ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2012

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2012"

Transcript

1 ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 0 Ε_.ΜλΘΤ(ε) ΤΑΞΗ: Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ / ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΘΕΜΑ Α Ηµεροµηνία: Κυριακή 8 Απριλίου 0 ΕΚΦΩΝΗΣΕΙΣ A. Έστω τα διανύσµατα α,β, τα οποία δεν είναι παράλληλα µε τον άξονα y y και έχουν συντελεστές διευθύνσεως λ,λ αντίστοιχα. Να αποδείξετε την ισοδυναµία: α β λλ =. Μονάδες 9 A. Να ορίσετε το συντελεστή διεύθυνσης λ µίας ευθείας ε, µη παράλληλης µε τον άξονα y y. Μονάδες A. Έστω Oxy ένα σύστηµα συντεταγµένων στο επίπεδο και C ο κύκλος µε κέντρο το σηµείο Ο(0,0) και ακτίνα ρ, ο οποίος έχει εξίσωση x +y = ρ. Αν A(x,y ) είναι σηµείο του κύκλου C, να γράψετε την εξίσωση της εφαπτοµένης ευθείας ε στον κύκλο C, στο σηµείο του Α. Μονάδες A4. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν, γράφοντας στο τετράδιό σας το γράµµα κάθε πρότασης και δίπλα τη λέξη Σωστό, αν η πρόταση είναι σωστή, ή Λάθος, αν η πρόταση είναι λανθασµένη. α. Αν τα διανύσµατα α και β είναι οµόρροπα τότε α β = α β αντιστρόφως. και ÈÅÌÁÔÁ 0 β. Η απόσταση του σηµείου Μ ο (x o,y o ) από την ευθεία ε µε εξίσωση Ax ο+by ο+γ Αx+Βy+Γ= 0 δίνεται πάντοτε από τον τύπο d(μ ο, ε) =. Α +Β γ. Η εξίσωση κύκλο µε ακτίνα ρ = x +y +Ax+By+Γ = 0 µε A +B - 4Γ > 0παριστάνει πάντοτε Α +Β -4Γ. ΤΑ ΘΕΜΑΤΑ ΠΡΟΟΡΙΖΟΝΤΑΙ ΓΙΑ ΑΠΟΚΛΕΙΣΤΙΚΗ ΧΡΗΣΗ ΤΗΣ ΦΡΟΝΤΙΣΤΗΡΙΑΚΗΣ ΜΟΝΑ ΑΣ ΣΕΛΙ Α: ΑΠΟ

2 ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 0 Ε_.ΜλΘΤ(ε) δ. Η κάθετη στην εφαπτοµένη µιας έλλειψης στο σηµείο επαφής Μ διχοτοµεί τη γωνία ' Ε ΜΕ, όπου ' Ε, Ε είναι οι εστίες της έλλειψης. ε. Αν C είναι µία παραβολή µε εξίσωση y =px, p R τότε σε κάθε περίπτωση o p ισούται µε την απόσταση της εστίας από τη διευθετούσα της παραβολής. Μονάδες 0 ΘΕΜΑ Β ίνονται τα διανύσµατα α, β α + β α β. ( ) ( ) Β. Να αποδείξετε ότι: α β =. Β. Να βρείτε τη γωνία των διανυσµάτων α, β. Β. Να αποδείξετε ότι: α + β = α β. για τα οποία ισχύει α =, β = και Μονάδες 7 Β4. Να βρείτε την προβολή του διανύσµατος α β στο διάνυσµα α. ΘΕΜΑ Γ ίνεται το τρίγωνο ΑΒΓ µε κορυφές τα σηµεία A(5, ), B(4,4) και Γ (,). Γ. Να βρείτε την εξίσωση της πλευράς ΒΓ και του ύψους Γ του τριγώνου. Μονάδες 6 Γ. Να βρείτε τις εξισώσεις των ευθειών που διέρχονται από την κορυφή Γ του τριγώνου και απέχουν από την αρχή των αξόνων απόσταση ίση µε µονάδες. ÈÅÌÁÔÁ 0 Γ. i) Να βρείτε την εξίσωση της παραβολής C που διέρχεται από την κορυφή Γ του τριγώνου, έχει κορυφή το Ο(0,0) και άξονα συµµετρίας τον y y. ii) Να βρεθεί η εξίσωση της εφαπτοµένης της παραβολής C, η οποία είναι παράλληλη στην πλευρά ΒΓ του τριγώνου ΑΒΓ. Μονάδες 6 ΤΑ ΘΕΜΑΤΑ ΠΡΟΟΡΙΖΟΝΤΑΙ ΓΙΑ ΑΠΟΚΛΕΙΣΤΙΚΗ ΧΡΗΣΗ ΤΗΣ ΦΡΟΝΤΙΣΤΗΡΙΑΚΗΣ ΜΟΝΑ ΑΣ ΣΕΛΙ Α: ΑΠΟ

3 ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 0 Ε_.ΜλΘΤ(ε) ΘΕΜΑ ίνεται η έλλειψη C µε εξίσωση µε εξίσωση C : x 7 + y =. C : x 4y + = και εστίες Ε, Ε και ο κύκλος C. Να αποδείξετε ότι το τρίγωνο ΒΕΕ είναι ισόπλευρο, όπου Β είναι ένα από τα άκρα του µικρού άξονα της έλλειψης.. Να αποδείξετε ότι το σηµείο P, είναι κοινό σηµείο των δύο κωνικών τοµών C, C και να υπολογίσετε όλα τα κοινά τους σηµεία. Μονάδες 4. Να υπολογίσετε τα σηµεία M( x 0, y0) τα οποία είναι τέτοια ώστε: ( OM) = 7 και ( ME) ( ME ') 4 + =,όπου Ο είναι η αρχή των αξόνων. 4. Να υπολογίσετε την εξίσωση της διχοτόµου της γωνίας P,. Σας ευχόµαστε επιτυχία ÈÅÌÁÔÁ 0 ' Ε PΕ, όπου ΤΑ ΘΕΜΑΤΑ ΠΡΟΟΡΙΖΟΝΤΑΙ ΓΙΑ ΑΠΟΚΛΕΙΣΤΙΚΗ ΧΡΗΣΗ ΤΗΣ ΦΡΟΝΤΙΣΤΗΡΙΑΚΗΣ ΜΟΝΑ ΑΣ ΣΕΛΙ Α: ΑΠΟ

4 Επαναληπτικά Θέµατα ΟΕΦΕ 0 Β' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΜΑΘΗΜΑΤΙΚΑ ΘΕΜΑ ο ΕΚΦΩΝΗΣΕΙΣ α. ώστε τους ορισµούς: Ι. Εσωτερικό γινόµενο δύο διανυσµάτων α, β. ΙΙ. Παραβολή µε διευθετούσα την ευθεία δ και εστία το σηµείο Ε εκτός της δ. β. Γράψτε τον τύπο της απόστασης του σηµείου Μ(χ 0,ψ 0 ) από την ευθεία ε: Αχ+Βψ+Γ=0 (x µονάδες) γ. Αποδείξτε ότι η εξίσωση µιας ευθείας, που διέρχεται από το σηµείο Α(x 0,y 0 ) και έχει συντελεστή διεύθυνσης λ είναι y-y 0 =λ(χ-χ 0 ). (9 µονάδες) δ. Σηµειώστε ΣΩΣΤΟ ή ΛΑΘΟΣ για τις προτάσεις: Ι. Η ευθεία µε εξίσωση Αχ+Βψ+Γ=0 µε Α 0 ή Β 0 είναι κάθετη στο διάνυσµα δ = ( Α, Β). ΙΙ. Ο κύκλος µε εξίσωση χ +ψ +Aχ+Bψ+Γ=0 έχει πάντοτε κέντρο Α Β K,. ΙΙΙ. Η απόσταση της εστίας Ε, της παραβολής χ =pψ, από την διευθετούσα ευθεία δ είναι ίση µε p. ΙV. Αν Ε, Ε σταθερά σηµεία και για το µεταβλητό σηµείο Μ ισχύει (ΜΕ)+(ΜΕ ) =α, α>0 τότε το Μ κινείται σε έλλειψη µε εστίες Ε(γ,0) και Ε (-γ,0) V. Αν για τα µη παράλληλα στους άξονες x x και y y διανύσµατα α και β ισχύει α β=0 τότε οι συντελεστές διεύθυνσής τους είναι αντίστροφοι αριθµοί. (5x µονάδες) ÈÅÌÁÔÁ 0 Οµοσπονδία Εκπαιδευτικών Φροντιστών Ελλάδος (ΟΕΦΕ)

