) ϕ( 0) και άρα ϕ( ) ϕ( 0 ) 0< ε και (ii) 0 < g ( ) g ( 0) < δ, f( g( )) f( g( 0 )) οπότε, βάσει της (), f ( g( 0 )) < ε, g ( ) g ( ) ϕ( ) f ( g( )) < ε. Παρατηρούµε τώρα ότι για κάθε A 0 0 0 { } ισχύει: δηλαδή f ( g ( )) f( g ( 0)) g ( ) g ( 0) ϕ ( ). 0 0

6.5 Παράγωγος Σύνθετης Συνάρτησης Σελίδα 5 από 5 f( g ( )) f( g ( 0)) g ( ) g ( 0) [Αν g ( ) g ( 0), τότε 0, ενώ αν g ( ) g ( 0) 0 0 ( ( )) ( ( 0)) ( ( )) ( ( 0)) ( ) ( 0) ( ) ( 0) τότε f g f g f g f g g g ( ) g ϕ g ]. g ( ) g ( ) 0 0 0 0 Εποµένως, f ( g ( )) f( g ( 0)) g ( ) g ( 0) ( f g) ( 0 ) lim lim ϕ ( ) lim 0 0 0 0 0 f ( g ( )) g ( ). 0 0 Με άλλα λόγια εάν και εποµένως, ( ( )) y f g και u g( ) τότε y f( u) u u 6.5. Παραδείγµατα ) Να βρεθεί η παράγωγος της y ( ) Λύση u u και y u u u. Άρα, u u. u. π ) Να βρεθεί η παράγωγος της y sin(θ ) Λύση π u u θ θ και y sin u cosu u Άρα, π cosu cos(θ ). θ

6.5 Παράγωγος Σύνθετης Συνάρτησης Σελίδα 6 από 5 6.5. Σηµείωση Ουσιαστικά ο υπολογισµόs της παραγώγου µίας σύνθεσης δύο ή και περισσοτέρων παραγωγίσιµων συναρτήσεων, δεν είναι τίποτε άλλο παρά το γινόµενο των παραγώγων κάθε συνάρτησης αρχίζοντας την παραγώγιση της σύνθεσης από έξω προς τα µέσα. Έτσι λοιπόν εάν έχουµε τις συναρτήσεις r ( ) g( f( )) ή p( ) g( f( ( ))), η παραγώγιση της σύνθεσης από έξω προς τα µέσα g f () ή g f () θα µας δώσει τους παρακάτω δύο τύπους r ( ) g ( f( )) f ( ) ή p ( ) g ( f( ( ))) f ( ( )) ( ). 6.5. Παραδείγµατα ) Να βρεθεί η παράγωγος της y e Λύση Εδώ έχουµε δύο συναρτήσεις την e και την. Άρα, ( ) ( ) y e e e e. ) Να βρεθεί η παράγωγος της y sin ( e ) Λύση Εδώ έχουµε τρεις συναρτήσεις την sin ( e ) την e και την. Άρα, ( ( )) ( )( ) ( ) ( ) ( ) e cos( e ) y e e e e e e e sin cos cos cos ( ) 5 ) Να βρεθεί η παράγωγος της y cos( ) Λύση ( ) 5 5 Εδώ έχουµε τρεις συναρτήσεις την cos( ) την ( ) cos και την 5.

6.5 Παράγωγος Σύνθετης Συνάρτησης Σελίδα 7 από 5 Άρα, (( cos( )) ) 5 ( cos( 5) ) ( cos( 5 )) 5 5 5 cos ( ( )) ( sin ( ))( ) ( ) 5 5 60 sin( )( cos( )) y ( ) ( ( )) cos sin 0 5 5 Παράγωγος του r όπου r ρητός αριθµός. n Στην παράγραφο 6. είδαµε πώς να βρίσκουµε την παράγωγο του για ακέραιες τιµές του n αλλά και για n /. Χρησιµοποιώντας τον κανόνα της αλυσίδας θα δούµε ότι η ίδια τεχνική µπορεί να χρησιµοποιηθεί και για οποιαδήποτε ρητή δύναµη του. ηλαδή, r r ( ) r. Απόδειξή Έστω η παραγωγίσιµη συνάρτηση y p/ q. Εάν παραγωγίζοντας ως προς και u αντίστοιχα παίρνουµε Χρησιµοποιώντας τον κανόνα της αλυσίδας έχουµε u /q και q u και q y u p u τότε p p. u p u p q u q p p p + q q q q q q q p p p q q q p q q p

