Laboratórna práca č.1. Meranie dĺžky telesa. Úloha : Odmerajte priemer a výšku valcového telesa posúvnym meradlom s nóniom

Σχετικά έγγραφα
,Zohrievanie vody indukčným varičom bez pokrievky,

M6: Model Hydraulický systém dvoch zásobníkov kvapaliny s interakciou

Laboratórna práca č.1. Elektrické meracie prístroje a ich zapájanie do elektrického obvodu.zapojenie potenciometra a reostatu.

7. FUNKCIE POJEM FUNKCIE

Matematika Funkcia viac premenných, Parciálne derivácie

Obvod a obsah štvoruholníka

1. písomná práca z matematiky Skupina A

URČENIE MOMENTU ZOTRVAČNOSTI FYZIKÁLNEHO KYVADLA

Priezvisko: Ročník: Katedra chemickej fyziky. Krúžok: Meno: Dátum cvičenia: Dvojica:

Model redistribúcie krvi

Ročník: šiesty. 2 hodiny týždenne, spolu 66 vyučovacích hodín

2 Chyby a neistoty merania, zápis výsledku merania

3. Striedavé prúdy. Sínusoida

Moderné vzdelávanie pre vedomostnú spoločnosť Projekt je spolufinancovaný zo zdrojov EÚ M A T E M A T I K A

Goniometrické rovnice a nerovnice. Základné goniometrické rovnice

UČEBNÉ TEXTY. Pracovný zošit č.2. Moderné vzdelávanie pre vedomostnú spoločnosť Elektrotechnické merania. Ing. Alžbeta Kršňáková

ZADANIE 1_ ÚLOHA 3_Všeobecná rovinná silová sústava ZADANIE 1 _ ÚLOHA 3

Základné poznatky molekulovej fyziky a termodynamiky

Tematický výchovno - vzdelávací plán

Matematika 2. časť: Analytická geometria

Kontrolné otázky na kvíz z jednotiek fyzikálnych veličín. Upozornenie: Umiestnenie správnej a nesprávnych odpovedí sa môže v teste meniť.

Meno: Teória Tabuľka Výpočet Zaokrúhľovanie Záver Graf Meranie

Matematika prednáška 4 Postupnosti a rady 4.5 Funkcionálne rady - mocninové rady - Taylorov rad, MacLaurinov rad

CHÉMIA Ing. Iveta Bruončová

Jednotkový koreň (unit root), diferencovanie časového radu, unit root testy

1. laboratórne cvičenie

MECHANIKA TEKUTÍN. Ideálna kvapalina je dokonale tekutá a celkom nestlačiteľná, pričom zanedbávame jej vnútornú štruktúru.

UČEBNÉ TEXTY. Pracovný zošit č.5. Moderné vzdelávanie pre vedomostnú spoločnosť Elektrotechnické merania. Ing. Alžbeta Kršňáková

24. Základné spôsoby zobrazovania priestoru do roviny

1 MERANIE VLASTNOSTÍ PARTIKULÁRNYCH LÁTOK

MOSTÍKOVÁ METÓDA 1.ÚLOHA: 2.OPIS MERANÉHO PREDMETU: 3.TEORETICKÝ ROZBOR: 4.SCHÉMA ZAPOJENIA:

1. Určenie VA charakteristiky kovového vodiča

1 Meranie dĺžky posuvným meradlom a mikrometrom Meranie hustoty tuhej látky Meranie veľkosti zrýchlenia priamočiareho pohybu 23

ARMA modely čast 2: moving average modely (MA)

UČEBNÉ TEXTY. Pracovný zošit č.7. Moderné vzdelávanie pre vedomostnú spoločnosť Elektrotechnické merania. Ing. Alžbeta Kršňáková

RIEŠENIE WHEATSONOVHO MOSTÍKA

Komplexné čísla, Diskrétna Fourierova transformácia 1

M8 Model "Valcová a kužeľová nádrž v sérií bez interakcie"

ELEKTRICKÉ POLE. Elektrický náboj je základná vlastnosť častíc, je viazaný na častice látky a vyjadruje stav elektricky nabitých telies.

6 HYDROMECHANIKA PRÍKLAD 6.1 (D)

Ohmov zákon pre uzavretý elektrický obvod

Start. Vstup r. O = 2*π*r S = π*r*r. Vystup O, S. Stop. Start. Vstup P, C V = P*C*1,19. Vystup V. Stop

KATEDRA DOPRAVNEJ A MANIPULAČNEJ TECHNIKY Strojnícka fakulta, Žilinská Univerzita

RIEŠENIA 3 ČASŤ

Učebné osnovy FYZIKA. FYZIKA Vzdelávacia oblasť. Názov predmetu

HASLIM112V, HASLIM123V, HASLIM136V HASLIM112Z, HASLIM123Z, HASLIM136Z HASLIM112S, HASLIM123S, HASLIM136S

1. Limita, spojitost a diferenciálny počet funkcie jednej premennej

Úloha 3.7 Teleso hmotnosti 2 kg sa pohybuje pozdĺž osi x tak, že jeho dráha je vyjadrená rovnicou

