= k. n! k! (n k)!, k=0

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "= k. n! k! (n k)!, k=0"

Transcript

1 ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Συμπληρωματικές Ασκήσεις Χειμερινό Εξάμηνο 2015 Χρήστος Α Αθανασιάδης Συμβολίζουμε με O το μηδενικό πίνακα καταλλήλων διαστάσεων, με I (ορισμένες φορές, με I n τον n n ταυτοτικό πίνακα, με det(a την ορίζουσα ενός τετραγωνικού πίνακα A, με F ένα τυχαίο σώμα και με F[x] το δακτύλιο των πολυωνύμων στη μεταβλητή x με συντελεστές από το F Πράξεις Πινάκων 1 Υπολογίστε τον πίνακα 2 Δίνονται οι πίνακες A = (α Δείξτε ότι AB = 7I n ( (β Υπολογίστε τον πίνακα (BA n για n N για n N και B = ( a b 3 Δίνεται πίνακας A = c d F 2 2 (α Δείξτε ότι A 2 (a + da + (ad bc I = O (β Βρείτε όλους τους πίνακες A F 2 2 για τους οποίους ισχύει A 2 = O (γ Βρείτε όλους τους πίνακες A F 2 2 για τους οποίους ισχύει A 2 = I (δ Βρείτε όλους τους πίνακες A R 2 2 για τους οποίους ισχύει A 2 = I 4 Ενας πίνακας A R n n λέγεται στοχαστικός αν τα στοιχεία του είναι μη αρνητικοί αριθμοί και το άθροισμα των στοιχείων οποιασδήποτε γραμμής του A είναι ίσο με 1 (α Δείξτε ότι ένας πίνακας A R n n με στοιχεία μη αρνητικούς αριθμούς είναι στοχαστικός αν και μόνο αν ισχύει AX = X, όπου X R n 1 είναι ο πίνακας - στήλη όλα τα στοιχεία του οποίου είναι ίσα με 1 1

2 (β Συνάγετε ότι το γινόμενο δύο οποιωνδήποτε n n στοχαστικών πινάκων είναι επίσης n n στοχαστικός πίνακας 5 Εστω A, B F n n δύο άνω τριγωνικοί πίνακες (α Δείξτε ότι ο πίνακας AB είναι επίσης άνω τριγωνικός (β Αν κάθε στοιχείο στην κύρια διαγώνιο του B είναι ίσο με μηδέν, δείξτε ότι το ίδιο ισχύει για τον AB (γ Αν κάθε στοιχείο στην κύρια διαγώνιο του A είναι ίσο με μηδέν, δείξτε ότι το ίδιο ισχύει για τον AB (δ Αν A 1, A 2,, A n F n n είναι άνω τριγωνικοί πίνακες κάθε στοιχείο στην κύρια διαγώνιο των οποίων είναι ίσο με μηδέν, δείξτε ότι A 1 A 2 A n = O 6 Δίνονται πίνακες A F m n, B F n p και C F p q (α Εκφράστε το στοιχείο (i, j του γινομένου ABC ως συνάρτηση των στοιχείων των A, B και C (β Γενικότερα, έστω A 1, A 2,, A p πίνακες για τους οποίους ορίζεται το γινόμενο A 1 A 2 A p Εκφράστε το στοιχείο (i, j του πίνακα A 1 A 2 A p ως συνάρτηση των στοιχείων των A 1, A 2,, A p 7 Για ακεραίους 0 k n γράφουμε ( n = k n! k! (n k!, όπου m! = 1 2 m για θετικούς ακεραίους m και 0! = 1 κατά σύμβαση ( ( ( n n 1 n 1 (α Δείξτε ότι = + για 1 k n 1 k k k 1 (β Αν A, B είναι τετραγωνικοί πίνακες επί του F της ίδιας διάστασης και AB = BA, δείξτε ότι A m B n = B n A m για όλα τα m, n N (γ Αν A, B είναι τετραγωνικοί πίνακες επί του F της ίδιας διάστασης και AB = BA, δείξτε ότι n ( n (A + B n = A k B n k k για κάθε n N k=0 2

3 8 Εστω πίνακες A, B, P F n n (α Αν ο P είναι αντιστρέψιμος και AP = O, δείξτε ότι A = O (β Αν ο P είναι αντιστρέψιμος και P B = O, δείξτε ότι B = O (γ Αν AB = BA, A 2 = B 2 και ο A + B είναι αντιστρέψιμος, δείξτε ότι A = B 9 Δίνεται πίνακας A F n n (α Αν ο A είναι συμμετρικός, δείξτε ότι ο πίνακας P t AP είναι συμμετρικός για κάθε P F n n (β Αν ο P t AP είναι συμμετρικός για κάποιον αντιστρέψιμο πίνακα P F n n, δείξτε ότι ο A είναι συμμετρικός πίνακας 10 Για ποιους θετικούς ακεραίους n ισχύει καθένα από τα εξής; (α Αν ο πίνακας A F n n είναι συμμετρικός, τότε και ο A 2 είναι συμμετρικός (β Αν A R n n και ο πίνακας A 2 είναι συμμετρικός, τότε και ο A είναι συμμετρικός (γ Αν ο πίνακας A R n n είναι αντιστρέψιμος και ο A 2 είναι συμμετρικός, τότε ο A είναι συμμετρικός (δ Αν A R n n και ο πίνακας (A + B 2 είναι συμμετρικός για κάθε συμμετρικό πίνακα B R n n, τότε ο A είναι συμμετρικός 11 Για τυχαίο πίνακα A F n n συμβολίζουμε με tr(a το άθροισμα των στοιχείων της κύριας διαγωνίου (ίχνος του A (α Για A, B F n n και λ F, δείξτε ότι: tr(λa = λtr(a, tr(a + B = tr(a + tr(b, tr(ab = tr(ba (β Αν για τη συνάρτηση ϕ : F n n F ισχύουν ϕ(λa = λϕ(a, ϕ(a + B = ϕ(a + ϕ(b, ϕ(ab = ϕ(ba για όλους τους πίνακες A, B F n n και κάθε λ F, δείξτε ότι υπάρχει c F τέτοιο ώστε ϕ(a = c tr(a για κάθε A F n n 3

4 12 Δίνεται πίνακας A F n n (α Υπολογίστε το ίχνος tr(a 2 ως συνάρτηση των στοιχείων του A (β Συνάγετε ότι αν F = R και ο πίνακας A είναι συμμετρικός, τότε tr(a 2 0 και η ισότητα ισχύει μόνο για το μηδενικό πίνακα 13 Συμβολίζουμε με K n (F το σύνολο όλων των πινάκων της μορφής BC CB, όπου B, C F n n (α Δείξτε ότι tr(a = 0 για κάθε πίνακα A F n n που μπορεί να γραφεί ως άθροισμα πεπερασμένου πλήθους στοιχείων του K n (F ( ( ( (β Δείξτε ότι οι πίνακες, και ανήκουν στο K (F (γ Δείξτε ότι κάθε πίνακας A F n n ίχνους μηδέν μπορεί να γραφεί ως άθροισμα πεπερασμένου πλήθους στοιχείων του K n (F 14 Υπάρχει θετικός ακέραιος n και πίνακες A, B, C C n n τέτοιοι ώστε (α AB BA = I; (β AB BA = A και AC = I; 15 Δίνονται οι πίνακες A = (α Υπολογίστε τον πίνακα B και δείξτε ότι B 2 = O και B = A I (β Συνάγετε ότι ο A είναι αντιστρέψιμος και υπολογίστε τον αντίστροφό του (γ Υπολογίστε τον πίνακα A n για n N 16 Υπολογίστε τον πίνακα 17 Υπολογίστε τον πίνακα λ λ λ n n για n N και λ F για n N 18 Δίνεται ο άνω τριγωνικός n n πίνακας A =

5 (α Υπολογίστε τους πίνακες A 2 και A 3 (β Υπολογίστε τον πίνακα A m για τυχαίο m N 19 Εστω πίνακας A F n n Βρείτε όλους τους πίνακες B F n n για τους οποίους ισχύει AB = BA στις εξής περιπτώσεις: (α A = , (β A = , (γ ο A είναι διαγώνιος και τα στοιχεία του στην κύρια διαγώνιο είναι διαφορετικά ανά δύο, (δ A = 0 0 0, (ε A = Εστω πίνακας A F n n (α Αν ισχύει AB = BA για κάθε διαγώνιο πίνακα B F n n, δείξτε ότι ο A είναι διαγώνιος πίνακας (β Αν ισχύει AB = BA για κάθε B F n n, δείξτε ότι A = λi για κάποιο λ F (γ Αν ισχύει AB = BA για κάθε πίνακα B F n n τα στοιχεία στην κύρια διαγώνιο του οποίου είναι ίσα με μηδέν, δείξτε ότι A = λi για κάποιο λ F (δ Αν ισχύει AP = P A για κάθε αντιστρέψιμο πίνακα P F n n, δείξτε ότι A = λi για κάποιο λ F (ε Για ποιους πίνακες A ισχύει AB = BA για κάθε άνω τριγωνικό πίνακα B F n n, τα στοιχεία στην κύρια διαγώνιο του οποίου είναι ίσα με μηδέν; 21 Ενας τετραγωνικός πίνακας A λέγεται μηδενοδύναμος αν ισχύει A m = O για κάποιο θετικό ακέραιο m (α Δείξτε ότι δεν υπάρχουν αντιστρέψιμοι μηδενοδύναμοι πίνακες (β Δείξτε ότι αν ο πίνακας A είναι άνω τριγωνικός και όλα τα στοιχεία πάνω στην κύρια διαγώνιο του A είναι ίσα με μηδέν, τότε ο A είναι μηδενοδύναμος 5

6 (γ Δείξτε ότι αν οι A, B είναι μηδενοδύναμοι πίνακες και BA = λab για κάποιο λ F, τότε ο A + B είναι επίσης μηδενοδύναμος πίνακας (δ Δώστε παράδειγμα 2 2 μηδενοδύναμων πινάκων A, B τέτοιων ώστε ο A + B να είναι αντιστρέψιμος πίνακας (ε Βρείτε όλους τους 2 2 μηδενοδύναμους πίνακες Συνάγετε ότι αν οι A, B και A + B είναι 2 2 μηδενοδύναμοι πίνακες, τότε AB = BA = O (στ Αληθεύει ότι αν οι A, B και A+B είναι 3 3 μηδενοδύναμοι πίνακες, τότε AB = O ή BA = λab για κάποιο λ F; 22 Βρείτε όλους τους αντιστρέψιμους πίνακες A R n n με στοιχεία μη αρνητικούς αριθμούς για τους οποίους τα στοιχεία του αντίστροφου πίνακα A 1 είναι επίσης μη αρνητικοί αριθμοί (α για n = 2, (β για τυχαίο θετικό ακέραιο n 23 Εστω A F m n και B F n m Δείξτε ότι ο πίνακας I m AB είναι αντιστρέψιμος αν και μόνο αν ο πίνακας I n BA είναι αντιστρέψιμος Στοιχειώδεις Μετασχηματισμοί και Γραμμικά Συστήματα 24 Υπολογίστε την ανηγμένη κλιμακωτή μορφή του πίνακα 1 2 n n + 1 n + 2 2n n 2 n + 1 n 2 n + 2 n 2 για n 2 25 Να λύσετε τα συστήματα των γραμμικών εξισώσεων: x 1 + x 2 + x 3 = 1 x 2 + x 3 + x 4 = 1 (α x 3 + x 4 + x 5 = 1 (β x 98 + x 99 + x 100 = 1 x 1 + x 3 + x 5 = 1 x 2 + x 4 + x 6 = 1 x 3 + x 5 + x 7 = 1 x 96 + x 98 + x 100 = 1 πάνω σε τυχαίο σώμα F 26 Για τις διάφορες τιμές του λ R, να λύσετε το σύστημα των γραμμικών εξισώσεων: 6

7 (α (γ { λx1 + x 2 = 1 x 1 + λx 2 = λ (β λx 1 + x 2 + x 3 = 1 x 1 + λx 2 + x 3 = λ x 1 + x 2 + λx 3 = λ 2 λx 1 + x x n 1 + x n = 1 x 1 + λx x n 1 + x n = λ x 1 + x λx n 1 + x n = λ n 2 x 1 + x x n 1 + λx n = λ n 1 για τυχαίο ακέραιο n 3 27 Δίνεται πίνακας A F m n Δείξτε ότι οι ακόλουθες προτάσεις είναι ισοδύναμες: (i για κάθε b F m, το γραμμικό σύστημα Ax = b έχει το πολύ μία λύση, (ii το ομογενές γραμμικό σύστημα Ax = 0 έχει μόνο την τετριμμένη λύση 28 Δίνεται πίνακας A F m n με m < n (α Δείξτε ότι το ομογενές γραμμικό σύστημα Ax = 0 έχει μία τουλάχιστον μη τετριμμένη λύση (β Αν το σώμα F είναι άπειρο, δείξτε ότι το σύστημα Ax = 0 έχει άπειρες λύσεις 29 Δίνεται πίνακας A Q m n και διάνυσμα b Q m Δείξτε ότι αν το γραμμικό σύστημα Ax = b έχει μιγαδική λύση x C n, τότε το σύστημα αυτό έχει και ρητή λύση x Q n 30 Δίνονται θετικοί ακέραιοι m, p και μη αντιστρέψιμος πίνακας A F n n (α Δείξτε ότι υπάρχει μη μηδενικός πίνακας B F n p, τέτοιος ώστε AB = O (β Δείξτε ότι υπάρχει μη μηδενικός πίνακας C F m n, τέτοιος ώστε CA = O 31 Εστω πίνακες A F n m και B F m n με AB = I n (α Δείξτε ότι το ομογενές γραμμικό σύστημα Bx = 0 δεν έχει μη τετριμμένη λύση (β Συνάγετε ότι ισχύει n m (γ Αν n = m, δείξτε ότι ισχύει επίσης BA = I n 7

8 32 Δίνονται σύνολο S με n στοιχεία και μη κενά υποσύνολα A 1, A 2,, A n+1 του S Χρησιμοποιώντας την Άσκηση 28, δείξτε ότι υπάρχουν μη κενά, ξένα μεταξύ τους σύνολα δεικτών I, J {1, 2,, n + 1} τέτοια ώστε i I A i = j J A j 33 Υπολογίστε τον αντίστροφο των πινάκων: 1 λ λ 2 λ n λ λ n 2 (α A n = λ n 3, για λ F (β B n = R n n, για n Δίνεται ο πίνακας A n = n n n n n n n R n n (α Υπολογίστε τον αντίστροφο του A n για n = 2, 3, 4, 5 (β Υπολογίστε τον αντίστροφο του A n για τυχαίο θετικό ακέραιο n 35 Δίνεται ο πίνακας A n = (α Για ποιες τιμές του n είναι ο πίνακας A n αντιστρέψιμος; R n n (β Υπολογίστε τον αντίστροφο του A n, όταν αυτός υπάρχει 36 Εστω πίνακας A C n n 8

9 (α Αν κάθε στοιχείο της κύριας διαγωνίου του A είναι ίσο με n και καθένα από τα υπόλοιπα στοιχεία του A έχει μέτρο μικρότερο ή ίσο του 1, δείξτε ότι ο πίνακας A είναι αντιστρέψιμος (β Ισχύει το ίδιο αν υποθέσουμε ότι κάθε στοιχείο της διαγωνίου του A είναι ίσο με n 1; 37 Εστω πίνακες A, B F n n Αν υπάρχουν ακέραιοι m 1 και p 0 τέτοιοι ώστε AB m = (I B p, δείξτε ότι ο πίνακας B είναι αντιστρέψιμος 38 Εστω πίνακες A, B C n n με AB = BA και έστω P = A + B + I (α Αν P x = 0 για κάποιο x C n, δείξτε ότι (A + I k x = ( B k x για κάθε k N (β Αν A m = B m+1 = I για κάποιο θετικό ακέραιο m, δείξτε ότι ο πίνακας P είναι αντιστρέψιμος (γ Αληθεύει το (β χωρίς την υπόθεση ότι AB = BA; 39 Εστω πίνακες A, B F n n (α Αν AB = A + B, δείξτε ότι AB = BA (β Αν P F n n είναι αντιστρέψιμος πίνακας και ισχύει A = P B(A + P, δείξτε ότι ABP = P BA (γ Αληθεύει το (β χωρίς την υπόθεση ότι ο P είναι αντιστρέψιμος; Ορίζουσες 40 Ποιο είναι το πρόσημο του όρου a 13 a 25 a 31 a 46 a 52 a 64 στο ανάπτυγμα της 6 6 ορίζουσας det(a ij ; 41 Δείξτε ότι (α det (β det 1 a a 2 + bc 1 b b 2 + ac 1 c c 2 + ab 1 a a 2 a 3 + bcd 1 b b 2 b 3 + acd 1 c c 2 c 3 + abd 1 d d 2 d 3 + abc = 2 det = 0 1 a a 2 1 b b 2 1 c c 2, 9

10 για a, b, c, d F 42 Υπολογίστε τις n n ορίζουσες: (α det (β det n 1 1 n Θεωρούμε την n n ορίζουσα c n α + β α β α + β α β α + β = det α β α + β α β α + β για α, β F (α Δείξτε ότι c n = (α + βc n 1 αβ c n 2 για n 2, όπου c 0 = 1 κατά σύμβαση (β Συνάγετε έναν τύπο για το c n της μορφής c n = p n (α, β, όπου p n (x, y Z[x, y] είναι πολυώνυμο με ακέραιους συντελεστές 44 Εστω ο n n πίνακας A n της Άσκησης 34 (α Υπολογίστε την ορίζουσα του A n για n = 1, 2, 3, 4, 5 (β Υπολογίστε την ορίζουσα του A n για τυχαίο θετικό ακέραιο n (γ Υπολογίστε τον προσαρτημένο πίνακα του A n για τυχαίο θετικό ακέραιο n (δ Να λύσετε το σύστημα γραμμικών εξισώσεων A n x = b, όπου b είναι η στήλη μήκους n όλα τα στοιχεία της οποίας είναι ίσα με 1 45 Δείξτε ότι η ορίζουσα του προσαρτημένου πίνακα ενός πίνακα A F n n είναι ίση με (det(a n 1 46 Εστω αντιστρέψιμος πίνακας A F n n Δείξτε ότι το άθροισμα των στοιχείων του αντίστροφου πίνακα A 1 είναι ίσο με 1/ det(a επί το άθροισμα των οριζουσών των 10