5 Επαναληπτικά Θέµατα ΟΕΦΕ 0 ΘΕΜΑ ο ίνονται τα διανύσµατα α, β, γ µε α=, β =, α (α - β) και (γ+α) β. α. Να δείξετε ότι α β=4 και β γ = -. (8 µονάδες) β. Να δείξετε ότι α β = 5. (5 µονάδες) γ. Αν επιπλέον γνωρίζετε ότι γ-α = λ(α - β), λ R να βρείτε την τιµή του λ. (6 µονάδες) δ. Για λ=4 να γραφεί το διάνυσµα γ σαν γραµµικός συνδυασµός των α και β και να δείξετε ότι η γωνία των διανυσµάτων γ και α-β είναι οξεία. ΘΕΜΑ ο (6 µονάδες) Σε τρίγωνο ΑΒΓ δίνονται η κορυφή Α(, ), η εξίσωση του ύψους Β : χ-4ψ-5=0 και η εξίσωση της διαµέσου ΓΜ: χ+ψ+=0. α. Βρείτε την εξίσωση της πλευράς ΑΓ και τις συντεταγµένες της κορυφής Γ. (6 µονάδες) β. Βρείτε τις συντεταγµένες του µέσου Μ της πλευράς ΑΒ και της κορυφής Β. (7 µονάδες) γ. Αν Ε το σηµείο τοµής των ΓΜ και Β τότε να υπολογίσετε το εµβαδόν του τριγώνου ΕΒΓ. (6 µονάδες) δ. ίνεται η γραµµή (C) µε εξίσωση x + y + λx+ ( λ+ 8) y+ = 0 (). Να αποδείξετε ότι η παραπάνω εξίσωση παριστάνει κύκλο για κάθε λ R και να βρείτε την τιµή του λ, ώστε ο κύκλος () να έχει διάµετρο την πλευρά ΒΓ. (6 µονάδες) ÈÅÌÁÔÁ 0 Οµοσπονδία Εκπαιδευτικών Φροντιστών Ελλάδος (ΟΕΦΕ)

6 Επαναληπτικά Θέµατα ΟΕΦΕ 0 ΘΕΜΑ 4 ο ίνεται η εξίσωση x y x y y + + ( + 4) = 0 (). α. Να αποδείξετε ότι η παραπάνω εξίσωση παριστάνει δύο ευθείες (ε ) και (ε ) οι οποίες είναι παράλληλες. (7 µονάδες) β. Αν (ε ): x+y+=0 και (ε ): x+y+6=0 είναι οι δύο ευθείες που παριστάνει η (), να βρείτε την εξίσωση του κύκλου C που εφάπτεται στις ευθείες (ε ) και (ε ) και το κέντρο του βρίσκεται στην ευθεία (ε): y=x. (7 µονάδες) γ. Βρείτε την ελάχιστη και την µέγιστη απόσταση του σηµείου τοµής των ευθειών (ε ) και (ε) από τον κύκλο C. (6 µονάδες) δ. Βρείτε την εξίσωση της υπερβολής (C ) µε εστίες στον άξονα x x, που έχει ασύµπτωτη την (ε): y=x και εστιακή απόσταση γ=0ρ, όπου ρ η ακτίνα του κύκλου C. (5 µονάδες) ÈÅÌÁÔÁ 0 Οµοσπονδία Εκπαιδευτικών Φροντιστών Ελλάδος (ΟΕΦΕ)

7 Επαναληπτικά Θέµατα ΟΕΦΕ 00 B' ΤΑΞΗ ΓΕΝ.ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΜΑΘΗΜΑΤΙΚΑ ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ ο Α. Έστω τα διανύσµατα α,β, τα οποία δεν είναι παράλληλα µε τον άξονα y y και έχουν συντελεστές διεύθυνσης λ,λ αντίστοιχα. Να αποδείξετε την ισοδυναµία α β λλ =. Μονάδες 0 Β. Να δώσετε τον ορισµό της παραβολής, µε εστία το σηµείο Ε και διευθετούσα την ευθεία δ. Γ. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν, γράφοντας στο τετράδιο σας δίπλα στο γράµµα που αντιστοιχεί σε κάθε πρόταση τη λέξη Σωστό, αν η πρόταση είναι σωστή ή Λάθος, αν η πρόταση είναι λανθασµένη. ΘΕΜΑ ο α) Το εσωτερικό γινόµενο δύο διανυσµάτων είναι διάνυσµα. β) Η ευθεία µε εξίσωση Αx+By+Γ = 0 είναι παράλληλη µε το διάνυσµα δ = (B, A). γ) Η απόσταση της αρχής Ο των συντεταγµένων από την ευθεία ε µε Γ εξίσωση Αx+By+Γ = 0, ισούται µε. A + B x y δ) Η εξίσωση + =,όπου α > 0, παριστάνει έλλειψη µε εστίες α (α+ ) πάνω στον άξονα x x. ε) Η εκκεντρότητα µιας υπερβολής είναι πραγµατικός αριθµός, µικρότερος της µονάδας. x ÈÅÌÁÔÁ 00 ίνονται τα σηµεία Α( 5,), Β(, ) και Γ(4,) του καρτεσιανού επιπέδου. α. Να βρείτε το εσωτερικό γινόµενο AB BΓ. Ποιο είναι το συµπέρασµά σας για τα διανύσµατα AB, BΓ ; β. Να υπολογίσετε το εµβαδόν του τριγώνου ΑΒΓ. γ. Να αποδείξετε ότι η γωνία φ των διανυσµάτων AB και ΑΓ ισούται µε 45 o. Μονάδες 9

8 Επαναληπτικά Θέµατα ΟΕΦΕ 00 ΘΕΜΑ ο ίνεται η εξίσωση: (x+y +) + κ(x y 5) = 0 (), όπου κ R. α. Να αποδείξετε ότι για κάθε τιµή της παραµέτρου κ η εξίσωση () παριστάνει ευθεία γραµµή. Μονάδες 7 β. Να αποδείξετε ότι όλες οι ευθείες που ορίζονται από την εξίσωση (), διέρχονται από το σηµείο Α(, ). Μονάδες 4 γ. Να βρείτε την τιµή του κ, για την οποία η () παριστάνει ευθεία ε κάθετη στον άξονα x x. Ποια η εξίσωση της ευθείας ε; δ. Αν K(x 0,0) είναι η προβολή του σηµείου Α(, ) στον άξονα x x, να βρείτε τον γεωµετρικό τόπο των σηµείων του επιπέδου, τα οποία ισαπέχουν από το σηµείο ΘΕΜΑ 4 ο ίνεται η εξίσωση: E( x,0) και την ευθεία ε του γ ερωτήµατος. o x y (λ 4)x λy λ = (), όπου λ R. Μονάδες 9 α. Να αποδείξετε ότι για κάθε τιµή της παραµέτρου λ η εξίσωση () παριστάνει κύκλο, του οποίου να βρείτε το κέντρο Κ και την ακτίνα ρ. β. Να δείξετε ότι το κέντρο Κ του κύκλου που παριστάνει η εξίσωση (), κινείται σε µια ευθεία γραµµή, καθώς το λ µεταβάλλεται στο R. Μονάδες 4 γ. Να βρείτε την εξίσωση της έλλειψης C, που έχει εστίες τα σηµεία E (0, ), E(0, ) και µεγάλο άξονα (Α Α) = 8. δ. Αν η εφαπτοµένη ε της έλλειψης C του ερωτήµατος γ, στο σηµείο της M (x, y ) εφάπτεται και του κύκλου C, ο οποίος προκύπτει από την εξίσωση () για λ = 0, να δείξετε ότι: ÈÅÌÁÔÁ 00 i. y = 64( x ) Μονάδες 4 ii. Τα διανύσµατα α = (x,4) και β = (x, 4x ) είναι µεταξύ τους κάθετα. Μονάδες 4 ΕΥΧΟΜΑΣΤΕ ΕΠΙΤΥΧΙΑ

