AUDITORNE VJEŽBE IZ PREDMETA ENERGETSKI STROJEVI - 1. VJEŽBE

Σχετικά έγγραφα
POGONSKI I RADNI STROJEVI

ELEKTROMOTORNI POGONI - AUDITORNE VJEŽBE

12. SKUPINA ZADATAKA IZ FIZIKE I 6. lipnja 2016.

TOPLINSKA BILANCA, GUBICI, ISKORISTIVOST I POTROŠNJA GORIVA U GENERATORU PARE

PARNA POSTROJENJA ZA KOMBINIRANU PROIZVODNJU ELEKTRIČNE I TOPLINSKE ENERGIJE (ENERGANE)

=1), što znači da će duljina cijevi L odgovarati kritičnoj duljini Lkr. koji vlada u ulaznom presjeku, tako da vrijedi

1 bar (-197 C) Sl Područja primjene plinskog i parnog rashladnog procesa Parni rashladni proces s jednostupanjskom kompresijom

TRIGONOMETRIJA TROKUTA

( ) Φ = Hɺ Hɺ. 1. zadatak

Matematika 1 - vježbe. 11. prosinca 2015.

Eliminacijski zadatak iz Matematike 1 za kemičare

VILJUŠKARI. 1. Viljuškar se koristi za utovar standardnih euro-pool paleta na drumsko vozilo u sistemu prikazanom na slici.

Ĉetverokut - DOMAĆA ZADAĆA. Nakon odgledanih videa trebali biste biti u stanju samostalno riješiti sljedeće zadatke.

BETONSKE KONSTRUKCIJE 3 M 1/r dijagrami

10. STABILNOST KOSINA

2.7 Primjene odredenih integrala

Pismeni ispit iz matematike Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: ( ) + 1.

Iz poznate entropije pare izračunat ćemo sadržaj pare u točki 2, a zatim i specifičnu entalpiju stanja 2. ( ) = + 2 x2

7 Algebarske jednadžbe

SEMINAR IZ KOLEGIJA ANALITIČKA KEMIJA I. Studij Primijenjena kemija

2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x

( , 2. kolokvij)

Toplina Q koju predamo sustavu voda aluminijski lonac utroši se na njihovo zagrijavanje.budući da nema gubitaka topline, vrijedi.

1.4 Tangenta i normala

odvodi u okoliš? Rješenje 1. zadatka Zadano: q m =0,5 kg/s p 1 =1 bar =10 5 Pa zrak w 1 = 15 m/s z = z 2 -z 1 =100 m p 2 =7 bar = Pa

DIJELOVI PARNE TURBINE

Vježba: Uklanjanje organskih bojila iz otpadne vode koagulacijom/flokulacijom

Q = m c ( t t Neka je m 2 masa leda koja se tom toplinom može rastaliti. Tada vrijedi jednadžba: J m c t t 0. kg C

RIJEŠENI ZADACI I TEORIJA IZ

POGON SA ASINHRONIM MOTOROM

STATISTIKA S M E I M N I AR R 7 : METODE UZORKA

IZRAČUNAVANJE POKAZATELJA NAČINA RADA NAČINA RADA (ISKORIŠĆENOSTI KAPACITETA, STEPENA OTVORENOSTI RADNIH MESTA I NIVOA ORGANIZOVANOSTI)

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova)

Elektrotehnički fakultet univerziteta u Beogradu 17.maj Odsek za Softversko inžinjerstvo

DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović

ENERGETSKI SUSTAVI ZA PROIZVODNJU ELEKTRIČNE I TOPLINSKE ENERGIJE

Pismeni ispit iz matematike GRUPA A 1. Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj, zatim naći 4 z.

( , treći kolokvij) 3. Na dite lokalne ekstreme funkcije z = x 4 + y 4 2x 2 + 2y 2 3. (20 bodova)

MEHANIKA FLUIDA. Prosti cevovodi

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka

1 Promjena baze vektora

5. Rad, snaga, energija, Zakon očuvanja mehaničke energije, Zakon kinetičke energije

1 UPUTSTVO ZA IZRADU GRAFIČKOG RADA IZ MEHANIKE II

Novi Sad god Broj 1 / 06 Veljko Milković Bulevar cara Lazara 56 Novi Sad. Izveštaj o merenju

Upotreba tablica s termodinamičkim podacima

6 Primjena trigonometrije u planimetriji

TRIGONOMETRIJSKE FUNKCIJE I I.1.

VJEŽBE 3 BIPOLARNI TRANZISTORI. Slika 1. Postoje npn i pnp bipolarni tranziostori i njihovi simboli su dati na slici 2 i to npn lijevo i pnp desno.

DEFINICIJA APSORPCIJA. za proračun je važno znati ravnotežnu topivost plina iz plinske smjese u kapljevini

Prof. dr. sc. Z. Prelec ENERGETSKA POSTROJENJA Poglavlje: 7 (Regenerativni zagrijači napojne vode) List: 1

Pošto pretvaramo iz veće u manju mjernu jedinicu broj 2.5 množimo s 1000,

Elektrotehnički fakultet univerziteta u Beogradu 26. jun Katedra za Računarsku tehniku i informatiku

BIPOLARNI TRANZISTOR Auditorne vježbe

5. PRIJENOS TOPLINE IZMEĐU RASHLADNOG UREĐAJA I HLADIONICE

ENERGETSKA POSTROJENJA

Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama.

Trigonometrija 2. Adicijske formule. Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto

Q = m c t + m r Q = m c t t

TERMODINAMIKA. Vježbe II

FTN Novi Sad Katedra za motore i vozila. Teorija kretanja drumskih vozila Vučno-dinamičke performanse vozila: MAKSIMALNA BRZINA

MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15

11. VJEŽBE RIJEŠENI PRIMJERI 1 / 9

T O P L I N A P l i n s k i z a k o n i

KORIŠTENJE VODNIH SNAGA

ELEKTROTEHNIČKI ODJEL

Slično važi i za bilo koje druge kombinacije nekondenzujućih ( O

POVRŠINA TANGENCIJALNO-TETIVNOG ČETVEROKUTA

Strukture podataka i algoritmi 1. kolokvij 16. studenog Zadatak 1

Riješeni zadaci: Nizovi realnih brojeva

Funkcije dviju varjabli (zadaci za vježbu)

Numerička matematika 2. kolokvij (1. srpnja 2009.)

PRAVA. Prava je u prostoru određena jednom svojom tačkom i vektorom paralelnim sa tom pravom ( vektor paralelnosti).

Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011.

Kinetička energija: E

Linearna algebra 2 prvi kolokvij,

Rijeseni neki zadaci iz poglavlja 4.5

PARCIJALNI IZVODI I DIFERENCIJALI. Sama definicija parcijalnog izvoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je,

METODE PROPRAČUNA IZMJENJIVAČA

MATEMATIKA 1 8. domaća zadaća: RADIJVEKTORI. ALGEBARSKE OPERACIJE S RADIJVEKTORIMA. LINEARNA (NE)ZAVISNOST SKUPA RADIJVEKTORA.

3. OSNOVNI POKAZATELJI TLA

KORIŠTENJE VODNIH SNAGA TURBINE

Opća bilanca tvari - = akumulacija u dif. vremenu u dif. volumenu promatranog sustava. masa unijeta u dif. vremenu u dif. volumen promatranog sustava

nvt 1) ukoliko su poznate struje dioda. Struja diode D 1 je I 1 = I I 2 = 8mA. Sada je = 1,2mA.

Linearna algebra 2 prvi kolokvij,

Riješeni zadaci: Limes funkcije. Neprekidnost

, Zagreb. Prvi kolokvij iz Analognih sklopova i Elektroničkih sklopova

(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k.

Program testirati pomoću podataka iz sledeće tabele:

18. listopada listopada / 13

PRAVAC. riješeni zadaci 1 od 8 1. Nađite parametarski i kanonski oblik jednadžbe pravca koji prolazi točkama. i kroz A :

Zadaci i rješenja. Rješenje

numeričkih deskriptivnih mera.