ZBIERKA ÚLOH Z FYZIKY PRE 3. ROČNÍK

Kontrolné otázky z jednotiek fyzikálnych veličín

Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK

Mocniny : 1. časť. A forma. B forma. 1. Kontrolná práca z matematiky 8. ročník

ÚLOHA Č.8 ODCHÝLKY TVARU A POLOHY MERANIE PRIAMOSTI A KOLMOSTI

Motivácia pojmu derivácia

Fyzikálna olympiáda. 52. ročník. školský rok 2010/2011. Kategória D. Úlohy školského kola

8 VLASTNOSTI VZDUCHU CIEĽ LABORATÓRNEHO CVIČENIA ÚLOHY LABORATÓRNEHO CVIČENIA TEORETICKÝ ÚVOD LABORATÓRNE CVIČENIA Z VLASTNOSTÍ LÁTOK

Metodicko pedagogické centrum. Národný projekt VZDELÁVANÍM PEDAGOGICKÝCH ZAMESTNANCOV K INKLÚZII MARGINALIZOVANÝCH RÓMSKYCH KOMUNÍT

7 Derivácia funkcie. 7.1 Motivácia k derivácii

SLOVENSKÁ TECHNICKÁ UNIVERZITA V BRATISLAVE. Chemickotechnologická fakulta. Doc. RNDr. Viliam Laurinc, CSc. a kolektív FYZIKA I

Návrh vzduchotesnosti pre detaily napojení

GYMNÁZIUM V ŽILINE, HLINSKÁ 29 ALTERNATÍVNA ZBIERKA ÚLOH Z FYZIKY PRE 1. ROČNÍK. Spracovali: Mgr. Andrea Bednárová, PhD., Mgr.

Cvičenie č. 4,5 Limita funkcie

ŠTÁTNY PEDAGOGICKÝ ÚSTAV, PLUHOVÁ 8, BRATISLAVA. VZDELÁVACÍ ŠTANDARD S EXEMPLIFIKAČNÝMI ÚLOHAMI Z FYZIKY PRE GYMNÁZIUM štvorročné štúdium

Kontrolné otázky z hydrostatiky a hydrodynamiky

6 Limita funkcie. 6.1 Myšlienka limity, interval bez bodu

PRIEMER DROTU d = 0,4-6,3 mm

5 Trecie sily. 5.1 Šmykové trenie

C. Kontaktný fasádny zatepľovací systém

58. ročník Fyzikálnej olympiády v školskom roku 2016/2017 Kategória D domáce kolo Text úloh

9 Mechanika kvapalín. 9.1 Tlak v kvapalinách a plynoch

STRIEDAVÝ PRÚD - PRÍKLADY

Ekvačná a kvantifikačná logika

Analýza údajov. W bozóny.

Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK

Motivácia Denícia determinantu Výpo et determinantov Determinant sú inu matíc Vyuºitie determinantov. Determinanty. 14. decembra 2010.

16. Základne rovinné útvary kružnica a kruh

Školský vzdelávací program Ţivá škola

Kmitavý pohyb telesa zaveseného na pružine (Aktivity súvisiace s kmitaním uskutočnené pomocou programu Coach 6) Michal Kriško FMFI UK

Pracovný zošit z fyziky

MIDTERM (A) riešenia a bodovanie

Margita Vajsáblová. ρ priemetňa, s smer premietania. Súradnicová sústava (O, x, y, z ) (O a, x a, y a, z a )

Úvod. Na čo nám je numerická matematika? Poskytuje nástroje na matematické riešenie problémov reálneho sveta (fyzika, biológia, ekonómia,...

REZISTORY. Rezistory (súčiastky) sú pasívne prvky. Používajú sa vo všetkých elektrických

Pohyb vozíka. A. Pohyb vďaka tiaži závažia. V tomto prípade sila, ktorá spôsobuje rovnomerne zrýchlený pohyb vozíka je rovná tiaži závažia: F = G zav.

Odporníky. 1. Príklad1. TESLA TR

ARMA modely čast 2: moving average modely (MA)

Určite vybrané antropometrické parametre vašej skupiny so základným (*úplným) štatistickým vyhodnotením.

DOMÁCE ZADANIE 1 - PRÍKLAD č. 2

Kinematika hmotného bodu

4 Dynamika hmotného bodu

Povrch a objem zrezaného ihlana

Diferenciálne rovnice. Základný jazyk fyziky

2. Dva hmotné body sa navzájom priťahujú zo vzdialenosti r silou 12 N. Akou silou sa budú priťahovať zo vzdialenosti r/2? [48 N]

STATIKA STAVEBNÝCH KONŠTRUKCIÍ I Doc. Ing. Daniela Kuchárová, PhD. Priebeh vnútorných síl na prostom nosníku a na konzole od jednotlivých typov

FYZIKÁLNA OLYMPIÁDA. 53. ročník, 2011/2012 školské kolo kategória C zadanie úloh

Pilota600mmrez1. N Rd = N Rd = M Rd = V Ed = N Rd = M y M Rd = M y. M Rd = N 0.

