FYZIKÁLNA OLYMPIÁDA. 53. ročník, 2011/2012 školské kolo kategória C zadanie úloh
|
|
- Σιμωνίδης Κοντόσταυλος
- 6 χρόνια πριν
- Προβολές:
Transcript
1 FYZIKÁLNA OLYMPIÁDA 53. ročník, 011/01 školské kolo kategória C zadanie úloh 1. Posed Deti sa rozhodli, že si urobia k posedu v korune stromu výťah potravín. Cez pevnú kladku na posede bolo prevesené silné, a ľahké lano. Na jeho konci bol priviazaný košík s hmotnosťou 1, kg (Obr. C-1A). A B C Janko Peťo Rado a) Náklad košíka má hmotnosť 4,5 kg. Akou silou F 1 je napínané lano, na ktorom je košík zavesený, ak babička dvíha košík ťahom voľného konca lana rovnomerným pohybom? Akú prácu pritom babička vykoná, keď košík bol zdvihnutý na posed vo výške 4,1 m nad zemou? Deti sa rozhodli umožniť obsluhovať výťah malej Janke. Otec nahradil jednoduchú kladku kladkostrojom (Obr. C-1B). b) Odhadnite, akú najväčšiu hmotnosť potravín v košíku môže Janka kladkostrojom vytiahnuť na posed, ak bez pomoci unesie balík šiestich 1,5 l fliaš s minerálkou (hmotnosť plastových obalov môžete zanedbať). c) Aké dlhé lano prejde Janke rukami a akú prácu pritom vykoná, ak zdvihne na posed kladkostrojom košík s babičkiným nákladom 4,5 kg? Na pôvodnom zariadení s jednou kladkou sa chlapci zabávali tým, že sa navzájom vyťahovali a pomaličky spúšťali dole (Obr. C-1C). d) Janko váži 38 kg, Peťo 45 kg a Rado 46 kg, Najprv Janko s Peťom vytiahli Rada hore na posed. Janko lano pustil, ostatní dvaja chlapci ho naďalej pevne držali. Rado sa spustil dole a Peťo sa zároveň dvíhal hore na posed. Zistite, s akým zrýchlením a ako dlho sa Rado a Peťo pohybovali a aká bola rýchlosť dopadu Rada na zem. 1
2 e) Občas sa k chlapcom pridala aj Janka, ktorá váži 8 kg. Vtedy každý koniec lana ťahali dve deti. Zistite, či ich hra bola bezpečná, ak medzná záťaž, ktorú lano znesie je 78 kg a občas nechali na lane priviazaný aj košík. Úlohu riešte všeobecne a potom pre dané hodnoty: g = 9,81 m s, ρ voda = 1000 kg/m 3. Poznámka: Hmotnosť špagátu a kladiek neuvažujte. Literatúra: 1. Prachař, J. Trnka, J.: Úlohy z mechaniky I (Jednoduché soustavy spojené vláknem). FYZIKA V ZAUJÍMAVÝCH ÚLOHÁCH, ročník ( ), Žilina Kladka (37FO D I 4, Ivo Čáp) 3.6 Sústava telies (35FO C I 4, Ivo Čáp) 3.9 Telesá na kladke (40FO D II 4, Ivo Čáp) 3. FYZIKA V ZAUJÍMAVÝCH ÚLOHÁCH II, ročník ( ), Žilina Sústava telies (45FO D I 4, Ľubomír Konrád) (možno nájsť aj v archíve FO) 4. Wikipedia, heslo kladka: Zavlažovanie trávnika Z trysky s plošným obsahom S = 5 cm, ktorej ústie sa nachádza na úrovni vodorovnej trávnatej plochy, strieka voda rýchlosťou v 0 = 15 m/s. Prúd vody zviera s vodorovným povrchom plochy uhol α. Vo vodorovnej vzdialenosti d = 0 m od trysky sa začína trávnik zvažovať smerom nahor pod uhlom β = 45. Tiažové zrýchlenie g = 9,81 m s -, odpor vzduchu neuvažujte. a) Určte miesta, na ktoré dopadá voda z trysky pri danej výtokovej rýchlosti, ak je sklon trysky nastavený postupne na hodnoty α 1 = 30, α = 45, α 3 = 60. b) Určte hmotnosť vody, ktorá sa nachádza vo vzduchu pre uvedené uhly sklonu trysky α 1, α a α Plávajúca skúmavka Na hodine fyziky žiaci preberali Archimedov zákon. Andrej, keď sa o niekoľko dní pripravoval na fyziku, si povedal, že niektoré veci si aj prakticky overí. Doma našiel skúmavku s plochým dnom. Pomocou pravítka zmeral jej dĺžku L = 15 cm. Vážením určil hmotnosť prázdnej skúmavky M 0 = 1 g. Do väčšej nádoby nalial vodu a do nej vložil prázdnu skúmavku. Skúmavku držal v zvislom smere a pomaly do nej pridával vodu, až kým neplávala v zvislej polohe. Potom pridával vodu, až kým horný okraj skúmavky neklesol na úroveň hladiny vody v nádobe (Obr.C-). Vážením určil hmotnosť skúmavky s vodou M 1 = 47 g. Potom doplnil vodu v skúmavke až po jej horný okraj a určil jej hmotnosť M = 54 g. Obr. C-
3 a) Určte hrúbku x skla skúmavky. b) S použitím nameraných hodnôt určte hustotu ρ s skla skúmavky a výsledok porovnajte s hodnotou uvedenou vo fyzikálnych tabuľkách? c) Dokážte a prakticky overte, že prázdna skúmavka nemôže voľne plávať vo vode v zvislej polohe (prevráti sa nabok). d) Určte hmotnosť m minimálneho objemu vody, ktorú treba do skúmavky naliať, aby voľne plávala v zvislej polohe. Úlohu riešte všeobecne a potom pre dané hodnoty. Hustota vody ρ v = 1,0 g cm 3. Skúmavka má valcový tvar a ploché dno, pričom hrúbka valcovej steny i dna je rovnaká. Pre zjednodušenie predpokladajte v častiach c) a d), že hmotný stred skúmavky sa nachádza v polovici jej dĺžky. 4. Fobos a Deimos Okolo planéty Mars obiehajú dva mesiace Fobos a Deimos. Predpokladajme, že ich obežné trajektórie sú kružnice, ktoré ležia v jednej rovine. Obežná doba Fobosu T F = 0,3 dňa. Podiel polomerov obežných trajektórií mesiacov n = R D / R F =,5. Pri takomto obiehaní sa Mars, Fobos a Deimos v pravidelných intervaloch nachádzajú na jednej priamke. a) Určte čas t 1, za ktorý sa bude opakovať usporiadanie Deimos, Fobos a Mars. b) Určte čas t, za ktorý sa bude opakovať usporiadanie Deimos, Mars a Fobos. c) Určte čas t 3, za ktorý sa zmení usporiadanie Deimos, Fobos a Mars na usporiadanie Deimos, Mars a Fobos. 5. Elektrický obvod V elektrickom obvode (obr. C-3) sa nachádzajú rezistory s hodnotami odporu R 1 = 1,0 kω, R =,0 kω a R 3 = 3,0 kω. Po pripojení zdroja napätia prechádza rezistorom s odporom R 3 prúd I R3 = 1,0 ma. a) Určte napätie U zdroja. A 1 R 1 R R 3 U A b) V obvode sú zapojené dva ampérmetre A 1 a A, Obr. C-3 ktorých odpor možno považovať za za veľmi malý voči odporom rezistorov. Určte rozdiel I I prúdov, ktoré prechádzajú ampérmetrami A 1 a A. c) Určte prúd I, ktorý prechádza zdrojom napätia. A A1 3