9 Επαναληπτικά Θέµατα ΟΕΦΕ 009 Β' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΜΑΘΗΜΑΤΙΚΑ ΘΕΜΑ ο ΕΚΦΩΝΗΣΕΙΣ Α. Nα δείξετε ότι η εφαπτοµένη του κύκλου C: Α(χ,ψ ) έχει εξίσωση χ.χ +ψ.ψ =ρ. Β. x + ψ = ρ σε ένα σηµείο του (9 µονάδες) α. Τι ονοµάζουµε εσωτερικό γινόµενο δύο µη µηδενικών διανυσµάτωνa και β. β. ώστε τον ορισµό της υπερβολής µε εστίες Ε και Ε. (.=6 µονάδες) Γ. Να χαρακτηρίσετε ως Σωστή (Σ) ή Λανθασµένη (Λ) καθεµιά από τις παρακάτω προτάσεις:. Για δύο οποιαδήποτε διανύσµατα a και ισχύει( a. β) = a. β. β του επιπέδου. Η ευθεία ε: Ax + By + Γ = 0, µεα, Β, Γ R και Α.Β>0 σχηµατίζει αµβλεία γωνία µε τον άξονα x x.. P Η παραβολή c: y = px έχει εστία το σηµείο E, x x y Αν οι ελλείψεις c : και c : a ψ β a β α =α και β =β. 5. Το εµβαδόν ενός τριγώνου ΑΒΓ δίνεται από τον τύπο: (ΑΒΓ)= det( AB, ΑΓ). (5x µονάδες) ÈÅÌÁÔÁ 009

10 Επαναληπτικά Θέµατα ΟΕΦΕ 009 ΘΕΜΑ ο Σε τρίγωνο ΑΒΓ είναι. Να υπολογιστούν οι παραστάσεις α. aβ. β. a + β γ. a β AB = α+β, ΑΓ = α + β µε α= β ^ π = και α, β = (9 µονάδες). Έστω Μ µέσο του ΒΓ. Να εκφράσετε τα διανύσµατα ΑΜ και ΒΓ σαν γραµµικό συνδυασµό των a και β. (4 µονάδες). Να υπολογίσετε το συνηµίτονο της γωνίας ( ΑΜ, ΒΓ ) 4. Να βρεθεί το µέτρο της προβολής του ΑΜ στο ΒΓ. ΘΕΜΑ ο (5 µονάδες) (7 µονάδες) Έστω παραλληλόγραµµο ΑΒΓ µε εξισώσεις διαγωνίων (Β ):y=x+ και (ΑΓ):y=x-. Η διαγώνιος B είναι η µεσοπαράλληλος των ευθειών ε,ε,των οποίων η µεταξύ τους απόσταση είναι d= και οι οποίες διέρχονται από τις κορυφές Α και Γ αντιστοίχως. Αν A = (4,6), τότε:. Να βρείτε τις συντεταγµένες του κέντρου Κ του παραλληλογράµµου ΑΒΓ. (5 µονάδες). Να δείξετε ότι οι ευθείες ε,ε έχουν εξισώσεις (ε ):x-y-=0 και (ε ):x-y+=0. (8 µονάδες) ÈÅÌÁÔÁ 009. Να βρείτε τις συντεταγµένες των κορυφών Α, Β, Γ, του παραλληλογράµµου. (8 µονάδες) 4. Να βρείτε το εµβαδόν (ΑΒΓ ) του παραλληλογράµµου. (4 µονάδες)

11 Επαναληπτικά Θέµατα ΟΕΦΕ 009 ΘΕΜΑ 4 ο ίνεται η εξίσωση C : x + y ( ηµθ ) x + 4( συνθ ) y + ηµ θ = 0, () µε θ 0, π. Να δείξετε ότι:. Η εξίσωση () παριστάνει για κάθε θ 0, π κύκλο του οποίου να βρείτε το κέντρο Κ(x 0, y 0 ) και την ακτίνα ρ ως συνάρτηση της γωνίας θ. (6 µονάδες). Τα κέντρα των κύκλων Κ(x 0, y 0 ) που προκύπτουν από την (), ανήκουν σε έλλειψη της οποίας να βρείτε τα µήκη του µεγάλου Α Α και µικρού Β Β άξονα της, τις εστίες της Ε, Ε καθώς και την εκκεντρότητα της ε. (9 µονάδες). Για τις συντεταγµένες των κέντρων Κ(x 0, y 0 ) των κύκλων που προκύπτουν από την (), ισχύουν : x 0 >0, y 0 <0 και στην συνέχεια να βρείτε το γεωµετρικό τόπο των σηµείων Κ(x 0, y 0 ). (4 µονάδες) 4. Η ελάχιστη και η µέγιστη απόσταση, της εστίας Ε (µε θετική συντεταγµένη) από τυχαίο σηµείο του κύκλου ο οποίος προκύπτει από την () για θ= Π, είναι d= + και d = +, αντιστοίχως. (6 µονάδες) ÈÅÌÁÔÁ 009

12 Επαναληπτικά Θέµατα ΟΕΦΕ 008 ΘΕΜΑ Ο B' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΕΚΦΩΝΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ A. Έστω Οxψ ένα σύστηµα συντεταγµένων στο επίπεδο και ( ) του επιπέδου. A x ψ ένα σηµείο α. Να γράψετε την εξίσωση της ευθείας που διέρχεται από το σηµείο Α και για την οποία δεν ορίζεται συντελεστής διεύθυνσης. β. Να αποδείξετε ότι η εξίσωση της ευθείας που διέρχεται από το σηµείο A και έχει συντελεστή διεύθυνσης λ είναι: ψ-ψ 0 =λ(x-x 0 ). Μονάδες 0 Β. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν, γράφοντας στο τετράδιό σας δίπλα στο γράµµα που αντιστοιχεί σε κάθε πρόταση, τη λέξη Σωστό, αν η πρόταση είναι σωστή, ή Λάθος, αν η πρόταση είναι λανθασµένη. α. Η απόσταση δύο σηµείων Α ( x, ψ ) και (, ) ÈÅÌÁÔÁ 008 0, Β x ψ του συστήµατος συντεταγµένων Oxψ,δίνεται από τον τύπο:( ΑΒ ) = ( x x ) + ( ψ ψ ) 0 Μονάδες β. Για δύο διανύσµατα α, β µη παράλληλα προς τον άξονα ψ ψ, ισχύει η ιδιότητα: α β λ α. λ =, όπου λ β α, λ β οι συντελεστές διεύθυνσης των α, β αντιστοίχως. 0 0 γ. Η εξίσωση:( ) ( ) πάντα κύκλο. Μονάδες x x + ψ ψ = ρ,µε ρ πραγµατικό αριθµό, παριστάνει Μονάδες δ. Μια ευθεία ε εφάπτεται σε κύκλο C ο οποίος έχει κέντρο Κ και ακτίνα ρ, όταν ισχύει η σχέση: ( )= ρ. ε. Η παραβολή µε εξίσωση: ηµιάξονα Οx. Μονάδες x = ρψ,ρ < 0,έχει την εστία της Ε πάνω στον Μονάδες