Laboratórna úloha č. 8. Koeficient teplotnej rozpínavosti vzduchu

6. V stene suda naplneného vodou je v hĺbke 1 m pod hladinou otvor veľkosti 5 cm 2. Aká veľká tlaková sila pôsobí na zátku v otvore?

Meranie tiažového zrýchlenia PaedDr. Klára Velmovská, PhD. Katedra teoretickej fyziky a didaktiky fyziky, FMFI UK, Bratislava

priemer d a vložíme ho do mosadzného kalorimetra s vodou. Hmotnosť vnútornej nádoby s miešačkou je m a začiatočná teplota vody t3 17 C

Transcript:

Laboratórna práca č.1 Meranie dĺžky telesa Princíp : Určovanie rozmerov telies, meranie dĺžok môžeme previesť rôznymi spôsobmi a s rôznou presnosťou. V tejto práci sa naučíte používať dve meradlá a určovať presnosť merania pomocou spracovania výsledkov. Úloha : Odmerajte priemer a výšku valcového telesa posúvnym meradlom s nóniom a mikrometrickým meradlom. Pomôcky : valcové teleso, posúvne meradlo s nóniom, mikrometrické meradlo obr.1 mikrometrické meradlo 1 l = 41,48 mm

obr.2 mikrometrické meradlo l = 73,77 mm obr.3 posuvné meradlo l = 81,70 mm Postup : Odmerajte výšku valčeka a jeho priemer posúvnym meradlom s nóniom. Preveďte 10 meraní a výsledky zapíšte do tabuľky. Z nameraných hodnôt určte stredné hodnoty výšky a priemeru valčeka. Vypočítajte strednú odchýlku výšky a priemeru a relatívnu chybu výšky a priemeru. x = x ± x Zapíšte výsledok meraní v tvare x = x ±δx Odmerajte výšku a priemer valčeka mikrometrickým meradlom. Meranie zopakujte 10 krát, výsledky zapíšte do tabuľky a opäť spracujte obe merania. Tabuľka: Číslo merania 1 2 3.. Meranie posúvnym meradlom h h d [10-3 m] [10-3 m] [10-3 m] d [10-3 m] Meranie mikrometrickým meradlom h h d d [10-3 m] [10-3 m] [10-3 m] [10-3 m] Výpočty : zapíšte vzorce použité pri spracovaní výsledkov merania Záver : Zistite presnosť meradiel porovnaním relatívnych odchýlok meraní. Vyjadrite sa k príčinám chýb merania. 2

Laboratórna práca č.2 Modelovanie pohybov v programe IP COACH Úloha : naučiť sa používať program IP COACH ako prostriedok modelovania fyzikálnych dejov, na základe modelovej situácie znázorniť graficky rovnomerne zrýchlený pohyb Čo potrebujeme k modelovaniu 1. zadať počiatočné podmienky konštanty 2. pri kreslení grafov potrebujeme poznať usporiadané dvojice čísel ( x,y), ktoré potom znázorňujeme, zakresľujeme v istom súradnom systéme. Prvé číslo je hodnota nanášaná na x-ovú os, túto hodnotu si volíme, je to nezávisle premenná.( napr. čas). Druhé číslo y, je veličina, ktorej hodnotu môžeme zisťovať výpočtom alebo meraním...a nanášame ju na y- ovú os. V našom prípade musíme poznať matematickú súvislosť medzi x a y. Voľbu nezávisle premennej x musíme zadať do programu určením počiatočnej hodnoty x a prírastku dx, o ktorý sa táto hodnota má postupne zvyšovať. Zadaním rovnice x= x+dx program zrealizuje postupné navyšovanie nezávisle premennej. Zadaním rovnice y = f( x ) bude program vyrátavať jednotlivé hodnoty y a zaznamenávať dvojice ( x,y) do pamäte. Pri zadefinovaní grafu potom tieto hodnoty aj vykreslí. t = t+dt s = v*t program t=0 dt =0.01 v=12 rýchlosť v m/s definovanie konštánt 1. Nacvičte si tvorbu modelu rovnomerného pohybu a prípravu grafov. 2. Vytvorte model rovnomerne zrýchleného pohybu s počiatočnými podmienkami v 0 = 20 m/s, a = 0.2 m/s 2 Znázornite grafickú závislosť v=v(t) a s= s(t), a=a(t) pre tento pohyb. 3