4 6. Topenie ľadu vo vode Do nádoby, ktorá je až po horný okraj naplnená vodou s hmotnosťou M, vkladáme kocky ľadu s rovnakou hmotnosťou m a teplotou t L = 10 C. Po vložení prvej kocky ľadu a jej roztopení poklesla teplota vody v nádobe o t 1 = 5 C. Ak potom vložíme do nádoby ďalšiu kocku ľadu, poklesne po jej roztopení teplota vody v nádobe o t = 1 C. a) Určte pomer p hmotností M a m, p = M / m. b) Určte začiatočnú teplotu vody t z. c) Aká by bola konečná teplota t k vody v nádobe, keby sme do nádoby vložili obidve kocky ľadu naraz? Odvedenie tepla do okolia a tepelnú kapacitu nádoby neuvažujte. Hmotnostná tepelná kapacita vody je c V = 4, kj kg -1 K -1, hmotnostná tepelná kapacita ľadu je c L =.1 kj kg -1 K -1, hmotnostné skupenské teplo topenia ľadu je l l = 3, J kg -1, teplota topenia sa ľadu t t = 0,0 C. 7. Experimentálna úloha Meranie tiažového zrýchlenia Úloha: Určte tiažové zrýchlenie pomocou matematického kyvadla. Pomôcky: Valcová rúrka s priemerom približne 3 cm, pevná tenká niť s dĺžkou aspoň m, stopky, guľôčka pre matematické kyvadlo (môžete si urobiť guľôčku z plastelíny) a posuvné meradlo. Teória: Matematické kyvadlo definujeme ako hmotný bod zavesený na nehmotnej niti. Perióda malých kmitov (výchylka nie väčšia ako 5 ) kyvadla s dĺžkou l je daná vzťahom T l = π. Podľa g Obr. C-4 tohto výrazu možno určiť tiažové zrýchlenie meraním periódy T kmitov a dĺžky l kyvadla. Medzi pomôckami nemáte dĺžkové meradlo na meranie väčších dĺžok. Meranie dĺžky nite posuvným meradlom by bolo veľmi nepresné. Využite preto možnosť navinúť niť na valcovú rúrku, obr. C-4. Ak označíme l 0 začiatočnú voľnú dĺžku nite, po n otočeniach valca je dĺžka nite l n = l 0 + n π D, kde D je vonkajší priemer rúrky. Úloha 1: Ukážte, že druhú mocninu periódy možno vyjadriť vzťahom T = A n + B. Odvoďte vzťahy pre konštanty A a B. Ak zvolíme premenné veličiny y = T a x = n, dostaneme lineárny vzťah y = A x + B, ktorého grafom je priamka. V nasledujúcom experimente nahradíme meranie dĺžky nite počtom n otočení rúrky. Tiažové zrýchlenie g potom určíme pomocou smernice A priamky, ktorú dostaneme z nameraných hodnôt T a n. 4
5 Úloha : Dokážte, že pre tiažové zrýchlenie platí vzťah g 3 4π D =. A Úloha 3: Odmerajte periódy najmenej pre 10 odtočení nite z rúrky. Každú periódu T určte z merania celkovej doby najmenej 0 kmitov kyvadla. Dĺžka voľnej časti nite na začiatku merania by nemala byť menšia než 0,5 m. (Nezabudnite, že ide o malé kmity s výchylkou do 5.) Veličiny T, y a x zapíšte do tabuľky. Úloha 4: Z 10 meraní priemeru D i rúrky posuvným meradlom určte najpravdepodobnejšiu hodnotu D priemeru rúrky (aritmetický priemer). Úloha 5: Hodnoty y a x zobrazte do grafu a zostrojte priamku, ktorá zodpovedá hodnotám veličín y a x. Z tejto priamky určte hodnoty konštánt A a B. Úloha 6: S použitím získaných konštánt určte tiažové zrýchlenie g a začiatočnú dĺžku nite l 0, ktorú porovnajte s odhadnutou hodnotou na začiatku merania. Úloha 7: Pomocou určenej hodnoty l 0 a počtu n otočení rúrky určte dĺžky l n pre jednotlivé merania. S požitím základného vzťahu pre periódu vypočítajte hodnotu tiažového zrýchlenia g n pre každú hodnotu (meranie) periódy T n. Hodnoty l n a g n zapíšte do tabuľky. Z hodnôt g n určte najpravdepodobnejšiu hodnotu g * tiažového zrýchlenia a jej smerodajnú odchýlku s(g * ) podľa vzťahu v úlohe 4. Porovnajte hodnotu g určenú pomocou grafu s hodnotou g *. Hodnoty určené na základe merania porovnajte s hodnotou uvedenou v informačnom systéme pre dané miesto. Možno napr. získať GPS súradnice daného miesta v mape (položka menu NASTROJE) a potom na adrese možno získať pre dané súradnice GPS a nadmorskú výšku hodnotu tiažového zrýchlenia (položka GRAVITY). Pozn.: Hodnoty A a B možno určiť výpočtom z nameraných hodnôt n ( ) n A =, x i ( ) n B =. x i Možno použiť aj kalkulačku s dvojrozmernou štatistikou (lineárna regresia). Ďalšie informácie nájdete na stránke Fyzikálnej olympiády: Fyzikálna olympiáda, 53. ročník Úlohy školského kola kategórie C Autori: Mária Kladivová (1), Ľubomír Konrád (), Ľubomír Mucha (3, 5 až 7) Recenzenti: Daniel Kluvanec, Ivo Čáp, Mária Kladivová Slovenská komisia fyzikálnej olympiády Vydal: IUVENTA Slovenský inštitút mládeže, Bratislava 011 5
,Zohrievanie vody indukčným varičom bez pokrievky,
Farba skupiny: zelená Označenie úlohy:,zohrievanie vody indukčným varičom bez pokrievky, Úloha: Zistiť, ako závisí účinnosť zohrievania vody na indukčnom variči od priemeru použitého hrnca. Hypotéza: Účinnosť
1. písomná práca z matematiky Skupina A
1. písomná práca z matematiky Skupina A 1. Vypočítajte : a) 84º 56 + 32º 38 = b) 140º 53º 24 = c) 55º 12 : 2 = 2. Vypočítajte zvyšné uhly na obrázku : β γ α = 35 12 δ a b 3. Znázornite na číselnej osi
Obvod a obsah štvoruholníka
Obvod a štvoruholníka D. Štyri body roviny z ktorých žiadne tri nie sú kolineárne (neležia na jednej priamke) tvoria jeden štvoruholník. Tie body (A, B, C, D) sú vrcholy štvoruholníka. strany štvoruholníka
Kontrolné otázky na kvíz z jednotiek fyzikálnych veličín. Upozornenie: Umiestnenie správnej a nesprávnych odpovedí sa môže v teste meniť.