27 C, a na kraju vožnje 87 C. Uz pretpostavku da se volumen guma nije tijekom vožnje promijenio, nađite

MATEMATIKA I 1.kolokvij zadaci za vježbu I dio

5. PARCIJALNE DERIVACIJE

Matematička analiza 1 dodatni zadaci

41. Jednačine koje se svode na kvadratne

Algoritmi zadaci za kontrolni

Zavrxni ispit iz Matematiqke analize 1

2.2 Srednje vrijednosti. aritmetička sredina, medijan, mod. Podaci (realizacije varijable X): x 1,x 2,...,x n (1)

Transcript:

AUDIORNE VJEŽBE IZ PREDMEA ENERGESKI SROJEVI -. VJEŽBE Autor: Prof.dr.c. Zvonimir Guzović zvonimir.guzovic@fb.hr KAEDRA ZA URBOSROJEVE

POGLAVLJE 6.. ZADAAK ZADAAK 6.. Koja je najviša moguća termodinamička ikoritivot tolinkog troja koji radi ogrjevnim remnikom (tzv. izvorom toline) kod 000 0 C dok je temeratura rahladne vode odn. rahladnog remnika (tzv. onora toline) 0 0 C? RJEŠENJE: η η Carnot t t Carnot KAEDRA ZA URBOSROJEVE + + 7 7 8 7 000 0 + + 7 7 0, 875 7K 8K 87, 5%

POGLAVLJE 6.. ZADAAK ZADAAK 6.. Ogrjevni remnik ima temeraturu t 800 0 C a rahladni remnik 50 C. Izračunajte termodinamičku ikoritivot i omjer radova Carnotovog iklua koji koriti zrak kao radni fluid ako u makimalni i minimalni tlak u cikluu 0 bar i bar. JEŠENJE: iklu je rikazan u - i -v dijagramu a l.6.5.a i l. 6.5.b. KAEDRA ZA URBOSROJEVE

POGLAVLJE 6.. ZADAAK ermodinamička ikoritivot Carnotovog ciklua: η η Carnot t t Carnot + 7 800 + 7 5 + 7 88 07 + 7 07K 0, 7 88K 7, % Da bi odredili korini rad (redan okolišu) otrebno je izračunati romjenu entroije -. Za izotermalni roce od do A romjena entroije iznoi uz individualnu linku kontantu za zrak R 87 J/K: 0 J A Rln 87ln 55, 55 K K KAEDRA ZA URBOSROJEVE

POGLAVLJE 6.. ZADAAK z kontantni tlak od A do romjena entroije iznoi uz ecifičnu tolinu za rak uz kontantni tlak c 005 J/K: 07 J A c ln 005ln, 88 K romjena entroije od do tada iznoi A A 55,, 0, ok je korino dobiveni rad: ( )( ) ovršina ( 07 88) K K W kor 0, 68 Ukuni rad ekanzije u cikluu rad izotermalne ekanzije + rad izentroke ekanzije - KAEDRA ZA URBOSROJEVE

POGLAVLJE 6.. ZADAAK Rad izotermalne ekanzije [ W Q ]: ( ) W Q ovršina _iod _ crte _ 0, 07 9, 6 Rad izentroke ekanzije [ W (u u ) ] uz ecifičnu tolinu za zrak uz kontantni volumen c v 78 J/K: J W cv ( ) 78( 07 88) 56600 56, 6 Ukuni rad ciklua (ekanzije): Omjer radova: W uk W + W 9, 6 + 56, 6 79, Korini _ rad _ ciklua 68 OR 0,, % Ukuni _ rad _ ciklua 79, KAEDRA ZA URBOSROJEVE

POGLAVLJE 6.. ZADAAK. ZADAAK. Kod linko-turbinkog ciklua zrak na ulazu u komreor ima tlak i temeraturu,0 bar i t 5 0 C. Zrak e komrimira na tlak 6, bar. Izračunajte termodinamičku ikoritivot i omjer radova idealnog ciklua uz kontantni tlak u kojem makimalna temeratura iznoi t 800 0 C! RJEŠENJE: Ciklu je rikazan u - dijagramu na l.6.8. KAEDRA ZA URBOSROJEVE

POGLAVLJE 6.. ZADAAK ermodinamička ikoritivot idealnog ciklua uz kontantni tlak (Joulovog ili Braytonovog): ηbrayton 0, 0 0, % κ κ, κ r κ 6,, 0, emeratura nakon izentroke komreije u komreoru ( ) i izentroke ekanzije u turbini ( ): t + 7 5 + 7 88K KAEDRA ZA URBOSROJEVE 67, t, 67 κ κ 6,, 0, 67 88 + 7 800 + 07 67, κ κ 8K 7 07K 6K, 67

POGLAVLJE 6.. ZADAAK Korini rad ciklua W kor jednak je radu turbine W umanjenom za rad komreora W K : W kor W 8000 W J K c 8 ( ) c ( ) 005( 07 6) 005( 8 88) kuni rad ciklua W uk jednak je radu turbine W : J Wuk W c( ) 005( 07 6) 000 Omjer radova: OR Korini _ rad _ ciklua Ukuni _ rad _ ciklua Wkor 8 0, 55 55% W uk KAEDRA ZA URBOSROJEVE

POGLAVLJE 6.. ZADAAK ZADAAK. Izračunajte termodinamičku ikoritivot idealnog tandardnog a zrakom Otto ciklua za benzinki motor ako je romjer cilindra d 50 mm, hod klia L 75 mm, te volumen mrtvog rotora V K, cm. RJEŠENJE: Radni volumen cilindra, V R : π π V R d L 50 75 700mm Ukuni volumen cilindra, V R : VU VR + VK 7, +, 68, 5cm Komreioni omjer, r v : r V V 68, 5, v U K 7, 9 ermodinamička ikoritivot: ηotto 0, 56 56, % κ, r 7, 9 KAEDRA ZA URBOSROJEVE v 7, cm

POGLAVLJE 6. 5. ZADAAK ADAAK 5. Dieel motor ima na uiu temeraturu t 5 0 C i tlak bar. omreioni omjer iznoi r v dok je makimalna temeratura ciklua t 00 0 C. Izračunajte termodinamičku ikoritivot idealnog a zrakom dieel iklua. JEŠENJE: iklu je rikazan u - dijagramu na l.6.. KAEDRA ZA URBOSROJEVE

POGLAVLJE 6. 5. ZADAAK t t + 7 5 + 7 88K + 7 00 + 7 7K emeratura nakon rocea izentroke komreije ( ): κ, v κ rv v, 7 88 778K, 7 Proce dovođenja toline uz kontantni tlak od do : v v 765, 7 778 Nadalje uz v v : v v, 765 6 8, v v v v v v v v KAEDRA ZA URBOSROJEVE

POGLAVLJE 6. 5. ZADAAK emeratura nakon rocea izentroke ekanzije od do ( ): κ v,, 6 8 5, v 7 68K 5, olina dovedena u ciklu uz kontantni tlak o radnog fluida: J Qdo c( ) 005( 7 778) 598000 598 olina odvedena iz ciklua uz kontantni volumen o radnog fluida: J Qod cv ( ) 78( 68 88) 5000 5 ermodinamička ikoritivot: η Qod 5 0, 58 58% Q 598 do KAEDRA ZA URBOSROJEVE

POGLAVLJE 6. 6. ZADAAK ADAAK 5. Motor na teško ulje uiava zrak temerature t 0 0 C i tlaka,0 bar. Komreioni omjer iznoi r v 8 dok je makimalni tlak ciklua 69 ar. Izračunajte termodinamičku ikoritivot idealnog a zrakom dieel ciklua votrukim izgaranjem. JEŠENJE: iklu je rikazan u -v dijagramu na l.6.. KAEDRA ZA URBOSROJEVE

POGLAVLJE 6. 6. ZADAAK t + 7 0 + 7 9K emeratura i tlak nakon rocea izentroke komreije ( i ): κ κ r, v 8 v v 8, v v 57, 8, 9 9K κ κ r, v 8 8, 57, 57,, 0 57, 8bar emeratura nakon rocea dovođenja toline uz kontantni tlak ( ): 69 9 K 57, 8 KAEDRA ZA URBOSROJEVE

POGLAVLJE 6. 6. ZADAAK emeratura nakon rocea dovođenja toline uz kontantni volumen ( ) određuje e iz činjenice da je tolina dovedena uz kontantni volumen jednaka tolini dovedenoj uz kontantni tlak: c v ( ) c( ) ( 9) 005( ) 78 akođer: v v 78 8 +, K 005,, 6 Proce izohornog odvođenja toline: v v 8 6, 6 5, v v v v v v KAEDRA ZA URBOSROJEVE

POGLAVLJE 6. 6. ZADAAK κ, 5 5 v 5, v 6 0,, 0, 0 08K, 0 Dovedena tolina Q do tijekom ciklua dana je jednadžbama: Q Q do do c v ( ) + c ( ) ( ) 78( 9) c 60000 Odvedena tolina Q od tijekom ciklua: Q c ( ) 78( 08 9) J 60 J 8600 8, od v 5 6 ermodinamička ikoritivot ciklua: Qod 8, 6 ηdieel dv 0, 68 68, % Q 60 do KAEDRA ZA URBOSROJEVE

POGLAVLJE 6. 7. ZADAAK ZADAAK 7. Izračunajte rednji efektivni tlak ( m ) za ciklu iz zadatka 6. RJEŠENJE: Rad ciklua: W ηqdo 0, 68 60 77 Uz r v v /v 8 i v R : v 7 7R 7 87 9 v v v v 0, 786 5 8 8 8 8, 0 0 m Srednji efektivni tlak ( m ): W m m ( v v ) W 0, 786 0, 786 77 0 0, 786 m 5000Pa, 5bar KAEDRA ZA URBOSROJEVE

KAEDRA ZA URBOSROJEVE HVALA NA PAŽNJI!