Laboratórna práca č.3 Skladanie síl Úloha: Experimentálne overte vlastnosti výslednice pri skladaní dvoch síl pôsobiacich na tuhé teleso a urobte rozbor všetkých možných prípadov. Princíp : Ak na teleso pôsobí súčasne viac síl, teleso sa správa podľa ich výslednice. Účinky výslednice môžu byť deformačné alebo pohybové. Pri skladaní síl postupujeme podľa pravidiel skladania vektorových veličín. V niektorých jednoduchých prípadoch veľkosť výslednice určíme sčítaním odčítaním veľkostí jednotlivých síl, v zložitejších postupujeme grafickou metódou. Pomôcky : hobrová doska, papier, model pevného telesa, špendlíky, silomery s rôznym rozsahom, pružina,háčiky Postup : a.) Na dosku položte papier a špendlíkom pripevnite pružinu. Na druhý koniec pružiny upevnite dva silomery v tom istom bode. Pôsobením síl rovnakého smeru sa pružina predĺži. Na papieri ceruzkou označte výslednú dĺžku pružiny a do pripravených tabuliek zapíšte veľkosti oboch síl F 1, F 2. Nahraďte silomery jedným a dosiahnite rovnaké predĺženie pružiny. Do tabuľky zapíšte veľkosť tejto sily F. Meranie zopakujte 5 krát pre rôzne veľké sily. Zapíšte rozdiel F medzi nameranou silou F a hodnotou výslednice síl F 1,F 2 získanou výpočtom. Zhodnoťte meranie. b) Pokus urobte ako v a), ale sily F 1, F 2 majú mať opačný smer c) Pokus urobte ako v a), ale sily F 1, F 2 zvierajú uhol α. Meranie preveďte pre štyri uhly. Výslednicu dvoch síl nájdite graficky a jej hodnotu porovnajte s nameranou veľkosťou sily F. 4

d) Pokus urobte ako v a) ale sily F 1, F 2 pôsobia v rôznych bodoch telesa a majú rovnaký smer Tabuľky: pripravte štyri tabuľky pre a -d meranie Číslo merania F 1 F 2 a, b, d c F F α F 1 F 2 [ o ] F F 1 30 2 45 3 60.. 90 Výpočty : narysujte obrázky k meraniu c) vo vhodnej mierke Záver : Porovnajte výsledky meraní s teóriou o skladaní síl, zadefinujte príčiny odchýliek, nájdite možnosti ich odstránenia. 5

Laboratórna práca č. 4 Šmykové trenie a valivý odpor Úloha: 1. Preskúmajte parametre,ktoré ovplyvňujú terciu silu Ft,overte jej veľkosť pri šmykovom trení v závislosti od a) kolmej tlakovej sily Fn na podložku b) veľkosti styčných plôch S c) druhu a vlastností styčných plôch d) rýchlosti pohybu telesa voči podložke 2. Porovnajte treciu silu pri šmykovom trení a valivom odpore,pri tej istej kolmej tlakovej sile. Teória : definujte treciu silu,statické a dynamické trenie, koeficient trenia Pomôcky : súprava pre mechanické trenie, posúvne meradlo s nóniom Postup: 1. Drevený kváder položte na drevenú vodorovnú dosku. Na jeho bočnú stenu upevnite silomer a ťahajte ho vo vodorovnom smere tak, aby sa pohyboval rovnomerne, priamočiaro. Silomerom nameriame stálu silu F t. Kolmá tlaková sila F n sa rovná tiaži hranola. Z nameraných hodnôt určte koeficient trenia. Číslo Merania F n F t F Meranie zopakujte 6 krát pre rôzne kolmé tlakové sily. Zostrojte graf závislosti F t od F n a sformulujte záver. 2. Pomocou posúvneho meradla zistite rozmery kvádra a potom určte obsahy stien kvádra. Ťahajte kváder po rôznych stenách a zistite, či veľkosť styčnej plochy ovplyvňuje veľkosť trecej sily, urobte záver na základe grafu závislosti F t od S. ( 5 meraní) Číslo Merania S F n F t f cm 2 3. Kváder ťahajte po rôznych podložkách,hodnoty príslušných síl zapíšte do tabuľky a zoraďte materiály podľa koeficientu trenia ( 11 meraní) Materiál F n F t f 4. Ťahajte hranol po drevenej podložke najprv pomaly, potom postupne stále väčšou rýchlosťou. Zmerajte treciu silu pri rôznych rýchlostiach, zapíšte hodnoty do tabuľky a urobte záver. ( 3 merania) Číslo F n F t f 6

Merania 5. Hranoly položte za podložné valčeky a odmerajte treciu silu pri valivom odpore. Meranie preveďte pre dva rôzne priemery použitých valčekov. Určte závislosť trecej sily F t od priemeru valčekov d a porovnajte valivé a posúvne trenie.( 2 merania) Priemer valčekov (mm) F n F t f Záver : Vyhodnoťte prácu určením parametrov ovplyvňujúcich veľkosť trecej sily. 7