Kontrolné otázky na kvíz z jednotiek fyzikálnych veličín Upozornenie: Umiestnenie správnej a nesprávnych odpovedí sa môže v teste meniť. Ktoré fyzikálne jednotky zodpovedajú sústave SI: a) Dĺžka, čas,
M6: Model Hydraulický systém dvoch zásobníkov kvapaliny s interakciou
M6: Model Hydraulický ytém dvoch záobníkov kvapaliny interakciou Úlohy:. Zotavte matematický popi modelu Hydraulický ytém. Vytvorte imulačný model v jazyku: a. Matlab b. imulink 3. Linearizujte nelineárny
Fyzikálna olympiáda. 52. ročník. školský rok 2010/2011. Kategória D. Úlohy školského kola
Fyzikálna olympiáda 52. ročník školský rok 2010/2011 Kategória D Úlohy školského kola (ďalšie informácie na http://fpv.utc.sk/fo a www.olympiady.sk) Odporúčané študijné témy pre kategóriu D 52. ročníka
7. FUNKCIE POJEM FUNKCIE
7. FUNKCIE POJEM FUNKCIE Funkcia f reálnej premennej je : - každé zobrazenie f v množine všetkých reálnych čísel; - množina f všetkých usporiadaných dvojíc[,y] R R pre ktorú platí: ku každému R eistuje
DOMÁCE ZADANIE 1 - PRÍKLAD č. 2
Mechanizmy s konštantným prevodom DOMÁCE ZADANIE - PRÍKLAD č. Príklad.: Na obrázku. je zobrazená schéma prevodového mechanizmu tvoreného čelnými a kužeľovými ozubenými kolesami. Určte prevod p a uhlovú
Moderné vzdelávanie pre vedomostnú spoločnosť Projekt je spolufinancovaný zo zdrojov EÚ M A T E M A T I K A
M A T E M A T I K A PRACOVNÝ ZOŠIT II. ROČNÍK Mgr. Agnesa Balážová Obchodná akadémia, Akademika Hronca 8, Rožňava PRACOVNÝ LIST 1 Urč typ kvadratickej rovnice : 1. x 2 3x = 0... 2. 3x 2 = - 2... 3. -4x
URČENIE MOMENTU ZOTRVAČNOSTI FYZIKÁLNEHO KYVADLA
54 URČENE MOMENTU ZOTRVAČNOST FYZKÁLNEHO KYVADLA Teoretický úvod: Fyzikálnym kyvadlom rozumieme teleso (napr. dosku, tyč), ktoré vykonáva periodický kmitavý pohyb okolo osi, ktorá neprechádza ťažiskom.
3. Striedavé prúdy. Sínusoida
. Striedavé prúdy VZNIK: Striedavý elektrický prúd prechádza obvodom, ktorý je pripojený na zdroj striedavého napätia. Striedavé napätie vyrába synchrónny generátor, kde na koncoch rotorového vinutia sa
ZADANIE 1_ ÚLOHA 3_Všeobecná rovinná silová sústava ZADANIE 1 _ ÚLOHA 3
ZDNIE _ ÚLOH 3_Všeobecná rovinná silová sústv ZDNIE _ ÚLOH 3 ÚLOH 3.: Vypočítjte veľkosti rekcií vo väzbách nosník zťženého podľ obrázku 3.. Veľkosti známych síl, momentov dĺžkové rozmery sú uvedené v
Kontrolné otázky z jednotiek fyzikálnych veličín
Verzia zo dňa 6. 9. 008. Kontrolné otázky z jednotiek fyzikálnych veličín Upozornenie: Umiestnenie správnej odpovede sa môže v kontrolnom teste meniť. Takisto aj znenie nesprávnych odpovedí. Uvedomte si
58. ročník Fyzikálnej olympiády v školskom roku 2016/2017 Kategória D domáce kolo Text úloh
58. ročník Fyzikálnej olympiády v školskom roku 2016/2017 Kategória D domáce kolo Text úloh Odporúčame preštudovať si podobné úlohy v publikácii Čáp I., Konrád Ľ.: Fyzika v zaujímavých riešených úlohách
Ročník: šiesty. 2 hodiny týždenne, spolu 66 vyučovacích hodín
OKTÓBER SEPTEMBER Skúmanie vlastností kvapalín,, tuhých látok a Mesiac Hodina Tematic ký celok Prierezo vé témy Poznám ky Rozpis učiva predmetu: Fyzika Ročník: šiesty 2 hodiny týždenne, spolu 66 vyučovacích
MOSTÍKOVÁ METÓDA 1.ÚLOHA: 2.OPIS MERANÉHO PREDMETU: 3.TEORETICKÝ ROZBOR: 4.SCHÉMA ZAPOJENIA:
1.ÚLOHA: MOSTÍKOVÁ METÓDA a, Odmerajte odpory predložených rezistorou pomocou Wheastonovho mostíka. b, Odmerajte odpory predložených rezistorou pomocou Mostíka ICOMET. c, Odmerajte odpory predložených
priemer d a vložíme ho do mosadzného kalorimetra s vodou. Hmotnosť vnútornej nádoby s miešačkou je m a začiatočná teplota vody t3 17 C
6 Náuka o teple Teplotná rozťažnosť Úloha 6. Mosadzná a hliníková tyč majú pri teplote 0 C rovnakú dĺžku jeden meter. Aký bude rozdiel ich dĺžok, keď obidve zohrejeme na teplotu 00 C. [ l 0,04 cm Úloha
Meranie na jednofázovom transformátore
Fakulta elektrotechniky a informatiky TU v Košiciach Katedra elektrotechniky a mechatroniky Meranie na jednofázovom transformátore Návod na cvičenia z predmetu Elektrotechnika Meno a priezvisko :..........................