AUDIORNE VJEŽBE IZ PREDMEA ENERGESKI SROJEVI -. VJEŽBE Autor: Prof.dr.c. Zvonimir Guzović zvonimir.guzovic@fb.hr KAEDRA ZA URBOSROJEVE

POGLAVLJE 7.. ZADAAK ADAAK 7.. Parno-turbinko otrojenje radi između tlaka u generatoru are d bar i tlaka u kondenzatoru od 0,05 bar. Izračunajte za te granične rijednoti tlakova termodinamičku ikoritivot ciklua, omjer radova i ecifičnu otrošnju are: ) za Carnotov ciklu koji radi vlažnom arom; ) za Rankineov ciklu a uhozaićenom arom na ulazu u turbinu, i ) za Rankineov ciklu od b) ako e roce ekanzije odvija uz unutarnju izentroku) ikoritivot 80%. JEŠENJE: ) Carnotov ciklu je rikazan u - dijagramu na l. 7.5. temeratura zaićenja (iaravanja) kod bar 5,+7 56, K temeratura zaićenja (kondenzacije) kod 0,05 bar 6,7 + 7 99,7 K ermodinamička ikoritivot Carnotova ciklua: KAEDRA ZA URBOSROJEVE 56, 99, 7 ηcarnot 0,, % 56,

POGLAVLJE 7.. ZADAAK Dovedena tolina: Q h h h 698 do Korini rad ciklua: fg _ kod bar Wkor ηcarnotqdo 0, 698 7 Da bi odredili ukuni rad rocea ekanzije otrebno je odrediti entaliju na izlazu iz turbine h uz uvjet da je roce ekanzije idealan, tj.. Iz tolinkih tablica h 800 / i 6,09 /K te korištenjem jednadžbe + x fg, 9+ x 8, f kod _ 0, 05 _ bar kod _ 0, 05 _ bar 0 6, 09 može e odrediti adržaj uhozaićene are na izlazu iz turbine x 6, 09 0, 9 x 8,, 0 696 KAEDRA ZA URBOSROJEVE

POGLAVLJE 7.. ZADAAK kao i entalija na izlazu iz turbine: h h + x hfg 0, 696 8 808 f + kod _ 0, 05 _ bar kod _ 0, 05 _ bar Ukuni rad ciklua: W uk h h 800 808 99 Omjer radova: OR W W uk 7 99 kor 0, 7 Secifična otrošnja are (): 600 W kor 600 7, 9 kw kwh KAEDRA ZA URBOSROJEVE

POGLAVLJE 7.. ZADAAK ) Rankineov ciklu je rikazan na l. 7.6. Kao od a) h 800 /; h 808 /. akođer: h v v h f f kod _ 0, 05 _ bar kod _ 0, 05 _ bar m 0, 00 Rad ume: 5 J W v f ( ) 0, 00( 0, 05) 0 00, Ukuni rad ciklua Rad turbine: W uk W h h 800 808 99 KAEDRA ZA URBOSROJEVE

POGLAVLJE 7.. ZADAAK ermodinamička ikoritivot Rankineovog ciklua: Omjer radova Rankineova ciklua: Secifična otrošnja are: ( h h ) ( h h ) 99, ( h h ) ( h h ) ( 800 ) Wkor W W ηrankine 0, 68 6, 8% Q Q, OR uk do do Wkor W W 99, 0, 996 99, 6% W W 99 600 W kor W 600 W c) Ciklu neovrativim roceom ekanzije je rikazan na l.7.7. 600 99,, 6 kwh Unutarnja _( izentroka )_ ikoritivot _turbine W h h W 99 ' ' η, W h h 0 8 KAEDRA ZA URBOSROJEVE

POGLAVLJE 7.. ZADAAK Ukuni rad ciklua Rad turbine: W uk W ' 0, 8 99 79, 6 / ermodinamička ikoritivot ciklua: η Rankine ' W Q kor do 79, 6,, ( 800 ) W ' Q W do 0, 9 9, % ( h h ' ) ( h h ) ( h h ) ( h h ) Omjer radova: W W ' W kor 79, 6, OR 0, 995 99, 5% W W 79, 6 uk Secifična otrošnja are (): 600 W kor KAEDRA ZA URBOSROJEVE ' W 600 W ' 600 79, 6,, 56 kw kwh

POGLAVLJE 7.. ZADAAK ZADAAK 7.. Uoredite karakteritike Rankineovog ciklua iz zadatka 7. onima koje e dobiju ako e ara regrije na 500 0 C. Zanemarite rad naojne ume. Rankineov ciklu je rikazan u - dijagramu na l. 7.9.a,b. RJEŠENJE: Iz tolinkih tablica za bar i 500 0 C (regrijana ara): h, 6 7, 066 7, 066 0, 9+ x x f 0, 8 kod _ 0, 05 _ bar + x 8, KAEDRA ZA URBOSROJEVE fg kod _ 0, 05 _ bar

POGLAVLJE 7.. ZADAAK KAEDRA ZA URBOSROJEVE

POGLAVLJE 7.. ZADAAK h h h h f f kod _ 0, 05 _ bar kod _ 0, 05 _ bar + x h fg kod _ 0, 05 _ bar + 0, 8 8 Korini rad ciklua W kor zbog zanemarivanja rada ume jednak je ukunom radu turbine W - : W kor W h h, 6 9, 6 Dovedena tolina uz zanemarenje rada naojne ume h : Q do h h, 6 0, 6 ermodinamička ikoritivot: Wkor h h 9, 6 ηrankine 0, 99 9, 9% Qdo h h 0, 6 Secifična otrošnja are (): 600 600 600 kw, 7 W W 9, 6 kwh kor KAEDRA ZA URBOSROJEVE h

POGLAVLJE 7.. ZADAAK ZADAAK 7.. Izračunajte novu termodinamičku ikoritivot i ecifičnu otrošnju are ako e u otrojenje iz zadatka 7. ugradi međuregrijanje are. Stanje are na ulazu u turbinu je bar i 500 0 C, dok je tlak u kondenzatoru kao i rije 0,05 bar. Pretotavite da je ara na izlazu iz rvog dijela turbine uravo uhozaićena te da e međuregrijava na voju očetnu temeraturu. Zanemarite rad naojne ume. RJEŠENJE: Ciklu je rikazan u - dijagramu na l. 7.. KAEDRA ZA URBOSROJEVE

POGLAVLJE 7.. ZADAAK ogodno je očitati vrijednoti entalija iz Mollierovog h- dijagrama za vodenu aru: h h h h 6 7 0, 6 _( za _ bar _i _ 500 C ); 7 87 55 Iz tolinkih tablica: h _( za _, bar _( za _, bar _i _ 500 _( za _ 0, 05bar ) h f kod _ 0, 05 _ bar ) 0 C ) KAEDRA ZA URBOSROJEVE

POGLAVLJE 7.. ZADAAK Korini rad ciklua jednak je ukunom radu ciklua tj. radu arne turbine (zbog zanemarenje rada naojne ume): Dovedena tolina uz zanemarenje rada naojne ume h h : ( h h ) + ( h h ) ( ) + ( 87 7) Q do 05 6 ermodinamička ikoritivot ciklua: Wkor 68 ηrankine 0, % Q 05 do Secifična otrošnja are (): 600 W kor KAEDRA ZA URBOSROJEVE 600 68 ( h h ) + ( h h ) ( 7) + ( 87 55) Wkor Wuk W + W6 7 6 7 68, kw kwh

POGLAVLJE 7.. ZADAAK ZADAAK 7.. Ako e Rankineov ciklu iz zadatka 7. modificira uključivanjem jednog regenerativnog redgrijača naojne vode, izračunajte novu termodinamičku ikoritivot i ecifičnu otrošnju are. Para na ulazu u turbinu je uhozaićena ri tlaku bar, dok je tlak u kondenzatoru 0,05 bar. Zanemarite rad naojne ume. olinka hema i rikaz Rankineovog ciklua u - dijagramu u rikazani na l. 7..a,b. RJEŠENJE: Iz tolinkih tablica za tlak bar temeratura zaićenja (iaravanja) iznoi t 5, 0 C, dok za tlak 0,05 bar temeratura zaićenja (kondenzacije) iznoi t 6,7 0 C. Stoga otimalna temeratura nereguliranog oduzimanja za regenerativno redgrijavanje (redgrijač miješanjem) iznoi: t t + t 5, + 6, 7 6 0 0 C KAEDRA ZA URBOSROJEVE

POGLAVLJE 7.. ZADAAK KAEDRA ZA URBOSROJEVE

POGLAVLJE 7.. ZADAAK Birajući najbliži tlak zaićenja iz tolinkih tablica ronalazi e da je to,5 bar, a je to i tlak oduzimanja, dok je konačna temeratura oduzimanja t 6 8,9 0 C. Da bi e odredila veličina oduzimanja y (u aolutnom iznou u ili u % od ukune količine are na ulazu u turbinu), analizira e roce adijabatkog miješanja u redgrijaču, u kojem e y are entalije h 6 miješa (-y) vode entalijom h, što daje vode entalije h 7. Maena i tolinka bilanca za redgrijač miješanjem: yh y 6 + h h ( y) 7 6 h h h Iz tolinkih tablica: h h 7 f kod _, 5 _ bar h h 7 6 58 h 7 h h h h f kod _ 0, 05 _ bar KAEDRA ZA URBOSROJEVE

POGLAVLJE 7.. ZADAAK 6, g kod bar, 7 f kod _, 5 _ bar 77, f kod _ 0, 05 _ bar K 0 9 6 09 K K fg kod _, 5 _ bar Sadržaj uhozaićene are u točkama 6 i : x x 6 6 fg fg f kod _, 5 _ bar f kod _, 5 _ bar kod _ 0, 05 _ bar kod _ 0, 05 _ bar fg kod _ 0, 05 _ bar 6, 09 77, 5, 6, 09 0, 9 80, 5, K 80, 0, 89 0, 696 K 8, 9% 69, 6% KAEDRA ZA URBOSROJEVE