Laboratórna práca č. 5 Pokusné pozorovanie kinematiky pohybu guličky na naklonenej sa vodorovnej rovine. V praxi sú časté prípady, keď teleso pohybujúce sa po naklonenej rovine, ďalej pohybuje po vodorovnej rovine rovnomerným pohybom, napríklad lyžiar.ak zanedbáme trenie a odpor vzduchu, môžeme si prakticky overiť, či je takáto situácia reálna. Úloha : 1. Za predpokladu, že malú oceľovú guličku považujeme za hmotný bod, overte, či jej pohyb po prechode z naklonenej roviny na vodorovnú rovinu je rovnomerný priamočiary. Pomôcky zostavte podľa obrázka tak, aby obe roviny dosahovali dĺžku aspoň 1 meter, uhol sklonu musí byť od 5 0 do 10 0, dĺžka volenej trajektórie by nemala klesnúť pod 0,5 m. Guľku uvoľnite z najvyššieho bodu naklonenej roviny so stálou dĺžkou l 1.Odmerajte stopkami čas potrebný na prejdenie vopred stanovenej dráhy l 2.Namerané hodnoty zapíšte do tabuľky a vypočítajte priemernú rýchlosť guličky na zvolenom úseku. Meranie zopakujte 10 krát pre rôzne dlhé úseky l 2. Číslo merania 1. 2.... l 1 s tála l 2 t v v ( ) ( ) ( ) ( ) ( ) Spracujte získanú veličinu.vypočítajte strednú odchýlku a relatívnu chybu priemernej rýchlosti Zostrojte graf závislosti priemernej rýchlosti guličky od dráhy l 2. Do grafu zakreslite strednú hodnotu priemernej rýchlosti. Podľa výsledkov určte,aký pohyb konala gulička. Posúďte chyby merania. Úloha 2. Za predpokladu, že malú oceľovú guličku považujeme za hmotný bod, overte, či jej pohyb po prechode hladkej naklonenej rovine je rovnomerne zrýchlený. Pomôcky zostavte podľa obrázku. Guličku umiestňujte na naklonenej rovine do rôznych vzdialeností l 1 od dolného konca. Za predpokladu, že sa ďalej pohybuje rovnomerným pohybom,zistite jej rýchlosť,ktorou opúšťa 8

naklonenú rovinu. Zvoľte určitú dráhu l 2 a odmerajte čas t. Z týchto hodnôt vypočítajte rýchlosť v guličky na konci naklonenej roviny. Ak nemeníme uhol sklonu naklonenej roviny, musí byť zrýchlenie guličky pre rôzne l 2 rovnaké. Zo známej veľkosti rýchlosti v na konci naklonenej roviny a dĺžky l 2 určte veľkosť zrýchlenia a. V protokole odvoďte tento vzorec na výpočet zrýchlenia 2 v a = 2. l 1 Číslo merania 1 2 3... l 1 ( ) l 2 stála ( ) t ( ) v ( ) a ( ) a ( ) Namerané hodnoty zapíšte do tabuľky a zostrojte graf závislosti zrýchlenia od voľby l 1. Spracujte hodnoty zrýchlenia, vypočítajte strednú odchýlku a relatívnu chybu zrýchlenia. Priemerné zrýchlenie vyznačte v grafe a diskutujte o dosiahnutých výsledkoch vzhľadom na zadanú úlohu práce. Otázky Majú všetky grafy priebeh, aký bol uvedený pri vysvetľovaní jednotlivých druhov pohybov? Aké zjednodušenia ste pri tomto experimente urobili? Prečo pri stálom sklone naklonenej roviny je zrýchlenie pohybu stále a nezávisí od dĺžky trajektórie? 9

Laboratórna práca č. 6 Pokusné pozorovanie vzájomných premien mechanických foriem energie Jedným zo základných zákonov prírody je zákon zachovania energie. Jeho použitie nám často zjednodušuje riešenie problémov. Teleso s hmotnosťou m môže mať v tiažovom poli Zeme kinetickú a potenciálnu energiu. Ich zmeny sú spojené vždy s konaním práce. Úloha : Pozorujte vzájomné premeny mechanickej energie a opíšte ich. Pomôcky : dve rovnako ťažké guličky, niť, stojan, kopírovací papier, dĺžkové meradlo. Zostavte pokus podľa obr. Ak je gulička vo výške h nad stolom, má voči stolu potenciálnu energiu. Po uvoľnení narazí do druhej guličky, ktorá pri zrážke získa časť jej energie. Tá sa dá do pohybu a dopadne na podlahu do bodu D. Guličku 2 položte na okraj stola tak, aby sa dotýkala guličky 1 v pokoji. Odmerajte výšku stola H.( vzdialenosť ťažiska guličky 2 od podlahy). Vychýľte guličku 1 do zvolenej výšky h pri napnutej niti a bez nárazu ju uvolnite. Určte miesto dopadu D. Na predpokladané miesto dopadu položte papier a na neho umiestnite kopírovací hárok. Po dopade gulička na papieri zanechá stopu. Pokus opakujte 8-12 krát. Pri rovnakej výške h prvej guličky. Keď prezriete záznam dopadu na papieri zistíte, že pri meraní vznikol rozptyl. Treba preto určiť miesto najpravdepodobnejšieho dopadu. Z dvoch disjunktných stôp nájdite na ich spojnici stred, zo stredov opäť vytvorte dvojice a hľadajte stredy týchto úsečiek. Tento postup opakujte, kým neurčíte posledný bod, ktorý označíme D. Odmerajte vzdialenosť bodu D od päty kolmice vedenej zo stredu guličky 2 na podlahu. 10