STRIEDAVÝ PRÚD - PRÍKLADY
STRIEDAVÝ PRÚD - PRÍKLADY Príklad0: V sieti je frekvencia 50 Hz. Vypočítajte periódu. T = = = 0,02 s = 20 ms f 50 Hz Príklad02: Elektromotor sa otočí 50x za sekundu. Koľko otáčok má za minútu? 50 Hz =
Matematika Funkcia viac premenných, Parciálne derivácie
Matematika 2-01 Funkcia viac premenných, Parciálne derivácie Euklidovská metrika na množine R n všetkých usporiadaných n-íc reálnych čísel je reálna funkcia ρ: R n R n R definovaná nasledovne: Ak X = x
Laboratórna práca č.1. Elektrické meracie prístroje a ich zapájanie do elektrického obvodu.zapojenie potenciometra a reostatu.
Laboratórna práca č.1 Elektrické meracie prístroje a ich zapájanie do elektrického obvodu.zapojenie potenciometra a reostatu. Zapojenie potenciometra Zapojenie reostatu 1 Zapojenie ampémetra a voltmetra
KATEDRA DOPRAVNEJ A MANIPULAČNEJ TECHNIKY Strojnícka fakulta, Žilinská Univerzita
132 1 Absolútna chyba: ) = - skut absolútna ochýlka: ) ' = - spr. relatívna chyba: alebo Chyby (ochýlky): M systematické, M náhoné, M hrubé. Korekcia: k = spr - = - Î' pomerná korekcia: Správna honota:
ZBIERKA ÚLOH Z FYZIKY PRE 3. ROČNÍK
Kód ITMS projektu: 26110130519 Gymnázium Pavla Jozefa Šafárika moderná škola tretieho tisícročia ZBIERKA ÚLOH Z FYZIKY PRE 3. ROČNÍK (zbierka úloh) Vzdelávacia oblasť: Predmet: Ročník: Vypracoval: Človek
Elektrický prúd v kovoch
Elektrický prúd v kovoch 1. Aký náboj prejde prierezom vodiča za 2 h, ak ním tečie stály prúd 20 ma? [144 C] 2. Prierezom vodorovného vodiča prejde za 1 s usmerneným pohybom 1 000 elektrónov smerom doľava.
2 Chyby a neistoty merania, zápis výsledku merania
2 Chyby a neistoty merania, zápis výsledku merania Akej chyby sa môžeme dopustiť pri meraní na stopkách? Ako určíme ich presnosť? Základné pojmy: chyba merania, hrubé chyby, systematické chyby, náhodné
2. Dva hmotné body sa navzájom priťahujú zo vzdialenosti r silou 12 N. Akou silou sa budú priťahovať zo vzdialenosti r/2? [48 N]
Gravitačné pole 1. Akou veľkou silou sa navzájom priťahujú dve homogénne olovené gule s priemerom 1 m, ktoré sa navzájom dotýkajú? Hustota olova je 11,3 g cm 3. [2,33 mn] 2. Dva hmotné body sa navzájom
23. Zhodné zobrazenia
23. Zhodné zobrazenia Zhodné zobrazenie sa nazýva zhodné ak pre každé dva vzorové body X,Y a ich obrazy X,Y platí: X,Y = X,Y {Vzdialenosť vzorov sa rovná vzdialenosti obrazov} Medzi zhodné zobrazenia patria:
Mocniny : 1. časť. A forma. B forma. 1. Kontrolná práca z matematiky 8. ročník
1. Kontrolná práca z matematiky 8. ročník Mocniny : 1. časť 1. Vypočítajte pomocou tabuliek : a) 100 ; 876 ; 15,89 ; 1, ; 0,065 ; b) 5600 ; 16 ; 0,9 ;,64 ; 1,4 ; c) 1,5 ; 170 ; 0,01 ; 148 0, 56 ; 64, 5
Pevné ložiská. Voľné ložiská
SUPPORTS D EXTREMITES DE PRECISION - SUPPORT UNIT FOR BALLSCREWS LOŽISKA PRE GULIČKOVÉ SKRUTKY A TRAPÉZOVÉ SKRUTKY Výber správnej podpory konca uličkovej skrutky či trapézovej skrutky je dôležité pre správnu
UČEBNÉ TEXTY. Pracovný zošit č.2. Moderné vzdelávanie pre vedomostnú spoločnosť Elektrotechnické merania. Ing. Alžbeta Kršňáková
Stredná priemyselná škola dopravná, Sokolská 911/94, 960 01 Zvolen Kód ITMS projektu: 26110130667 Názov projektu: Zvyšovanie flexibility absolventov v oblasti dopravy UČEBNÉ TEXTY Pracovný zošit č.2 Vzdelávacia
Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK
Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK PRAKTIKUM I Úloha č.:...viii... Název: Meranie momentu zotrvačnosti kolesa Vypracoval:... Viktor Babjak... stud. sk... F 11.. dne...