POGLAVLJE 7.. ZADAAK Stoga: h h 6 h h f f kod _, 5 _ bar kod _ 0, 05 _ bar Količina oduzete are za regenerativno redgrijavanje: olina dovedena u generatoru are uz zanemarenje rada druge naojne ume ): + x + 58 y 6 h 7 h 8 Q do h h 6 h x fg kod _, 5 _ bar h 800 58 7 fg kod _ 0, 05 _ bar 0, ili % 6 58 + 0, 89 8 6 + 0, 696 8 808 KAEDRA ZA URBOSROJEVE

POGLAVLJE 7.. ZADAAK orini rad ciklua jednak je ukunom radu turbine: W kor W W 6 + 6 ( h h ) + ( y)( h h ) 6 ( 800 6) + ( 0, )( 6 808) ermodinamička ikoritivot ciklua: Secifična otrošnja are (): 6 876 Wkor 876 ηrankine 0, 96 9, 6% Q 6 do 600 W kor 600 876, kw kwh KAEDRA ZA URBOSROJEVE

POGLAVLJE 7. 5. ZADAAK ZADAAK 7.5. Kod regenerativnog Rankineovog ciklua u koji u ugrađena dva ovršinka redgrijača naojne vode are e dovodi turbini tlakom 0 bar i temeraturom 500 0 C, a odvodi e u kondenzator u kojem je tlak 0,05 bar. lakovi oduzimanja u odabrani tako da e naojna voda ribližno zagrijava za iti temeraturni rirat u oba redgrijača i njihove vrijednoti u 0 i, bar. Izračunajte količine oduzete are na vakom od oduzimanja, korini rad i termodinamičku ikoritivot ciklua. Pretotavite da u rocei idealni. RJEŠENJE: olinka hema i - dijagram ciklua u rikazani na l. 7.5 i l. 7.6. KAEDRA ZA URBOSROJEVE

POGLAVLJE 7. 5. ZADAAK Zadatak e riješava omoću Mollierovog h- dijagrama i tolinkih tablica za vodenu aru i vodu. Iz h- dijagrama: h 5 h 0 7 Iz tolinkih tablica uz roce rigušivanja: h 6 h h h f kod _ 0 _ bar h 5 h9 h0 h f kod _, _ bar 76 9 h 59 8 Iz tolinkih tablica i zanemarivajući rad naojne ume: h 7 h h h f kod _ 0, 05 _ bar KAEDRA ZA URBOSROJEVE

POGLAVLJE 7. 5. ZADAAK Maena i tolinka bilanca za rvi redgrijač: y y h 7 + h h 6 7 h 5 h h 5 y h + h 6 76 9 07 ili,7%, 0 76 Maena i tolinka bilanca za drugi redgrijač: y y y y h8 + yh + h h5 + ( y + y ) h9 ( h8 h9 ) + yh + h h5 + yh9 ( 59 9) + ( 07, 76) + 9 + ( 07, 9) 67, 8 0 ili,%, 6 KAEDRA ZA URBOSROJEVE

POGLAVLJE 7. 5. ZADAAK olina dovedena u generatoru are uz zanemarivanje rada naojne ume h h Q do ): h h 5 76 6 68 Korini rad ciklua jednak je ukunom radu turbine: W 7 + W7 8 + W8 ( h h7 ) + ( y )( h7 h8 ) + ( y y )( h8 h ) ( 5 0) + ( 07, )( 0 59) + ( 07, 0, )( 59 7) W kor, + 76, 9 + 5, 5, 5 ermodinamička ikoritivot ciklua: Wkor, 5 ηrankine 0,, % Q 68 do KAEDRA ZA URBOSROJEVE

POGLAVLJE 7. 6. ZADAAK ZADAAK 7.6. lak i temeratura are na ulazu u arnu turbinu reguliranim oduzimanjem are u 50 bar i 50 0 C. Na izlazu iz viokotlačnog dijela turbine tlak iznoi,5 bar te e ovdje oduzima turbini ara za tehnološke otrebe u iznou 000 /h. Otatak e međuregrijava kod,5 bar na 50 0 C, te otom ekandira kroz nikotlačni dio turbine do tlaka u kondenzatoru od 0,05 bar. Unutarnja naga koju razvija turbina iznoi 750 kw. Unutarnja (izentroka) ikoritivot viokotlačnog dijela turbine je 0,8 a nikotlačnog dijela turbine 0,8. Izračunajte koliku količinu are mora generirati generator are. Potrebne vrijednoti entalija očitavati iz Mollierovog h- dijagrama za vodenu aru. KAEDRA ZA URBOSROJEVE

POGLAVLJE 7. 6. ZADAAK RJEŠENJE: - dijagram ciklua je rikazan na l. 7.96. KAEDRA ZA URBOSROJEVE

POGLAVLJE 7. 6. ZADAAK Iz Mollierovog h- dijagrama za vodenu aru: h 070 h 97 Stvarni rad viokotlačnog dijela turbine: W h 97 ( h h ) 0, 8( 070 97) V h h ' η, V Stvarni rad nikotlačnog dijela turbine: W ( h h ) 0, 8( 97 9) N h h ' η, N 565, 70, 6 Maeni rotok are reguliranog oduzimanja za tehnološke otrebe: 000 m& od 000, h 600 Količina are koju generira generator are: m&... h 9 KAEDRA ZA URBOSROJEVE

POGLAVLJE 7. 6. ZADAAK Količina are koja truji kroz nikotlačni dio turbine: Unutarnja naga turbine: P 750 kw 750 ( m&, )...... Jednadžba nage turbine: m& W V + m& 565, + m& 5, ( m&, ) ( m&, ) W N P 70, 6 750 Količina are koju generira generator are: m& 5, 8500 h KAEDRA ZA URBOSROJEVE

POGLAVLJE 7. 7. ZADAAK ADAAK 7.7. Kombi otrojenje e atoji od linko-turbinkog i arnourbinkog otrojenja, kod kojeg e iušni linovi iz linke turbine odvode u enerator are u kojem e odvija još dodatno izgaranje lina. omreioni omjer linko-turbinkog otrojenja je 8 uz temeraturu zraka na lazu u komreor 5 0 C, dok je makimalna temeratura linko-turbinkog ciklua 00 0 C. odatnim izgaranjem u generatoru are odiže e temeratura linovima izgaranja a 800 0 C, dok linovi izgaranja nauštaju generator are temeraturom 00 0 C. lak i temeratura are na ulazu u arnu turbinu arno-turbinkog ciklua u 60 bar 600 0 C, dok je tlak u kondenzatoru 0,05 bar. zračunajte omjer maenih rotoka zraka i are koji je otreban za ukunu nagu 90 MW, te termodinamičku ikoritivot kombi otrojenja. Pretotavite idealne iklue za linko-turbinki i arno-turbinki ciklu. Koliki je ukuni omjer rak/gorivo? Za linove izgaranja retotaviti ecifičnu tolinu uz kontantni tlak,, /K, ekonent izentroe κ, i kaloričku vrijednot goriva H d 00 /. Zanemariti maeni rotok goriva na maeni rotok zraka. KAEDRA ZA URBOSROJEVE

POGLAVLJE 7. 7. ZADAAK RJEŠENJE: olinka hema kombi otrojenja je rikazana na l. 7.00, a na l. 7.0.a je rikazan - dijagram linkoturbinke jedinice a na l. 7.0.b - dijagram arno-turbinke jedinice. KAEDRA ZA URBOSROJEVE

POGLAVLJE 7. 7. ZADAAK emeratura zraka na ulazu u komreor: 7 + t 7 + 5 88K emeratura zraka na izlazu iz komreora (izentroka komreija): κ κ,, 88 8 5K( t 9 emeratura linova izgaranja na ulazu u linku turbinu: 7 + t 7 + 800 07K emeratura linova izgaranja na izlazu iz turbine (izentroka ekanzija): ( t 65 C) 07 0 68K κ, κ, 8 0 C KAEDRA ZA URBOSROJEVE

POGLAVLJE 7. 7. ZADAAK Secifični rad dobiven u linko-turbinkom cikluu: W PL 9000 ( ) c c, J 9, z olina dovedena u komori izgaranja: Q ( ) 0( 07 68) 005( 5 88) ( ) 0( 07 5) olina dovedena u generatoru are dodatnim izgaranjem: J 6000 c, J Q 5 c, ( t5 t ) 0( 800 65) 8000 Iz Mollierovog h- dijagrama za vodenu aru: h 657 h 8 Iz tolinkih tablica: h h 8 f kod _ 0, 05 _ bar KAEDRA ZA URBOSROJEVE 6 8

POGLAVLJE 7. 7. ZADAAK Rad naojne ume može e zanemariti a toga: h h 8 Secifični rad dobiven u arno-turbinkom cikluu: W PA h h 657 8 7 Promjena entalije linova izgaranja u generatoru are: h ( t t ) 0( 800 00) J 777000 5 h6 c, 5 6 777 Promjena entalije vode odn. vodene are u generatoru are: h h 657 8 59 KAEDRA ZA URBOSROJEVE