11 n πινάκων που προκύπτουν αντικαθιστώντας μια από τις n γραμμές του A με τη γραμμή ( Δίνεται θετικός ακέραιος m (α Αν για δύο n n πίνακες A = (a ij και B = (b ij με στοιχεία ακέραιους αριθμούς ισχύει a ij b ij (mod m για 1 i, j n, δείξτε ότι det(a det(b (mod m (β Δείξτε ότι ο πίνακας A = είναι αντιστρέψιμος R Εστω ο n n πίνακας A = a 1 a 2 a n a 2 1 a 2 2 a 2 n a1 n 1 a2 n 1 an n 1, όπου a 1, a 2,, a n είναι στοιχεία ενός σώματος F (α Δείξτε ότι det(a = 1 i<j n (a j a i (β Αν τα a 1, a 2,, a n είναι διαφορετικά ανά δύο, συνάγετε ότι ο πίνακας A είναι αντιστρέψιμος και δείξτε ότι το άθροισμα των στοιχείων του A 1 είναι ίσο με 1 (γ Δείξτε ότι a 1 a 2 a n a 2 1 a 2 2 a 2 n det a n 2 1 a n 2 2 a n 2 n a n 1 a n 2 a n n = (a 1 + a a n 1 i<j n (a j a i 11

12 49 Υπολογίστε την n n ορίζουσα x 1 + y 1 x 2 + y 1 x n + y 1 det (x 1 + y 1 (x 1 + y 2 (x 2 + y 1 (x 2 + y 2 (x n + y 1 (x n + y 2 (x 1 + y 1 (x 1 + y n 1 (x n + y 1 (x n + y n 1 για πραγματικούς αριθμούς x 1,, x n, y 1,, y n 1 50 Εστω f(t η ορίζουσα του n n πίνακα c 1 t a t a t a t b t c 2 t a t a t b t b t c 3 t a t b t b t b t c n t, όπου a, b, c 1, c 2,, c n C και έστω το πολυώνυμο ϕ(t = (c 1 t(c 2 t (c n t (α Δείξτε ότι f(a = ϕ(a και ότι f(b = ϕ(b (β Αν a b, δείξτε ότι f(0 = bϕ(a aϕ(b b a 51 Να υπολογίσετε την ορίζουσα του (k + 1 (k + 1 πίνακα ( n ( n ( 0 1 n k ( n+1 ( n+1 ( A(n, k = n k, ( n+k ( n+k 0 1 όπου ( m r = m! Υπόδειξη: ( m r!(m r! r ( = m 1 ( r + m 1 r 1 ( n+k k 52 Εστω A, B F n n και a 1, a 2,, a n, b 1, b 2,, b n, x 1, x 2,, x n F (α Δείξτε ότι η ορίζουσα του πίνακα A + B είναι ίση με το άθροισμα των οριζουσών των 2 n πινάκων που προκύπτουν από τον A αντικαθιστώντας κάποιες από τις στήλες του A (πιθανώς καμιά ή και όλες με τις αντίστοιχες στήλες του B 12

13 (β Υπολογίστε την n n ορίζουσα a 1 b 1 + x 1 a 1 b 2 a 1 b n det a 2 b 1 a 2 b 2 + x 2 a 2 b n a n b 1 a n b 2 a n b n + x n (γ Υπολογίστε το όριο lim n ( 1 n/2 n! det ( 1 n 1 n 53 Εστω η n n ορίζουσα d n = det 1 1! 1 2! 1 n! 1 1 2! n! 1 1 3! (n+1! 1 1 (n+1! (2n 1! (α Υπολογίστε τη d n για n = 2 και n = 3 (β Δείξτε ότι d n = 1!2! (n 1! n!(n + 1! (2n 1! det ( n ( n 1 2 ( n+1 2 ( 2n 1 n ( n+1 3 ( 2n 1 n+1 ( n n ( n+1 n+1 ( 2n 1 2n 1 (γ Υπολογίστε τη d n για τυχαίο θετικό ακέραιο n 54 Εστω ακέραιος n 2 και a 0, a 1,, a n 1 R 13

14 (α Δείξτε ότι det a 0 a 1 a 2 a n 2 a n 1 = a 0 +a 1 +2a a n 2 a n 1 (β Υπάρχει πίνακας A τα στοιχεία του οποίου ανήκουν στο σύνολο { 1, 0, 1}, τέτοιος ώστε det(a = 2010; 55 Εστω θετικοί ακέραιοι n, m και x 0, x 1,, x m 1 F (α Αν A F n n και B = (b ij F m m, δείξτε ότι b 11 A b 12 A b 1m A b 21 A b 22 A b 2m A det = (det(am (det(b n b m1 A b m2 A b mm A (β Εστω ο m 2 m 2 πίνακας C m = (c ij, όπου 0 i, j m 2 1, με στοιχεία c ij = x s 0 r 0 x s 1 r 1, όπου i = r 0 +mr 1, j = s 0 +ms 1 και r 0, r 1, s 0, s 1 {0, 1,, m 1} Δείξτε ότι ( 2m det(c m = (x i x j i>j 56 Εστω πίνακες A F n n, B F n m και D F m m (α Δείξτε ότι ( A B det O D = det(a det(d (β Εστω ότι A, B R n n (δηλαδή F = C και n = m Δείξτε ότι ( A B det = det(a ib det(a + ib B A και συνάγετε ότι ( A B det B A 0 14

15 57 Εστω πίνακες A, B, C, D F n n (α Δείξτε ότι αν ο A είναι αντιστρέψιμος και AC = CA, τότε ( A B det = det(ad CB C D (β Ισχύει το συμπέρασμα του (α χωρίς την υπόθεση AC = CA; 58 Εστω πίνακες A F m n και B F n m (α Αν m > n, δείξτε ότι det(ab = 0 (β Αν m n, δείξτε ότι det(ab = S det(a S det(b S, όπου στο άθροισμα του δεξιού μέλους το S = {j 1 < j 2 < < j m } διατρέχει όλα τα υποσύνολα του {1, 2,, n} με m στοιχεία, A S είναι ο m m πίνακας με στήλες τις j 1, j 2,, j m στήλες του A και B S είναι ο m m πίνακας με γραμμές τις j 1, j 2,, j m γραμμές του B (γ Για τυχαίο πίνακα Q R n m, δείξτε ότι det(q t Q 0 59 Δείξτε ότι det a 1 a 2 a 3 a n a n a 1 a 2 a n 1 a n 1 a n a 1 a n 2 ( n 1 n = ( 1 n 1 j=0 k=1 ζ jk a k, a 2 a 3 a 4 a 1 όπου ζ = e 2πi/n Συνάγετε ότι n n 1 2 n 1 det n 1 n 1 n n 1 (n + 1 nn 1 = ( Εστω n n πίνακας A, καθένα από τα στοιχεία του οποίου είναι ίσο με 1 ή 1 15

16 (α Δείξτε ότι η ορίζουσα του A είναι ακέραιο πολλαπλάσιο του 2 n 1 (β Για δοσμένο n, υπολογίστε την ελάχιστη θετική τιμή που μπορεί να λάβει η ορίζουσα του A 61 Υπάρχει πίνακας A R n n τέτοιος ώστε A 2 = I; (α Απαντήστε το ερώτημα αυτό για n = 2, για n = 3, για τυχαίο θετικό ακέραιο n (β Βρείτε όλους τους θετικούς ακεραίους n για τους οποίους υπάρχουν αντιστρέψιμοι πίνακες A, B R n n τέτοιοι ώστε A 2 + B 2 = O 62 Εστω ότι A, B R 2 2 είναι συμμετρικοί αντιστρέψιμοι πίνακες Δείξτε ότι ο A 2 + B 2 είναι επίσης αντιστρέψιμος πίνακας Ισχύει το ίδιο για n n πίνακες; 63 Δίνεται σώμα F (α Αν το F έχει τουλάχιστον τρία στοιχεία, δείξτε ότι κάθε πίνακας A F n n μπορεί να γραφεί ως άθροισμα δύο αντιστρέψιμων πινάκων, ένας από τους οποίους είναι άνω τριγωνικός και ο άλλος κάτω τριγωνικός (β Αν n 2, δείξτε ότι κάθε πίνακας A F n n μπορεί να γραφεί ως άθροισμα δύο αντιστρέψιμων πινάκων 64 Δείξτε ότι: (α Αν A 1, A 2,, A n+1 F n n είναι τυχαίοι πίνακες, τότε υπάρχουν λ 1, λ 2,, λ n+1 F, όχι όλα μηδέν, τέτοια ώστε det(λ 1 A 1 + λ 2 A λ n+1 A n+1 = 0 (β Υπάρχουν πίνακες A 1, A 2 R 2 2 με την εξής ιδιότητα: αν λ 1, λ 2 είναι τυχαίοι πραγματικοί αριθμοί, όχι και οι δύο μηδέν, τότε det(λ 1 A 1 + λ 2 A 2 0 (γ Υπάρχουν πίνακες A 1, A 2, A 3, A 4 R 4 4 με την εξής ιδιότητα: αν λ 1, λ 2, λ 3, λ 4 είναι τυχαίοι πραγματικοί αριθμοί, όχι όλοι μηδέν, τότε det(λ 1 A 1 + λ 2 A 2 + λ 3 A 3 + λ 4 A Δίνεται θετικός ακέραιος n και τυχαίοι πραγματικοί αριθμοί a ij για 1 i, j n με i j Δείξτε ότι υπάρχουν πραγματικοί αριθμοί a ii {0, 1} για 1 i n, τέτοιοι ώστε ο πίνακας A = (a ij R n n να είναι αντιστρέψιμος 16

17 Τάξη Πίνακα Συμβολίζουμε με rank(a την τάξη ενός πίνακα A F m n, δηλαδή το μεγαλύτερο φυσικό αριθμό k για τον οποίο υπάρχει μη μηδενική k k υποορίζουσα του A και υπενθυμίζουμε ότι η τάξη ενός πίνακα δε μεταβάλλεται όταν εκτελούμε στοιχειώδεις μετασχηματισμούς στις γραμμές (ή στις στήλες του πίνακα αυτού 66 Υπολογίστε την τάξη του πίνακα της Άσκησης 24 για κάθε θετικό ακέραιο n 67 Δίνεται θετικός ακέραιος n Ποια είναι η μέγιστη δυνατή τάξη ενός μηδενοδύναμου πίνακα A F n n (δηλαδή n n πίνακα με A m = O για κάποιο θετικό ακέραιο m; 68 Για τυχαίους πίνακες A F m n και B F n p δείξτε ότι: (α rank(ab rank(a (β rank(ab rank(b 69 Δίνεται πίνακας A F m n Δείξτε ότι οι ακόλουθες προτάσεις είναι ισοδύναμες: (α rank(a = m (β Υπάρχει μία m m υποορίζουσα του A η οποία είναι διάφορη του μηδενός (γ Το γραμμικό σύστημα Ax = b είναι συμβιβαστό για κάθε b F m 1 (δ Υπάρχει πίνακας B F n m τέτοιος ώστε AB = I m 70 Δίνεται πίνακας A F m n Δείξτε ότι οι ακόλουθες προτάσεις είναι ισοδύναμες: (α rank(a = n (β Υπάρχει μία n n υποορίζουσα του A η οποία είναι διάφορη του μηδενός (γ Το γραμμικό σύστημα Ax = b έχει το πολύ μία λύση για κάθε b F m 1 (δ Το ομογενές γραμμικό σύστημα Ax = 0 έχει μόνο την τετριμμένη λύση x = 0 (ε Υπάρχει πίνακας C F n m τέτοιος ώστε CA = I n 71 Για τυχαίο πίνακα A F m n δείξτε ότι: (α rank(p AQ rank(a για P F m m και Q F n n (β rank(p A = rank(a για κάθε αντιστρέψιμο πίνακα P F m m (γ rank(aq = rank(a για κάθε αντιστρέψιμο πίνακα Q F n n (δ rank(p AQ = rank(a για όλους τους αντιστρέψιμους P F m m και Q F n n 17

18 72 Δείξτε ότι rank(a+b rank(a+rank(b για τυχαίους πίνακες A, B F m n 73 Δίνεται ακέραιος n 2 Ποια είναι η ελάχιστη και ποια η μέγιστη τιμή της τάξης ενός n n πίνακα, τα στοιχεία του οποίου είναι ακριβώς οι ακέραιοι 1, 2,, n 2 ; 74 Εστω θετικός ακέραιος n και πίνακας A = (a ij R n n με a ij = { 0, αν i = j, 1, διαφορετικά (α Αν ο n είναι άρτιος, δείξτε ότι ο πίνακας A είναι αντιστρέψιμος (β Εστω ότι ο n είναι περιττός Ποιες είναι οι δυνατές τιμές της τάξης του A; 75 Εστω A ένας n n πίνακας με τις εξής ιδιότητες: Κάθε στοιχείο της κύριας διαγωνίου του A είναι ίσο με μηδέν και καθένα από τα υπόλοιπα στοιχεία του A είναι ίσο με 1 ή με 2010 Δείξτε ότι rank(a n 1 76 Δίνεται πίνακας A R n n για τον οποίο ισχύει A t + A = J n I n, όπου J n είναι ο n n πίνακας κάθε στοιχείο του οποίου είναι ίσο με 1 (α Δείξτε ότι rank(a n 1 (β Δώστε παράδειγμα τέτοιου πίνακα με rank(a = n 1 (γ Για n 2, δώστε παράδειγμα τέτοιου πίνακα με rank(a = n Ο Διανυσματικός Χώρος F n 1 Ορίζουμε τον πυρήνα ενός πίνακα A F m n ως ker(a := {x F n 1 : Ax = 0} και την απεικόνιση L A : F n 1 F m 1 θέτοντας L A (x = Ax για x F n 1 77 Δίνεται πίνακας A F m n Δείξτε ότι οι ακόλουθες συνθήκες είναι ισοδύναμες: (α Οι στήλες του A παράγουν το χώρο F m 1 (β Το γραμμικό σύστημα Ax = b είναι συμβιβαστό για κάθε b F m 1 (γ Η απεικόνιση L A : F n 1 F m 1 είναι επί (δ rank(a = m 78 Δίνεται πίνακας A F m n Δείξτε ότι οι ακόλουθες συνθήκες είναι ισοδύναμες: (α Οι στήλες του A είναι γραμμικώς ανεξάρτητα στοιχεία του F m 1 18

19 (β Το ομογενές γραμμικό σύστημα Ax = 0 έχει μόνο την τετριμμένη λύση x = 0 (γ Η απεικόνιση L A : F n 1 F m 1 είναι 1 1 (δ rank(a = n 79 Εστω διακεκριμένοι πραγματικοί αριθμοί λ 1, λ 2,, λ n που δεν ανήκουν στο σύνολο { 1, 2,, n} Δείξτε ότι οι στήλες του πίνακα λ 1 +1 λ 1 +2 λ 1 +n 1 λ λ n λ 2 +2 λ 2 +n 1 1 λ n+2 λ n+n είναι γραμμικώς ανεξάρτητα διανύσματα του R n 1 80 Εστω W το σύνολο των στοιχείων (x 1 x 2 x n t του διανυσματικού χώρου F n 1 που ικανοποιούν τη σχέση x 1 + x x n = 0 (α Δείξτε ότι το W είναι υπόχωρος του F n 1 (β Υπολογίστε τη διάσταση του W και βρείτε μια βάση αυτού 81 Δίνεται πίνακας A F m n (α Δείξτε ότι η διάσταση του υπόχωρου του F m 1 που παράγεται από τις στήλες του A είναι ίση με την τάξη του A (β Συνάγετε ότι η διάσταση του υπόχωρου του F m 1 που παράγεται από τις στήλες του A είναι ίση με τη διάσταση του υπόχωρου του F n 1 που παράγεται από τις στήλες του A t 82 Δείξτε ότι dim ker(a = n rank(a για κάθε πίνακα A F m n 83 Βρείτε όλους τους υπόχωρους W του R n 1 με την ιδιότητα: αν (x 1 x 2 x n t W και σ είναι μετάθεση του συνόλου {1, 2,, n}, τότε (x σ(1 x σ(2 x σ(n t W Ποιες είναι οι δυνατές τιμές της διάστασης ενός τέτοιου υπόχωρου; 84 Δείξτε ότι για κάθε υπόχωρο W του χώρου F n 1 υπάρχουν θετικός ακέραιος r και πίνακας A F r n τέτοιοι ώστε W = ker(a 85 Δείξτε ότι για τον προσαρτημένο πίνακα adj(a ενός πίνακα A F n n ισχύουν: (α Αν rank(a = n, τότε rank(adj(a = n 19