13 Επαναληπτικά Θέµατα ΟΕΦΕ 008 ΘΕΜΑ Ο Στο καρτεσιανό επίπεδο Οxψ δίνονται τα σηµεία Α(,0), Β(4,5), Γ(6,κ) µε R 0. κ { } α. Να δείξετε ότι: i) Τα σηµεία Α, Β, Γ δεν είναι συνευθειακά. Μονάδες 4 ii) H εξίσωση της ευθείας της διαµέσου (ε) που φέρουµε από την κορυφή Β του τριγώνου ΑΒΓ, είναι x=4. Μονάδες β. Να προσδιορίσετε την κορυφή Γ του τριγώνου ΑΒΓ, αν το εµβαδόν του είναι (ΑΒΓ)=8 τετραγωνικές µονάδες. Μονάδες 9 γ. Για κ=,να βρείτε την εξίσωση της ευθείας του ύψους (η) που φέρουµε από την κορυφή Α του τριγώνου ΑΒΓ, καθώς και τις συντεταγµένες του σηµείου στο οποίο τέµνονται οι ευθείες (η) και (ε). Μονάδες 0 ΘΕΜΑ Ο x ψ µ+ -µ ίνεται η εξίσωση: + =, ( ), όπου R {,} µ. α. Να βρείτε την τιµή του µ ώστε η εξίσωση ( ) να παριστάνει κύκλο. β. Για ποιες τιµές του µ η εξίσωση ( ) γ. Αν µ,,τότε: παριστάνει έλλειψη; Μονάδες 4 i) Να δείξετε ότι η έλλειψη που προκύπτει από την ( ) έχει τις εστίες της πάνω στον άξονα ψ ψ. ÈÅÌÁÔÁ 008 Μονάδες 7 ii) Να υπολογίσετε την τιµή του µ ώστε η εκκεντρότητα της έλλειψης ( ) να είναι ίση µε. Μονάδες 9

14 Επαναληπτικά Θέµατα ΟΕΦΕ 008 ΘΕΜΑ 4 Ο Έστω τα σηµεία Α(-,ψ) και Β(x,ψ) µε x,ψ R του καρτεσιανού επιπέδου Οxψ. Α. Αν είναι ΟΑ ΟΒ, τότε να αποδείξετε ότι τα σηµεία Μ(x,ψ) ανήκουν στην παραβολή C : ψ = x, της οποίας να βρείτε την εστία Ε και την διευθετούσα δ. Μονάδες 6 Β. Αν ισχύει ΟΑ + ΟΒ = 5, τότε να αποδείξετε ότι τα σηµεία Μ(x,ψ) ανήκουν στο κύκλο C : x +ψ =, του οποίου να βρείτε το κέντρο και την ακτίνα. Γ. Να αποδείξετε ότι: α) Τα κοινά σηµεία των C και C είναι το Κ ( ), και το Λ (, ). Μονάδες 7 β) H εφαπτοµένη της C στο Κ είναι παράλληλη προς την εφαπτοµένη του C στο Λ. Μονάδες 4 ÈÅÌÁÔÁ 008 ΚΑΛΗ ΕΠΙΤΥΧΙΑ!!!

15 Επαναληπτικά Θέµατα ΟΕΦΕ 007 Β ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ ο ΜΑΘΗΜΑΤΙΚΑ Α. Να αποδείξετε ότι η εφαπτοµένη του κύκλου µε εξίσωση x +y =ρ στο σηµείο του Α(x,y ) έχει εξίσωση xx + yy = ρ Μονάδες 0 B. Να δώσετε τον ορισµό του εσωτερικού γινοµένου δύο µη ur r µηδενικών διανυσµάτων α και β ; Γ. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν, γράφοντας στο τετράδιό σας την ένδειξη Σωστό (Σ) ή Λάθος (Λ) δίπλα στον αριθµό που αντιστοιχεί σε κάθε πρόταση.. Αν θεωρήσουµε σηµεία Α(x,y ) και Β(x,y ) του καρτεσιανού επιπέδου τότε οι συντεταγµένες του µέσου Μ(x,y) του ΑΒ, x + x y + y είναι x= y=. Αν α β ur r ur r τότε α β = 0 και αντιστρόφως. Η ευθεία x = x 0 έχει συντελεστή διεύθυνσης λ = 0 4. Η έλλειψη µε εξίσωση Ε (-γ,0) και Ε(γ,0). x β y α + = όπου β =α -γ, έχει εστίες ÈÅÌÁÔÁ 007 y x 5. Οι ασύµπτωτες της υπερβολής = α β β β y= x και y = x. α a είναι οι ευθείες: Μονάδες 0

16 Επαναληπτικά Θέµατα ΟΕΦΕ 007 ΘΕΜΑ ο ίνεται η εξίσωση ( α + ) x + ( α ) y + = 0 () i) Να αποδείξετε ότι η () παριστάνει ευθεία για κάθε α R. ii) Να αποδείξετε ότι για κάθε τιµή του α R οι ευθείες της µορφής () διέρχονται από το σηµείο Μ (-,). iii) ίνεται η ευθεία ε : x + 5y = 0. Αν Α και Β είναι τα σηµεία τοµής της ε µε τις ευθείες που προκύπτουν από την () για α = 0 και α = - αντίστοιχα, να αποδείξετε ότι το εµβαδόν του τριγώνου ΑΜΒ είναι τ.µ. Μονάδες 9 ΘΕΜΑ ο ίνεται η εξίσωση ( λ )x + (λ )y + 6( λ )x = 6( λ ), λ R (). i) Αν λ =, να αποδείξετε ότι η () παριστάνει παραβολή C της οποίας να βρείτε την διευθετούσα δ και την εστία Ε. Μονάδες 6 ii) Αν λ =, να αποδείξετε ότι η () παριστάνει κύκλο C, του οποίου να βρείτε το κέντρο Ο και την ακτίνα R. Μονάδες 6 iii) Να βρείτε την εξίσωση και την εκκεντρότητα της έλλειψης, που έχει κέντρο την αρχή Ο των αξόνων, µία εστία της κοινή µε την εστία Ε της παραβολής C και µεγάλο άξονα ίσο µε την ακτίνα R του κύκλου C. Μονάδες 6 ÈÅÌÁÔÁ 007 iv) Να βρείτε τα κοινά σηµεία Ρ και Ρ των κωνικών τοµών C και C, και να αποδείξετε ότι: d(p,δ)-(ρ Ε)= d(p,δ)-(ρ Ε). Μονάδες 7

17 Επαναληπτικά Θέµατα ΟΕΦΕ 007 ΘΕΜΑ 4 ο ίνονται τα µη µηδενικά διανύσµατα α, β, τα οποία σχηµατίζουν µεταξύ τους γωνία φ = π, και η εξίσωση: Α Να αποδείξετε ότι: α. α β. x y + α x β y + α β = 0 () β. Η εξίσωση () παριστάνει κύκλο µε ακτίνα ρ = α β Μονάδες Β. Αν Κ(, ) είναι το κέντρο του παραπάνω κύκλου, να αποδείξετε ότι: r α. a =, β r = και ρ =. β. Ο κύκλος εφάπτεται στην ευθεία x + 4y = 0 γ. Η προβολή του β στο α r είναι ίση µε το α r. Μονάδες Μονάδες 7 ÈÅÌÁÔÁ 007 Καλή τύχη!

18 Επαναληπτικά Θέµατα ΟΕΦΕ 006 Β ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝ. ΚΑΤΕΥΘΥΝΣΗ ΜΑΘΗΜΑΤΙΚΑ Θέµα α) Για τους ακέραιους α, β και γ να αποδείξετε ότι: i) Αν aβ και β γ τότε a γ. ii) Αν aβ και a γ τότε a ( β γ ) +. Μονάδες 0 β) i) ίνονται τα σηµεία Ε και Ε του επιπέδου. Τι ονοµάζεται έλλειψη µε εστίες Ε και Ε; ii) ίνεται η παραβολή εφαπτοµένης της στο σηµείο ( ) y = p x. Να γράψετε την εξίσωση της Μ x, y. Μονάδες γ) Να χαρακτηρίσετε τις προτάσεις που ακολουθούν µε την ένδειξη Σωστή ή Λάθος. i) Αν a β τότε ισχύει πάντα a β = a β. ii) Το διάνυσµα n = ( Α, Β) είναι κάθετο στην ευθεία ε : Α x + Β y + Γ = 0. γ iii) Η εκκεντρότητα της ισοσκελούς υπερβολής x y = a είναι =. a a β+ γ iv) Έστω οι ακέραιοι α, β, γ και ότι: ( ) τότε κατ ανάγκη aβ και a γ. Θέµα ÈÅÌÁÔÁ 006 π ίνονται τα διανύσµατα aβ, µε a=, β= και ( a, β ) =. Έστω τρίγωνο ΑΒΓ και ΑΜ διάµεσός του για το οποίο ισχύουν: ΑΒ = a β και ΑΜ = a + β α) Να βρείτε το aβ.