POGLAVLJE 7. 7. ZADAAK m &,... & Ako u maeni rotoci zraka odn. are, tada energetka bilanca za z m generator are daje: m& m& z z m& m& z ( h h ) m& ( h h ) 5 777 6, 5 m& 59 Maeni rotok are lijedi iz jednadžbe nage kombi otrojenja: m& W m& 9 + m& 7 90 0, 5m& 560m& m& z z PL 7, + m& W 9 + m& 7 90 0 90 0 PA P kombi KAEDRA ZA URBOSROJEVE

POGLAVLJE 7. 7. ZADAAK Maeni rotok zraka: m& z, 5m&, 5 7, 6 Ukuna dovedena tolina u kombi otrojenju: Q m& Q + m& do z zq 5 6 6 + 6 8 68 0 68MW ermodinamička ikoritivot kombi otrojenja: Pkombi 90 ηkombi 0, 56 5, 6% Q 68 do Ako e maeni rotok goriva obilježi : f m& H m& Q + Q m& m& f f f m& m& z f d 00 00 00 095 ( 5 ) m& ( 8 + 6) z z m& 095 z 9, 5 KAEDRA ZA URBOSROJEVE m& Vidljivo je da je maeni rotok zraka koro 0 uta veći od maenog rotoka goriva a za ovakovi reliminarni roračun je avim oravdano zanemariti utjecaj maenog rotok goriva na maeni rotok zraka!

KAEDRA ZA URBOSROJEVE HVALA NA PAŽNJI!

AUDIORNE VJEŽBE IZ PREDMEA ENERGESKI SROJEVI -. VJEŽBE Autor: Prof.dr.c. Zvonimir Guzović zvonimir.guzovic@fb.hr KAEDRA ZA URBOSROJEVE

POGLAVLJE 0.. ZADAAK ADAAK 0.. Para izlazi iz tatorkih loatica (anica) akcijke turbine (De avalove turbine) brzinom 900 m/ od kutom 0 0. Obodna brzina rotorkih oatica je 00 m/, a njihov koeficijent brzine 0,7. Za maeni rotok / uz retotavku da u rotorke loatice imetrične (izlazni kut jednak je ulaznom utu) izračunajte: ) ulazni kut rotorkih loatica; ) obodnu i akijalnu komonentu ile na rotorke loatice, i ) ecifični rad (nagu) na obodu kola. JEŠENJE: lazni i izlazni trokut brzina za rotorke loatice rikazan je na l. 0.. ) Iz ulaznog trokuta brzina za rotorke loatice rikazanog na l. 0. relativna rzina i njen kut na ulazu u rotorke loatice: w c in β + u c uc w 0 β 9 β _ KAEDRA ZA URBOSROJEVE inα coα 900 in 0 66, 6 900 (akcijki_tuanj) 0 + 00 0, 9 00 900 co 0 0 66, 5 m

POGLAVLJE 0.. ZADAAK b) Relativna brzina na izlazu iz rotorkih loatica za akcijki tuanj: w ψw 0, 7 66, 5 8 5, Iz ulaznog i izlaznog trokuta brzina za rotorke loatice rikazanih na l. 0. obodne komonente relativne brzine na ulazu i izlazu iz rotorkih loatica u: w w w u u u 55, 8 + 89, 97, 7 Obodna komonenta ile na rotorke loatice: m m 0 m w co β 66, 5co9 55, 8 0 m w co β 8, 5co9 89, + w F u ( + w ) 97, 7 97 7 u m w u u, & N / KAEDRA ZA URBOSROJEVE

POGLAVLJE 0.. ZADAAK Iz ulaznog i izlaznog trokuta brzina za rotorke loatice rikazanih na l. 0. akijalne komonente relativne brzine na ulazu i izlazu iz rotorkih loatica u: 0 m w a w in β 66, 5in 9 07, 6 0 m w w in 8, 5in 9 a β 5, m w a w a 07, 6 5, 9, Akijalna komonenta ile na rotorke loatice za akcijki tuanja (tlak ired rotorkih loatica jednak tlaku iza rotorkih loatica): N Fa m& ( w a w a ) 9, 9, / d) Secifični rad (naga) na obodu kola: h ( w + w ) F u 97, 7 00 7800 78, kw u mu u u u & J KAEDRA ZA URBOSROJEVE

POGLAVLJE 0.. ZADAAK ZADAAK 0.. Para izlazi iz rvih tatororkih loatica (anica) dvotune Curtiove turbine brzinom 600 m/ od kutom 6 0. Obodna brzina na rednjem romjeru rotorkih loatica iznoi 0 m/. Izlazni kutovi iz rvog reda rotorkih loatica, drugog reda tatorkih loatica (kretnih loatica) i drugog reda rotorkih loatica u redom: 8 0, 0 i 5 0. Koeficijenti brzina za tatorke i rotorke loatice u međuobno jednaki i iznoe 0,9. Potrebno je izračunati: a) Ulazne kutove za ve redove (rešetke) loatica; b) Za vaki red rotorkih loatica komonente ila na rotorke loatice u obodnom i akijalnom mjeru za maeni rotok /, i c) Secifični rad (nagu) na obodu kola RJEŠENJE: Ulazni i izlazni trokuti brzina za rvi i drugi red rotorkih loatica rikazani u na l. 0., gdje u gornji trokuti brzina za rvi red rotorkih loatica a donji za drugi red rotorkih loatica. Ovdje će zadatak biti riješen grafo-analitički, dok je zadatak također moguće riješiti u otunoti analitički. KAEDRA ZA URBOSROJEVE

POGLAVLJE 0.. ZADAAK KAEDRA ZA URBOSROJEVE

POGLAVLJE 0.. ZADAAK c,u,α ) Uz oznate crta e u mjerilu ulazni trokut brzina za rvi red rotorkih oatica iz kojeg e mogu odrediti: m 0 m w 86 ; β 0 ;ca wa 67 Zatim e izračuna relativna brzina na izlazu iz rvih rotorkih loatica: m w ψw 0, 9 86 7, z oznate w,u,β crta e u mjerilu izlazni trokut brzina za rvi red rotorkih oatica iz kojeg e mogu odrediti: c m 0 7 c0; α, 5 α0;ca w a m 5 Zatim e izračuna aolutna brzina na izlazu iz drugih tatorkih loatica (kretnih loatica): c ϕc 0, 9 7 m 9 KAEDRA ZA URBOSROJEVE

POGLAVLJE 0.. ZADAAK c,u, Uz oznate α crta e u mjerilu ulazni trokut brzina za drugi red rotorkih loatica iz kojeg e mogu odrediti: m 0 m w 87, 5 ; β, 5 ;ca wa 06 Zatim e izračuna relativna brzina na izlazu iz drugih rotorkih loatica: w ψw 0, 9 87, 5 w,u, KAEDRA ZA URBOSROJEVE m 69 Uz oznate β crta e u mjerilu izlazni trokut brzina za drugi red rotorkih loatica iz kojeg e mogu odrediti: c m 0 98, 7 ; α 79 ;ca w a m 97 akođer iz trokuta brzina za rvi odn. drugi red rotorkih loatica mogu e očitati: m w u + w u 87 m wu + wu 9, 5

POGLAVLJE 0.. ZADAAK Obodne komonente ila za rvi odn. drugi red rotorkih loatica: F u m& w ( + w ) u u N Fu m& ( wu + wu ) 9, 5 9, 5 Akijalne komonente ila za rvi odn. drugi red rotorkih loatica: N Fa m& ( c a c a ) 67 ( 5) N Fa m& ( ca ca ) 06 ( 97) 9 Zbroj obodnih komonenti ila za dvotunu Curtiovu turbinu: F KAEDRA ZA URBOSROJEVE 87 87 87 + 9, 5 N 66 5 u Fu + Fu, N

POGLAVLJE 0.. ZADAAK Zbroj akijalnih komonenti ila za dvotunu Curtiovu turbinu: F a a Fa + F + 9 N Secifični rad (naga) na obodu kola: h u W ufu 0 66, 5 0000 kw 0 KAEDRA ZA URBOSROJEVE

POGLAVLJE 0.. ZADAAK ZADAAK 0.. Uz maeni rotok kod dvotunog Curtia iz rethodnog zadatka od 5 / viina rvih tatorkih loatica (anica) je 5 mm. Zanemarujući debljinu izlaznog brida anica roračunajte duljinu luka o kojem e rivodi ara. Secifični volumen are na izlazu iz anica je 0,75 m /. Pretotavljajući da loatice otalih redova (rešetki) imaju korak 5 mm a debljinu izlaznog brida 0,5 mm roračunajte viinu loatica vakog reda. RJEŠENJE: Koriteći jednadžbu za određivanje viine tatorkih loatica može e odrediti duljina luka o kojem e rivodi ara u anicama: m& v c inα ε l S 0 5 0, 75 600in6 ε0, 05 5 0, 75 ε 0, 5m 0 600in6 0, 05 Koriteći jednadžbu za određivanje viine rotorkih loatica mogu e odrediti viine loatica otalih rešetki: m& v KAEDRA ZA URBOSROJEVE ε ( t in ) lr β w t