20 (β Αν rank(a = n 1, τότε rank(adj(a = 1 (γ Αν rank(a n 2, τότε rank(adj(a = 0 Αφηρημένοι Διανυσματικοί Χώροι Συμβολίζουμε με dim(v τη διάσταση ενός διανυσματικού χώρου V και με F n [x] τον F-διανυσματικό χώρο όλων των πολυωνύμων p(x F[x] βαθμού μικρότερου ή ίσου του n 86 Δίνονται γραμμικώς ανεξάρτητα διανύσματα u 1, u 2,, u n ενός διανυσματικού χώρου V και διανύσματα v 1, v 2,, v m που παράγουν το V Χρησιμοποιήστε την Άσκηση 28 για να δείξετε ότι n m 87 Υπολογίστε τη διάσταση των παρακάτω υπόχωρων του F n n : (α του υπόχωρου των άνω τριγωνικών n n πινάκων, (β του υπόχωρου των άνω τριγωνικών n n πινάκων, κάθε στοιχείο στην κύρια διαγώνιο των οποίων είναι ίσο με μηδέν, (γ του υπόχωρου των συμμετρικών n n πινάκων, (δ του υπόχωρου των αντισυμμετρικών n n πινάκων 88 Δίνεται το σύνολο W n = {A F n n : tr(a = 0} όλων των n n πινάκων με στοιχεία από το F, το ίχνος των οποίων είναι ίσο με μηδέν (α Δείξτε ότι το W n είναι γνήσιος υπόχωρος του F n n Ποια είναι η διάστασή του; (β Συνάγετε ότι οποιοιδήποτε πίνακες A 1, A 2,, A n 2 F n n με tr(a i = 0 για 1 i n 2 είναι γραμμικώς εξαρτημένα στοιχεία του F n n (γ Βρείτε γραμμικώς ανεξάρτητα στοιχεία A 1, A 2,, A n 2 του F n n, τέτοια ώστε tr(a i = 1 για 1 i n 2 (δ Εστω πίνακας B F n n ο οποίος δεν είναι πολλαπλάσιο του I n και έστω πίνακες A 1, A 2,, A n 2 F n n Αν ισχύει A i B = BA i για 1 i n 2, δείξτε ότι οι A 1, A 2,, A n 2 είναι γραμμικώς εξαρτημένα στοιχεία του F n n 89 Εστω V το σύνολο των πινάκων στο F m n των οποίων τα στοιχεία κάθε γραμμής και κάθε στήλης έχουν άθροισμα μηδέν (α Δείξτε ότι ο V είναι γραμμικός υπόχωρος του F m n (β Βρείτε μια βάση του V για m = 2 και τυχαίο n 20

21 (γ Βρείτε μια βάση του V για τυχαία m και n (δ Συνάγετε ότι dim(v = (m 1(n 1 90 Δίνονται πολυώνυμα φ 0 (x, φ 1 (x,, φ n (x F n [x] (α Αν το φ i (x έχει βαθμό ίσο με i για 0 i n (οπότε το φ 0 (x είναι μη μηδενικό σταθερό πολυώνυμο, δείξτε ότι η (φ 0 (x, φ 1 (x,, φ n (x είναι βάση του F n [x] (β Εστω a F Συνάγετε από το (α ότι τα πολυώνυμα φ i (x = (x a i για 0 i n αποτελούν τα στοιχεία μιας βάσης του F n [x] (γ Αν F = C, εκφράστε ένα τυχαίο πολυώνυμο p(x F n [x] ως γραμμικό συνδυασμό των στοιχείων της βάσης του ερωτήματος (β 91 Εστω a F (α Δείξτε ότι το σύνολο W = {p(x F n [x] : p(a = 0} είναι γνήσιος υπόχωρος του διανυσματικού χώρου F n [x] (β Αν p 0 (x, p 1 (x,, p n (x F n [x] και p i (a = 0 για 0 i n, δείξτε ότι τα p 0 (x, p 1 (x,, p n (x είναι γραμμικώς εξαρτημένα στοιχεία του F n [x] (γ Εστω μη μηδενικό στοιχείο b F Δείξτε ότι υπάρχουν γραμμικώς ανεξάρτητα p 0 (x, p 1 (x,, p n (x F n [x], τέτοια ώστε p i (a = b για 0 i n 92 Δίνονται ανά δύο διακεκριμένα στοιχεία a 1, a 2,, a n ενός σώματος F και τα πολυώνυμα φ(x = (x a 1 (x a 2 (x a n και φ i (x = φ(x/(x a i για 1 i n του F[x] (α Δείξτε ότι τα φ 1 (x, φ 2 (x,, φ n (x είναι γραμμικώς ανεξάρτητα στοιχεία του F-διανυσματικού χώρου F[x] (β Δείξτε ότι κάθε πολυώνυμο p(x F[x] με βαθμό μικρότερο του n γράφεται στη μορφή p(x = c 1 φ 1 (x + c 2 φ 2 (x + + c n φ n (x με c i = p(a i φ (a i για 1 i n 93 Δίνονται τα στοιχεία φ i (x = x i (1 + x n i του F n [x] για 0 i n (α Δείξτε ότι η B n = (φ 0 (x, φ 1 (x,, φ n (x είναι βάση του F n [x] (β Για 0 k n, εκφράστε το μονώνυμο x k ως γραμμικό συνδυασμό των στοιχείων της βάσης B n 21

22 (γ Αν n = 4, πράξτε ομοίως για το πολυώνυμο p(x = 1 + x + x 2 + x 3 + x 4 94 Δίνεται διανυσματικός χώρος V διάστασης n και υπόχωροί του U και W Δείξτε ότι οι ακόλουθες προτάσεις είναι ισοδύναμες: (i V = U W (ii V = U + W και dim(u + dim(w = n (iii Υπάρχουν βάσεις B και C των U και W, αντίστοιχα, με B C =, η ένωση των οποίων είναι βάση του V (iv Για οποιεσδήποτε βάσεις B και C των U και W, αντίστοιχα, ισχύει B C = και η ένωση B C είναι βάση του V 95 Εστω V n = R n [x] Συμβολίζουμε με U n το σύνολο των πολυωνύμων p(x V n για τα οποία ισχύει p( x = p(x και με W n το σύνολο των πολυωνύμων q(x V n για τα οποία ισχύει q( x = q(x (α Δείξτε ότι τα σύνολα U n και W n είναι υπόχωροι του διανυσματικού χώρου V n (β Υπολογίστε τις διαστάσεις των U n και W n (γ Δείξτε ότι V n = U n W n 96 Δίνεται ένας F-διανυσματικός χώρος V διάστασης n και ένας γνήσιος υπόχωρος U του V Δείξτε ότι ο U είναι ίσος με την τομή όλων των υπόχωρων διάστασης n 1 του V που περιέχουν τον U 97 Δίνεται διανυσματικός χώρος V διάστασης n (α Εστω U και W υπόχωροι του V διάστασης k και n 1, αντίστοιχα Δείξτε ότι η διάστασης της τομής U W είναι ίση με k 1 ή k και ότι ισχύει dim(u W = k U W (β Αν W 1, W 2 είναι δύο διαφορετικοί υπόχωροι του V διάστασης n 1, ποιες είναι οι δυνατές τιμές της διάστασης του W 1 W 2 ; (γ Εστω ακέραιος 1 r n Αν W 1, W 2,, W r είναι υπόχωροι του V διάστασης n 1, ποιες είναι οι δυνατές τιμές της διάστασης του W 1 W 2 W r ; 98 Δίνονται υπόχωροι U, V, W ενός διανυσματικού χώρου (α Δείξτε ότι U W + V W (U + V W (β Ισχύει πάντοτε η ισότητα στο (α; 22

23 (γ Αν οι U, V, W έχουν πεπερασμένη διάσταση, δείξτε ότι dim(u + V + W dim(u + dim(v + dim(w dim(u V dim(u W dim(v W + dim(u V W (δ Αν οι U, V, W έχουν πεπερασμένη διάσταση, συνάγετε από το (γ ότι dim(u + dim(v + dim(w dim(u + V + W m, όπου m είναι ο μέγιστος των ακεραίων dim(u V + dim(u W, dim(u V + dim(v W και dim(u W + dim(v W 99 Ενα πολυώνυμο a 0 +a 1 x+ +a n x n F n [x] λέγεται συμμετρικό (ή παλινδρομικό αν ισχύει a i = a n i για 0 i n Συμβολίζουμε W n με το σύνολο των συμμετρικών πολυωνύμων του F n [x] (α Δείξτε ότι το W n είναι υπόχωρος του διανυσματικού χώρου F n [x] (β Δείξτε ότι τα πολυώνυμα p i (x = x i + x n i για 0 i n/2 αποτελούν τα στοιχεία μιας βάσης του W n και συνάγετε ότι dim(w n = n/2 + 1 (γ Δείξτε ότι τα πολυώνυμα φ i (x = x i + x i x n i για 0 i n/2 αποτελούν επίσης τα στοιχεία μιας βάσης του W n Θέτουμε τώρα F = R Ενα συμμετρικό πολυώνυμο a 0 + a 1 x + + a n x n R n [x] λέγεται μονότροπο αν 0 a 0 a 1 a n/2 (δ Δείξτε ότι ένα συμμετρικό πολυώνυμο p(x R n [x] είναι μονότροπο αν και μόνο αν οι συντεταγμένες του p(x ως προς τη βάση του του W n στο ερώτημα (γ είναι μη αρνητικοί αριθμοί (ε Συνάγετε ότι αν τα πολυώνυμα p(x R n [x] και q(x R m [x] είναι συμμετρικά και μονότροπα, τότε το γινόμενό τους p(xq(x R n+m [x] είναι επίσης συμμετρικό και μονότροπο 100 Εστω S ένα σύνολο m διανυσμάτων το οποίο παράγει ένα διανυσματικό χώρο V διάστασης n 2 Υποθέτουμε ότι το άθροισμα οποιωνδήποτε m 1 στοιχείων του S είναι συγγραμμικό με το στοιχείο του S που περισσεύει (δύο διανύσματα λέγονται συγγραμμικά αν είναι γραμμικώς εξαρτημένα (α Δείξτε ότι n m 1 (β Δείξτε ότι το άθροισμα των στοιχείων του S είναι ίσο με το μηδενικό διάνυσμα 23

24 101 Εστω διανυσματικός χώρος V πάνω σε ένα άπειρο σώμα Δείξτε ότι ο V δεν είναι ίσος με την ένωση πεπερασμένου πλήθους γνήσιων υποχώρων του 102 Εστω δύο βάσεις B και C ενός διανυσματικού χώρου V πεπερασμένης διάστασης (α Δείξτε ότι για κάθε v C υπάρχει u B τέτοιο ώστε το σύνολο (B {u} {v} να είναι βάση του χώρου V (β Δείξτε ότι για κάθε v C υπάρχει u B τέτοιο ώστε τα σύνολα (B {u} {v} και (C {v} {u} να είναι και τα δύο βάσεις του χώρου V 103 Εστω διανυσματικός χώρος V διάστασης n και έστω A ένας n n πίνακας με στοιχεία διανύσματα του V Δώστε απόδειξη ή αντιπαράδειγμα για την ακόλουθη πρόταση: Αν κάθε γραμμή του A είναι βάση του V, τότε είναι δυνατόν να αναδιαταχθεί κάθε γραμμή του A έτσι ώστε κάθε στήλη του πίνακα που θα προκύψει να είναι επίσης βάση του V Γραμμικές Απεικονίσεις Για F-διανυσματικούς χώρους V και W, συμβολίζουμε με L(V, W τον F-διανυσματικό χώρο όλων των γραμμικών απεικονίσεων T : V W Ο δυϊκός χώρος V του V είναι ο F-διανυσματικός χώρος L(V, F όλων των γραμμικών μορφών T : V F 104 Δίνονται ακέραιοι 1 k n και η απεικόνιση T : F n F n η οποία ορίζεται θέτοντας T (x = (x 1,, x k, 0,, 0 για x = (x 1, x 2,, x n F n (α Δείξτε ότι η T είναι γραμμική απεικόνιση και ότι T (T (x = T (x για κάθε x F n (β Βρείτε τον πυρήνα και την εικόνα της T και υπολογίστε τις διαστάσεις τους (γ Για ποιες τιμές των k και n είναι η T ισομορφισμός διανυσματικών χώρων; (δ Υπολογίστε τον πίνακα της T ως προς τη συνήθη βάση του F n 105 Δίνεται ο γραμμικός μετασχηματισμός T : F n F n που ορίζεται θέτοντας T (x = (x 1 x 2, x 2 x 3,, x n x 1 για x = (x 1, x 2,, x n F n (όπου για n = 1 έχουμε T (x = 0 για κάθε x F, κατά σύμβαση (α Δείξτε ότι η T είναι γραμμική απεικόνιση (β Βρείτε τον πυρήνα και την εικόνα της T και υπολογίστε τις διαστάσεις τους (γ Εστω n = 2 και F = R Δείξτε ότι για x R 2, το T (x είναι η ορθογώνια προβολή του 2x στην ευθεία x 1 + x 2 = 0 24

25 106 Δίνεται η γραμμική απεικόνιση F-διανυσματικών χώρων T : V U και υπόχωρος W του V (α Δείξτε ότι η εικόνα T (W = {T (w : w W } του W ως προς την απεικόνιση T είναι υπόχωρος του U (β Αν ο V έχει πεπερασμένη διάσταση, δείξτε ότι το ίδιο ισχύει για την εικόνα T (W και ότι dim T (W dim(w 107 Δίνεται διανυσματικός χώρος V Βρείτε όλες τις γραμμικές απεικονίσεις T : V V με την εξής ιδιότητα: τα διανύσματα v και T (v είναι γραμμικώς εξαρτημένα για κάθε v V 108 Δίνεται γραμμικός μετασχηματισμός T : V V ενός διανυσματικού χώρου V και διάνυσμα x V Αν ισχύουν T m (x = 0 και T m 1 (x 0 για κάποιο θετικό ακέραιο m, δείξτε ότι τα διανύσματα x, T (x, T 2 (x,, T m 1 (x είναι γραμμικώς ανεξάρτητα 109 Δίνεται γραμμικός μετασχηματισμός T : V V ενός διανυσματικού χώρου V (α Αν x 1, x 2,, x 2 k είναι στοιχεία του V και ισχύουν T m (x m 0 και T 2m (x m = 0 για 1 m 2 k, δείξτε ότι τα διανύσματα x 1, x 2, x 4,, x 2 k είναι γραμμικώς ανεξάρτητα (β Αν ο V έχει πεπερασμένη διάσταση, δείξτε ότι υπάρχει θετικός ακέραιος m τέτοιος ώστε ker(t m Im(T m = {0} 110 Δίνεται διανυσματικός χώρος V, στοιχεία v 1, v 2,, v n V και γραμμικός μετασχηματισμός T : V V Αν T (v 1 = v 1, T (v i = v i 1 + v i για 2 i n και το v 1 είναι μη μηδενικό διάνυσμα, δείξτε ότι το {v 1, v 2,, v n } είναι γραμμικώς ανεξάρτητο υποσύνολο του V 111 Δίνεται διανυσματικός χώρος V διάστασης n Αν {u 1,, u n+1 } και {v 1,, v n+1 } είναι υποσύνολα του V με n+1 στοιχεία, κάθε γνήσιο υποσύνολο καθενός από τα οποία είναι γραμμικώς ανεξάρτητο, δείξτε ότι υπάρχει γραμμικός ισομορφισμός T : V V τέτοιος ώστε τα διανύσματα T (u i και v i να είναι γραμμικώς εξαρτημένα για κάθε i με 1 i n Εστω V ο υπόχωρος του F m n που αποτελείται από τους πίνακες τα στοιχεία κάθε γραμμής και κάθε στήλης των οποίων έχουν άθροισμα μηδέν (βλέπε Άσκηση 89 Για X V, έστω T (X F (m 1 (n 1 ο πίνακας που προκύπτει από τον X διαγράφοντας την τελευταία γραμμή και στήλη (α Δείξτε ότι η T : V F (m 1 (n 1 είναι γραμμική απεικόνιση 25

26 (β Δείξτε ότι η T είναι ισομορφισμός διανυσματικών χώρων (γ Συνάγετε ότι dim(v = (m 1(n Για A F p m και θετικό ακέραιο n θεωρούμε την απεικόνιση T : F m n F p n η οποία ορίζεται θέτοντας T (X = AX για X F m n (α Δείξτε ότι η απεικόνιση T είναι γραμμική (β Αν p = m και ο πίνακας A είναι αντιστρέψιμος, δείξτε ότι η T είναι ισομορφισμός διανυσματικών χώρων (γ Αν η T είναι ισομορφισμός διανυσματικών χώρων, δείξτε ότι p = m και ότι ο πίνακας A είναι αντιστρέψιμος 114 Δίνεται γραμμική απεικόνιση F-διανυσματικών T : V W Αν ο V έχει πεπερασμένη διάσταση, δείξτε ότι dim(v = dim ker(t + dim Im(T 115 Εστω γραμμικοί μετασχηματισμοί S, T : V V ενός F-διανυσματικού χώρου V (α Δείξτε ότι ο περιορισμός της T στον υπόχωρο ker(st του V ορίζει μια γραμμική απεικόνιση R : ker(st ker(s (β Δείξτε ότι ker(r = ker(t και ότι Im(R = ker(s Im(T (γ Αν ο V έχει πεπερασμένη διάσταση, συνάγετε ότι dim ker(st dim ker(s + dim ker(t και ότι η ισότητα ισχύει αν και μόνο αν ker(s Im(T 116 Δίνεται η γραμμική απεικόνιση F-διανυσματικών χώρων T : V U και υπόχωρος W του U (α Δείξτε ότι η αντίστροφη εικόνα T 1 (W = {v V : T (v W } του W ως προς την T είναι υπόχωρος του V (β Εστω π : U U/W ο φυσικός επιμορφισμός του U επί του χώρου πηλίκο U/W Δείξτε ότι T 1 (W = ker(s, όπου S είναι η σύνθεση π T : V U/W (γ Αν οι V και U έχουν πεπερασμένη διάσταση, δείξτε ότι dim T 1 (W dim(v dim(u + dim(w 117 Εστω F-διανυσματικοί χώροι V 0, V 1,, V m, V m+1 με V 0 = V m+1 = {0} Αν υπάρχουν γραμμικές απεικονίσεις T i : V i V i+1 για 0 i m, τέτοιες ώστε ker(t i = Im(T i 1 για κάθε 1 i m, δείξτε ότι m ( 1 i dim(v i = 0 i=1 26