19 Επαναληπτικά Θέµατα ΟΕΦΕ 006 β) Να εκφράσετε το ΑΓ ως γραµµικό συνδυασµό των a και β. γ) Να υπολογίσετε το µήκος της διαµέσου ΑΜ. δ) Να αποδείξετε ότι η γωνία των ΑΜ και a π είναι ίση µε 6 Θέµα ίνονται τα σηµεία (, ), (,) Α Β και η ευθεία ε : x+ y+ a= 0 Μονάδες 7 όπου a R. α) Αν η απόσταση του Α από το Β είναι ίση µε την απόσταση του Α από την ευθεία ε, να βρείτε την τιµή του α. β) Για την τιµή a= 4 να βρείτε: i) Το εµβαδόν του τριγώνου που έχει κορυφές τα σηµεία Α, Β και το σηµείο Γ που η ευθεία ε τέµνει τον άξονα y y. ii) Ποιο σηµείο της ευθείας ε έχει τη µικρότερη απόσταση από την αρχή Ο των αξόνων. Μονάδες 9 Θέµα 4 ίνεται η εξίσωση ( ηµθ ) ( συνθ ) C : x + y + x y = όπου θ R. () α) Να αποδείξετε ότι η () παριστάνει κύκλο του οποίου να βρείτε το κέντρο και την ακτίνα. Μονάδες 6 β) Να αποδείξετε ότι, όταν το θ µεταβάλλεται, τα κέντρα των κύκλων C κινούνται σε κύκλο του οποίου να βρείτε την εξίσωση. Μονάδες 6 αν είναι γνωστό ότι ο κύκλος C διέρχεται από το σηµείο Μ(,-). Μονάδες 6 δ) Έστω Κ το κέντρο του κύκλου C και Α, Β τα σηµεία τοµής του µε την ευθεία ΟΚ (όπου Ο η αρχή των αξόνων). Να υπολογίσετε τις αποστάσεις (ΟΑ) και (ΟΒ). γ) Να βρείτε τις τιµές του θ [ 0, π ) ÈÅÌÁÔÁ 006 Μονάδες 7

20 Επαναληπτικά Θέµατα ΟΕΦΕ 005 ε π α ν α λ η π τ ι κ ά θ έ µ α τ α Β ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ Ο ΕΚΦΩΝΗΣΕΙΣ Α. Έστω α, β ακέραιοι. Να αποδείξετε την ιδιότητα: Αν α β και β α, τότε α = β ή α = β ΜΟΝΑ ΕΣ 0 Β. Να χαρακτηρίσετε σαν Σωστή (Σ) ή Λάθος (Λ) κάθε µια από τις επόµενες προτάσεις: α. Για τα διανύσµατα α, β ισχύει η ισοδυναµία: α // β det ( α, β ) = 0. ΜΟΝΑ ΕΣ β. H εξίσωση της ευθείας που διέρχεται από το σηµείο Α(x 0, y 0 ) και έχει συντελεστή διεύθυνσης λ είναι y y 0 = λ (x + x 0 ). ΜΟΝΑ ΕΣ γ. Όταν µια ευθεία και ένα διάνυσµα είναι παράλληλα, σχηµατίζουν ίσες γωνίες µε τον άξονα χ χ. ΜΟΝΑ ΕΣ δ. Οι ασύµπτωτες της υπερβολής x y = είναι οι ευθείες y = α β y = α x β α x β και ΜΟΝΑ ΕΣ ε. Το υπόλοιπο της διαίρεσης του 9 µε το 5 είναι. ΜΟΝΑ ΕΣ ÈÅÌÁÔÁ 005 Γ. Να αποδείξετε ότι η ευθεία που διέρχεται από τα σηµεία Α(x, y ) και B(x, y ) µε x x έχει εξίσωση y y y y = (x x ) x x ΜΟΝΑ ΕΣ 5

21 Επαναληπτικά Θέµατα ΟΕΦΕ 005 ΘΕΜΑ Ο x y ίνεται η έλλειψη + = και η παραβολή y = 6 x. 5 9 α. Να βρείτε τις εστίες της έλλειψης και την εστία της παραβολής. ΜΟΝΑ ΕΣ 8 β. Έστω Ε, Ε οι εστίες της έλλειψης ( η Ε να έχει αρνητική τετµηµένη ). i) Να γράψετε τις εξισώσεις των εφαπτόµενων της παραβολής στα σηµεία της Μ(4, 8) και Μ (4, 8), και να δείξετε ότι τέµνονται στο Ε. ΜΟΝΑ ΕΣ 7 uuuur uuuu ur ii) Να αποδείξετε ότι E Μ E' M =0. ΜΟΝΑ ΕΣ 5 iii) Αν Ν είναι το µέσο του Ε Μ να αποδείξετε ότι ΕΝ//Ε Μ. ΜΟΝΑ ΕΣ 5 ΘΕΜΑ Ο ίνονται τα διανύσµατα α, β για τα οποία ισχύουν α = (, 8 α β ) και β = (, β ) 5 α. Να αποδείξετε ότι i) β = 5, ΜΟΝΑ ΕΣ 6 ii) αβ = 5 ΜΟΝΑ ΕΣ 5 β. Να υπολογίσετε τη γωνία ( γ. i) Να αποδείξετε ότι β β α, ) ΜΟΝΑ ΕΣ 5 προβ α = β ΜΟΝΑ ΕΣ 5 ii) Nα αναλύσετε το διάνυσµα α σε δύο κάθετες συνιστώσες από τις οποίες η µια να είναι παράλληλη µε το β. ΜΟΝΑ ΕΣ 4 ÈÅÌÁÔÁ 005

22 Επαναληπτικά Θέµατα ΟΕΦΕ 005 ΘΕΜΑ 4 Ο Έστω ο µη αρνητικός ακέραιος ν και ο πραγµατικός αριθµός φ [0, π). Α. Να αποδείξετε ότι ν > ν + για κάθε ν. Β. Θεωρούµε την εξίσωση x + y (4συνφ) x (4ηµφ) y + 4 ν + ν = 0 () α. Να αποδείξετε ότι η () παριστάνει κύκλο C. ΜΟΝΑ ΕΣ 6 ΜΟΝΑ ΕΣ 5 Να γράψετε τις συντεταγµένες του κέντρου του C, και να βρείτε την ακτίνα του. β. Να βρείτε τον γεωµετρικό τόπο του κέντρου του παραπάνω κύκλου. γ. Να αποδείξετε ότι ΜΟΝΑ ΕΣ ΜΟΝΑ ΕΣ i) Η εξίσωση (ε): (συνφ) x + (ηµφ) y = 0 παριστάνει ευθεία για κάθε φ [0, π). ii) Αν η ευθεία ε εφάπτεται του κύκλου C, τότε ν = 0. ΜΟΝΑ ΕΣ ΜΟΝΑ ΕΣ 5 ÈÅÌÁÔÁ 005