POGLAVLJE 0.. ZADAAK Viina rvih rotorkih loatica: mv & ε t ( t in β ) l R w 0 ( 0, 05in8 0, 0005) 0, 5 5 0, 75 lr 7, 0, 05 5 0, 75 0, 05 lr 0, 07m,7mm 0, 5 0, 007 7, Viina drugih tatorkih loatica (kretnih loatica): mv & ε ( t in ) α t l S 0 ( 0, 05in 0, 0005) 0, 5 5 0, 75 ls 9 0, 05 5 0, 75 0, 05 lr 0, 05m 5mm, 0, 5 0, 0086 9 c KAEDRA ZA URBOSROJEVE

POGLAVLJE 0.. ZADAAK Viina drugih rotorkih loatica: mv & ε ( t in ) β t l R 0 ( 0, 05in5 0, 0005) 0, 5 5 0, 75 lr 69 0, 05 5 0, 75 0, 05 lr 0, 0m, mm 0, 5 0, 08 69 w KAEDRA ZA URBOSROJEVE

POGLAVLJE 0.. ZADAAK ZADAAK 0.. Suhozaićena ara ri tlaku,7 bar izlazi iz tatorkih loatica tunja Paronove turbine (50%-na reaktivnot) brzinom 90 m/. Viina tatorkih loatica je 0 mm, dok je izlazni kut rotorkih loatica 0 0. Akijalna brzina toka are je / obodne brzine rotorkih loatica na rednjem romjeru, te je kontantna kroz tuanj. Maeni rotok are kroz turbinki tuanj iznoi 9000 /h. Utjecaj debljine izlaznog brida loatica na trujnu ovršinu može e zanemariti. Izračunajte: a) broj okretaja turbine u minuti; b) nagu tunja na obodu kola, i c) entalijki ad are u tunju. RJEŠENJE: rokuti brzina u rikazani na l.0..a, a rtenata trujna ovršina na l. 0..b. a) Akijalna brzina toka are kroz tuanj: c c c w w w kont. c a a c ( α β 50% na reaktivnot! ) KAEDRA ZA URBOSROJEVE a 0 inα c in β 90 in 0 0, 78 a a a a m

POGLAVLJE 0.. ZADAAK KAEDRA ZA URBOSROJEVE

POGLAVLJE 0.. ZADAAK Obodna brzina na rednjem romjeru: u ca 0, 78, 0 KAEDRA ZA URBOSROJEVE m Do iznoa otrebne ovršine dolazi e omoću jednadžbe kontinuiteta: ca A m& v 9000 0, 6686 mv & A 600 0, 05m ca 0, (u ovom je lučaju vv g kod,7 bar 0,6686 m /, tj. uhozaićena ara kod,7 bar) Do veličine rednjeg olumjera tunja dolazi e omoću jednadžbe za rtenatu trujnu ovršinu: A πrl r A πl S S 0, 05 π 0, 0 0, 5m

POGLAVLJE 0.. ZADAAK Brzina vrtnje turbine u minuti: 60u 60 0, n 8min πr π 0, 5 b) Secifični rad na obodu kola tunja: h u mu & ( c + c ) mu & ( w + w ) mu & ( c coα u) u u ( ),kw 9000 0 0, 90co 0 0, 0W 600 c) Entalijki ad u rotorkim loaticama: u u Δh R w w w m c 90 50% na reaktivnot! KAEDRA ZA URBOSROJEVE

POGLAVLJE 0.. ZADAAK Iz ulaznog trokuta brzina za rotorke loatice: w c + u uc coα 90 +, 0 90, 0co 0 0 5, m Δh 90 5, J 60 R, 6 Δh Δ hr 50% na reaktivnot! Ukuni ad entalije čitavog tunja ( ): Δh ΔhR, 6 5, 6 S KAEDRA ZA URBOSROJEVE

POGLAVLJE 0. 5. ZADAAK ZADAAK 0.5. Para očetnog tlaka i temerature 5 bar i 50 0 C ekandira kroz turbinu 50%-nom reaktivnošću do tlaka 0,0 bar. Ekanzija e izvodi u 0 tunjeva, a unutarnja naga turbine je MW. Unutarnja (izentroka) ikoritivot vih turbinkih tunjeva je 75%, dok je faktor ovrata toline turbine,0. Izračunajte otrebni rotok are uz retotavku da vi tunjevi obavljaju iti rad. Na izlazu iz tatorkih loatica jednog od tunjeva tlak je bar i ara je uhozaićena. Izlazni kut tatorkih loatica je 0 0 a vrijednot karakteritike tunja (u/c ) je 0,7. Ako je viina tatorkih loatica / rednjeg romjera tunja, izračunajte vrijednot rednjeg romjera kao i broj okretaja turbine. RJEŠENJE: Proce ekanzije je rikazan u h- dijagramu na l. 0.6 lijevo. Unutarnja ikoritivot uz uvažavanje faktora ovrata toline K.P.: ηi, 0 ηik.p. 0, 75, 0 0, 78 Iz Mollierovog h- dijagrama za vodenu aru: 8 ; uz : h h KAEDRA ZA URBOSROJEVE 9

POGLAVLJE 0. 5. ZADAAK KAEDRA ZA URBOSROJEVE

POGLAVLJE 0. 5. ZADAAK Idealni (izentroki) tolinki ad turbine: Δ Stvarni tolinki ad turbine: Δ Maeni rotok are e dobiva iz jednadžbe za unutarnju nagu turbine: KAEDRA ZA URBOSROJEVE 8 9 h i, 0 h h η Δh 0, 78 855 h i, 0 i, 0 i, 0 667 855 Stvarni tolinki ad o turbinkom tunju: Δh h Δ 667 0 i, 0 i,t nt P i m& m& Δh Pi Δh i, 0 i, 0 000 667, 5 7, 99 6770 h

POGLAVLJE 0. 5. ZADAAK rokuti brzina za jedan turbinki tuanj u rikazani na l. 0.6 deno. u c, u 0, 7 Secifični unutarnji rad tunja uz : akođer: 0 0 ( c + c ) u( c co0 u) u(, u co0 ) 68, u 0 i u u u h, h i Δh i, t, 68u, 5 0, 5 0 m u, 68, Iz trokuta brzina može e izračunati akijalna brzina kroz tuanj: 0 c a c inα, u inα,, in 0 KAEDRA ZA URBOSROJEVE m 69,

POGLAVLJE 0. 5. ZADAAK Volumni rotok are kod bar: V D D Dπl ca Dπ ca Dπ 69, S m 8, 09D, Kod bar ecifični volumen uhozaićene are iz tolinkih tablica je v g,69 m / a e za maeni rotok are može naiati: 8, 09D m & 7, 99, 69 Iz rethodne jednadžbe lijedi rednji romjer tunja: 7, 99 69, D, 98m 8, 09 Brzina vrtnje rotora turbine: n 60u 60, 08min πd π, 98 KAEDRA ZA URBOSROJEVE

KAEDRA ZA URBOSROJEVE HVALA NA PAŽNJI!

AUDIORNE VJEŽBE IZ PREDMEA ENERGESKI SROJEVI -. VJEŽBE Autor: Prof.dr.c. Zvonimir Guzović zvonimir.guzovic@fb.hr KAEDRA ZA URBOSROJEVE

POGLAVLJE.. ZADAAK ADAAK.. Kod linko-turbinkog agregata omjer tlakova je 6: a akimalna temeratura ciklua 600 0 C. Unutarnje (izentroke) ikoritivoti omreora i turbine u 0,8 i 0,85. Izračunajte korini nagu linke turbine za ogon električnog generatora ako je maeni rotok na ulazu u komreor 5 / njegova temeratura 5 0 C. Za roce komreije uzmite c,z 005 J/K, a za roce ekanzije c,g 0 J/K i. κ, z κ g, JEŠENJE: olinka hema linko-turbinkog agregata je rikazana na l...a a ciklu u dijagramu na l...b. emeratura na ulazu u komreor : t + 7 5 + 7 88 K emeratura na izlazu iz komreora u lučaju idealne (izentroke) komreije : κ z, κ, 88 6 8K KAEDRA ZA URBOSROJEVE

POGLAVLJE.. ZADAAK KAEDRA ZA URBOSROJEVE

POGLAVLJE.. ZADAAK tvarna temeratura na izlazu iz komreora u lučaju tvarne komreije obiva e iz jednadžbe za unutarnju (izentroku) ikoritivot komreora: η K ( 88) 8 88 88 KAEDRA ZA URBOSROJEVE 9 5,5 K 0, 8 88 + 5, 5 5,5 K 0, 8 emeratura na ulazu u linku turbinu : 7 7 87 K emeratura na izlazu iz linke turbine u lučaju idealne (izentroke) komreije : t + 600 + 87 κ κ, κ κ, 6 558 K

POGLAVLJE.. ZADAAK tvarna temeratura na izlazu iz turbine u lučaju tvarne ekanzije obiva e iz jednadžbe za unutarnju (izentroku) ikoritivot turbine: η ( 87 ) 87 0, 8 87 558 5 0, 85 87 + 68 605 K ad doveden za ogon komreora W K : W kuni rad koji daje linka turbina W : W K ( ) c 005 5, 5, z ( ) 0 68 97500 600 J J 97 5 c, g, 6, KAEDRA ZA URBOSROJEVE