27 118 Εστω F-διανυσματικός χώρος V διάστασης n και γραμμικές απεικονίσεις S, T : V V Δείξτε ότι: (α Αν Im(T = ker(t, τότε ο n είναι άρτιος ακέραιος (β Αν Im(S = ker(s, Im(T = ker(t, Im(S Im(T = Im(ST και ST = T S, τότε ο n είναι ακέραιο πολλαπλάσιο του Για A F m n θεωρούμε την απεικόνιση T A : F n m F η οποία ορίζεται θέτοντας T A (X = tr(ax για X F n m (α Δείξτε ότι η T A είναι γραμμική απεικόνιση για κάθε A F m n (β Αν T A : F n m F είναι η μηδενική απεικόνιση, δείξτε ότι A = O (γ Εστω T : F m n (F n m η απεικόνιση που ορίζεται θέτοντας T (A = T A για A F m n Δείξτε ότι η T είναι γραμμική απεικόνιση (δ Δείξτε ότι για κάθε γραμμική απεικόνιση L : F n m F υπάρχει μοναδικός πίνακας A F m n τέτοιος ώστε L = T A 120 Εστω πίνακες A, B F m n (α Αν υπάρχει αντιστρέψιμος πίνακας P F m m τέτοιος ώστε B = P A, δείξτε ότι για x F n 1 ισχύει η ισοδυναμία Ax = 0 Bx = 0 (β Αν για x F n 1 ισχύει η ισοδυναμία Ax = 0 Bx = 0, δείξτε ότι υπάρχει αντιστρέψιμος πίνακας P F m m τέτοιος ώστε B = P A Τάξη Γραμμικής Απεικόνισης Υπενθυμίζουμε ότι η τάξη μιας γραμμικής απεικόνισης T : V W ορίζεται ως rank(t = dim Im(T Ειδικότερα, για κάθε πίνακα A F m n η τάξη της γραμμικής απεικόνισης L A : F n 1 F m 1 που ορίζεται θέτοντας L A (x = Ax για x F n 1 είναι ίση με τη διάσταση του υπόχωρου του F m 1 που παράγεται από τις στήλες του A και συνεπώς (Άσκηση 81 ίση με rank(a 121 Δίνονται διανυσματικοί χώροι V και W πεπερασμένης διάστασης και γραμμική απεικόνιση T : V W (α Δείξτε ότι η T είναι μονομορφισμός αν και μόνο αν rank(t = dim(v (β Δείξτε ότι η T είναι επιμορφισμός αν και μόνο αν rank(t = dim(w 27

28 (γ Συνάγετε ότι η T είναι ισομορφισμός αν και μόνο αν rank(t = dim(v = dim(w 122 Δίνονται F-διανυσματικοί χώροι U, V, W πεπερασμένης διάστασης και γραμμικές απεικονίσεις T : U V και S : V W (α Δείξτε ότι rank(st min{rank(s, rank(t } (β Συνάγετε ότι rank(ab min{rank(a, rank(b} για πίνακες A F m n και B F n p 123 Δίνεται F-διανυσματικός χώρος V διάστασης n και γραμμικές απεικονίσεις S, T, R : V V (α Δείξτε ότι rank(s + T rank(s + rank(t (β Δείξτε ότι rank(s + rank(t n + rank(st (γ Δείξτε ότι rank(sr + rank(rt rank(r + rank(srt 124 Εστω πίνακας A F n n Ποια είναι η μέγιστη δυνατή τιμή της τάξης του A (α αν A 2 = O; (β αν A 3 = O; 125 Δίνεται F-διανυσματικός χώρος V διάστασης n και γραμμικός μετασχηματισμός S : V V Ορίζουμε το γραμμικό μετασχηματισμό T : V V θέτοντας T (x = x S(x για x V (α Δείξτε ότι S(T (x = T (S(x για κάθε x V (β Δείξτε ότι rank(s + rank(t n (γ Δείξτε ότι οι ακόλουθες συνθήκες είναι ισοδύναμες: (i V = Im(S Im(T (ii Im(S Im(T = {0} (iii rank(s + rank(t = n (iv Im(S = ker(t (v ker(s = Im(T (vi S(T (x = T (S(x = 0 για κάθε x V Για τυχαίο πίνακα A F n n συνάγετε τα εξής: 28

29 (δ rank(a + rank(i A n (ε Ισχύει rank(a + rank(i A = n αν και μόνο αν A 2 = A 126 Δείξτε ότι: (α Για τυχαίους πίνακες A, B F n n ισχύει rank(ab rank(ba n/2 (β Υπάρχουν πίνακες A, B F n n ώστε rank(ab rank(ba = n/2 (γ Αν για τους A, B F n n ισχύει AB = O και οι πίνακες A + A t και B + B t είναι αντιστρέψιμοι, δείξτε ότι rank(a = rank(b = n/2 127 Εστω διανύσματα u, v C n με u 0 Δείξτε ότι υπάρχει συμμετρικός πίνακας P C n n τέτοιος ώστε P u = v Πίνακας μιας Γραμμικής Απεικόνισης 128 Δίνονται διανυσματικοί χώροι V και W διάστασης n και m, αντίστοιχα, και γραμμική απεικόνιση T : V W Εστω A F m n ο πίνακας της T ως προς τυχαίες βάσεις των V και W (α Δείξτε ότι rank(t = rank(a Συνάγετε ότι η T είναι: (β μονομορφισμός αν και μόνο αν rank(a = n, (γ επιμορφισμός αν και μόνο αν rank(a = m, (δ ισομορφισμός αν και μόνο αν ο πίνακας A είναι αντιστρέψιμος 129 Θεωρούμε την απεικόνιση T : R n [x] R n [x] που ορίζεται θέτοντας T (p(x = p(x p (x για p(x R n [x] (α Δείξτε ότι η απεικόνιση T είναι γραμμική (β Βρείτε τον πίνακα της T ως προς τη βάση (1, x,, x n του R n [x] (γ Συνάγετε ότι η T είναι γραμμικός ισομορφισμός και υπολογίστε το ίχνος της (δ Βρείτε όλα τα πολυώνυμα p(x R n [x] για τα οποία ισχύει T (p(x = x n (ε Υπολογίστε το σταθερό όρο του p(x R n [x], αν T (p(x = 1 + x + + x n 130 Εστω A F p m, θετικός ακέραιος n και η γραμμική απεικόνιση T : F m n F p n η οποία ορίζεται θέτοντας T (X = AX για X F m n (βλέπε Άσκηση

30 (α Υπολογίστε τον πίνακα της T ως προς τις συνήθεις βάσεις (κατάλληλα διατεταγμένες των F m n και F p n (β Δείξτε ότι rank(t = n rank(a (γ Συνάγετε ότι η T είναι ισομορφισμός διανυσματικών χώρων αν και μόνο αν p = m και ο πίνακας A είναι αντιστρέψιμος (δ Αν p = m, δείξτε ότι tr(t = n tr(a, όπου με tr(t συμβολίζουμε το ίχνος του πίνακα της T ως προς οποιαδήποτε βάση του F m n (βλέπε Άσκηση Δίνονται πίνακες A F p m και B F n q και η γραμμική απεικόνιση T : F m n F p q η οποία ορίζεται θέτοντας T (X = AXB για X F m n (α Δείξτε ότι η απεικόνιση T είναι γραμμική (β Δείξτε ότι η T είναι ισομορφισμός διανυσματικών χώρων αν και μόνο αν p = m, q = n και οι πίνακες A και B είναι αντιστρέψιμοι (γ Υπολογίστε τον πίνακα της T ως προς τις συνήθεις βάσεις (κατάλληλα διατεταγμένες των F m n και F p q (δ Εστω ότι ισχύουν p = m και q = n Δείξτε ότι tr(t = tr(a tr(b και ότι det(t = (det(a n (det(b m, όπου με tr(t και det(t συμβολίζουμε το ίχνος και την ορίζουσα του πίνακα της T ως προς οποιαδήποτε βάση του F m n (βλέπε Άσκηση Συμβολίζουμε με V n τον πραγματικό διανυσματικό χώρο διάστασης 2 n μια βάση του οποίου είναι το σύνολο όλων των υποσυνόλων του συνόλου [n] := {1, 2,, n} Θεωρούμε τη γραμμική απεικόνιση ϕ n : V n V n που ορίζεται θέτοντας ϕ n (S = ( 1 S T T T [n] για κάθε S [n] Για παράδειγμα, για n = 2 έχουμε ϕ n ({1, 2} = {1} {2}+{1, 2} Υπολογίστε το ίχνος και την ορίζουσα της ϕ n Συνάγετε ότι η ϕ n είναι αντιστρέψιμη για κάθε θετικό ακέραιο n ( Ir O 133 Δίνεται ο πίνακας J r = F O O n n, όπου 0 r n (α Αν n 2, δείξτε ότι ο πίνακας J r μπορεί να γραφεί ως άθροισμα δύο αντιστρέψιμων πινάκων τα στοιχεία των οποίων ανήκουν στο σύνολο { 1, 0, 1} (β Συνάγετε από το (α ότι αν n 2, τότε κάθε πίνακας A F n n μπορεί να γραφεί ως άθροισμα δύο αντιστρέψιμων πινάκων 30

31 134 Εστω επί απεικόνιση f : R n n {0, 1,, n} για την οποία ισχύει f(ab min {f(a, f(b} για όλους τους πίνακες A, B R n n Δείξτε ότι f(a = rank(a για κάθε A R n n ως εξής: (α Δείξτε ότι f(p A = f(ap = f(a για κάθε A R n n και κάθε αντιστρέψιμο πίνακα P R n n (β Για A R n n δείξτε ότι f(a = f(j k, όπου k = rank(a και J k είναι ο διαγώνιος πίνακας τάξης k με στοιχεία 1,, 1, 0,, 0 στην κύρια διαγώνιο (γ Δείξτε ότι f(j k f(j k+1 για k = 0, 1,, n 1 (δ Συνάγετε ότι f(a = rank(a για κάθε A R n n 135 Θεωρούμε γραμμικό μετασχηματισμό T : V V ενός F-διανυσματικού χώρου V και θέτουμε Fix(T = {x V : T (x = x} (α Δείξτε ότι το Fix(T είναι υπόχωρος του V (β Δείξτε γενικότερα ότι για κάθε λ F, το σύνολο V λ (T = {x V : T (x = λx} είναι υπόχωρος του V (γ Εστω ότι ο V έχει πεπερασμένη διάσταση Δείξτε ότι Fix(T {0} αν και μόνο αν υπάρχει y V τέτοιο ώστε y x T (x για κάθε x V (δ Εστω ότι ο V έχει πεπερασμένη διάσταση και έστω k N Δείξτε ότι dim Fix(T k αν και μόνο αν υπάρχει διατεταγμένη βάση του V ως προς την οποία ο πίνακας της T έχει τη μορφή ( Ik B O C (ε Ισχύει το (γ χωρίς την υπόθεση ότι ο V έχει πεπερασμένη διάσταση; 136 Δίνεται γραμμικός μετασχηματισμός T : V V ενός F-διανυσματικού χώρου V για τον οποίο ισχύει T (T (x = T (x για κάθε x V (α Δείξτε ότι Im(T = Fix(T (όπου το Fix(T ορίστηκε στην Άσκηση 135 (β Δείξτε ότι V = ker(t Fix(T (γ Εστω ότι ο V έχει πεπερασμένη διάσταση Δείξτε ότι υπάρχει διατεταγμένη βάση του V ως προς την οποία ο πίνακας της T έχει τη μορφή ( Ir O O O 137 Δίνεται γραμμικός μετασχηματισμός T : V V ενός F-διανυσματικού χώρου V για τον οποίο ισχύει T (T (x = x για κάθε x V 31

32 (α Δείξτε ότι ο T είναι γραμμικός ισομορφισμός (β Θεωρούμε τους υπόχωρους Fix(T και U = {x V : T (x = x} του V που ορίστηκαν στην Άσκηση 135 Δείξτε ότι x + T (x Fix(T και x T (x U για κάθε x V Υποθέτουμε τώρα ότι ισχύει 1 1 στο F (δηλαδή ότι η χαρακτηριστική του F είναι διάφορη του 2 (γ Δείξτε ότι V = Fix(T U (δ Εστω ότι ο V έχει πεπερασμένη διάσταση n Δείξτε ότι υπάρχει διατεταγμένη βάση του V ως προς την οποία ο πίνακας της T έχει τη μορφή ( Ik O O 138 Δίνεται γραμμικός μετασχηματισμός T : V V ενός R-διανυσματικού χώρου V για τον οποίο ισχύει T (T (x = x για κάθε x V I n k (α Δείξτε ότι ο T είναι γραμμικός ισομορφισμός (β Δείξτε ότι για κάθε μη μηδενικό διάνυσμα x V, τα διανύσματα x και T (x είναι γραμμικώς ανεξάρτητα Υποθέτουμε τώρα ότι ο V έχει πεπερασμένη διάσταση n (γ Δείξτε ότι υπάρχει βάση του V της μορφής {u 1,, u m } {T (u 1,, T (u m } και συνάγετε ότι ο n είναι άρτιος ακέραιος (δ Δείξτε ότι υπάρχει διατεταγμένη βάση του V ως προς την οποία ο πίνακας της T έχει τη μορφή ( O Im O I m 139 Εστω F-διανυσματικός χώρος V διάστασης n και γραμμική απεικόνιση T : V V Εστω επίσης W m = Im(T m για θετικούς ακεραίους m (α Δείξτε ότι αν ισχύουν T m = O για κάποιο θετικό ακέραιο m και W i {0}, τότε dim(w i+1 < dim(w i (β Δείξτε ότι υπάρχει θετικός ακέραιος m, τέτοιος ώστε T m = O αν και μόνο αν υπάρχει βάση του V ως προς την οποία ο πίνακας της T είναι άνω τριγωνικός και κάθε στοιχείο στην κύρια διαγώνιό του είναι ίσο με μηδέν 32

33 (γ Δείξτε ότι αν T n = O και T n 1 O, τότε υπάρχει βάση του V ως προς την οποία ο πίνακας της T είναι ίσος με (δ Δείξτε ότι αν T m = O για κάποιο θετικό ακέραιο m, τότε T n = O Ομοιότητα Πινάκων Υπενθυμίζουμε ότι δύο πίνακες A, B F n n λέγονται όμοιοι αν αυπάρχει αντιστρέψιμος πίνακας P F n n, τέτοιος ώστε B = P 1 AP 140 Δίνεται πίνακας A F n n (α Εστω ότι A = λi για κάποιο λ F Δείξτε ότι αν B F n n είναι πίνακας όμοιος με τον A, τότε B = A (β Εστω ότι A λi για κάθε λ F Δείξτε ότι υπάρχει πίνακας B F n n διάφορος του A, ο οποίος είναι όμοιος με τον A 141 Δίνονται όμοιοι πίνακες A, B F n n (α Δείξτε ότι tr(a = tr(b, ότι det(a = det(b και ότι rank(a = rank(b (β Δείξτε ότι οι πίνακες A m και B m είναι όμοιοι για κάθε m N (γ Δείξτε ότι οι πίνακες φ(a και φ(b είναι όμοιοι για κάθε πολυώνυμο φ(x F[x] (δ Εστω n 2 και C, D R n n Αν για κάθε ακέραιο m 2 οι πίνακες C m και D m είναι όμοιοι, είναι υποχρεωτικά οι C και D όμοιοι; 142 Δίνεται ο πίνακας C = Fn n, όπου n 2 (α Δείξτε ότι αν ο πίνακας A F n n είναι όμοιος με τον C, τότε A 2 = O και A O 33

34 (β Για n = 2, δείξτε ότι κάθε μη μηδενικός πίνακας A F 2 2 με A 2 = O είναι όμοιος με τον C (γ Για n = 3, δείξτε ότι κάθε μη μηδενικός πίνακας A F 3 3 με A 2 = O είναι όμοιος με τον C (δ Ισχύει το ίδιο για n = 4; 143 Να εξετάσετε αν είναι όμοιοι οι ακόλουθοι πίνακες: (α F4 4 και F (β F4 4 και F4 4 ( Ir O 144 Δίνονται ακέραιοι 0 r n και ο πίνακας J r = O O F n n (α Δείξτε ότι για κάθε πίνακα A F n n που είναι όμοιος με τον J r ισχύει A 2 = A (β Δείξτε ότι αν για τον πίνακα A F n n ισχύει A 2 = A, τότε ο A είναι όμοιος με τον J r όπου r = rank(a ( Ik O 145 Δίνονται ακέραιοι 0 k n και ο πίνακας J k = O I n k F n n (α Δείξτε ότι για κάθε πίνακα A F n n που είναι όμοιος με τον J k ισχύει A 2 = I (β Δείξτε ότι αν για τον πίνακα A F n n έχουμε A 2 = I και ισχύει 1 1 στο F, τότε ο A είναι όμοιος με τον J k για κάποια τιμή του k (γ Αληθεύει το (β χωρίς την υπόθεση ότι ισχύει 1 1 στο F; ( O Im 146 Δίνεται ο πίνακας J m = O I m F 2m 2m (α Δείξτε ότι για κάθε πίνακα A F 2m 2m που είναι όμοιος με τον J m ισχύει A 2 = I 34

35 (β Δείξτε ότι αν για τον πίνακα A F n n ισχύει A 2 = I, τότε ο n είναι άρτιος και ο A είναι όμοιος με τον πίνακα J m για m = n/2 147 Εστω 1 λ λ 0 A n (λ = F n n λ για λ F Δείξτε ότι οι πίνακες A n (λ και A n (µ είναι όμοιοι για τυχαία μη μηδενικά στοιχεία λ, µ F Χαρακτηριστικό Πολυώνυμο Γράφουμε χ A (x = det(a xi για το χαρακτηριστικό πολυώνυμο ενός τετραγωνικού πίνακα A 148 Εστω ο n n πίνακας A n = , όπου n 2 (α Υπολογίστε το χαρακτηριστικό πολυώνυμο του A n (β Για ποιες τιμές του n είναι ο A n αντιστρέψιμος; 149 Εστω θετικοί ακέραιοι p, q Συμβολίζουμε με J τον πίνακα καταλλήλων διαστάσεων, κάθε στοιχείο του οποίου είναι ίσο με 1 Υπολογίστε το χαρακτηριστικό πολυώνυμο: (α του p p πίνακα J + qi p, ( qip J (β του (p + q (p + q πίνακα J pi q 35