6.5 Παράγωγος Σύνθετης Συνάρτησης Σελίδα 8 από 5 Ασκήσεις 6.5 Να βρεθεί η παράγωγος f ( ) των παρακάτω συναρτήσεων. ) ) f ( ) e ) f( ) ( ) 5 + ) f ( ) e sin f( ) e sinθ ) f( ) ( ) 5 + ) f ( θ) sin( θ + ) ) f( ) sinθ ) f ( ) ln( sincos) 5) 6) f( ) sin θ 5) f( ) ( ) + 6) sin f( ) ln cos f ( ) cos (sin( )) 7) f( ) 7) 5 f( ) + e 8) f( ) 8) f ( ) sin (5 ) e 9) f( ) 9) f ( ) cos(cos ) sinθ 0) f ( ) e e + 0) f( ) ( sin( ) + tan ( 7 )) 5

6.6 Παράγωγος Αντίστροφων Συναρτήσεων Σελίδα 9 από 5 6.6 Παράγωγος Αντίστροφων Συναρτήσεων 6.6. Πρόταση Εάν η συνάρτηση y f( ) είναι µία παραγωγίσιµη συνάρτηση µε αντίστροφη συνάρτηση την f ( y) g( y), τότε η ( ) f ( ) 0 και /. g y θα είναι παραγωγίσιµη Απόδειξη Αφού η συνάρτηση f ( ) είναι παραγωγίσιµη, θα είναι και συνεχής έτσι ώστε Η συνάρτηση ( ) y f( + ) f( ) 0 όταν το 0. g y είναι συνεχής, άρα 0 όταν y 0. Εποµένως, όταν lim lim / y 0 y y 0 y y lim / y 0 Το αποτέλεσµα αυτό µπορεί και γραφτεί και ως g ( y) f f g y ή διαφορετικά, αλλάζοντας τις µεταβλητές ( ) ( ( )) δηλαδή, ( ) g f ( f ( ) ) ( g ( )) f f ( ( ))

6.6 Παράγωγος Αντίστροφων Συναρτήσεων Σελίδα 0 από 5 Παράγωγος Αντίστροφων Τριγωνοµετρικών Συναρτήσεων Ας πάρουµε την συνάρτηση y sin ( arcsin ) γραφτεί σαν. Η εξίσωση αυτή µπορεί να sin y. Εάν τώρα παραγωγίσουµε ως προς y θα πάρουµε cos y. cos y. Εποµένως, Γνωρίζουµε όµως ότι cos y sin y. Εποµένως, ( ). 6.6. Σηµείωση π π Επειδή < <, τότε < y <. Για αυτές τις τιµές του y cos( ) 0. Άρα cos( y) ( ) [ και όχι ( ) ]. Με τον ίδιο τρόπο ο αναγνώστης µπορεί να αποδείξει ότι η παράγωγος της και η παράγωγος της ( arccos ) y cos είναι ( ) ( arctan ) είναι +. y tan

6.7 Συνοπτικός Πίνακας Παραγώγισης Σελίδα από 5 6.7 Συνοπτικός Πίνακας Παραγώγισης Οι τύποι παραγώγισης που αναπτύξαµε σε αυτό το κεφάλαιο δίνονται στον παρακάτω πίνακα. Οι συναρτήσεις u και v που βλέπετε στους τύπους θεωρούνται ότι είναι παραγωγίσιµες συναρτήσεις του. Το γράµµα c δηλώνει µία αυθαίρετη σταθερά. y c, (c σταθερά) 0 y sinθ cosθ θ y n n n y cosθ sinθ θ y a y e y e a n an n y tan θ e y sin a a ae y cos a sec θ θ a a y a a ln a y a a a + tan y ln Κανόνας Γινοµένου : y uv., u v v + u Κανόνας Πηλίκου : u v v u u y, v v Κανόνας Αλυσίδας : u u