POGLAVLJE.. ZADAAK Korini rad za ogon električnog generatora W KOR : W KOR W W 97, 5 6, K 6, odnono korina naga turbine koja e redaje za ogon električnog generatora P KOR : P KOR mw & 6, 5 KOR 90 kw KAEDRA ZA URBOSROJEVE

POGLAVLJE.. ZADAAK ADAAK.. Izračunajte termodinamičku ikoritivot i omjer radova linkourbinkog agregata iz rethodnog zadatka. JEŠENJE: olina dovedena u komori izgaranja Q do : Q do ( ) 0( 87 5 5) c,, g J 88000 88 ermodinamička ikoritivot: η Omjer radova O.R.: WKOR 6, 058, 5, 8% Q 88 do WKOR 6, O.R. 0, 06 0, 6% W 97, 5 KAEDRA ZA URBOSROJEVE

POGLAVLJE.. ZADAAK ZADAAK.. Na ulazu u komreor linko-turbinkog agregata temeratura i tlak zraka u 7 0 C i,0 bar. Omjer tlakova ciklua je 6: a makimalna temeratura 650 0 C. Komreor ogoni viokotlačna turbina (V) dok je nikotlačna turbina (N) odvojena i na zaebnoj oovini te ogoni električni generator. Unutarnje (izentroke) ikoritivoti komreora, V i Nu 0,8, 0,85 κ, κ z g, i 0,8. Izračunajte tlak i temeraturu linova izgaranja na ulazu u N turbinu za ogon električnog generatora, korinu dobiveni rad za ogon električnog generatora i termodinamičku ikoritivot otrojenja. Za roce komreije uzmite c,z 005 J/K i κ z,, a za roce ekanzije c,g 50 J/K i κ,. g RJEŠENJE: olinka hema linko-turbinkog agregata je rikazana na l...a a ciklu u dijagramu na l...b. KAEDRA ZA URBOSROJEVE

POGLAVLJE.. ZADAAK KAEDRA ZA URBOSROJEVE

POGLAVLJE.. ZADAAK emeratura na ulazu u komreor : t + 7 7 + 7 κ κ KAEDRA ZA URBOSROJEVE z κ z z,, κ z 90 8 55K tvarna temeratura na izlazu iz komreora u lučaju tvarne komreije obiva e iz jednadžbe za unutarnju (izentroku) ikoritivot komreora: 55 90 ηk 0,80 90 ( 90) 5 0,80 9 K 90 + 9 58 K 90 K emeratura na izlazu iz komreora u lučaju idealne (izentroke) komreije :

POGLAVLJE.. ZADAAK ad doveden za ogon komreora W K : J WK c, z ( ) 005 9 95500 95,5 Rad V turbine mora biti jednak radu komreora W K : W V ( ) c, g 95,5 emeratura na ulazu u linku turbinu : t + 7 650 + 7 9 K emeratura na izlazu iz V turbine u lučaju tvarne ekanzije dobiva e iz ednadžbe za rad V turbine: ' ' 95,5,5 57K 57 9 57 666K KAEDRA ZA URBOSROJEVE

POGLAVLJE.. ZADAAK emeratura na izlazu iz V turbine u lučaju idealne ekanzije dobiva e iz ednadžbe za unutarnju (izentroku) ikoritivot V turbine: η V ( 9 ) 9 666 9 57 0,5K 0,85 0,5 60,5 K 0,85 Iz jednadžbe za izentroki roce ekanzije u V turbini:,9 κ κ ε K,9 9 60,5,, 8,0,9,88,65bar,9 KAEDRA ZA URBOSROJEVE

POGLAVLJE.. ZADAAK Stoga u tlak i temeratura na ulazu N turbinu,65 bar i t 666-79 0 C. Za određivanje dobivenog korinog rada N turbine otrebno je izračunati tvarnu temeraturu na izlazu iz turbine 5. Omjer tlakova / 5 je dan a ( / )( / 5 ): 5 5 5 5 ada : 8,6,9 ( zbog : ; ) κ κ g,6 5 666 588K, g,, 5, KAEDRA ZA URBOSROJEVE

POGLAVLJE.. ZADAAK Iz jednadžbe za unutarnju (izentroku) ikoritivot N turbine: η N 5 5 5 0,8 0,8 ( 666 588) 0,8 78 6,8K Korino dobiveni rad N turbine: W N ( ),5 6,8 c, g 5 7,5 Snaga N turbine (za maeni rotok linova izgaranja /): P N & mwn 7,5 7,5 7,5kW mjer radova O.R.: WKOR WN 7,5 7,5 O. R. 0,0 W W + W 7,5 + 95,5 70 V N 0,% KAEDRA ZA URBOSROJEVE

POGLAVLJE.. ZADAAK olina dovedena u komori izgaranja Q do : Q do ( ) 50( 9 58) J 90000 c, g 90 ermodinamička ikoritivot: η W Q KOR do W Q N do 7,5 90 0,9 9,% KAEDRA ZA URBOSROJEVE

POGLAVLJE.. ZADAAK ZADAAK.. Plinko turbinko otrojenje daje korini rad za ogon električnog generatora od 5000 kw. Proce komreije je izveden u dva tunja međuhlađenjem uz ukuni komreioni omjer 9:. Viokotlačna turbina ogoni komreor a nikotlačna generator. emeratura linova izgaranja na ulazu u viokotlačnu turbinu (V) je 650 0 C, a linovi izgaranja e međuizgaranjem zagrijavaju također na 650 0 C nakon ekanzije u V. Plinovi izgaranja nakon ekanzije u nikotlačnoj turbini (N) rolaze kroz izmjenjivač toline i zagrijavaju komrimirani zrak nakon viokotlačnog komreora (VK). Oba komreora otvaruju jednake komreijke omjere, a međuhlađenje između njih je otuno. emeratura zraka na ulazu u nikotlačni komreor (NK) je 5 0 C. Unutarnja (izentroka) ikoritivot oba komreora je 0,80, a obe turbine 0,85. Omjer temeratura izmjenjivača toline je 0,75. Mehanička ikoritivot obe oovine je 0,98. Zanemarujući ve gubitke tlaka i romjene kinetičke energije, izračunajte termodinamičku ikoritivot i omjer radova ciklua, te maeni rotok zraka. Za roce komreije uzmite c,z 005 J/K i κ z,, a za roce ekanzije c,g 50 J/K i κ, g RJEŠENJE: olinka hema linko-turbinkog agregata je rikazana na l..5.a a ciklu u dijagramu na l..5.b. KAEDRA ZA URBOSROJEVE

POGLAVLJE.. ZADAAK KAEDRA ZA URBOSROJEVE

POGLAVLJE.. ZADAAK Pošto u komreijki omjeri i unutarnje (izentroke) ikoritivoti za oba komreora iti, također kao i temerature na ulazu kao i na izlazu ( ; ), to u otrebni radovi za oba komreora također jednaki. emeratura na ulazu u komreor : t + 7 5 + 7 88 K emeratura na izlazu iz NK (također i VK) u lučaju idealne (izentroke) omreije ( ): κ z κ z ; κ z κ z 9 88,, 9K KAEDRA ZA URBOSROJEVE

POGLAVLJE.. ZADAAK tvarna temeratura na izlazu iz NC u lučaju tvarne komreije obiva e iz jednadžbe za unutarnju (izentroku) ikoritivot komreora: η NK ( ) 0,80 KAEDRA ZA URBOSROJEVE 9 88 0,80 06 0,80 88 +,5 0,5 K,5 K Potrebni rad za ogon nikotlačnog komreora W NC odn. viokotlačnog komreora W VC : J WNK WVK c, z ( ) 005,5 00, Viokotlačna turbina mora ogoniti oba komreora te avladati mehaničke ubitke, toga otrebni rad viokotlačne turbine W V : W V W VC + W η meh NC, 7 0,98

POGLAVLJE.. ZADAAK emeratura na izlazu iz V u lučaju tvarne ekanzije dobiva e iz ednadžbe za rad V: 6 t6 + 7 650 + 7 9 K c, g,5 ( 6 7 ) ( 9 ) 9 7 7 7 W 7,5 V 7 6,5K 9 6,5 686,5K emeratura na izlazu iz V u lučaju idealne (izentroke) ekanzije 7 dobiva e iz jednadžbe za unutarnju (izentroku) ikoritivot V: 6 7 η V 0,85 6 7 7 6 9 78 65K KAEDRA ZA URBOSROJEVE 7 6,5 0,85 78K

POGLAVLJE.. ZADAAK KAEDRA ZA URBOSROJEVE kanzijki omjer viokotlačne turbine V:,98 65 9,, 7 6 7 6 g g κ κ Ekanzijki omjer nikotlačne turbine N: 9 8 9 7 7 6 9 6,7,98 9 emeratura na izlazu iz N u lučaju idealne (izentroke) ekanzije: 76,6K, 9,,7 9,, 9 8 9 8 g g κ κ