23 ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Ο.Ε.Φ.Ε. 004 ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ Β' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ ο Α. ίνονται η ευθεία : x y 0 ε Α + Β + Γ = και το διάνυσµα δ = ( Β, Α) Να αποδείξετε ότι η ευθεία ε είναι παράλληλη στο διάνυσµα δ ur. Μονάδες 7 Β. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν µε την ένδειξη Σωστή ή Λάθος. i) Όλες οι ευθείες που διέρχονται από την αρχή των αξόνων δίνονται από την εξίσωση y = λ x r n = Α, Β ii) Το διάνυσµα ( ) iii) Αν για τους ακέραιους α,β,γ ισχύουν: γ ( α β ) είναι κάθετο στην ευθεία ε : Α x + Β y + Γ = 0. ÈÅÌÁÔÁ 004 ur + και γ α, τότε γ β. Μονάδες 6 Γ. α) ίνονται τα σηµεία Ε και Ε ενός επιπέδου. Τι ονοµάζεται έλλειψη µε εστίες Ε και Ε. Μονάδες 4 β) ίνεται η παραβολή y = p x. Να γράψετε την εξίσωση της εφαπτοµένης της στο σηµείο ( x, y ). Μ. Μονάδες x y γ) Αν ε η εκκεντρότητα της υπερβολής =, α β β να αποδείξετε ότι: = ε. Μονάδες 6 α ΘΕΜΑ ο v ίνονται τα διανύσµατα β v a, για τα οποία ισχύουν: ur ur 5 ur α= 4, β= 5 και προβurur β= α α. 8 ur ur α) Να αποδείξετε ότι: α β = 0. Μονάδες 7 β) Να βρείτε τη γωνία των α ur και β v. Μονάδες 6 r ur ur γ) Να υπολογίσετε το µέτρο του διανύσµατος u = α β. Μονάδες 6 v v v v v δ) Αν το διάνυσµα ν = ( α β) a κ β, κ R είναι κάθετο στο διάνυσµα β v, να βρείτε την τιµή του κ. Μονάδες 6 ΘΕΜΑ ο ίνονται οι αριθµοί a= κ+ και β =κ + κ όπου κ ακέραιος. α) Να αποδείξετε ότι ο αριθµός a + β είναι περιττός. Μονάδες 9 ( a + β β) Να αποδείξετε ότι ο αριθµός ) + 8 είναι ακέραιος. γ) Αν ο ακέραιος κ είναι της µορφής λ +, λ R να βρείτε το υπόλοιπο της ευκλείδειας διαίρεσης του a + β µε το.

24 ΘΕΜΑ 4 ο x y ίνεται η υπερβολή c : = και το σηµείο Κ(0,β). Μια ευθεία (ε) που έχει a β συντελεστή διεύθυνσης λ> 0 διέρχεται από το Κ και τέµνει τις εφαπτόµενες της C στις κορυφές της Α και Α, στα σηµεία Μ και Ρ αντίστοιχα. Μ a, aλ + β και α) Να γράψετε την εξίσωση της (ε) και να αποδείξετε ότι: ( ) ( aaλ, β ) Ρ +. Μονάδες 6 β) Να αποδείξετε ότι η εξίσωση του κύκλου που έχει διάµετρο τη ΜΡ είναι η x + ( y -β) = a ( + λ ). Μονάδες 7 γ) Να βρείτε το λ ώστε η ακτίνα του κύκλου του ερωτήµατος (β) να είναι ίση µε την απόσταση των κορυφών της υπερβολής. Μονάδες 4 δ) Αν ε η εκκεντρότητα της υπερβολής και ο κύκλος του ερωτήµατος (β) διέρχεται από τις εστίες της, να αποδείξετε ότι: λ = ε. ÈÅÌÁÔÁ 004

25 ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Ο.Ε.Φ.Ε. 00 ΘΕΜΑ o ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ Β ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Α. ίνονται τα διανύσµατα α= (x,y), β= (x,y). Να αποδείξετε ότι: (x, y ) + (x, y ) = (x+ x, y+ y ) (µονάδες 5) Β. Έστω α, β, γ ακέραιοι µε α 0. Να αποδείξετε την ιδιότητα: Αν α β και α γ, τότε α ( β + γ ) (µονάδες 5) Γ. Να χαρακτηρίσετε σαν σωστό ( Σ ) ή λάθος ( Λ ) τις παρακάτω προτάσεις:. Η εξίσωση της ευθείας που διέρχεται από το σηµείο Μ 0 (x 0, y 0 ) και έχει συντελεστή διεύθυνσης λ, είναι: y y 0 = λ ( x x 0 ). (µονάδες ). Η ισότητα = 6 ( ) 5 εκφράζει την ταυτότητα της διαίρεσης ( ) : 6 (µονάδες ). Οι συντεταγµένες του µέσου Μ του ευθύγραµµου τµήµατος µε άκρα τα σηµεία Α(x, y ), B(x, y ) δίνονται από τις σχέσεις: x + x, y y = + y x = (µονάδες ) 4. Η εφαπτόµενη της παραβολής y = px (p 0) στο σηµείο της M(x, y ) έχει εξίσωση: yy = p(x+x ). (µονάδες ) 5. Αν τα διανύσµατα = (x,y ), β (x,y ) είναι παράλληλα, τότε ΘΕΜΑ ο Έστω ν θετικός ακέραιος. α = x y xy = 0 (µονάδες ) Α. Να αποδείξετε ότι για κάθε ν είναι ν > ν 5. (µονάδες 0) Β. ίνεται η εξίσωση ÈÅÌÁÔÁ 00 x ν y = () 5 ν Να αποδείξετε ότι:. Για ν = η εξίσωση () παριστάνει ισοσκελή υπερβολή. Να βρείτε τις εστίες της και να γράψετε την εκκεντρότητα και τις εξισώσεις των ασυµπτώτων της. (µονάδες 8)

26 . Για κάθε ν η εξίσωση () παριστάνει έλλειψη που οι εστίες της βρίσκονται στον άξονα x x. (µονάδες 7) ΘΕΜΑ ο Ο κύκλος C του σχήµατος έχει κέντρο το σηµείο Κ(0, ) και ακτίνα ρ =. Το σηµείο Μ(α, β) είναι εσωτερικό του C. Α. Να αποδείξετε ότι (i) Οι συντεταγµένες του σηµείου Μ(α, β) επαληθεύουν την σχέση: x + (y ) < 4. (µονάδες ) (ii) Η ευθεία x =, αν προεκταθεί, εφάπτεται στον κύκλο C. (µονάδες 4) B. ίνεται η εξίσωση λ ( x ) + λ ( y ) x = 0 (), όπου λ RI. (i) Να αποδείξετε ότι για κάθε τιµή της παραµέτρου λ η εξίσωση () παριστάνει ευθεία. (µονάδες 6) (ii) Θεωρούµε τα σηµεία Ν(x 0, y 0 ) µε x o, τα οποία δεν ανήκουν σε ευθεία µε εξίσωση της µορφής (). Να βρείτε το γεωµετρικό τους τόπο. (µονάδες ) ΘΕΜΑ 4 ο Σε σύστηµα συντεταγµένων Οxy θεωρούµε τρία σηµεία Α, Β, Γ του µοναδιαίου κύκλου, για τα οποία υπάρχει η ισότητα: OA= 4 ΒΓ+ ΑΓ Να αποδείξετε ότι: (i) Για τις διανυσµατικές ακτίνες των Α, Β, Γ ισχύει η σχέση (ii) Τα διανύσµατα (iii) Για την γωνία των διανυσµάτων OA+ 4OB= 5 OΓ (µονάδες 5) ÈÅÌÁÔÁ 00 OA, OB είναι κάθετα. (µονάδες 8) OA, ΟΓ είναι: συν ( OA, ΟΓ ) = (iv) Αν det( OA, OB ) είναι η ορίζουσα των διανυσµάτων OA, OB, τότε 5 (µονάδες 5) det( OA, OB ) = ± (µονάδες 7) y M(α, β) C Κ(0,) x x Ο y x=

ΔΙΑΝΥΣΜΑΤΑ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΑΡΙΘΜΟΥ ΜΕ ΔΙΑΝΥΣΜΑ. ΘΕΜΑ 2ο

ΔΙΑΝΥΣΜΑΤΑ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΑΡΙΘΜΟΥ ΜΕ ΔΙΑΝΥΣΜΑ. ΘΕΜΑ 2ο Β ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΔΙΑΝΥΣΜΑΤΑ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΑΡΙΘΜΟΥ ΜΕ ΔΙΑΝΥΣΜΑ ΘΕΜΑ ο ΘΕΜΑ 8603 Δίνεται τρίγωνο και σημεία και του επιπέδου τέτοια, ώστε 5 και 5. α) Να γράψετε το διάνυσμα ως γραμμικό

Διαβάστε περισσότερα

ΠΡΩΤΟ ΘΕΜΑ ΕΞΕΤΑΣΕΩΝ

ΠΡΩΤΟ ΘΕΜΑ ΕΞΕΤΑΣΕΩΝ ΠΡΩΤΟ ΘΕΜΑ ΕΞΕΤΑΣΕΩΝ 1. Α. Έστω x, y και x, y δύο διανύσματα του καρτεσιανού επιπέδου Οxy. i. Να εκφράσετε (χωρίς απόδειξη) το εσωτερικό γινόμενο των διανυσμάτων και συναρτήσει των συντεταγμένων τους.