UČEBNÉ TEXTY. Pracovný zošit č.7. Moderné vzdelávanie pre vedomostnú spoločnosť Elektrotechnické merania. Ing. Alžbeta Kršňáková
Stredná priemyselná škola dopravná, Sokolská 911/94, 960 01 Zvolen Kód ITMS projektu: 26110130667 Názov projektu: Zvyšovanie flexibility absolventov v oblasti dopravy UČEBNÉ TEXTY Pracovný zošit č.7 Vzdelávacia
Laboratórna práca č.1. Meranie dĺžky telesa. Úloha : Odmerajte priemer a výšku valcového telesa posúvnym meradlom s nóniom
Laboratórna práca č.1 Meranie dĺžky telesa Princíp : Určovanie rozmerov telies, meranie dĺžok môžeme previesť rôznymi spôsobmi a s rôznou presnosťou. V tejto práci sa naučíte používať dve meradlá a určovať
Tematický výchovno - vzdelávací plán
Tematický výchovno - vzdelávací plán Stupeň vzdelania: ISCED 2 Vzdelávacia oblasť: Človek a príroda Predmet: Fyzika Školský rok: 2016/2017 Trieda: VI.A, VI.B Spracovala : RNDr. Réka Kosztyuová Učebný materiál:
24. Základné spôsoby zobrazovania priestoru do roviny
24. Základné spôsoby zobrazovania priestoru do roviny Voľné rovnobežné premietanie Presné metódy zobrazenia trojrozmerného priestoru do dvojrozmernej roviny skúma samostatná matematická disciplína, ktorá
UČEBNÉ TEXTY. Pracovný zošit č.5. Moderné vzdelávanie pre vedomostnú spoločnosť Elektrotechnické merania. Ing. Alžbeta Kršňáková
Stredná priemyselná škola dopravná, Sokolská 911/94, 960 01 Zvolen Kód ITMS projektu: 26110130667 Názov projektu: Zvyšovanie flexibility absolventov v oblasti dopravy UČEBNÉ TEXTY Pracovný zošit č.5 Vzdelávacia
Priamkové plochy. Ak každým bodom plochy Φ prechádza aspoň jedna priamka, ktorá (celá) na nej leží potom plocha Φ je priamková. Santiago Calatrava
Priamkové plochy Priamkové plochy Ak každým bodom plochy Φ prechádza aspoň jedna priamka, ktorá (celá) na nej leží potom plocha Φ je priamková. Santiago Calatrava Priamkové plochy rozdeľujeme na: Rozvinuteľné
58. ročník Fyzikálnej olympiády v školskom roku 2016/2017 Kategória C domáce kolo Text úloh
58. ročník Fyzikálnej olympiády v školskom roku 2016/2017 Kategória C domáce kolo Text úloh Odporúčame preštudovať si podobné úlohy v publikácii Čáp I., Konrád Ľ.: Fyzika v zaujímavých riešených úlohách
CHÉMIA Ing. Iveta Bruončová
Výpočet hmotnostného zlomku, látkovej koncentrácie, výpočty zamerané na zloženie roztokov CHÉMIA Ing. Iveta Bruončová Moderné vzdelávanie pre vedomostnú spoločnosť/projekt je spolufinancovaný zo zdrojov
REZISTORY. Rezistory (súčiastky) sú pasívne prvky. Používajú sa vo všetkých elektrických
REZISTORY Rezistory (súčiastky) sú pasívne prvky. Používajú sa vo všetkých elektrických obvodoch. Základnou vlastnosťou rezistora je jeho odpor. Odpor je fyzikálna vlastnosť, ktorá je daná štruktúrou materiálu
Fyzikálna olympiáda. 52. ročník. školský rok 2010/2011. Kategória B. Úlohy školského kola
Fyzikálna olympiáda 52. ročník školský rok 2010/2011 Kategória B Úlohy školského kola (ďalšie informácie na http://fpv.utc.sk/fo a www.olympiady.sk) 52. ročník FO zadania úloh školského kola kategórie
8 TERMIKA A TEPELNÝ POHYB
Posledná aktualizácia: 11. mája 2012. Čo bolo aktualizované (oproti predošlej verzii zo 14. apríla 2012): Pomerne rozsiahle zmeny, napr. niekoľko nových príkladov a oprava nekorektnej formulácie pr. 8.20
Priezvisko: Ročník: Katedra chemickej fyziky. Krúžok: Meno: Dátum cvičenia: Dvojica:
Katedra chemickej fyziky Dátum cvičenia: Ročník: Krúžok: Dvojica: Priezvisko: Meno: Úloha č. 7 URČENIE HUSTOTY KVPLÍN Známka: Teória Tabuľka Výpočet Zaokrúhľovanie Záver Meranie 1. Úlohy: a) Určte hustotu
Odporníky. 1. Príklad1. TESLA TR
Odporníky Úloha cvičenia: 1.Zistite technické údaje odporníkov pomocou katalógov 2.Zistite menovitú hodnotu odporníkov označených farebným kódom Schématická značka: 1. Príklad1. TESLA TR 163 200 ±1% L
ÚLOHA Č.8 ODCHÝLKY TVARU A POLOHY MERANIE PRIAMOSTI A KOLMOSTI
ÚLOHA Č.8 ODCHÝLKY TVARU A POLOHY MERANIE PRIAMOSTI A KOLMOSTI 1. Zadanie: Určiť odchýlku kolmosti a priamosti meracej prizmy prípadne vzorovej súčiastky. 2. Cieľ merania: Naučiť sa merať na špecializovaných
Goniometrické rovnice a nerovnice. Základné goniometrické rovnice
Goniometrické rovnice a nerovnice Definícia: Rovnice (nerovnice) obsahujúce neznámu x alebo výrazy s neznámou x ako argumenty jednej alebo niekoľkých goniometrických funkcií nazývame goniometrickými rovnicami
Úloha 3.7 Teleso hmotnosti 2 kg sa pohybuje pozdĺž osi x tak, že jeho dráha je vyjadrená rovnicou
3 Dynamika Newtonove pohybové zákony Úloha 3.1 Teleso tvaru kvádra leží na horizontálnej doske stola. Na jeho prednej stene sú pripevnené dve lanká v strede steny. Lanká napneme tak, že prvé zviera s čelnou
RIEŠENIA 3 ČASŤ
RIEŠENIA 3 ČASŤ - 2009-10 1. PRÁCA RAKETY Raketa s hmotnosťou 1000 kg vystúpila do výšky 2000 m nad povrch Zeme. Vypočítajte prácu, ktorú vykonali raketové motory, keď predpokladáme pohyb rakety v homogénnom
Ekvačná a kvantifikačná logika
a kvantifikačná 3. prednáška (6. 10. 004) Prehľad 1 1 (dokončenie) ekvačných tabliel Formula A je ekvačne dokázateľná z množiny axióm T (T i A) práve vtedy, keď existuje uzavreté tablo pre cieľ A ekvačných
Matematika 2. časť: Analytická geometria
Matematika 2 časť: Analytická geometria RNDr. Jana Pócsová, PhD. Ústav riadenia a informatizácie výrobných procesov Fakulta BERG Technická univerzita v Košiciach e-mail: jana.pocsova@tuke.sk Súradnicové
Príklady z Fyziky týždeň
Príklady z Fyziky 1 1. týždeň 1. Uvažujme vektory A = 3i + 3j, B = i j, C = 2i + 5j umiestnené v jednej rovine. Prepíšte vektory do súradnicového tvaru a graficky ich znázornite a graficky ich spočítajte.