Zo vzťahu g v = d. určte veľkosť rýchlosti, ktorú získala gulička 2 nárazom guličky 1 ( odvoďte ho 2. H v protokole). Teraz môžete určiť polohovú energiu prvej a kinetickú energiu druhej guličky a porovnať ich veľkosti. Celé pozorovanie opakujte pri 4 rôznych výškach h. Namerané hodnoty zapíšte do tabuľky. Z tabuľky určte, aká časť energie guličky 1 sa pri pokuse mení na iné formy energie. Číslo merania h d v E p1 E k2 E p1 - - E k2 (E p1 - - E k2) / E p1 Otázky Prečo sa podiel v poslednom stĺpci nerovná nule? Závisí údaj v poslednom stĺpci od materiálu, z ktorého sú guličky, Závisí E p1 - E k2 od výšky h? Výšku h meriame ako vzdialenosť dosky stola od najnižšieho bodu povrchu guličky. Posúďte, či je tento postup správny. Odpoveď zdôvodnite v protokole. 11

Laboratórna práca č. 7 Overenie Archimedovho zákona (IP COACH) Archimedov zákon sa dá použiť pri určovaní objemu nepravidelných telies, hustoty telies, hustoty neznámych kvapalín. Úloha : Určte závislosť vztlakovej sily od objemu ponorenej časti telesa a výsledky spracujte počítačom v programe IP COACH. Pomôcky : odmerný valec, nádoba, silomer voda V programe IP COACH ZOZNAM AKTIVÍT si otvorte aktivitu : Archimedov zákon meranie bez senzora. Aktivujte si pripravenú tabuľku a spuste meranie. Do odmerného valca nalejte vodu a zaznamenajte jej objem V 0 do počítača. Zaveste teleso na nitku a pripevnite ho k silomeru. Určte jeho tiaž F 0 a zapíšte ju. Ponorte teleso trochu do kvapaliny. Zaznamenajte do počítača hodnotu objemu vody V v odmernom valci a hodnotu sily F, ktorú ukazuje silomer. Pri ponorení telesa do kvapaliny sa prejaví vztlaková sila pôsobiaca na teleso. Určte V p objem telesa ponoreného vo vode a vypočítajte veľkosť vztlakovej sily F vz pri tomto meraní,výsledok zapíšte do zošita.. Urobte 10-15 meraní pri napnutej nitke. Hodnoty V, F postupne zapisujte v počítači. Pripravte si nový graf zostrojte závislosť vztlakovej sily od objemu telesa ponoreného v kvapaline, využite k jeho tvorbe údaje získané meraním. Zvoľte maximálnu a minimálnu hodnotu fyzikálnych veličín zaznamenávaných na osi x a y. Na základe zostrojeného grafu charakterizujte závislosť medzi týmito veličinami. V ponuke analýza- fitujte závislosť vhodnou funkciou. Zapíšte do zošita fitovanú funkciu s koeficientami nájdenými programom. Zhodnoťte fyzikálny význam koeficientov funkcie. Pokúste sa zistiť objem použitého telesa meraním a porovnajte ho s hodnotou získanou z grafov. 12

Laboratórna práca č. 8 Určenie výtokovej rýchlosti kvapaliny (IP COACH) Takmer každú fyzikálnu veličinu môžeme merať viacerými spôsobmi. Ak pri tom dostaneme rôzne výsledky, musíme nájsť príčinu tejto odlišnosti a rozborom meracích metód určiť, ktorý výsledok je najpresnejší. Príkladom takéhoto merania je určenie výtokovej rýchlosti kvapaliny z otvoru v nádobe s použitím Bernoulliho rovnice, rovnice kontinuity a použitím vzťahov pre vodorovný vrh hmotného bodu. Úloha : Odmerajte veľkosť výtokovej rýchlosti vody rôznymi metódami. Získané hodnoty porovnajte a zdôvodnite rozdiely medzi nimi. Pomôcky : Valcovitá nádoba s otvorom, fotografická miska,stopky, posúvne meradlo, podstavec, voda Princíp : Na určenie výtokovej rýchlosti použijeme nádobu tvaru valca s obsahom podstavy S 1 s otvorom v dolnej časti s obsahom S 2. Otvor uzavrieme a nádobu naplníme vodou do výšky h 2. Nádobu umiestnime na podstavec do tak, že malý otvor bude vo výške h 1 nad podložkou. Po otvorení malého otvoru voda začne vytekať a dopadne do vzdialenosti d od podstavca. Na základe známeho učiva v protokole odvoďte použité vzorce na výpočet rýchlosti vody Bernoulliho rovnica : v = 2. g. h rovnica kontinuity : v vodor. vrh : v 3 = d. 2 g 2. h 2 1 S = S 1 2. v 1 1 13