36 150 Εστω αντιστρέψιμος πίνακας A F n n με χ A (x = (λ 1 x(λ 2 x (λ n x, για κάποια λ i F (α Δείξτε ότι λ i 0 για κάθε δείκτη i και ότι χ A 1(x = ( 1 λ 1 x( 1 λ 2 x ( 1 λ n x (β Αν ο A είναι όμοιος με τον A 1 και ο n είναι περιττός, δείξτε ότι λ i { 1, 1} για έναν τουλάχιστον δείκτη 1 i n 151 Για πίνακες A F m n και B F n m δείξτε ότι x n det(xi m AB = x m det(xi n BA 152 Εστω πίνακας A F n n τα στοιχεία κάθε γραμμής και κάθε στήλης του οποίου έχουν άθροισμα μηδέν Αν A ij είναι ο πίνακας που προκύπτει από τον A διαγράφοντας την i γραμμή και τη j στήλη και n χ A (x = c i x i, δείξτε ότι c 1 = ( 1 i+j 1 n det(a ij Συνάγετε ότι η απόλυτη τιμή της det(a ij είναι ανεξάρτητη των i και j 153 Εστω F-διανυσματικοί χώροι V 0, V 1,, V m, V m+1 με V 0 = V m+1 = {0} και γραμμικές απεικονίσεις f i : V i V i+1 για 0 i m, τέτοιες ώστε ker f i = Im f i 1 για κάθε 1 i m Εστω γραμμικοί ενδομορφισμοί T i : V i V i για 1 i m, τέτοιοι ώστε T i+1 f i = f i T i για 1 i m 1 Αν p i (x είναι το χαρακτηριστικό πολυώνυμο του T i : V i V i για 1 i m, δείξτε ότι p 1 (x p 3 (x = p 2 (x p 4 (x για m = 2, για m = 3, για τυχαίο θετικό ακέραιο m Συνάγετε από τα παραπάνω το ζητούμενο της Άσκησης Εστω ένα άπειρο σώμα F και A F n n Αν ο πίνακας (A+B 2 είναι συμμετρικός για κάθε συμμετρικό πίνακα B F n n για τον οποίο ο A+B είναι αντιστρέψιμος, δείξτε ότι ο A είναι συμμετρικός πίνακας i=0 155 Δείξτε ότι: 36

37 (α Κάθε 2 2 πίνακας με στοιχεία πραγματικούς αριθμούς μπορεί να γραφεί στη μορφή B 2 + ci, με B R 2 2 και c R (β Κάθε 2 2 πίνακας με στοιχεία πραγματικούς αριθμούς μπορεί να γραφεί στη μορφή B 2 + C 2, με B, C R 2 2 (γ Για κάθε θετικό ακέραιο n υπάρχει n n πίνακας με στοιχεία πραγματικούς αριθμούς ο οποίος δεν μπορεί να γραφεί στη μορφή B 2 + C 2, όπου B, C R n n είναι πίνακες με BC = CB 156 Για έναν n n πίνακα A με στοιχεία ακέραιους αριθμούς ισχύει det (A 3 I = 1 (α Δείξτε ότι det (A I = 1 (β Αν n = 2, δείξτε ότι A 2 = O 157 Εστω ότι για τους πίνακες A, B F n n έχουμε det(a + rb = 0 για r = 1, 2,, n + 1 Ισχύει υποχρεωτικά ότι det(a = 0; Ιδιοτιμές και Ιδιοδιανύσματα 158 Εστω V ένας F-διανυσματικός χώρος διάστασης n και γραμμική απεικόνιση T : V V Εστω ότι υπάρχουν n + 1 ιδιοδιανύσματα της T, οποιαδήποτε n από τα οποία είναι γραμμικώς ανεξάρτητα Δείξτε ότι υπάρχει λ F με T (x = λx για κάθε x V 159 Υπολογίστε τις ιδιοτιμές του πίνακα για a, b, c F A = 0 a b c a 0 c b b c 0 a c b a 0, 160 Δίνεται ο 2n 2n πίνακας με a, b C C n = a b a b b a b a a b a b b a b a 37,

38 (α Υπολογίστε την τάξη του C n (β Υπολογίστε τις ιδιοτιμές του C n (γ Υπολογίστε την ορίζουσα του πίνακα που προκύπτει από τον C n αντικαθιστώντας κάθε στοιχείο της διαγωνίου του με δοσμένο x C 161 Δίνονται πίνακες A, B F n n (α Αν οι A και B είναι όμοιοι, δείξτε ότι για κάθε λ F οι ιδιοχώροι των A και B με αντίστοιχη ιδιοτιμή λ έχουν ίσες διαστάσεις (β Εστω ότι F = C και ότι για κάθε λ C, οι ιδιοχώροι των A και B με αντίστοιχη ιδιοτιμή λ έχουν ίσες διαστάσεις Είναι υποχρεωτικά οι A και B όμοιοι; 162 Εστω πίνακας A C n n (α Αν χ A (x = (λ 1 x(λ 2 x (λ n x, δείξτε ότι χ A 2(x = (λ 2 1 x(λ 2 2 x (λ 2 n x Υποθέτουμε τώρα ότι ο A είναι όμοιος με τον A 2 (β Ποιες είναι οι δυνατές τιμές της ορίζουσας του A; (γ Δείξτε ότι για κάθε ιδιοτιμή λ του A, το λ 2 είναι επίσης ιδιοτιμή του A και ότι υπάρχει ιδιοτιμή µ του A τέτοια ώστε λ = µ 2 (δ Δείξτε ότι για κάθε μη μηδενική ιδιοτιμή λ του A, υπάρχει θετικός ακέραιος m της μορφής 2 k 1 τέτοιος ώστε λ m = 1 (ε Συνάγετε ότι tr(a = rank(a, αν όλες οι ιδιοτιμές του A είναι πραγματικοί αριθμοί 163 Εστω πίνακας A = (a ij C n n για τον οποίο ισχύουν a ii = 1 και n j=1 a ij 2 για 1 i n (α Δείξτε ότι λ 1 1 για κάθε ιδιοτιμή λ C του A (β Αν όλες οι ιδιοτιμές του A είναι πραγματικοί αριθμοί, δείξτε ότι 0 det(a Δίνονται πίνακες A, B, C C n n με AB = BA, AC = CA και BC = CB (α Δείξτε ότι υπάρχουν λ, µ, ν C και μη μηδενικό διάνυσμα y C n, τέτοια ώστε Ay = λy, By = µy και Cy = νy (β Συνάγετε ότι υπάρχουν α, β, γ R, τέτοια ώστε det(αa + βb + γc = 0 38

Κεφάλαιο 4 Διανυσματικοί Χώροι

Κεφάλαιο 4 Διανυσματικοί Χώροι Κεφάλαιο Διανυσματικοί Χώροι Διανυσματικοί χώροι - Βασικοί ορισμοί και ιδιότητες Θεωρούμε τρία διαφορετικά σύνολα: Διανυσματικοί Χώροι α) Το σύνολο διανυσμάτων (πινάκων με μία στήλη) με στοιχεία το οποίο

Διαβάστε περισσότερα

(a + b) + c = a + (b + c), (ab)c = a(bc) a + b = b + a, ab = ba. a(b + c) = ab + ac

(a + b) + c = a + (b + c), (ab)c = a(bc) a + b = b + a, ab = ba. a(b + c) = ab + ac Σημειώσεις μαθήματος Μ1212 Γραμμική Άλγεβρα ΙΙ Χρήστος Κουρουνιώτης ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ 2014 Κεφάλαιο 1 Διανυσματικοί Χώροι Στο εισαγωγικό μάθημα Γραμμικής Άλγεβρας ξεκινήσαμε μελετώντας

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΠΙΝΑΚΩΝ. Ορισμός 1: Ένας πίνακας Α με m γραμμές και n στήλες,

ΘΕΩΡΙΑ ΠΙΝΑΚΩΝ. Ορισμός 1: Ένας πίνακας Α με m γραμμές και n στήλες, ΘΕΩΡΙΑ ΠΙΝΑΚΩΝ Ορισμός 1: Ένας πίνακας Α με m γραμμές και n στήλες, παριστάνεται με την εξής ορθογώνια διάταξη: α11 α12 α1n α21 α22 α2n A = αm1 αm2 αmn Ορισμός 2: Δύο πίνακες Α και Β είναι ίσοι, και γράφουμε

Διαβάστε περισσότερα

Copyright: Ψωμόπουλος Ευάγγελος, Eκδόσεις Zήτη, Γ έκδοση: Μάρτιος 2012, Θεσσαλονίκη

Copyright: Ψωμόπουλος Ευάγγελος, Eκδόσεις Zήτη, Γ έκδοση: Μάρτιος 2012, Θεσσαλονίκη Kάθε γνήσιο αντίτυπο φέρει την υπογραφή του συγγραφέα ISBN 978-960-456-314-2 Copyright: Ψωμόπουλος Ευάγγελος, Eκδόσεις Zήτη, Γ έκδοση: Μάρτιος 2012, Θεσσαλονίκη Tο παρόν έργο πνευματικής ιδιοκτησίας προστατεύεται

Διαβάστε περισσότερα

Κεφάλαιο 2 Πίνακες - Ορίζουσες

Κεφάλαιο 2 Πίνακες - Ορίζουσες Κεφάλαιο Πίνακες - Ορίζουσες Βασικοί ορισμοί και πίνακες Πίνακες Παραδείγματα: Ο πίνακας πωλήσεων ανά τρίμηνο μίας εταιρείας για τρία είδη που εμπορεύεται: ο Τρίμηνο ο Τρίμηνο 3 ο Τρίμηνο ο Τρίμηνο Είδος

Διαβάστε περισσότερα

Κεφάλαιο 9 1 Ιδιοτιμές και Ιδιοδιανύσματα

Κεφάλαιο 9 1 Ιδιοτιμές και Ιδιοδιανύσματα Σελίδα από 58 Κεφάλαιο 9 Ιδιοτιμές και Ιδιοδιανύσματα 9. Ορισμοί... 9. Ιδιότητες... 9. Θεώρημα Cayley-Hamlto...9 9.. Εφαρμογές του Θεωρήματος Cayley-Hamlto... 9.4 Ελάχιστο Πολυώνυμο...40 Ασκήσεις του Κεφαλαίου

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ (ΗΥ-119)

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ (ΗΥ-119) ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ ΙΩΑΝΝΗΣ Α. ΤΣΑΓΡΑΚΗΣ ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ (ΗΥ-119) ΜΕΡΟΣ 5: ΔΙΑΝΥΣΜΑΤΙΚΟΙ ΥΠΟΧΩΡΟΙ ΓΡΑΜΜΙΚΗ ΑΝΕΞΑΡΤΗΣΙΑ ΒΑΣΕΙΣ & ΔΙΑΣΤΑΣΗ Δ.Χ. ΣΗΜΕΙΩΣΕΙΣ

Διαβάστε περισσότερα

ΤΕΤΥ Εφαρμοσμένα Μαθηματικά 1. Τελεστές και πίνακες. 1. Τελεστές και πίνακες Γενικά. Τι είναι συνάρτηση? Απεικόνιση ενός αριθμού σε έναν άλλο.

ΤΕΤΥ Εφαρμοσμένα Μαθηματικά 1. Τελεστές και πίνακες. 1. Τελεστές και πίνακες Γενικά. Τι είναι συνάρτηση? Απεικόνιση ενός αριθμού σε έναν άλλο. ΤΕΤΥ Εφαρμοσμένα Μαθηματικά 1 Τελεστές και πίνακες 1. Τελεστές και πίνακες Γενικά Τι είναι συνάρτηση? Απεικόνιση ενός αριθμού σε έναν άλλο. Ανάλογα, τελεστής είναι η απεικόνιση ενός διανύσματος σε ένα

Διαβάστε περισσότερα

7 ΑΛΓΕΒΡΑ ΜΗΤΡΩΝ. 7.2 ΜΗΤΡΕΣ ΕΙΔΙΚΗΣ ΜΟΡΦΗΣ (Ι)

7 ΑΛΓΕΒΡΑ ΜΗΤΡΩΝ. 7.2 ΜΗΤΡΕΣ ΕΙΔΙΚΗΣ ΜΟΡΦΗΣ (Ι) 77 78 7 ΑΛΓΕΒΡΑ ΜΗΤΡΩΝ. 7. ΕΙΣΑΓΩΓΗ Η Άλγεβρα των μητρών οι πινάκων είναι ιδιαίτερα χρήσιμη για την επίλυση συστημάτων καθώς επίσης στις επιστήμες της οικονομετρίας και της στατιστικής. ΟΡΙΣΜΟΣ: Μήτρα

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ (ΗΥ-119)

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ (ΗΥ-119) ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ ΙΩΑΝΝΗΣ Α ΤΣΑΓΡΑΚΗΣ ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ (ΗΥ-119) ΜΕΡΟΣ 6: ΓΡΑΜΜΙΚΕΣ ΑΠΕΙΚΟΝΙΣΕΙΣ ΣΗΜΕΙΩΣΕΙΣ ΑΠΟ ΤΙΣ ΠΑΡΑΔΟΣΕΙΣ ΤΟΥ ΜΑΘΗΜΑΤΟΣ ΗΡΑΚΛΕΙΟ

Διαβάστε περισσότερα

Ποιες από τις παρακάτω προτάσεις είναι αληθείς; Δικαιολογήστε την απάντησή σας.

Ποιες από τις παρακάτω προτάσεις είναι αληθείς; Δικαιολογήστε την απάντησή σας. Ποιες από τις παρακάτω προτάσεις είναι αληθείς; Δικαιολογήστε την απάντησή σας. 1. Κάθε πολυώνυμο ανάγωγο επί του Z είναι ανάγωγο επί του Q. Σωστό. 2. Κάθε πολυώνυμο ανάγωγο επί του Q είναι ανάγωγο επί

Διαβάστε περισσότερα

, 1 0 9 1, 2. A a και το στοιχείο της i γραμμής και j

, 1 0 9 1, 2. A a και το στοιχείο της i γραμμής και j Κεφάλαιο Πίνακες Βασικοί ορισμοί και πίνακες Πίνακες Παραδείγματα: Ο πίνακας πωλήσεων ανά τρίμηνο μίας εταιρείας για τρία είδη που εμπορεύεται: ο Τρίμηνο ο Τρίμηνο ο Τρίμηνο ο Τρίμηνο Είδος Α 56 Είδος

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΣΗΜΕΙΩΣΕΙΣ ΓΡΑΜΜΙΚΗΣ ΑΛΓΕΒΡΑΣ. ρ Χρήστου Νικολαϊδη

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΣΗΜΕΙΩΣΕΙΣ ΓΡΑΜΜΙΚΗΣ ΑΛΓΕΒΡΑΣ. ρ Χρήστου Νικολαϊδη ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΣΗΜΕΙΩΣΕΙΣ ΓΡΑΜΜΙΚΗΣ ΑΛΓΕΒΡΑΣ ρ Χρήστου Νικολαϊδη Δεκέμβριος Περιεχόμενα Κεφάλαιο : σελ. Τι είναι ένας πίνακας. Απλές πράξεις πινάκων. Πολλαπλασιασμός πινάκων.

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΣΤΗΝ «ΠΛΗΡΟΦΟΡΙΚΗ» ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ : ΠΛΗ12 «ΜΑΘΗΜΑΤΙΚΑ Ι» Επαναληπτική Τελική Εξέταση 16 Ιουλίου 2003

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΣΤΗΝ «ΠΛΗΡΟΦΟΡΙΚΗ» ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ : ΠΛΗ12 «ΜΑΘΗΜΑΤΙΚΑ Ι» Επαναληπτική Τελική Εξέταση 16 Ιουλίου 2003 http://edueapgr/pli/pli/studetshtm Page of 6 ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΣΤΗΝ «ΠΛΗΡΟΦΟΡΙΚΗ» ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ : ΠΛΗ «ΜΑΘΗΜΑΤΙΚΑ Ι» Επαναληπτική Τελική Εξέταση 6 Ιουλίου Απαντήστε όλα

Διαβάστε περισσότερα

Γραµµικη Αλγεβρα Ι Επιλυση Επιλεγµενων Ασκησεων Φυλλαδιου 3

Γραµµικη Αλγεβρα Ι Επιλυση Επιλεγµενων Ασκησεων Φυλλαδιου 3 Γραµµικη Αλγεβρα Ι Επιλυση Επιλεγµενων Ασκησεων Φυλλαδιου ιδασκοντες: Ν Μαρµαρίδης - Α Μπεληγιάννης Βοηθος Ασκησεων: Χ Ψαρουδάκης Ιστοσελιδα Μαθηµατος : http://wwwmathuoigr/ abeligia/linearalgebrai/laihtml

Διαβάστε περισσότερα

Εκπαιδευτικός Οµιλος ΒΙΤΑΛΗ

Εκπαιδευτικός Οµιλος ΒΙΤΑΛΗ Πίνακες ρ. Κωνσταντίνος Κυρίτσης Μακράς Στοάς 7 & Εθνικής Αντιστάσεως Πειραιάς 185 31 12 Μαρτίου 2009 Περίληψη Οι παρούσες σηµειώσεις αποτελούν µια σύνοψη της ϑεωρίας και της άλγεβρας των πινάκων. Το ϕυλλάδιο

Διαβάστε περισσότερα

Βάση και Διάσταση Διανυσματικού Χώρου

Βάση και Διάσταση Διανυσματικού Χώρου Βάση και Διάσταση Διανυσματικού Χώρου Έστω V ένας διανυσματικός χώρος επί του σώματος F. Ορισμός : Ένα υποσύνολο S του διανυσματικού χώρου V θα λέμε ότι είναι βάση του V αν ισχύει Α) Η θήκη του S παράγει

Διαβάστε περισσότερα

Γραµµικη Αλγεβρα ΙΙ. Εκπαιδευτικο Υλικο Μαθηµατος

Γραµµικη Αλγεβρα ΙΙ. Εκπαιδευτικο Υλικο Μαθηµατος Γραµµικη Αλγεβρα ΙΙ Εκπαιδευτικο Υλικο Μαθηµατος Ακαδηµαϊκο Ετος 011-01 ιδασκοντες: Ν Μαρµαρίδης - Α Μπεληγιάννης Βοηθος Ασκησεων: Χ Ψαρουδάκης Ιστοσελιδα Μαθηµατος : http://wwwmathuoigr/ abeligia/linearalgebrai/laiihtml

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ 12)

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ 12) ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) ΕΡΓΑΣΙΑ η Ηµεροµηνία Αποστολής στον Φοιτητή: 5 Οκτωβρίου 006 Ηµεροµηνία παράδοσης της Εργασίας: 0 Νοεµβρίου 006.