1 Prevod miestneho stredného slnečného času LMT 1 na iný miestny stredný slnečný čas LMT 2
1 Prevod miestneho stredného slnečného času LMT 1 na iný miestny stredný slnečný čas LMT 2 Rozdiel LMT medzi dvoma miestami sa rovná rozdielu ich zemepisných dĺžok. Pre prevod miestnych časov platí, že
Termodynamika a molekulová fyzika
Termodynamika a molekulová fyzika 1. Teplota telesa sa zvýšila zo začiatočnej hodnoty 25,8 C na konečnú hodnotu 64,8 C. Aká bude začiatočná a konečná teplota v kelvinoch? Aký je rozdiel konečnej a začiatočnej
1 Meranie dĺžky posuvným meradlom a mikrometrom Meranie hustoty tuhej látky Meranie veľkosti zrýchlenia priamočiareho pohybu 23
Obsah 1 Laboratórny poriadok 5 2 Meranie fyzikálnych veličín 7 2.1 Metódy merania.............................. 8 2.2 Chyby merania.............................. 9 2.3 Spracovanie nameraných hodnôt.....................
Margita Vajsáblová. ρ priemetňa, s smer premietania. Súradnicová sústava (O, x, y, z ) (O a, x a, y a, z a )
Mrgit Váblová Váblová, M: Dekriptívn geometri pre GK 101 Zákldné pom v onometrii Váblová, M: Dekriptívn geometri pre GK 102 Definíci 1: onometri e rovnobežné premietnie bodov Ε 3 polu prvouhlým úrdnicovým
Metodicko pedagogické centrum. Národný projekt VZDELÁVANÍM PEDAGOGICKÝCH ZAMESTNANCOV K INKLÚZII MARGINALIZOVANÝCH RÓMSKYCH KOMUNÍT
Moderné vzdelávanie pre vedomostnú spoločnosť / Projekt je spolufinancovaný zo zdrojov EÚ Kód ITMS: 26130130051 číslo zmluvy: OPV/24/2011 Metodicko pedagogické centrum Národný projekt VZDELÁVANÍM PEDAGOGICKÝCH
MECHANICKÁ PRÁCA, VÝKON,ENERGIA, ZÁKON ZACHOVANIA ENERGIE
MECHANICKÁ PRÁCA, VÝKON,ENERGIA, ZÁKON ZACHOVANIA ENERGIE 1. Určte prácu, ktorú musíme vykonať, aby sme po vodorovnej podlahe premiestnili debnu s hmotnosťou 400 kg do vzdialenosti 20 m rovnomerným pohybom
1. Limita, spojitost a diferenciálny počet funkcie jednej premennej
. Limita, spojitost a diferenciálny počet funkcie jednej premennej Definícia.: Hromadný bod a R množiny A R: v každom jeho okolí leží aspoň jeden bod z množiny A, ktorý je rôzny od bodu a Zadanie množiny
1. laboratórne cvičenie
1. laboratórne cvičenie Téma: Úlohy: Určenie povrchového napätia kvapaliny 1. Určiť povrchové napätie vody pomocou kapilárnej elevácie 2. Určiť povrchové napätie vody porovnávacou metódou 3. Opísať zaujímavý
Ohmov zákon pre uzavretý elektrický obvod
Ohmov zákon pre uzavretý elektrický obvod Fyzikálny princíp: Každý reálny zdroj napätia (batéria, akumulátor) môžeme považova za sériovú kombináciu ideálneho zdroja s elektromotorickým napätím U e a vnútorným
16. Základne rovinné útvary kružnica a kruh
16. Základne rovinné útvary kružnica a kruh Kružnica k so stredom S a polomerom r nazývame množinou všetkých bodov X v rovine, ktoré majú od pevného bodu S konštantnú vzdialenosť /SX/ = r, kde r (patri)
Komplexné čísla, Diskrétna Fourierova transformácia 1
Komplexné čísla, Diskrétna Fourierova transformácia Komplexné čísla C - množina všetkých komplexných čísel komplexné číslo: z = a + bi, kde a, b R, i - imaginárna jednotka i =, t.j. i =. komplexne združené
1. Určenie VA charakteristiky kovového vodiča
Laboratórne cvičenia podporované počítačom V charakteristika vodiča a polovodičovej diódy 1 Meno:...Škola:...Trieda:...Dátum:... 1. Určenie V charakteristiky kovového vodiča Fyzikálny princíp: Elektrický
Matematika prednáška 4 Postupnosti a rady 4.5 Funkcionálne rady - mocninové rady - Taylorov rad, MacLaurinov rad
Matematika 3-13. prednáška 4 Postupnosti a rady 4.5 Funkcionálne rady - mocninové rady - Taylorov rad, MacLaurinov rad Erika Škrabul áková F BERG, TU Košice 15. 12. 2015 Erika Škrabul áková (TUKE) Taylorov
Motivácia pojmu derivácia
Derivácia funkcie Motivácia pojmu derivácia Zaujíma nás priemerná intenzita zmeny nejakej veličiny (dráhy, rastu populácie, veľkosti elektrického náboja, hmotnosti), vzhľadom na inú veličinu (čas, dĺžka)
Einsteinove rovnice. obrázkový úvod do Všeobecnej teórie relativity. Pavol Ševera. Katedra teoretickej fyziky a didaktiky fyziky
Einsteinove rovnice obrázkový úvod do Všeobecnej teórie relativity Pavol Ševera Katedra teoretickej fyziky a didaktiky fyziky (Pseudo)historický úvod Gravitácia / Elektromagnetizmus (Pseudo)historický
Start. Vstup r. O = 2*π*r S = π*r*r. Vystup O, S. Stop. Start. Vstup P, C V = P*C*1,19. Vystup V. Stop
1) Vytvorte algoritmus (vývojový diagram) na výpočet obvodu kruhu. O=2xπxr ; S=πxrxr Vstup r O = 2*π*r S = π*r*r Vystup O, S 2) Vytvorte algoritmus (vývojový diagram) na výpočet celkovej ceny výrobku s
Kinematika hmotného bodu
Kinematika hmotného bodu 1. Automobil potrebuje na vykonanie cesty dlhej 120 km spolu s 15-minútovou prestávkou celkove 2h 40 min. Časť cesty išiel rýchlosťou v 1 = 40 km/h a časť rýchlosťou v 2 = 60 km/h.