Postup: Pri jednom meraní je potrebné previesť určenie všetkých potrebných veličín do všetkých troch vzťahov. Pred naplnením nádoby vodou odmerajte vnútorný prierez d 1 nádoby, výšku malého otvoru nádoby nad podložkou h 2 a vnútorný prierez d 2 výtokovej trubičky v stene nádoby. Nalejte vodu do nádoby, výšku hladiny označte fixou a odmerajte h 1. Vodu nechajte vytekať 5-10 s. Ceruzou označte miesto dopadu vodného lúča a na nádobu fixou označte novú výšku hladiny vody h 1. Určte rýchlosť klesania vody v nádobe v. Namerané hodnoty zapíšte do tabuľky a pokračujte v meraní pri inej výške vodnej hladiny h 1. Preveďte štyri merania. P.č. Bernoull.rov. Rovnica kontinuity Vodorovný vrh h 1 v 1 D 1 S 1 D 2 S 2 h 1 -h 1 t v v 2 d h 2 v 3 1 2 3 4 Vypočítajte rýchlosti vytekania a zdôvodnite rozdiely hodnôt. Otázky : Ako sa zmení výtoková rýchlosť, keď hladina kvapaliny v nádobe postupne klesá? Závisí presnosť merania výtokovej rýchlosti od času, za ktorý necháme kvapalinu vytekať? Je vhodnejšie zvoliť kratšie alebo dlhšie časové úseky? Ktorá vlastnosť kvapaliny umožňuje použiť rovnicu kontinuity? Závisia výsledky merania od hustoty tekutiny? IP COACH spracovanie videozáznamu Zaznamenávajte závislosť miesta dopadu vodného lúča v závislosti od výšky vodnej hladiny nad výtokovou trubicou. Výsledky spracujte v grafickej podobe podľa pokynov uvedených v tejto aktívíte. Overenie Torricelliho experimentu Princíp : Ak použijeme vzťahy pre rýchlosť vytekajúcej kvapaliny z nádoby naplnenej tekutinou a vzťahy pre vodorovný vrh telesa z výšky H nad podložkou, dá sa ukázať, že pre vodorovnú vzdialenosť d,do ktorej dopadá vytekajúca tekutina, platí vzťah d = 2 H. h kde h je výška vody nad otvorom v nádobe a H je výška otvoru nad podložkou. Postup: Experiment zostavte podľa obr.odmerajte H a naplňte fľašu 2 cm nad najvyššie označenú rysku.počas plynulého vytekania vody z nádoby priebežne zapisujte do tabuľky vzdialenosť d dopadajúceho vodného lúča a to pre rôzne hodnoty výšky vody v nádobe h. Meranie viac krát opakujte pre tie isté hodnoty h a potom vypočítajte najpravdepodobnejšiu hodnotu miesta dopadu d pre danú výšku stlpca vody h, ako priemernú hodnotu z nameraných vzdialeností d. 14

Zostrojte graf závislosti d od h a porovnajte ho s hodnotami dosadenými do Torricelliho vzorca. Zdôvodnite prípadné odchýlky. Laboratórna práca č. 9 Meranie hustoty pevnej látky Zo skúseností vieme, že telesá z rôznych látok rovnakého objemu majú rozličnú hmotnosť. Súvisí to s vnútornou štruktúrou látok. Viete, že podiel hmotnosti a objemu telesa sa nazýva hustota látky. Získame ju, ak podelíme hmotnosť ľubovoľného telesa z tejto látky jeho objemom. Práca je rozdelená do troch úloh určenie hmotnosti telesa, zistenie jeho objemu a výpočet jeho hustoty. Úloha : Určte hustotu pevnej látky. Zistenú hodnotu porovnajte s hodnotou uvedenou v tabuľkách. Pomôcky : homogénne teleso, odmerný valec so stupnicou, mikrometrické meradlo, laboratórne váhy, voda. Postup: Premyslite a zostavte si vhodnú tabuľku na zápis získaných hodnôt. Odvážte teleso na laboratórnych váhach. Mikrometrickým meradlom určte jeho rozmery ( 10 meraní ), zistite ich stredné hodnoty a vypočítajte objem telesa. Určte relatívnu chybu objemu získaného výpočtom. Vypočítajte hustotu telesa. Výpočet chyby a relatívnej chyby nepriameho merania 1 Výpočet nepriamo Výpočet relatívnej chyby výsledku Výpočet chyby výsledku meranej veličiny z 2 z=x+y δz =( x+ y)/(x+y) z= x+ y 3 z=x-y δz=( x+ y)/(x-y) z= x+ y 4 z=x.y z=δx+δy z= z. δz 5 z=x/y z=δx+δy z= z. δz Odmerajte objem telesa v odmernom valci pri rôznych počiatočných hladinách vody.( 5 krát). Vypočítajte hustotu telesa. Porovnajte obe vypočítané hustoty s tabuľkovou hodnotou a odchýlky zdôvodnite. Navrhnite metódu zistenia, či teleso z nejakej látky je duté alebo plné. 15