Διαβάστε περισσότερα

Κ. Ι. ΠΑΠΑΧΡΗΣΤΟΥ. Τοµέας Φυσικών Επιστηµών Σχολή Ναυτικών οκίµων ΟΡΙΖΟΥΣΕΣ. Ιδιότητες & Εφαρµογές

Κ. Ι. ΠΑΠΑΧΡΗΣΤΟΥ. Τοµέας Φυσικών Επιστηµών Σχολή Ναυτικών οκίµων ΟΡΙΖΟΥΣΕΣ. Ιδιότητες & Εφαρµογές Κ Ι ΠΑΠΑΧΡΗΣΤΟΥ Τοµέας Φυσικών Επιστηµών Σχολή Ναυτικών οκίµων ΟΡΙΖΟΥΣΕΣ Ιδιότητες & Εφαρµογές ΠΕΙΡΑΙΑΣ 2013 ΟΡΙΖΟΥΣΕΣ Έστω 2 2 πίνακας: a b A= c d Όπως γνωρίζουµε, η ορίζουσα του Α είναι ο αριθµός a

Διαβάστε περισσότερα

Μεταθέσεις και πίνακες μεταθέσεων

Μεταθέσεις και πίνακες μεταθέσεων Παράρτημα Α Μεταθέσεις και πίνακες μεταθέσεων Το παρόν παράρτημα βασίζεται στις σελίδες 671 8 του βιβλίου: Γ. Χ. Ψαλτάκης, Κβαντικά Συστήματα Πολλών Σωματιδίων (Πανεπιστημιακές Εκδόσεις Κρήτης, Ηράκλειο,

Διαβάστε περισσότερα

I. ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ. math-gr

I. ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ. math-gr I ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ i e ΜΕΡΟΣ Ι ΟΡΙΣΜΟΣ - ΒΑΣΙΚΕΣ ΠΡΑΞΕΙΣ Α Ορισμός Ο ορισμός του συνόλου των Μιγαδικών αριθμών (C) βασίζεται στις εξής παραδοχές: Υπάρχει ένας αριθμός i για τον οποίο ισχύει i Το σύνολο

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 1 ο : ΔΙΑΝΥΣΜΑΤΑ 1 ΜΑΘΗΜΑ 1 ο +2 ο ΕΝΝΟΙΑ ΔΙΑΝΥΣΜΑΤΟΣ Διάνυσμα ορίζεται ένα προσανατολισμένο ευθύγραμμο τμήμα, δηλαδή ένα ευθύγραμμο τμήμα

Διαβάστε περισσότερα

n. Έστω αποτελείται από όλους τους πίνακες που αντιμετατίθενται με ένα συγκεκριμένο μη μηδενικό nxn πίνακα Τ:

n. Έστω αποτελείται από όλους τους πίνακες που αντιμετατίθενται με ένα συγκεκριμένο μη μηδενικό nxn πίνακα Τ: Η ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ καθώς είναι από τα σημαντικότερα κομμάτια της Άλγεβρας με τις περισσότερες εφαρμογές ΔΕΝ πρέπει να αποστηθίζεται και κυρίως ΔΕΝ πρέπει να γίνεται αντιπαθητική. Για τη σωστή εκμάθηση

Διαβάστε περισσότερα

Γραµµικη Αλγεβρα Ι Επιλυση Επιλεγµενων Ασκησεων Φυλλαδιου 4

Γραµµικη Αλγεβρα Ι Επιλυση Επιλεγµενων Ασκησεων Φυλλαδιου 4 Γραµµικη Αλγεβρα Ι Επιλυση Επιλεγµενων Ασκησεων Φυλλαδιου 4 ιδασκοντες: Ν Μαρµαρίδης - Α Μπεληγιάννης Βοηθος Ασκησεων: Χ Ψαρουδάκης Ιστοσελιδα Μαθηµατος : http://wwwmathuoigr/ abeligia/linearalgebrai/laihtml

Διαβάστε περισσότερα

3. Μια πρώτη προσέγγιση στην επίλυση των κανονικών μορφών Δ. Ε.

3. Μια πρώτη προσέγγιση στην επίλυση των κανονικών μορφών Δ. Ε. 3. Μια πρώτη προσέγγιση στην επίλυση των κανονικών μορφών Δ. Ε. Στην εισαγωγή δείξαμε ότι η διαφορική εξίσωση του γραμμικού, χρονικά αναλλοίωτου συστήματος μιας εισόδου μιας εξόδου με διαφορική εξίσωση

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ «ΠΛΗΡΟΦΟΡΙΚΗ» ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) TEΛΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 4 Ιουνίου 7 Από τα κάτωθι Θέµατα καλείστε να λύσετε το ο που περιλαµβάνει ερωτήµατα από όλη την ύλη

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΚΑΤΑΝΟΗΣΗΣ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ

ΕΡΩΤΗΣΕΙΣ ΚΑΤΑΝΟΗΣΗΣ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ΕΡΩΤΗΣΕΙΣ ΚΑΤΑΝΟΗΣΗΣ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ Ε.1 I. 1. α 2 = 9 α = 3 ψ p: α 2 = 9, q: α = 3 Σύνολο αλήθειας της p: Α = {-3,3}, Σύνολο αλήθειας της q: B = {3} A B 2. α 2 = α α = 1 ψ p: α 2 = α, q: α = 1 Σύνολο

Διαβάστε περισσότερα

Πίνακες >>A = [ 1,6; 7, 11]; Ή τον πίνακα >> B = [2,0,1; 1,7,4; 3,0,1]; Πράξεις πινάκων

Πίνακες >>A = [ 1,6; 7, 11]; Ή τον πίνακα >> B = [2,0,1; 1,7,4; 3,0,1]; Πράξεις πινάκων Πίνακες Ένας πίνακας είναι μια δισδιάστατη λίστα από αριθμούς. Για να δημιουργήσουμε ένα πίνακα στο Matlab εισάγουμε κάθε γραμμή σαν μια ακολουθία αριθμών που ξεχωρίζουν με κόμμα (,) ή κενό (space) και

Διαβάστε περισσότερα

Στοχαστικά Σήµατα και Εφαρµογές

Στοχαστικά Σήµατα και Εφαρµογές Στοχαστικά Σήµατα & Εφαρµογές Ανασκόπηση Στοιχείων Γραµµικής Άλγεβρας ιδάσκων: Ν. Παπανδρέου (Π.. 407/80) Πανεπιστήµιο Πατρών ΤµήµαΜηχανικώνΗ/Υ και Πληροφορικής ιανύσµατα Ορίζουµετοδιάνυσµα µε Ν στοιχεία

Διαβάστε περισσότερα

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΤΜΗΜΑ. Μαθηματικά 1. Σταύρος Παπαϊωάννου

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΤΜΗΜΑ. Μαθηματικά 1. Σταύρος Παπαϊωάννου ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΤΜΗΜΑ Μαθηματικά Σταύρος Παπαϊωάννου Ιούνιος 5 Τίτλος Μαθήματος Περιεχόμενα Χρηματοδότηση.. Σφάλμα! Δεν έχει οριστεί σελιδοδείκτης. Σκοποί Μαθήματος

Διαβάστε περισσότερα

ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΕΠΙΜΕΛΕΙΑ : ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ

ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΕΠΙΜΕΛΕΙΑ : ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΕΠΙΜΕΛΕΙΑ : ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ ΕΥΡΙΠΙΔΟΥ 80 ΝΙΚΑΙΑ ΝΕΑΠΟΛΗ ΤΗΛΕΦΩΝΟ 0965897 ΔΙΕΥΘΥΝΣΗ ΣΠΟΥΔΩΝ ΒΡΟΥΤΣΗ ΕΥΑΓΓΕΛΙΑ ΜΠΟΥΡΝΟΥΤΣΟΥ ΚΩΝ/ΝΑ ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ Η έννοια του μιγαδικού

Διαβάστε περισσότερα

x 2 = x 2 1 + x 2 2. x 2 = u 2 + x 2 3 Χρησιµοποιώντας το συµβολισµό του ανάστροφου, αυτό γράφεται x 2 = x T x. = x T x.

x 2 = x 2 1 + x 2 2. x 2 = u 2 + x 2 3 Χρησιµοποιώντας το συµβολισµό του ανάστροφου, αυτό γράφεται x 2 = x T x. = x T x. Κεφάλαιο 4 Μήκη και ορθές γωνίες Μήκος διανύσµατος Στο επίπεδο, R 2, ϐρίσκουµε το µήκος ενός διανύσµατος x = (x 1, x 2 ) χρησιµοποιώντας το Πυθαγόρειο ϑεώρηµα : x 2 = x 2 1 + x 2 2. Στο χώρο R 3, εφαρµόζουµε

Διαβάστε περισσότερα

Γενικό Ενιαίο Λύκειο Μαθ. Κατ. Τάξη B

Γενικό Ενιαίο Λύκειο Μαθ. Κατ. Τάξη B 151 Θέματα εξετάσεων περιόδου Μαΐου - Ιουνίου στα Μαθηματικά Κατεύθυνσης Τάξη - B Λυκείου 15 Α. Αν α, β, γ ακέραιοι ώστε α/β και α/γ, να δείξετε ότι α/(β + γ). Μονάδες 13 Β. α. Δώστε τον ορισμό της παραβολής.

Διαβάστε περισσότερα

Πεπερασμένες Διαφορές.

Πεπερασμένες Διαφορές. Κεφάλαιο 1 Πεπερασμένες Διαφορές. 1.1 Προσέγγιση παραγώγων. 1.1.1 Πρώτη παράγωγος. Από τον ορισμό της παραγώγου για συναρτήσεις μιας μεταβλητής γνωρίζουμε ότι η παράγωγος μιας συνάρτησης f στο σημείο x

Διαβάστε περισσότερα

1,y 1) είναι η C : xx yy 0.

1,y 1) είναι η C : xx yy 0. ΘΕΜΑ Α ΔΕΙΓΜΑΤΑ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΙΟΥ-ΙΟΥΝΙΟΥ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ο δείγμα Α. Αν α, β δύο διανύσματα του επιπέδου με συντελεστές διεύθυνσης λ και λ αντίστοιχα, να αποδείξετε ότι α β λ λ.

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ Οι πραγματικοί αριθμοί αποτελούνται από τους ρητούς και τους άρρητους αριθμούς, τους φυσικούς και τους ακέραιους αριθμούς. Δηλαδή είναι το μεγαλύτερο σύνολο αριθμών που μπορούμε

Διαβάστε περισσότερα

Μαθηματικά Γ Γυμνασίου

Μαθηματικά Γ Γυμνασίου Α λ γ ε β ρ ι κ έ ς π α ρ α σ τ ά σ ε ι ς 1.1 Πράξεις με πραγματικούς αριθμούς (επαναλήψεις συμπληρώσεις) A. Οι πραγματικοί αριθμοί και οι πράξεις τους Διδακτικοί στόχοι Θυμάμαι ποιοι αριθμοί λέγονται

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΕΞΙΣΩΣΕΩΝ

ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΕΞΙΣΩΣΕΩΝ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΕΞΙΣΩΣΕΩΝ Θα ξεκινήσουµε την παρουσίαση των γραµµικών συστηµάτων µε ένα απλό παράδειγµα από τη Γεωµετρία, το οποίο ϑα µας ϐοηθήσει στην κατανόηση των συστηµάτων αυτών και των συνθηκών

Διαβάστε περισσότερα

Τα παρακάτω σύνολα θα τα θεωρήσουμε γενικά γνωστά, αν και θα δούμε πολλές από τις ιδιότητές τους: N Z Q R C

Τα παρακάτω σύνολα θα τα θεωρήσουμε γενικά γνωστά, αν και θα δούμε πολλές από τις ιδιότητές τους: N Z Q R C Κεφάλαιο 1 Εισαγωγικές έννοιες Στο κεφάλαιο αυτό θα αναφερθούμε σε ορισμένες έννοιες, οι οποίες ίσως δεν έχουν άμεση σχέση με τους διανυσματικούς χώρους, όμως θα χρησιμοποιηθούν αρκετά κατά τη μελέτη τόσο

Διαβάστε περισσότερα

Θέματα από τους μιγαδικούς

Θέματα από τους μιγαδικούς 6/0/0 Θέματα από τους μιγαδικούς Μπάμπης Στεργίου Σεπτέμβριος 0 Θέμα ο ***Οι λύσεις έγιναν από τον Αλέξη Μιχαλακίδη Δίνονται τα σύνολα : A C/ και α) Να εκφράσετε γεωμετρικά το σύνολο Α BwC/w,A β) Να βρείτε

Διαβάστε περισσότερα

Κεφάλαιο 3 ΠΑΡΑΓΩΓΟΣ. 3.1 Η έννοια της παραγώγου. y = f(x) f(x 0 ), = f(x 0 + x) f(x 0 )

Κεφάλαιο 3 ΠΑΡΑΓΩΓΟΣ. 3.1 Η έννοια της παραγώγου. y = f(x) f(x 0 ), = f(x 0 + x) f(x 0 ) Κεφάλαιο 3 ΠΑΡΑΓΩΓΟΣ 3.1 Η έννοια της παραγώγου Εστω y = f(x) µία συνάρτηση, που συνδέει τις µεταβλητές ποσότητες x και y. Ενα ερώτηµα που µπορεί να προκύψει καθώς µελετούµε τις δύο αυτές ποσοτήτες είναι

Διαβάστε περισσότερα

Επίκουρος Καθηγητής Παν/µίου Ιωαννίνων. Μαθηµατικά Ι Ακαδ. Έτος 2009-10 1/58

Επίκουρος Καθηγητής Παν/µίου Ιωαννίνων. Μαθηµατικά Ι Ακαδ. Έτος 2009-10 1/58 Φρ. Κουτελιέρης Επίκουρος Καθηγητής Παν/µίου Ιωαννίνων Τηλ. 26410741964196 E-mail fkoutel@cc.uoi.gr ΜΑΘΗΜΑΤΙΚΑ Ι ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Μαθηµατικά Ι Ακαδ. Έτος 2009-10 1/58 Γραµµική άλγεβρα...... είναι τοµέας

Διαβάστε περισσότερα

Γραµµικη Αλγεβρα Ι Επιλυση Επιλεγµενων Ασκησεων Φυλλαδιου 7

Γραµµικη Αλγεβρα Ι Επιλυση Επιλεγµενων Ασκησεων Φυλλαδιου 7 Γραµµικη Αλγεβρα Ι Επιλυση Επιλεγµενων Ασκησεων Φυλλαδιου 7 ιδασκοντες: Ν. Μαρµαρίδης - Α. Μπεληγιάννης Βοηθος Ασκησεων: Χ. Ψαρουδάκης Ιστοσελιδα Μαθηµατος : http://www.math.uoi.gr/ abeligia/linearalgebrai/lai.html

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 1 Ο ΔΙΑΝΥΣΜΑΤΑ

ΚΕΦΑΛΑΙΟ 1 Ο ΔΙΑΝΥΣΜΑΤΑ ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΤΗΣ ΤΡΑΠΕΖΑΣ ΘΕΜΑΤΩΝ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΟΥ Β ΛΥΚΕΙΟΥ ΣΧΟΛΙΚΟ ΕΤΟΣ 014-015 ΚΕΦΑΛΑΙΟ 1 Ο ΔΙΑΝΥΣΜΑΤΑ 1. ΘΕΜΑ ΚΩΔΙΚΟΣ_18556 Δίνονται τα διανύσματα α και β με ^, και,. α Να

Διαβάστε περισσότερα

Απόδειξη. Η ιδιότητα(vi) του ορισμού δεν ισχύει στην πράξη αυτή. Πράγματι, έχουμε. 1 (x, y, z) =(1 x, 1 y, 2 1 z) =(x, y, 2z)

Απόδειξη. Η ιδιότητα(vi) του ορισμού δεν ισχύει στην πράξη αυτή. Πράγματι, έχουμε. 1 (x, y, z) =(1 x, 1 y, 2 1 z) =(x, y, 2z) 1 ιανυσματικοί χώροι Άσκηση 1.1 Στο σύνολο R 3 όλων των διατεταγμένων τριάδων διατηρούμε την πρόσθεση, που ορίσαμε στο αντίστοιχο παράδειγμα, και ορίζουμε εξωτερικό πολλαπλασιασμό με τη σχέση λ(a 1,a 2,a

Διαβάστε περισσότερα

Έντυπο Υποβολής Αξιολόγησης Γ.Ε.

Έντυπο Υποβολής Αξιολόγησης Γ.Ε. Έντυπο Υποβολής Αξιολόγησης Γ.Ε. O φοιτητής συμπληρώνει την ενότητα «Υποβολή Εργασίας» και αποστέλλει το έντυπο σε δύο μη συρραμμένα αντίγραφα (ή ηλεκτρονικά) στον Καθηγητή-Σύμβουλο. Ο Καθηγητής-Σύμβουλος

Διαβάστε περισσότερα

1. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν γράφοντας την ένδειξη Σωστό ή Λάθος και να δικαιολογήσετε την απάντησή σας.

1. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν γράφοντας την ένδειξη Σωστό ή Λάθος και να δικαιολογήσετε την απάντησή σας. Κεφάλαιο Πραγματικοί αριθμοί. Οι πράξεις και οι ιδιότητές τους Κατανόηση εννοιών - Θεωρία. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν γράφοντας την ένδειξη Σωστό ή Λάθος και να δικαιολογήσετε την απάντησή

Διαβάστε περισσότερα

Γεώργιος Δ Ακρίβης Τμήμα Πληροφορικής Πανεπιστήμιο Ιωαννίνων ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ (πανεπιστημιακές παραδόσεις) ΙΩΑΝΝΙΝΑ, 2003 i Πρόλογος Η Γραμμική Άλγεβρα αποτελεί, μαζί με την Ανάλυση, το θεμέλιο των μαθηματικών

Διαβάστε περισσότερα

Ερωτήσεις θεωρίας για τα Μαθηματικά Γ γυμνασίου

Ερωτήσεις θεωρίας για τα Μαθηματικά Γ γυμνασίου Ερωτήσεις θεωρίας για τα Μαθηματικά Γ γυμνασίου Άλγεβρα 1.1 Β : Δυνάμεις πραγματικών αριθμών. 1. Πως ορίζεται η δύναμη ενός πραγματικού αριθμού ; Η δύναμη με βάση έναν πραγματικό αριθμό α και εκθέτη ένα

Διαβάστε περισσότερα

Ακρότατα πραγματικών συναρτήσεων

Ακρότατα πραγματικών συναρτήσεων Ακρότατα πραγματικών συναρτήσεων Ορισμός Έστω U R, U και f : U R R συνάρτηση τότε: )Το λέγεται τοπικό ελάχιστο της f αν υπάρχει περιοχή V του ώστε f f για κάθε V U Το λέγεται τοπικό μέγιστο της f αν υπάρχει

Διαβάστε περισσότερα

Να αιτιολογήσετε την απάντησή σας µε τη βοήθεια και του ερωτήµατος α). ii) Να αποδείξετε ότι ισχύει η ανισότητα 1+α < 1+ α. α+α

Να αιτιολογήσετε την απάντησή σας µε τη βοήθεια και του ερωτήµατος α). ii) Να αποδείξετε ότι ισχύει η ανισότητα 1+α < 1+ α. α+α ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ, ΑΝΙΣΩΣΕΙΣ 1. α) Να λύσετε τις ανισώσεις: x 5 3 και x x 1 0. β) Να βρείτε τις κοινές λύσεις των ανισώσεων του ερωτήµατος (α). x 1. ίνονται οι ανισώσεις: 3x 1

Διαβάστε περισσότερα

ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. 118 ερωτήσεις θεωρίας με απάντηση 324 416 ασκήσεις για λύση. 20 συνδυαστικά θέματα εξετάσεων

ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. 118 ερωτήσεις θεωρίας με απάντηση 324 416 ασκήσεις για λύση. 20 συνδυαστικά θέματα εξετάσεων ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ 118 ερωτήσεις θεωρίας με απάντηση 34 416 ασκήσεις για λύση ερωτήσεις κατανόησης λυμένα παραδείγματα 0 συνδυαστικά θέματα εξετάσεων Π Ε Ρ Ι Ε Χ Ο Μ Ε Ν Α Εισαγωγική ενότητα Το λεξιλόγιο

Διαβάστε περισσότερα

β) Αν κάποιος αριθµός α επαληθεύει την παραπάνω ανίσωση, να αποδείξετε ότι 1 1 1 9 < α

β) Αν κάποιος αριθµός α επαληθεύει την παραπάνω ανίσωση, να αποδείξετε ότι 1 1 1 9 < α ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ, ΑΝΙΣΩΣΕΙΣ 1. α) Να λύσετε τις ανισώσεις: x 5 3 και x x 1 0. β) Να βρείτε τις κοινές λύσεις των ανισώσεων του ερωτήµατος (α). x 1. ίνονται οι ανισώσεις: 3x 1

Διαβάστε περισσότερα

Περιεχόμενα. Κεφάλαιο 3 Οι ιδιότητες των αριθμών... 37 3.1 Αριθμητικά σύνολα... 37 3.2 Ιδιότητες... 37 3.3 Περισσότερες ιδιότητες...

Περιεχόμενα. Κεφάλαιο 3 Οι ιδιότητες των αριθμών... 37 3.1 Αριθμητικά σύνολα... 37 3.2 Ιδιότητες... 37 3.3 Περισσότερες ιδιότητες... Περιεχόμενα Πρόλογος... 5 Κεφάλαιο Βασικές αριθμητικές πράξεις... 5. Τέσσερις πράξεις... 5. Σύστημα πραγματικών αριθμών... 5. Γραφική αναπαράσταση πραγματικών αριθμών... 6.4 Οι ιδιότητες της πρόσθεσης

Διαβάστε περισσότερα

1 ΔΙΑΓΩΝΙΣΜΑΤΑ ΠΡΟΑΓΩΓΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΛΥΚΕΙΩΝ ΤΗΣ ΡΟΔΟΥ ΤΗΣ Α ΤΑΞΗΣ ΣΤΗΝ ΑΛΓΕΒΡΑ ΔΙΑΓΩΝΙΣΜΑ 1 Ο

1 ΔΙΑΓΩΝΙΣΜΑΤΑ ΠΡΟΑΓΩΓΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΛΥΚΕΙΩΝ ΤΗΣ ΡΟΔΟΥ ΤΗΣ Α ΤΑΞΗΣ ΣΤΗΝ ΑΛΓΕΒΡΑ ΔΙΑΓΩΝΙΣΜΑ 1 Ο 1 ΔΙΑΓΩΝΙΣΜΑΤΑ ΠΡΟΑΓΩΓΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΛΥΚΕΙΩΝ ΤΗΣ ΡΟΔΟΥ ΤΗΣ Α ΤΑΞΗΣ ΣΤΗΝ ΑΛΓΕΒΡΑ ΔΙΑΓΩΝΙΣΜΑ 1 Ο ΘΕΜΑ 1 ο α) Αν χ 1, χ ρίζες της εξίσωσης αχ +βχ+γ=0, 0 να δείξετε ότι S 1 και P 1 Μον. 10 β) Έστω η συνάρτηση

Διαβάστε περισσότερα

1 Η εναλλάσσουσα ομάδα

1 Η εναλλάσσουσα ομάδα Η εναλλάσσουσα ομάδα Η εναλλάσσουσα ομάδα Όπως είδαμε η συνάρτηση g : S { } είναι ένας επιμορφισμός ομάδων. Ο πυρήνας Ke g {σ S / g σ } του επιμορφισμού συμβολίζεται με A περιέχει όλες τις άρτιες μεταθέσεις

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου

ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου Κεφάλαιο ο Αλγεβρικές Παραστάσεις ΛΕΜΟΝΙΑ ΜΠΟΥΤΣΚΟΥ Γυμνάσιο Αμυνταίου ΜΑΘΗΜΑ Α. Πράξεις με πραγματικούς αριθμούς ΑΣΚΗΣΕΙΣ ) ) Να συμπληρώσετε τα κενά ώστε στην κατακόρυφη στήλη

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ 0 ΘΕΩΡΙΑ ΜΕΘΟΔΟΙ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ ΚΕΦΑΛΑΙΟ Βαγγέλης Α Νικολακάκης Μαθηματικός . ΠΡΑΞΕΙΣ ΠΡΑΓΜΑΤΙΚΩΝ ΒΑΣΙΚΗ ΘΕΩΡΙΑ. ΠΡΟΣΘΕΣΗ ΟΜΟΣΗΜΩΝ- ΕΤΕΡΟΣΗΜΩΝ Σε ομόσημους κάνω πρόσθεση και βάζω το κοινό

Διαβάστε περισσότερα

Αρχιμήδης Μεγάλοι 1996-1997. 1. Έστω μια ακολουθία θετικών αριθμών για την οποία: i) α ν 2 α ν. για κάθε ν φυσικό διαφορετικό του 0.

Αρχιμήδης Μεγάλοι 1996-1997. 1. Έστω μια ακολουθία θετικών αριθμών για την οποία: i) α ν 2 α ν. για κάθε ν φυσικό διαφορετικό του 0. Αρχιμήδης Μεγάλοι 1996-1997 1. Έστω μια ακολουθία θετικών αριθμών για την οποία: i) α ν 2 α ν = 1 4 για κάθε ν φυσικό διαφορετικό του 0. ii) α n 1 α n Να αποδείξετε: α ν 1 =1 για κάθε n - ν 1 α ν α) ότι

Διαβάστε περισσότερα

II. Συναρτήσεις. math-gr

II. Συναρτήσεις. math-gr II Συναρτήσεις Παντελής Μπουμπούλης, MSc, PhD σελ blogspotcom, bouboulismyschgr ΜΕΡΟΣ 1 ΣΥΝΑΡΤΗΣΕΙΣ Α Βασικές Έννοιες Ορισμός: Έστω Α ένα υποσύνολο του συνόλου των πραγματικών αριθμών R Ονομάζουμε πραγματική

Διαβάστε περισσότερα

ProapaitoÔmenec gn seic.

ProapaitoÔmenec gn seic. ProapaitoÔmeec g seic. Α. Το σύνολο των πραγματικών αριθμών R και οι αλγεβρικές ιδιότητες των τεσσάρων πράξεων στο R. Το σύνολο των φυσικών αριθμών N = {1,, 3,... }. Προσέξτε: μερικά βιβλία (τα βιβλία

Διαβάστε περισσότερα

Ανάλυση Σ.Α.Ε στο χώρο κατάστασης

Ανάλυση Σ.Α.Ε στο χώρο κατάστασης ΚΕΣ : Αυτόµατος Έλεγχος ΚΕΣ Αυτόµατος Έλεγχος Ανάλυση Σ.Α.Ε στο χώρο 6 Nicola Tapaouli Λύση εξισώσεων ΚΕΣ : Αυτόµατος Έλεγχος Βιβλιογραφία Ενότητας Παρασκευόπουλος [4]: Κεφάλαιο 5: Ενότητες 5.-5. Παρασκευόπουλος

Διαβάστε περισσότερα

Κεφάλαιο 8 1. Γραµµικές Απεικονίσεις

Κεφάλαιο 8 1. Γραµµικές Απεικονίσεις Σελίδα 1 από 9 Κεφάλαιο 8 1 Γραµµικές Απεικονίσεις Τα αντικείµενα µελέτης της γραµµικής άλγεβρας είναι σύνολα διανυσµάτων που χαρακτηρίζονται µε την αλγεβρική δοµή των διανυσµατικών χώρων. Όπως λοιπόν

Διαβάστε περισσότερα

Α Λυκείου Άλγεβρα Τράπεζα Θεμάτων Το Δεύτερο Θέμα

Α Λυκείου Άλγεβρα Τράπεζα Θεμάτων Το Δεύτερο Θέμα Α Λυκείου Άλγεβρα Τράπεζα Θεμάτων Το Δεύτερο Θέμα Θεωρούμε την ακολουθία (α ν ) των θετικών περιττών αριθμών: 1, 3, 5, 7, α) Να αιτιολογήσετε γιατί η (α ν ) είναι αριθμητική πρόοδος και να βρείτε τον εκατοστό

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2012. Ηµεροµηνία: Κυριακή 1 Απριλίου 2012 ΕΚΦΩΝΗΣΕΙΣ

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2012. Ηµεροµηνία: Κυριακή 1 Απριλίου 2012 ΕΚΦΩΝΗΣΕΙΣ ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 0 Ε_3.ΜλΑ(ε) ΤΑΞΗ: ΜΑΘΗΜΑ: ΘΕΜΑ Α A.. Α.. Α.3. ΘΕΜΑ Β Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΑΛΓΕΒΡΑ Ηµεροµηνία: Κυριακή Απριλίου

Διαβάστε περισσότερα

Κεφάλαιο Χώρος, Διανύσματα, Διανυσματικές εξισώσεις, Συστήματα Συντεταγμένων.

Κεφάλαιο Χώρος, Διανύσματα, Διανυσματικές εξισώσεις, Συστήματα Συντεταγμένων. Χώρος Διανύσματα Κεφάλαιο Χώρος, Διανύσματα, Διανυσματικές εξισώσεις, Συστήματα Συντεταγμένων. Καρτεσιανές συντεταγμένες και διανύσματα στο χώρο. Στο σύστημα καρτεσιανών (ή ορθογώνιων) συντεταγμένων κάθε

Διαβάστε περισσότερα

ΔΙΑΝΥΣΜΑΤΑ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΑΡΙΘΜΟΥ ΜΕ ΔΙΑΝΥΣΜΑ. ΘΕΜΑ 2ο

ΔΙΑΝΥΣΜΑΤΑ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΑΡΙΘΜΟΥ ΜΕ ΔΙΑΝΥΣΜΑ. ΘΕΜΑ 2ο Β ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΔΙΑΝΥΣΜΑΤΑ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΑΡΙΘΜΟΥ ΜΕ ΔΙΑΝΥΣΜΑ ΘΕΜΑ ο ΘΕΜΑ 8603 Δίνεται τρίγωνο και σημεία και του επιπέδου τέτοια, ώστε 5 και 5. α) Να γράψετε το διάνυσμα ως γραμμικό

Διαβάστε περισσότερα

Τι είναι βαθμωτό μέγεθος? Ένα μέγεθος που περιγράφεται μόνο με έναν αριθμό (π.χ. πίεση)

Τι είναι βαθμωτό μέγεθος? Ένα μέγεθος που περιγράφεται μόνο με έναν αριθμό (π.χ. πίεση) TETY Εφαρμοσμένα Μαθηματικά Ενότητα ΙΙ: Γραμμική Άλγεβρα Ύλη: Διανυσματικοί χώροι και διανύσματα, μετασχηματισμοί διανυσμάτων, τελεστές και πίνακες, ιδιοδιανύσματα και ιδιοτιμές πινάκων, επίλυση γραμμικών

Διαβάστε περισσότερα

Είναι επίσης βολικό σε κάποιες περιπτώσεις να θεωρήσουµε το σύνολο διανυσµάτων x(n), που περιέχουν τις τιµές x(n), x(n-1),,x(n-n+1) ενός σήµατος

Είναι επίσης βολικό σε κάποιες περιπτώσεις να θεωρήσουµε το σύνολο διανυσµάτων x(n), που περιέχουν τις τιµές x(n), x(n-1),,x(n-n+1) ενός σήµατος Ανασκόπηση Γραµµική Άλγεβρα Σε πολλά µαθηµατικά προβλήµατα που θα συναντήσουµε στην φασµατική εκτίµηση και γενικά στην εκτίµηση παραµέτρων θα είναι βολικό να χρησιµοποιούµε διανύσµατα και πίνακες για την

Διαβάστε περισσότερα

Πρόσθεση, αφαίρεση και πολλαπλασιασμός φυσικών αριθμών

Πρόσθεση, αφαίρεση και πολλαπλασιασμός φυσικών αριθμών Πρόσθεση, αφαίρεση και πολλαπλασιασμός φυσικών αριθμών TINΑ ΒΡΕΝΤΖΟΥ www.ma8eno.gr www.ma8eno.gr Σελίδα 1 Πρόσθεση, αφαίρεση και πολλαπλασιασμός φυσικών αριθμών Στους πραγματικούς αριθμούς ορίστηκαν οι

Διαβάστε περισσότερα

10 ιαγωνιοποίηση Σελίδα 1 από 62. Κεφάλαιο 10 1 ιαγωνιοποίηση

10 ιαγωνιοποίηση Σελίδα 1 από 62. Κεφάλαιο 10 1 ιαγωνιοποίηση ιαγωνιοποίηση Σελίδα από 6 Κεφάλαιο ιαγωνιοποίηση Κεφάλαιο... ιαγωνιοποίηση.... ιαγωνιοποίηση.... Εφαρµογές της διαγωνιοποίησης πινάκων....4.. υνάµεις πινάκων...4.. Εξισώσεις διαφορών...5.. ιαφορικές εξισώσεις......4

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 1 ο ΔΙΑΝΥΣΜΑΤΑ

ΚΕΦΑΛΑΙΟ 1 ο ΔΙΑΝΥΣΜΑΤΑ taexeiolag ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΑΣΚΗΣΗ 1 uuuu uuuu uuuu Αν OA OB 3O 0 και ΚΕΦΑΛΑΙΟ 1 ο ΔΙΑΝΥΣΜΑΤΑ uuuu uuuu uuuu OA OB 1, O α Να δείξετε ότι τα σημεία Α, Β, Γ είναι συνευθειακά

Διαβάστε περισσότερα

Θεωρία Υπολογισμού και Πολυπλοκότητα

Θεωρία Υπολογισμού και Πολυπλοκότητα Θεωρία Υπολογισμού και Πολυπλοκότητα Κεφάλαιο 1. Μαθηματικό Υπόβαθρο 23, 26 Ιανουαρίου 2007 Δρ. Παπαδοπούλου Βίκη 1 1.1. Σύνολα Ορισμός : Σύνολο μια συλλογή από αντικείμενα Στοιχεία: Μέλη συνόλου Τα στοιχεία

Διαβάστε περισσότερα

ΙΑΝΥΣΜΑΤΑ ΘΕΩΡΙΑ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ. Τι ονοµάζουµε διάνυσµα; αλφάβητου επιγραµµισµένα µε βέλος. για παράδειγµα, Τι ονοµάζουµε µέτρο διανύσµατος;

ΙΑΝΥΣΜΑΤΑ ΘΕΩΡΙΑ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ. Τι ονοµάζουµε διάνυσµα; αλφάβητου επιγραµµισµένα µε βέλος. για παράδειγµα, Τι ονοµάζουµε µέτρο διανύσµατος; ΙΝΥΣΜΤ ΘΕΩΡΙ ΘΕΜΤ ΘΕΩΡΙΣ Τι ονοµάζουµε διάνυσµα; AB A (αρχή) B (πέρας) Στη Γεωµετρία το διάνυσµα ορίζεται ως ένα προσανατολισµένο ευθύγραµµο τµήµα, δηλαδή ως ένα ευθύγραµµο τµήµα του οποίου τα άκρα θεωρούνται

Διαβάστε περισσότερα

Μαθηματικά Γ Γυμνασίου. Επαναληπτικές Ασκήσεις στο Κεφάλαιο 1: 1.2-1.5 Μονώνυμα - Πολυώνυμα - Ταυτότητες