6. V stene suda naplneného vodou je v hĺbke 1 m pod hladinou otvor veľkosti 5 cm 2. Aká veľká tlaková sila pôsobí na zátku v otvore?
Mechanika tekutín 1. Aká je veľkosť tlakovej sily na kruhový poklop ponorky s priemerom 1 m v hĺbke 50 m? Hustota morskej vody je 1,025 g cm 3. [402 kn] 2. Obsah malého piesta hydraulického zariadenia
ZBIERKA ÚLOH Z FYZIKY PRE 4.ROČNÍK
Kód ITMS projektu: 26110130519 Gymnázium Pavla Jozefa Šafárika moderná škola tretieho tisícročia ZBIERKA ÚLOH Z FYZIKY PRE 4.ROČNÍK (zbierka úloh) Vzdelávacia oblasť: Predmet: Ročník: Vypracoval: Človek
Fyzikálna olympiáda. 52. ročník. školský rok 2010/2011. Kategória A. Úlohy školského kola zadanie
Fyzikálna olympiáda 5. ročník školský rok 010/011 Kategória A Úlohy školského kola zadanie (ďalšie informácie na http://fpv.utc.sk/fo a www.olympiady.sk) Odporúčané študijné témy pre kategóriu A 5. ročníka
Súradnicová sústava (karteziánska)
Súradnicová sústava (karteziánska) = sú to na seba kolmé priamky (osi) prechádzajúce jedným bodom, na všetkých osiach sú jednotky rovnakej dĺžky-karteziánska sústava zavedieme ju nasledovne 1. zvolíme
Motivácia Denícia determinantu Výpo et determinantov Determinant sú inu matíc Vyuºitie determinantov. Determinanty. 14. decembra 2010.
14. decembra 2010 Rie²enie sústav Plocha rovnobeºníka Objem rovnobeºnostena Rie²enie sústav Príklad a 11 x 1 + a 12 x 2 = c 1 a 21 x 1 + a 22 x 2 = c 2 Dostaneme: x 1 = c 1a 22 c 2 a 12 a 11 a 22 a 12
A) kladky. Zbierka príkladov k predmetu Mechanika
A) kladky (N 1999/000, ) 1. Určite veľkosť zrýchlenia telesa m1 na obrázku. Trenie ani hmotnosť kladky neuvažujte. m g a1 = 4m1 + m (N 009/010, 0). Jedna z techník vyťahovania bezvládneho človeka z ľadovcovej
GYMNÁZIUM V ŽILINE, HLINSKÁ 29 ALTERNATÍVNA ZBIERKA ÚLOH Z FYZIKY PRE 1. ROČNÍK. Spracovali: Mgr. Andrea Bednárová, PhD., Mgr.
GYMNÁZIUM V ŽILINE, HLINSKÁ 29 ALTERNATÍVNA ZBIERKA ÚLOH Z FYZIKY PRE 1. ROČNÍK Spracovali: Mgr. Andrea Bednárová, PhD., Mgr. Zuzana Durná 27 Milá študentka, milý študent. Dostáva sa Vám do rúk Alternatívna
FYZIKA- zadanie úloh
FYZIKA- zadanie úloh 1.Mechanický pohyb 1. Popíšte, kedy koná teleso rovnomerný priamočiary pohyb. 2. Ktoré veličiny charakterizujú mechanický pohyb? 3. Napíšte, ako vypočítame dráhu, rýchlosť a čas pre
RIEŠENIE WHEATSONOVHO MOSTÍKA
SNÁ PMYSLNÁ ŠKOL LKONKÁ V PŠŤNO KOMPLXNÁ PÁ Č. / ŠN WSONOVO MOSÍK Piešťany, október 00 utor : Marek eteš. Komplexná práca č. / Strana č. / Obsah:. eoretický rozbor Wheatsonovho mostíka. eoretický rozbor
3. prednáška. Komplexné čísla
3. predáška Komplexé čísla Úvodé pozámky Vieme, že existujú také kvadratické rovice, ktoré emajú riešeie v obore reálych čísel. Študujme kvadratickú rovicu x x + 5 = 0 Použitím štadardej formule pre výpočet
Riešenie lineárnych elektrických obvodov s jednosmernými zdrojmi a rezistormi v ustálenom stave
iešenie lineárnych elektrických obvodov s jednosmernými zdrojmi a rezistormi v ustálenom stave Lineárne elektrické obvody s jednosmernými zdrojmi a rezistormi v ustálenom stave riešime (určujeme prúdy
Základné poznatky molekulovej fyziky a termodynamiky
Základné poznatky molekulovej fyziky a termodynamiky Opakovanie učiva II. ročníka, Téma 1. A. Príprava na maturity z fyziky, 2008 Outline Molekulová fyzika 1 Molekulová fyzika Predmet Molekulovej fyziky
Fyzikálna olympiáda 54. ročník, 2012/2013 školské kolo kategória A zadanie úloh
Fyzikálna olympiáda 54. ročník, 202/203 školské kolo kategória A zadanie úloh. Raketa Raketa s celkovou začiatočnou hmotnosťou M 0 = 0 kg je vypustená zvislo nahor z povrchu Zeme s nulovou začiatočnou
Cvičenie č. 4,5 Limita funkcie
Cvičenie č. 4,5 Limita funkcie Definícia ity Limita funkcie (vlastná vo vlastnom bode) Nech funkcia f je definovaná na nejakom okolí U( ) bodu. Hovoríme, že funkcia f má v bode itu rovnú A, ak ( ε > )(
u R Pasívne prvky R, L, C v obvode striedavého prúdu Činný odpor R Napätie zdroja sa rovná úbytku napätia na činnom odpore.