POGLAVLJE.. ZADAAK emeratura na izlazu iz N u lučaju tvarne ekanzije 9 dobiva e iz jednadžbe za unutarnju (izentroku) ikoritivot N: η N 8 9 9 8 8 9 0,85 9 6, 0,85 ( 9 76,6) KAEDRA ZA URBOSROJEVE 9 786,7K 0,85 60, 6,K ad nikotlačne turbine W N, odn. korini rad ciklua W KOR : W V ( ),5 6, 0,98 WKOR c, g 8 9 ηmeh Omjer temeratura izmjenjivača toline O I : O I 5 5 5 9 0,5 0,75 0,75 0,5 + 7,7 ( 786,7 0,5) 695,K 7,7K 5,7

Q POGLAVLJE 7,8 + 6,5 5.. ZADAAK,5 ovedena tolina u cikluu Q do : Q do ( ) + c ( ),5( 9 695,) +,5( 9 686,5) do c, g 6 5, g 8 7 ( ),5 ( ) + c ( ),5( 9 695,) +,5( 9 686,5) c, g 6 5, g 8 7 ( 7,8 + 6,5) 5 ermodinamička ikoritivot: W η Q KOR do 5,7 5 0,88 8,8% kuni rad ciklua (otrojenja) W UK : W UK W V + W N W V W + η KOR meh mjer radova ciklua (otrojenja) OR: 5,7 7 + 0,98 9 OR W W KOR UK 5,7 9 0,58 KAEDRA ZA URBOSROJEVE

POGLAVLJE.. ZADAAK Snaga električnog generatora je 5000 kw. Stoga je maeni rotok zraka: P el m& z m& W z P W el KOR KOR 5000 5,7,6 KAEDRA ZA URBOSROJEVE

POGLAVLJE. 5. ZADAAK ADAAK.5: Centrifugalni turbokomreor otiže komreijki omjer : uz zentroku (unutarnju) ikoritivot 80%. Komreor e vrti 5000 o/min. emeratura zraka na ulazu u komreor je 0 0 C, dok umjeravaajuće loatice na lazu daju zraku redvrtlog od 5 0 obzirom na akijalni mjer. Srednji romjer na lazu u rotor je 50 mm. Vrijednot aolutne brzine na ulazu u rotor je 50 m/. Na zlazu iz rotora čiji je vanjki romjer 590 mm loatice u radijalno umjerene. dredite faktor kliza komreora. JEŠENJE: Ulazni trokuti brzina za rotor u rikazani na l..9 a izlazni trokuti rzina na l..0. emeratura na izlazu iz turbokomreora u lučaju izentroke (idealne) omreije : κ, κ, ( 0 + 7) 5,K KAEDRA ZA URBOSROJEVE

POGLAVLJE. 5. ZADAAK Izentroki rirat temerature u turbokomreoru: Δ i 5, 9,K tvarni rirat temerature u turbokomreoru: Δ Δ i η, 0,8 78K Snaga dovedena turbokomreoru o jedinici maenog rotoka: W& K c Δ,005 78 78,9 Obodna brzina na ulazu u rotor: u nπd 60 5000π 0,50 60, r m 96, KAEDRA ZA URBOSROJEVE

POGLAVLJE. 5. ZADAAK KAEDRA ZA URBOSROJEVE

POGLAVLJE. 5. ZADAAK angencijalna komonenta (u mjeru obodne brzine) aolutne brzine na ulazu u rotor (l..9.b): c u 0 c inα 50 in 5 m 6, Obodna brzina na vanjkom romjeru rotora: u nπd 60 5000π 0,590 60 m 6, eoretka tangencijalna komonenta (u mjeru obodne brzine) aolutne brzine na zlazu iz rotora (l..0.a): m 6, u c u zbog radijalnog izlaznog kuta loatica akođer, naga dovedena turbokomreoru o jedinici maenog rotoka: W & K u c 78,9 0 J 6, u u c u c 96, 6, u KAEDRA ZA URBOSROJEVE

POGLAVLJE. 5. ZADAAK Stvarna teoretka tangencijalna komonenta (u mjeru obodne brzine) aolutne brzine na izlazu iz rotora (l..0.a): c u 78000 + 96, 6, 6, m,9 Faktor kliza: σ c c u,9 6, u 0,89 KAEDRA ZA URBOSROJEVE

POGLAVLJE. 6. ZADAAK ADAAK.6: Akijalni turbokomreor komrimira zrak očetne temerature 0 0 uz komreijki omjer 6:. Obodna brzina rotorkih loatica iznoi 00 m/, ok u vrijednoti ulaznog i izlaznog kuta rotorkih i tatorkih loatica 5 0 i 5 0. eaktivnot komreorkih tunjeva je 50%, faktor redanog rada 0,86, a kijalna brzina je kontantna za vih tunjeva koliko ima komreor. reba zračunati unutarnju (izentroku) ikoritivot komreora. JEŠENJE: Ulazni i izlazni trokut brzina za rotorke loatice je rikazan na l... rtanjem u mjerilu ulaznog i izlaznog trokuta brzina za rotorke loatice l..) može e grafički odrediti razlika tangencijalnih komonenti (u mjeru bodne brzine) relativnih brzina na izlazu i ulazu iz rotorkih loatica: Δw u w u w u m 5 KAEDRA ZA URBOSROJEVE

POGLAVLJE. 6. ZADAAK KAEDRA ZA URBOSROJEVE

POGLAVLJE. 6. ZADAAK Secifična naga dovedena o tunju turbokomreora: W& t uδw Y Secifična naga dovedena čitavom turbokomreoru: W & K KAEDRA ZA URBOSROJEVE & u ntwt 00 5 0,86 9780J 9,78 9,78 7, emeratura na izlazu iz turbokomreora u lučaju idealne (izentroke) komreije: κ, κ, ( 0 + 7) 6 89,K Izentroka (idealna) ecifična naga dovedena čitavom turbokomreoru: W& ( ),005( 89, 9) 97, K, i c Izentroka (unutarnja) ikoritivot turbokomreora: η K W& W& K, i K 97, 7, 0,8 8%

POGLAVLJE. 7. ZADAAK ADAAK 7.: Plinko turbinko otrojenje radi uz atmoferko tanje tlak,0 bar i temeraturu 7 0 C, dok je makimalna temeratura ciklua ograničena na 000 K. Komreor čija je olitroka ikoritivot 88% ogonjen je omoću iokotlačne turbine (V), dok je nikotlačna turbina (N) odvojena i daje korini ad rema van za ogon električnog generatora. Obje turbine imaju olitroku koritivot 90%. U komori izgaranja između komreora i viokotlačne urbineotoji gubitak tlaka od 0, bar. Zanemarujući otale gubitke, kao i romjene inetičke energije treba izračunati komreijki omjer komreora koji će dati akimalnu ecifičnu izlaznu nagu te izentroku (unutarnju) ikoritivot urbine. a zrak treba uzeti c, z,005 i κ z,, a za linove izgaranja, g,5 i κ g,. JEŠENJE: Ciklu je rikazan u dijagramu na l..7. KAEDRA ZA URBOSROJEVE

POGLAVLJE. 7. ZADAAK KAEDRA ZA URBOSROJEVE

POGLAVLJE. 7. ZADAAK Uz 5 r r za komreor : κ κ akođer: t.j.: 5 z zη K 0, KAEDRA ZA URBOSROJEVE,, 0,88 0, 5 ( 7 + 7) r 90r ( r),0bar,0r 0, r,0 0,,0r 0,98 0, Pošto je olitroka ikoritivot za obje turbine ita, to: ( κ g ) η ( ) (, ) 0,9 κ g 0,98, r 5 000 5 r 0,98 0, ( ) 5

POGLAVLJE. 7. ZADAAK Secifični rad turbine: W 000 c ( ) ( 0,98) r r [ ( ) ] 0,5 0,, g 5,5 000 50 98 0,5 Secifični rad turbokomreora: W K ( ) ( 0,5 ) ( 0,5 005 90r 90 9,5 ) c r, z Korino dobivena naga: P KOR W W K 50 Makimum e dobiva za dp/dr 0, tj.: [ ( ) ] 0,5 0,5 r 0,98 9,5 ( r ),5 0, 675 ( r 0,98) 0,5 9,5 0,5 50 r Iterativnim otukom e dobiva r 6,65, tj. omjer tlakova za makimalnu izlaznu nagu mora biti 6,65. KAEDRA ZA URBOSROJEVE

POGLAVLJE. 7. ZADAAK Stvarna temeratura na izlazu iz komreora: 0,5 0,5 90r 90 6,65 56,8K akođer rad viokotlačne turbine je jednak radu komreora: W c, g ( ) c, z ( ) ( ),005( 56,8 90),5 000 V Stoga: W K 78,K, ( κ g ) η 000 (, ) 0, 9 78, akođer: κ g,9 ( 6,65,0 0,),7bar 6,65 0, KAEDRA ZA URBOSROJEVE

POGLAVLJE. 7. ZADAAK KAEDRA ZA URBOSROJEVE,607bar,9,7 Stoga za nikotlačnu turbinu: ( ) ( ),,0,607,0,0,607,, 5 5, 0,9, 5 5 g g g g κ κ κ η κ Izentroka (unutarnja) ikoritivot nikotlačne turbine: 90,5% 0,905,, 5 5 5 5 η N

KAEDRA ZA URBOSROJEVE HVALA NA PAŽNJI!