6.8 ιαφορικά Σελίδα από 5 6.8 ιαφορικά Μέχρι στιγµής έχουµε αντιµετωπίσει τον συµβολισµό / ως ένα απλό σύµβολο για την παραγώγιση. Τα σύµβολα και, τα οποία και ονοµάζονται διαφορικά, δεν είχαν από µόνα τους κάποια συγκεκριµένη σηµασία. Στην παράγραφο αυτή θα δούµε πως τα σύµβολα αυτά, και, µπορούν να χρησιµοποιηθούν έτσι ώστε το / να ερµηνευτεί ως το πηλίκο των δύο αυτών διαφορικών. Εάν y f( ) και η f είναι παραγωγίσιµη στο, τότε µπορούµε να ορίσουµε το ως f ( ) () Εάν 0, τότε µπορούµε να διαιρέσουµε και τα δυο µέλη της () µε για να µας δώσει f ( ) () Η εξίσωση () µας λεει ότι µπορούµε να θεωρήσουµε το σύµβολο για την παράγωγο ως πηλίκο των δύο διαφορικών. 6.8. Ορισµός Για την συνάρτηση y f( ) ορίζουµε (α) ως διαφορικό του το µε την σχέση (β) ως διαφορικό του y το µε την σχέση f ( ) Εποµένως το διαφορικό της ανεξάρτητης µεταβλητής είναι από τον ορισµό ίσο µε την µεταβολή της µεταβλητής. Το διαφορικό όµως της εξαρτηµένης µεταβλητής y δεν ισούται µε την µεταβολή της. Αυτό µπορεί να γίνει πιο κατανοητό βλέποντας το παρακάτω σχεδιάγραµµα. y y f ( ) y + ( + )

6.8 ιαφορικά Σελίδα από 5 Είναι εµφανές ότι το y. Όσο ποιο µικρό είναι το διάστηµα είναι η προσέγγιση του διαφορικού στο y. τόσο καλύτερη Οι τύποι παραγώγων που παραθέσαµε στον συνοπτικό πίνακα παραγώγισης στην παράγραφο 6.9 µπορούν να εκφραστούν και σε διαφορικά. Οι τύποι αυτοί δίνονται στον παρακάτω πίνακα. Συνοπτικός Πίνακας ιαφορικών c () 0 (c σταθερά) ( n n ) n ( n n a ) an (sin θ ) cos( θ) θ (cos θ ) sin( θ) θ (tan ) sec ( ) θ θ θ e ( ) a ( e ) e a ae sin a a cos a a a ( ) aln( a ) (ln ) Κανόνας Γινοµένου : ( uv) vu + uv a a + tan a Κανόνας Πηλίκου : u vu uv v v

6.9 Λύσεις Ασκήσεων Σελίδα από 5 6.9 Λύσεις Ασκήσεων Ασκήσεις 6. ) 8 9, ) 7, ), ) 8, 5), 6) 7), 8), 9) α, 0). /, Ασκήσεις 6. 5 ) 5, 0 ) 5,, ), 9, ),, 5), 9, 6),, 7),, 8) +,, 9) + 6+ 7, + 6 0) 0, ), ( ) / 8 5 9, ) 7, + 56, ) 8 +, 6, 9 ) 0 +, 6, 5) / 5, 5 6) 6 +, 08 + 7) 0, 8) a + b + c, 6a + b, 9),, 0) 9 5 8 0 + + 8, 90 + 0 + 8 6 ) 5, 5 8, ) 5 9 + 8, 0 8+, ) 8 + +, 5, ) 7 68 + + +,, 5),, ( 5 ) ( 5 ) ( + + ) ( + + ) 5 6 + 8 08 6 8+ 0 6),, 7) 5 + + ( ) 6 0 5 6 6 + ( ) 5 + + + +, 8), ( ) ( ) Ασκήσεις 6. ) + sin, ) 7cos sec, ) cos + sin, ) cos tan sec + 5) sec tan + sec + sec, 6), 7) ( + tan) 8) sin cos cos sin sin, 0) 0., 9) ( ), + cos Ασκήσεις 6. 5 )+ ln, ) ( ) ln, ) cos sin, ln, ) ( )

6.9 Λύσεις Ασκήσεων Σελίδα 5 από 5 5) cos, 6) e ( ), 7)+ ln( ), 8) cos ln + sin, ( ) 9) ( + tan ), 0) cos sin, ), ) e ( sin + cos ), ( + ) e ( sin cos ) ), ) ln +, 5), 6), 7) sin ln0 ( e e, ) ( + ) cos sin ( )ln( ) ln 8), 9), 0). ( ) ( )ln ( ) Ασκήσεις 6.5 ) e, ) 5( + ), ) 0 ( + ), ) θ cos( θ ), 5) sinθ cosθ, 6) ( + ), cosθ 7), 8) e + e, 9), 0) 6e + e,) sin e cos, / ( ) sin θ sinθ ) 6e cos( θ ), ) θ ( θ ) + cos( θ + ) ( 5) 6) 6 cos (sin( )).sin(sin( )).cos( ), 7) ( + ) 8) 0 sin(5 ) cos(5 ) + sin (5 ), 9) sin sin(cos ), cos( ), ) sin(, 5), ) sin 0) 5( sin( ) tan ( 7 )).( cos( ) sin( ) 8 6 tan ( 7 ) sec ( 7 )) + + +.,