Laboratórna práca č. 10. Určenie hmotnostnej tepelnej kapacity pevnej látky použitím zmiešavacieho kalorimetra Keď medzi teplejším telesom a chladnejšou kvapalinou prebieha v kalorimetri tepelná výmena, platí kalorimetrická rovnica C k. T 1 + m 1.c 1. T 1 = m 2.c 2. T 2 (1) Kde m 2 je hmotnosť teplejšieho telesa, c 2 je hmotnostná tepelná kapacita tohto telesa, T 2 je zmena teploty teplejšieho telesa, C k je tepelná kapacita kalorimetra, m 1 je hmotnosť vody v kalorimetri, c 1 je hmotnostná tepelná kapacita vody a T 1 je zmena teploty kalorimetra a vody pri tepelnej výmene. Z tohto vzťahu možno vypočítať hmotnostnú tepelnú kapacitu neznámeho telesa, ak zistíme meraním ostatné veličiny. Tepelnú kapacitu kalorimetra môžeme určiť meraním tak, že v ňom zmiešame teplú a studenú vodu, pričom použijeme rovnicu (1), alebo ak je kalorimeter s ohrevným telieskom určíme prijaté teplo z rovnice Q = U. I. t, kde U je napätie na koncoch špirály I je prúd pretekajúci špirálou a t je čas ohrievania vody v kalorimetri. Potom Q = C k. T 1 + m 1.c 1. T 1 (2) Úloha : Navrhnite program riešenia tejto úlohy : 1. Ktoré veličiny potrebujeme odmerať a ako ich odmeriame 2. Zapíšte postup do protokolu, namerané veličiny, výpočet hmotnostnej tepelnej kapacity kovu a záver. 3. Urobte rozbor chýb, ktoré vznikajú pri meraní tejto fyzikálnej veličiny. Diskutujte o tom, ako tieto chyby obmedziť. Pomôcky : zmiešavací kalorimeter, medené a oceľové teleso, odmerný valec s vodou, váhy, varič, teplomer, nádoba na ohrievanie, stojan 16

Laboratórna práca č. 11. Určenie povrchového napätia kvapaliny Úloha : Určte povrchové napätia kvapalín z kapilárnej elevácie. Pomôcky : Kapilárna trubica, nádoba, zrkadielko, dĺžkové meradlo, analytické váhy, rôzne kvapaliny, stojan s držiakmi, ihla, mikrometer Postup : odmerajte pomocou ihly vnútorný priemer kapiláry tak, že ihlu do nej zasuniete, označíte miesto, kam ju až bolo možné zasunúť. Toto miesto premerajte mikrometrom. Opakujte 10 krát a meranie spracujte. Určte relatívnu odchýlku polomeru kapiláry. Kapiláru upevnite do vertikálnej polohy, ponorte ju do kvapaliny a za nádobu umiestnite zrkadlo s meradlom. Zdvihnutím nádoby navlhčite steny kapiláry. Odmerajte výšku pri kapilárnej elevácii a to 10 krát tak, že meradlo umiestnite v rozličných miestach vonkajšieho obvodu kapiláry. Meranie spracujte. Zistite teplotu v miestnosti a vypočítajte povrchové napätie podľa vzťahu h. R. ρ. g σ = 2 Určte strednú odchýlku a relatívbnu chybu merania povrchového napätia. Nájdite hodnotu povrchového napätia pre danú tekutinu v MFCH tabuľkách. Odchýlky zdôvodnite. Meranie zopakujte pre ďalšie tri kvapaliny. Otázky : Pri meraní treba dať pozor, aby sa neznečistil alebo nezamastil vonkajší povrch kapiláry alebo vnútro použitej nádoby. Prečo má znečistenie vplyv na výsledok merania? Ako ovplyvní výsledok použitie kapiláry s väčším, z menším priemerom? Je meranie vnútorného priemeru kapiláry pomocou ihly presné. Navrhnite inú metódu. 17

Prečo povrchové napätie závisí od druhu kvapalín? Závisí povrchové napätie aj od teploty, určte to experimentálne. 18