Μαθηματικά Γ Γυμνασίου. Επαναληπτικές Ασκήσεις στο Κεφάλαιο 1: 1.2-1.5 Μονώνυμα - Πολυώνυμα - Ταυτότητες Μαθηματικά Γ Γυμνασίου Επαναληπτικές Ασκήσεις στο Κεφάλαιο 1: 1.2-1.5 Μονώνυμα - Πολυώνυμα - Ταυτότητες Αλγεβρικές παραστάσεις - Μονώνυμα Πράξεις με μονώνυμα Πολυώνυμα Πρόσθεση και Αφαίρεση πολυωνύμων

Διαβάστε περισσότερα

1.3 Συστήματα γραμμικών εξισώσεων με ιδιομορφίες

1.3 Συστήματα γραμμικών εξισώσεων με ιδιομορφίες Κεφάλαιο Συστήματα γραμμικών εξισώσεων Παραδείγματα από εφαρμογές Παράδειγμα : Σε ένα δίκτυο (αγωγών ή σωλήνων ή δρόμων) ισχύει ο κανόνας των κόμβων όπου το άθροισμα των εισερχόμενων ροών θα πρέπει να

Διαβάστε περισσότερα

Κεφάλαιο 5 Οι χώροι. Περιεχόµενα 5.1 Ο Χώρος. 5.3 Ο Χώρος C Βάσεις Το Σύνηθες Εσωτερικό Γινόµενο Ασκήσεις

Κεφάλαιο 5 Οι χώροι. Περιεχόµενα 5.1 Ο Χώρος. 5.3 Ο Χώρος C Βάσεις Το Σύνηθες Εσωτερικό Γινόµενο Ασκήσεις Σελίδα 1 από 6 Κεφάλαιο 5 Οι χώροι R και C Περιεχόµενα 5.1 Ο Χώρος R Πράξεις Βάσεις Επεξεργασµένα Παραδείγµατα Ασκήσεις 5. Το Σύνηθες Εσωτερικό Γινόµενο στο Ορισµοί Ιδιότητες Επεξεργασµένα Παραδείγµατα

Διαβάστε περισσότερα

2.3 ΜΕΤΡΟ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ

2.3 ΜΕΤΡΟ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ ΕΠΙΜΕΛΕΙΑ : ΠΑΛΑΙΟΛΟΓΟΥ ΠΑΥΛΟΣ.ptetragono.gr Σελίδα. ΜΕΤΡΟ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ Να βρεθεί το μέτρο των μιγαδικών :..... 0 0. 5 5 6.. 0 0. 5. 5 5 0 0 0 0 0 0 0 0 ΜΕΘΟΔΟΛΟΓΙΑ : ΜΕΤΡΟ ΜΙΓΑΔΙΚΟΥ Αν τότε. Αν χρειαστεί

Διαβάστε περισσότερα

τέτοιες συναρτήσεις «πραγµατικές συναρτήσεις µε µία πραγµατική µεταβλητή». Σε αυτή

τέτοιες συναρτήσεις «πραγµατικές συναρτήσεις µε µία πραγµατική µεταβλητή». Σε αυτή Κεφάλαιο Ορίζουσες Η Συνάρτηση Ορίζουσα Είµαστε όλοι εξοικειωµένοι µε συναρτήσεις όπως η f(x) sin x και η f(x) x οι οποίες αντιστοιχίζουν έναν πραγµατικό αριθµό f(x) σε κάθε πραγµατική τιµή της µετα- ϐλητής

Διαβάστε περισσότερα

HY213. ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ ΕΛΑΧΙΣΤΑ ΤΕΤΡΑΓΩΝΑ AΝΑΛΥΣΗ ΙΔΙΑΖΟΥΣΩΝ ΤΙΜΩΝ

HY213. ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ ΕΛΑΧΙΣΤΑ ΤΕΤΡΑΓΩΝΑ AΝΑΛΥΣΗ ΙΔΙΑΖΟΥΣΩΝ ΤΙΜΩΝ HY3. ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ ΕΛΑΧΙΣΤΑ ΤΕΤΡΑΓΩΝΑ AΝΑΛΥΣΗ ΙΔΙΑΖΟΥΣΩΝ ΤΙΜΩΝ Π. ΤΣΟΜΠΑΝΟΠΟΥΛΟΥ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ & ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ Μέθοδος ελαχίστων τετραγώνων Τα σφάλματα

Διαβάστε περισσότερα

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΤΗΣ Β ΛΥΚΕΙΟΥ

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΤΗΣ Β ΛΥΚΕΙΟΥ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΤΗΣ Β ΛΥΚΕΙΟΥ Διανύσματα Πολλαπλασιασμός αριθμού με διάνυσμα ο Θέμα _8603 Δίνεται τρίγωνο ΑΒΓ και σημεία Δ και Ε του επιπέδου τέτοια, ώστε 5 και

Διαβάστε περισσότερα

Φεργαδιώτης Αθανάσιος ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΤΗΝ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. Θέμα 2 ο (150)

Φεργαδιώτης Αθανάσιος ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΤΗΝ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. Θέμα 2 ο (150) Φεργαδιώτης Αθανάσιος ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΤΗΝ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ Θέμα ο (150) -- Τράπεζα θεμάτων Άλγεβρας Α Λυκείου Φεργαδιώτης Αθανάσιος -3- Τράπεζα θεμάτων Άλγεβρας Α Λυκείου Φεργαδιώτης Αθανάσιος ΚΕΦΑΛΑΙΟ

Διαβάστε περισσότερα

Α ΜΕΡΟΣ - ΑΛΓΕΒΡΑ. Α. Οι πραγματικοί αριθμοί και οι πράξεις τους

Α ΜΕΡΟΣ - ΑΛΓΕΒΡΑ. Α. Οι πραγματικοί αριθμοί και οι πράξεις τους Α ΜΕΡΟΣ - ΑΛΓΕΒΡΑ Κεφάλαιο 1 ο ΑΛΓΕΒΡΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ 1.1 Πράξεις με πραγματικούς αριθμούς Α. Οι πραγματικοί αριθμοί και οι πράξεις τους 1. Ποιοι αριθμοί ονομάζονται: α) ρητοί β) άρρητοι γ) πραγματικοί;

Διαβάστε περισσότερα

Συναρτήσεις Όρια Συνέχεια

Συναρτήσεις Όρια Συνέχεια Κωνσταντίνος Παπασταματίου Μαθηματικά Γ Λυκείου Κατεύθυνσης Συναρτήσεις Όρια Συνέχεια Συνοπτική Θεωρία Μεθοδολογίες Λυμένα Παραδείγματα Επιμέλεια: Μαθηματικός Φροντιστήριο Μ.Ε. «ΑΙΧΜΗ» Κ. Καρτάλη 8 (με

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 2Ο : Η ΕΥΘΕΙΑ ΣΤΟ ΕΠΙΠΕΔΟ ΒΑΣΙΚΗ ΜΕΘΟΔΟΛΟΓΙΑ

ΚΕΦΑΛΑΙΟ 2Ο : Η ΕΥΘΕΙΑ ΣΤΟ ΕΠΙΠΕΔΟ ΒΑΣΙΚΗ ΜΕΘΟΔΟΛΟΓΙΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ Ο : Η ΕΥΘΕΙΑ ΣΤΟ ΕΠΙΠΕΔΟ ΒΑΣΙΚΗ ΜΕΘΟΔΟΛΟΓΙΑ. Ένα σημείο Μ(x,y) ανήκει σε μια γραμμή C αν και μόνο αν επαληθεύει την εξίσωσή της. Π.χ. :

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Θετικής & Τεχνολογικής Κατεύθυνσης Β ΜΕΡΟΣ (ΑΝΑΛΥΣΗ) ΚΕΦ 1 ο : Όριο Συνέχεια Συνάρτησης

ΜΑΘΗΜΑΤΙΚΑ Θετικής & Τεχνολογικής Κατεύθυνσης Β ΜΕΡΟΣ (ΑΝΑΛΥΣΗ) ΚΕΦ 1 ο : Όριο Συνέχεια Συνάρτησης ΜΑΘΗΜΑΤΙΚΑ Θετικής & Τεχνολογικής Κατεύθυνσης Β ΜΕΡΟΣ (ΑΝΑΛΥΣΗ) ΚΕΦ ο : Όριο Συνέχεια Συνάρτησης Φυλλάδιο Φυλλάδι555 4 ο ο.α) ΕΝΝΟΙΑ ΣΥΝΑΡΤΗΣΗΣ - ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ.α) ΕΝΝΟΙΑ ΣΥΝΑΡΤΗΣΗΣ - ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 6 ΕΛΑΧΙΣΤΑ ΤΕΤΡΑΓΩΝΑ

ΚΕΦΑΛΑΙΟ 6 ΕΛΑΧΙΣΤΑ ΤΕΤΡΑΓΩΝΑ ΚΕΦΑΛΑΙΟ 6 ΕΛΑΧΙΣΤΑ ΤΕΤΡΑΓΩΝΑ 6. Βέλτιστες προσεγγίσεις σε ευκλείδειους χώρους Στο κεφάλαιο αυτό θα ασχοληθούµε µε προσεγγίσεις που ελαχιστοποιούν αποστάσεις σε διανυσµατικούς χώρους, µε νόρµα που προέρχεται

Διαβάστε περισσότερα

QR είναι ˆx τότε x ˆx. 10 ρ. Ποιά είναι η τιµή του ρ και γιατί (σύντοµη εξήγηση). P = [X. 0, X,..., X. (n 1), X. n] a(n + 1 : 1 : 1)

QR είναι ˆx τότε x ˆx. 10 ρ. Ποιά είναι η τιµή του ρ και γιατί (σύντοµη εξήγηση). P = [X. 0, X,..., X. (n 1), X. n] a(n + 1 : 1 : 1) ΕΠΙΣΤΗΜΟΝΙΚΟΣ ΥΠΟΛΟΓΙΣΜΟΣ I (22 Σεπτεµβρίου) ΕΠΙΛΕΓΜΕΝΕΣ ΑΠΑΝΤΗΣΕΙΣ 1ο ΘΕΜΑ 1. Αφού ορίσετε ακριβώς τι σηµαίνει πίσω ευσταθής υπολογισµός, να εξηγήσετε αν ο υ- πολογισµός του εσωτερικού γινοµένου δύο διανυσµάτων

Διαβάστε περισσότερα

Φροντιστήριο #5 Ασκήσεις σε Συναρτήσεις Αρχή του Περιστερώνα 23/04/2015

Φροντιστήριο #5 Ασκήσεις σε Συναρτήσεις Αρχή του Περιστερώνα 23/04/2015 Φροντιστήριο #5 Ασκήσεις σε Συναρτήσεις Αρχή του Περιστερώνα 23/04/2015 Άσκηση Φ5.1: (α) Έστω οι συναρτήσεις διάγραμμα. f : A B, : g B C και h: C D που ορίζονται στο παρακάτω Υπολογίστε την συνάρτηση h

Διαβάστε περισσότερα

ΜΑΘΗΜΑ 7. 2.3 Μέτρο µιγαδικού Ασκήσεις Γεωµετρικών τόπων ΑΣΚΗΣΕΙΣ

ΜΑΘΗΜΑ 7. 2.3 Μέτρο µιγαδικού Ασκήσεις Γεωµετρικών τόπων ΑΣΚΗΣΕΙΣ ΑΣΚΗΣΕΙΣ ΜΑΘΗΜΑ 7.3 Μέτρο µιγαδικού Ασκήσεις Γεωµετρικών τόπων. Να βρείτε το γεωµετρικό τόπο των µιγαδικών z, για τους οποίους οι εικόνες των µιγαδικών z, i, iz είναι συνευθειακά σηµεία. Έστω z = x + i,

Διαβάστε περισσότερα

Παράδειγμα 1. Δίνεται ο κάτωθι κλειστός βρόχος αρνητικής ανάδρασης με. Σχήμα 1. στο οποίο εφαρμόζουμε αρνητική ανάδραση κέρδους

Παράδειγμα 1. Δίνεται ο κάτωθι κλειστός βρόχος αρνητικής ανάδρασης με. Σχήμα 1. στο οποίο εφαρμόζουμε αρνητική ανάδραση κέρδους Παράδειγμα 1 Δίνεται ο κάτωθι κλειστός βρόχος αρνητικής ανάδρασης με _ + Σχήμα 1 στο οποίο εφαρμόζουμε αρνητική ανάδραση κέρδους Α) Γράψτε το σύστημα ευθέως κλάδου σε κανονική παρατηρήσιμη μορφή στο χώρο

Διαβάστε περισσότερα

ΜΕ ΝΕΟ ΣΥΣΤΗΜΑ 2014 Θ ΕΩΡΙA 10

ΜΕ ΝΕΟ ΣΥΣΤΗΜΑ 2014 Θ ΕΩΡΙA 10 ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΑΛΓΕΒΡΑΣ Α ΛΥΚΕΙΟΥ ΜΕ ΝΕΟ ΣΥΣΤΗΜΑ 04 Θ ΕΩΡΙA 0 ΘΕΜΑ A Α Να χαρακτηρίσετε τις προτάσεις που ακολουθούν, γράφοντας στην κόλλα σας δίπλα στο γράμμα που αντιστοιχεί σε κάθε πρόταση τη

Διαβάστε περισσότερα

2 Η ΕΥΘΕΙΑ ΣΤΟ ΕΠΙΠΕΔΟ. Εισαγωγή

2 Η ΕΥΘΕΙΑ ΣΤΟ ΕΠΙΠΕΔΟ. Εισαγωγή Η ΕΥΘΕΙΑ ΣΤΟ ΕΠΙΠΕΔΟ Εισαγωγή Η ιδέα της χρησιμοποίησης ενός συστήματος συντεταγμένων για τον προσδιορισμό της θέσης ενός σημείου πάνω σε μια επιφάνεια προέρχεται από την Γεωγραφία και ήταν γνωστή στους

Διαβάστε περισσότερα

Α Λ Γ Ε Β Ρ Α ΤΗΣ Α Λ Υ Κ Ε Ι Ο Υ Α. ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟΥ - ΛΑΘΟΥΣ

Α Λ Γ Ε Β Ρ Α ΤΗΣ Α Λ Υ Κ Ε Ι Ο Υ Α. ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟΥ - ΛΑΘΟΥΣ Α Λ Γ Ε Β Ρ Α ΤΗΣ Α Λ Υ Κ Ε Ι Ο Υ Α. ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟΥ - ΛΑΘΟΥΣ ΚΕΦΑΛΑΙΟ 1 ο ΠΙΘΑΝΟΤΗΤΕΣ 1. Για οποιαδήποτε ενδεχόμενα Α, Β ενός δειγματικού χώρου Ω ισχύει η σχέση ( ) ( ) ( ).. Ισχύει ότι P( A B) P( A

Διαβάστε περισσότερα

ΣΗΜΕΙΑ ΙΣΟΡΡΟΠΙΑΣ ΓΡΑΜΜΙΚΟΠΟΙΗΣΗ. ΈΈστω ένα φυσικό σύστημα που περιγράφεται σε γενικευμένες συντεταγμένες από την Λαγκρανζιανή συνάρτηση

ΣΗΜΕΙΑ ΙΣΟΡΡΟΠΙΑΣ ΓΡΑΜΜΙΚΟΠΟΙΗΣΗ. ΈΈστω ένα φυσικό σύστημα που περιγράφεται σε γενικευμένες συντεταγμένες από την Λαγκρανζιανή συνάρτηση ΣΗΜΕΙΑ ΙΣΟΡΡΟΠΙΑΣ ΓΡΑΜΜΙΚΟΠΟΙΗΣΗ ΈΈστω ένα φυσικό σύστημα που περιγράφεται σε γενικευμένες συντεταγμένες από την Λαγκρανζιανή συνάρτηση. Ο πίνακας Μ μπορεί να ληφθεί χωρίς καμμία έλλειψη γενικότητας ως

Διαβάστε περισσότερα

1.4 ΣΥΝΤΕΤΑΓΜΕΝΕΣ ΣΤΟ ΕΠΙΠΕΔΟ

1.4 ΣΥΝΤΕΤΑΓΜΕΝΕΣ ΣΤΟ ΕΠΙΠΕΔΟ ΚΕΦΑΛΑΙΟ Ο : ΔΙΑΝΥΣΜΑΤΑ - ΕΝΟΤΗΤΑ 4 ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ 4 ΣΥΝΤΕΤΑΓΜΕΝΕΣ ΣΤΟ ΕΠΙΠΕΔΟ Κάθε διάνυσμα του επιπέδου γράφεται κατά μοναδικό τρόπο στη μορφή : i j όπου i, j μοναδιαία διανύσματα με κοινή αρχή το

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ Β ΛΥΚΕΙΟΥ -- ΑΛΓΕΒΡΑ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ

ΑΣΚΗΣΕΙΣ Β ΛΥΚΕΙΟΥ -- ΑΛΓΕΒΡΑ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΑΣΚΗΣΕΙΣ Β ΛΥΚΕΙΟΥ -- ΑΛΓΕΒΡΑ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ Άσκηση η Γραμμικά συστήματα Δίνονται οι ευθείες : y3 και :y 5. Να βρεθεί το R, ώστε οι ευθείες να τέμνονται. Οι ευθείες και θα τέμνονται όταν το μεταξύ

Διαβάστε περισσότερα

Κεφάλαιο 3 Πίνακες. χρησιµοποιώντας µόνο την ακόλουθη διάταξη αριθµών 1 1 2 1 2 5 1 0

Κεφάλαιο 3 Πίνακες. χρησιµοποιώντας µόνο την ακόλουθη διάταξη αριθµών 1 1 2 1 2 5 1 0 Σελίδα από 53 Κεφάλαιο 3 Πίνακες Περιεχόµενα 3 Ορισµοί Επεξεργασµένα Παραδείγµατα Ασκήσεις 3 3 Πράξεις µε Πίνακες Πρόσθεση Πινάκων Πολλαπλασιασµός Πίνακα µε Αριθµό Πολλαπλασιασµός Πινάκων ιωνυµικό Ανάπτυγµα

Διαβάστε περισσότερα