Διαβάστε περισσότερα

Θέµατα Εξετάσεων Β Λυκείου Μαθηµατικά Θετικής και Τεχνολογικής Κατεύθυνσης 1999-2004

Θέµατα Εξετάσεων Β Λυκείου Μαθηµατικά Θετικής και Τεχνολογικής Κατεύθυνσης 1999-2004 Θέµατα Εξετάσεων Β Λυκείου Μαθηµατικά Θετικής και Τεχνολογικής Κατεύθυνσης 1999-004 Περιεχόµενα 1 Θέµατα 1999.......................................... 3 Θέµατα 000..........................................

Διαβάστε περισσότερα

Τάξη B. Μάθημα: Η Θεωρία σε Ερωτήσεις. Επαναληπτικά Θέματα. Επαναληπτικά Διαγωνίσματα. Επιμέλεια: Κώστας Κουτσοβασίλης. α Ε

Τάξη B. Μάθημα: Η Θεωρία σε Ερωτήσεις. Επαναληπτικά Θέματα. Επαναληπτικά Διαγωνίσματα. Επιμέλεια: Κώστας Κουτσοβασίλης. α Ε Ν β K C Ε -α Ο α Ε Τάξη B Μ -β Λ Μάθημα: Η Θεωρία σε Ερωτήσεις Επαναληπτικά Θέματα Επαναληπτικά Διαγωνίσματα Επιμέλεια: Διανύσματα Ερωτήσεις θεωρίας 1. Πως ορίζεται το διάνυσμα;. Τι λέγεται μηδενικό διάνυσμα;

Διαβάστε περισσότερα

Γενικό Ενιαίο Λύκειο Μαθ. Κατ. Τάξη B

Γενικό Ενιαίο Λύκειο Μαθ. Κατ. Τάξη B 151 Θέματα εξετάσεων περιόδου Μαΐου - Ιουνίου στα Μαθηματικά Κατεύθυνσης Τάξη - B Λυκείου 15 Α. Αν α, β, γ ακέραιοι ώστε α/β και α/γ, να δείξετε ότι α/(β + γ). Μονάδες 13 Β. α. Δώστε τον ορισμό της παραβολής.

Διαβάστε περισσότερα

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΤΗΣ Β ΛΥΚΕΙΟΥ

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΤΗΣ Β ΛΥΚΕΙΟΥ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΤΗΣ Β ΛΥΚΕΙΟΥ Διανύσματα Πολλαπλασιασμός αριθμού με διάνυσμα ο Θέμα _8603 Δίνεται τρίγωνο ΑΒΓ και σημεία Δ και Ε του επιπέδου τέτοια, ώστε 5 και

Διαβάστε περισσότερα

1,y 1) είναι η C : xx yy 0.

1,y 1) είναι η C : xx yy 0. ΘΕΜΑ Α ΔΕΙΓΜΑΤΑ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΙΟΥ-ΙΟΥΝΙΟΥ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ο δείγμα Α. Αν α, β δύο διανύσματα του επιπέδου με συντελεστές διεύθυνσης λ και λ αντίστοιχα, να αποδείξετε ότι α β λ λ.

Διαβάστε περισσότερα

Επαναληπτικά συνδυαστικα θέµατα

Επαναληπτικά συνδυαστικα θέµατα Επαναληπτικά συνδυαστικα θέµατα A. Αν α, β i. αβ Θέµα ο µη µηδενικά διανύσµατα και ισχύει α+ β + α β =, τότε να δείξετε ότι: και ii. Αν α β τότε ισχύει α + β =. B. Να βρεθούν οι τιµές του λ ώστε η εξίσωση

Διαβάστε περισσότερα

Επαναληπτικά Θέµατα Εξετάσεων

Επαναληπτικά Θέµατα Εξετάσεων Επαναληπτικά Θέµατα Εξετάσεων Καθηγητές : Νικόλαος Κατσίπης 25 Απριλίου 2014 Στόχος του παρόντος ϕυλλαδίου είναι να αποτελέσει µια αφορµή για επανάληψη πριν τις εξετάσεις. Σας ευχόµαστε καλό διάβασµα και...

Διαβάστε περισσότερα

Επιμέλεια: Σακαρίκος Ευάγγελος 108 Θέματα - 24/1/2015

Επιμέλεια: Σακαρίκος Ευάγγελος 108 Θέματα - 24/1/2015 Τράπεζα Θεμάτων Β Λυκείου Μαθηματικά Προσανατολισμού Επιμέλεια: Σακαρίκος Ευάγγελος 08 Θέματα - 4//05 Τράπεζα Θεμάτων Β Λυκείου Μαθηματικά Προσανατολισμού Τράπεζα Θεμάτων Β Λυκείου Μαθηματικά Προσαν. Κεφάλαιο

Διαβάστε περισσότερα

= π 3 και a = 2, β =2 2. a, β. α) Να βρείτε το εσωτερικό γινόμενο a β. (Μονάδες 8)

= π 3 και a = 2, β =2 2. a, β. α) Να βρείτε το εσωτερικό γινόμενο a β. (Μονάδες 8) ΘΕΜΑ Δίνονται τα διανύσματα a και β με a, β = π 3 και a =, β =. α) Να βρείτε το εσωτερικό γινόμενο a β. β) Αν τα διανύσματα a + β και κ a + β είναι κάθετα να βρείτε την τιμή του κ. (Μονάδες 10) γ) Να βρείτε

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2013 ÔÑÉÐÔÕ Ï

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2013 ÔÑÉÐÔÕ Ï ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 3 Ε_3.Μλ3ΘΤ(ε) ΤΑΞΗ: ΚΑΤΕΥΘΥΝΣΗ: ΜΑΘΗΜΑ: ΘΕΜΑ Α Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ

Διαβάστε περισσότερα

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ Β ΚΑΤΕΥΘΥΝΣΗ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΕΦΑΛΑ ΔΙΑΝΥΣΜΑΤΑ. = π 3 και a = 2, β =2 2. a, β AΓ =(2,-8). α) Να βρείτε τις συντεταγμένες του διανύσματος

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ Β ΚΑΤΕΥΘΥΝΣΗ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΕΦΑΛΑ ΔΙΑΝΥΣΜΑΤΑ. = π 3 και a = 2, β =2 2. a, β AΓ =(2,-8). α) Να βρείτε τις συντεταγμένες του διανύσματος ΔΙΑΝΥΣΜΑΤΑ 8556 ΘΕΜΑ Δίνονται τα διανύσματα a και β με a, β = π 3 και a =, β =.. α) Να βρείτε το εσωτερικό γινόμενο a β. β) Αν τα διανύσματα a + β και κ a + β είναι κάθετα να βρείτε την τιμή του κ. (Μονάδες

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2015 Β ΦΑΣΗ Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ / ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΕΚΦΩΝΗΣΕΙΣ ÏÅÖÅ. και ( 2 2)

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2015 Β ΦΑΣΗ Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ / ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΕΚΦΩΝΗΣΕΙΣ ÏÅÖÅ. και ( 2 2) ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 05 Β ΦΑΣΗ Ε_.ΒΜλΘ(ε) ΤΑΞΗ: ΜΑΘΗΜΑ: ΘΕΜΑ A Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ / ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Ηµεροµηνία: Κυριακή

Διαβάστε περισσότερα

και 2, 2 2 είναι κάθετα να βρείτε την τιμή του κ. γ) Αν στο τρίγωνο ΑΒΓ επιπλέον ισχύει Α(3,1), να βρείτε τις συντεταγμένες των κορυφών του Β και Γ.