Pasívne prvky, L, C v obvode stredavého prúdu Čnný odpor u u prebeh prúdu a napäta fázorový dagram prúdu a napäta u u /2 /2 t Napäte zdroja sa rovná úbytku napäta na čnnom odpore. Prúd je vo fáze s napätím.
Jednotkový koreň (unit root), diferencovanie časového radu, unit root testy
Jednotkový koreň (unit root), diferencovanie časového radu, unit root testy Beáta Stehlíková Časové rady, FMFI UK, 2012/2013 Jednotkový koreň(unit root),diferencovanie časového radu, unit root testy p.1/18
MIDTERM (A) riešenia a bodovanie
MIDTERM (A) riešenia a bodovanie 1. (7b) Nech vzhl adom na štandardnú karteziánsku sústavu súradníc S 1 := O, e 1, e 2 majú bod P a vektory u, v súradnice P = [0, 1], u = e 1, v = 2 e 2. Aký predpis bude
Zateplite fasádu! Zabezpečte, aby Vám neuniklo teplo cez fasádu
Zateplite fasádu! Zabezpečte, aby Vám neuniklo teplo cez fasádu Austrotherm GrPS 70 F Austrotherm GrPS 70 F Reflex Austrotherm Resolution Fasáda Austrotherm XPS TOP P Austrotherm XPS Premium 30 SF Austrotherm
Model redistribúcie krvi
.xlsx/pracovný postup Cieľ: Vyhodnoťte redistribúciu krvi na začiatku cirkulačného šoku pomocou modelu založeného na analógii s elektrickým obvodom. Úlohy: 1. Simulujte redistribúciu krvi v ľudskom tele
, kde pre prípad obruč M + I/R 2 = 2 M.
55 ročník Fyzikálnej olympiády v školskom roku 3/4 iešenie úloh domáceho kola kategórie A (ďalšie inormácie na http://ounizask a wwwolympiadysk) Kyvadlo vo valci iešenie: a) Ide o sústavu dvoch spojených
Učebné osnovy FYZIKA. FYZIKA Vzdelávacia oblasť. Názov predmetu
Učebné osnovy FYZIKA Názov predmetu FYZIKA Vzdelávacia oblasť Človek a príroda Stupeň vzdelania ISCED 2 Dátum poslednej zmeny 4. 9. 2017 UO vypracovala RNDr. Janka Schreiberová Časová dotácia Ročník piaty
Metódy vol nej optimalizácie
Metódy vol nej optimalizácie Metódy vol nej optimalizácie p. 1/28 Motivácia k metódam vol nej optimalizácie APLIKÁCIE p. 2/28 II 1. PRÍKLAD: Lineárna regresia - metóda najmenších štvorcov Na základe dostupných
Riešenie rovníc s aplikáciou na elektrické obvody
Zadanie č.1 Riešenie rovníc s aplikáciou na elektrické obvody Nasledujúce uvedené poznatky z oblasti riešenia elektrických obvodov pomocou metódy slučkových prúdov a uzlových napätí je potrebné využiť
HASLIM112V, HASLIM123V, HASLIM136V HASLIM112Z, HASLIM123Z, HASLIM136Z HASLIM112S, HASLIM123S, HASLIM136S
PROUKTOVÝ LIST HKL SLIM č. sklad. karty / obj. číslo: HSLIM112V, HSLIM123V, HSLIM136V HSLIM112Z, HSLIM123Z, HSLIM136Z HSLIM112S, HSLIM123S, HSLIM136S fakturačný názov výrobku: HKL SLIMv 1,2kW HKL SLIMv
M sa nachádza teliesko s hmotnosťou m, ktoré je spojené s osou obruče tenkou tyčkou s veľmi malou
55. ročník Fyzikálnej olympiády v školskom roku 2013/2014 Zadania úloh domáceho kola kategórie (ďalšie informácie na http://fo.uniza.sk a www.olympiady.sk) 1. Kyvadlo vo valci Valcová obruč s hmotnosťou
Návrh vzduchotesnosti pre detaily napojení
Výpočet lineárneho stratového súčiniteľa tepelného mosta vzťahujúceho sa k vonkajším rozmerom: Ψ e podľa STN EN ISO 10211 Návrh vzduchotesnosti pre detaily napojení Objednávateľ: Ing. Natália Voltmannová
Goniometrické substitúcie
Goniometrické substitúcie Marta Kossaczká S goniometrickými funkciami ste sa už určite stretli, pravdepodobne predovšetkým v geometrii. Ich použitie tam ale zďaleka nekončí. Nazačiatoksizhrňme,čoonichvieme.Funkciesínusakosínussadajúdefinovať
Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK
Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK PRAKTIKUM II Úloha č.:...xviii... Název: Prechodové javy v RLC obvode Vypracoval:... Viktor Babjak... stud. sk... F.. dne... 6.. 005
Meranie tiažového zrýchlenia PaedDr. Klára Velmovská, PhD. Katedra teoretickej fyziky a didaktiky fyziky, FMFI UK, Bratislava
Názov projektu: CIV Centrum Internetového vzdelávania FMFI Číslo projektu: SOP ĽZ 2005/1-046 ITMS: 11230100112 Meranie tiažového zrýchlenia PaedDr. Klára Velmovská, PhD. Katedra teoretickej fyziky a didaktiky
Rozsah akreditácie 1/5. Príloha zo dňa k osvedčeniu o akreditácii č. K-003
Rozsah akreditácie 1/5 Názov akreditovaného subjektu: U. S. Steel Košice, s.r.o. Oddelenie Metrológia a, Vstupný areál U. S. Steel, 044 54 Košice Rozsah akreditácie Oddelenia Metrológia a : Laboratórium
4. domáca úloha. distribučnú funkciu náhodnej premennej X.
4. domáca úloha 1. (rovnomerné rozdelenie) Električky idú v 20-minútových intervaloch. Cestujúci príde náhodne na zastávku. Určte funkciu hustoty rozdelenia pravdepodobnosti a distribučnú funkciu náhodnej
A) práca, mechanická energia
A) práca, mechanická energia (MMF, s. 95) 1. Vypočítajte prácu, ktorú vykoná sila pri urýchlení telesa z 0 na rýchlosť v. Uvažujte nasledovné sily: 1 a) F konšt. mv 1 b) F k.t mv 1 c) F F 0 + k.x mv (MMF,