και 2, 2 2 είναι κάθετα να βρείτε την τιμή του κ. γ) Αν στο τρίγωνο ΑΒΓ επιπλέον ισχύει Α(3,1), να βρείτε τις συντεταγμένες των κορυφών του Β και Γ. Β ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ (ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ) 8556 ΘΕΜΑ Δίνονται τα διανύσματα και με, και, 3 α) Να βρείτε το εσωτερικό γινόμενο β) Αν τα διανύσματα γ) Να βρείτε το μέτρο του διανύσματος 8558 ΘΕΜΑ

Διαβάστε περισσότερα

ΔΙΑΝΥΣΜΑΤΑ. (Μονάδες 8) (Μονάδες 10) (Μονάδες 7) ΘΕΜΑ 2. AM, όπου ΑΜ είναι η διάμεσος. (Μονάδες 7)

ΔΙΑΝΥΣΜΑΤΑ. (Μονάδες 8) (Μονάδες 10) (Μονάδες 7) ΘΕΜΑ 2. AM, όπου ΑΜ είναι η διάμεσος. (Μονάδες 7) ΔΙΑΝΥΣΜΑΤΑ ΘΕΜΑ Άσκηση Δίνονται τα διανύσματα a και με a, = 3 και a =, =. α) Να βρείτε το εσωτερικό γινόμενο a. β) Αν τα διανύσματα a + και κ a + είναι κάθετα να βρείτε την τιμή του κ. γ) Να βρείτε το

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2012. Ηµεροµηνία: Κυριακή 1 Απριλίου 2012 ΕΚΦΩΝΗΣΕΙΣ

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2012. Ηµεροµηνία: Κυριακή 1 Απριλίου 2012 ΕΚΦΩΝΗΣΕΙΣ ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 0 Ε_3.ΜλΑ(ε) ΤΑΞΗ: ΜΑΘΗΜΑ: ΘΕΜΑ Α A.. Α.. Α.3. ΘΕΜΑ Β Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΑΛΓΕΒΡΑ Ηµεροµηνία: Κυριακή Απριλίου

Διαβάστε περισσότερα

ΦΥΛΛΑ ΙΑ ΣΗΜΕΙΩΣΕΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ

ΦΥΛΛΑ ΙΑ ΣΗΜΕΙΩΣΕΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΦΥΛΛΑ ΙΑ ΣΗΜΕΙΩΣΕΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΦΥΛΛΑ ΙΟ ΑΣΚΗΣΕΩΝ 1 Θέµα: Τα διανύσµατα ❶ ❷ ❸ ❹ ❺ Η έννοια του διανύσµατος Πρόσθεση και αφαίρεση διανυσµάτων Πολλαπλασιασµός αριθµού µε διάνυσµα Συντεταγµένες

Διαβάστε περισσότερα

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΤΗΣ Β ΛΥΚΕΙΟΥ

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΤΗΣ Β ΛΥΚΕΙΟΥ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΤΗΣ Β ΛΥΚΕΙΟΥ Διανύσματα Πολλαπλασιασμός αριθμού με διάνυσμα ο Θέμα _8603 Δίνεται τρίγωνο ΑΒΓ και σημεία Δ και Ε του επιπέδου τέτοια, ώστε 5 και

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Β ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ 2002

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Β ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ 2002 ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Β ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ 00 ΘΕΜΑ o Α. Τι ονοµάζουµε εσωτερικό γινόµενο δύο διανυσµάτων α, β. Μονάδες 4 Β. Να αποδείξετε ότι το εσωτερικό γινόµενο δύο διανυσµάτων

Διαβάστε περισσότερα

Επαναληπτικά Θέµατα Εξετάσεων

Επαναληπτικά Θέµατα Εξετάσεων Επαναληπτικά Θέµατα Εξετάσεων Καθηγητής : Νικόλαος. Κατσίπης 19 Απριλίου 2013 Στόχος του παρόντος ϕυλλαδίου είναι να αποτελέσει µια αφορµή για επανάληψη πριν τις εξετάσεις. Σας εύχοµαι καλό διάβασµα και...

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3 Ο. Ι) ΚΥΚΛΟΣ 1. Να βρεθεί η εξίσωση του κύκλου που έχει κέντρο το O(0,0) και ι) διέρχεται από το Α( 4, 3) και ιι) εφάπτεται στην 4x 3y+10=0

ΚΕΦΑΛΑΙΟ 3 Ο. Ι) ΚΥΚΛΟΣ 1. Να βρεθεί η εξίσωση του κύκλου που έχει κέντρο το O(0,0) και ι) διέρχεται από το Α( 4, 3) και ιι) εφάπτεται στην 4x 3y+10=0 ΚΕΦΑΛΑΙΟ 3 Ο Ι) ΚΥΚΛΟΣ 1. Να βρεθεί η εξίσωση του κύκλου που έχει κέντρο το O(0,0) και ι) διέρχεται από το Α( 4, 3) και ιι) εφάπτεται στην 4x 3y+10=0 2. Να βρεθεί η εξίσωση της εφαπτομένης του κύκλου x

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ 1 ο Δίνεται η ευθεία (ε) με εξίσωση: 2x y1 0 καθώς και το σημείο Μ(3,0). α. Να βρείτε την εξίσωση μιας ευθείας (η) που περνά από το Μ και είναι κάθετη στην ευθεία (ε). β. Να

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΙΑΓΩΝΙΣΜΑ ΘΕΜΑ 1 ο Α) Συµπληρώστε τα κενά στις παρακάτω προτάσεις: 1) Ο κύκλος µε κέντρο Κ(α, β) και ακτίνα ρ > έχει εξίσωση... ) Η εξίσωση του κύκλου µε κέντρο στην αρχή

Διαβάστε περισσότερα

Επαναληπτικό Διαγώνισμα Μαθηματικών Κατεύθυνσης Β Λυκείου

Επαναληπτικό Διαγώνισμα Μαθηματικών Κατεύθυνσης Β Λυκείου Επαναληπτικό Διαγώνισμα Μαθηματικών Κατεύθυνσης Β Λυκείου Θέμα 1 Α. Να αποδείξετε ότι αν α,β τότε α //β α λβ, λ. είναι δύο διανύσματα, με β 0, Β. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν, γράφοντας

Διαβάστε περισσότερα

Θέµατα Μαθηµατικών Θετικής & Τεχν. Κατεύθυνσης Β Λυκείου 2000

Θέµατα Μαθηµατικών Θετικής & Τεχν. Κατεύθυνσης Β Λυκείου 2000 Θέµατα Μαθηµατικών Θετικής & Τεχν. Κατεύθυνσης Β Λυκείου 000 Ζήτηµα ο Α.. Να γράψετε την εξίσωση του κύκλου που έχει κέντρο Κ(x 0,y 0 ) και ακτίνα ρ. (Μονάδες ) Α.. Πότε η εξίσωση x + y + Ax + By + Γ 0

Διαβάστε περισσότερα

ΕΥΘΕΙΑ. Κεφάλαιο 2ο: Ερωτήσεις του τύπου «Σωστό-Λάθος»

ΕΥΘΕΙΑ. Κεφάλαιο 2ο: Ερωτήσεις του τύπου «Σωστό-Λάθος» Κεφάλαιο ο: ΕΥΘΕΙΑ Ερωτήσεις του τύπου «Σωστό-Λάθος». * Συντελεστής διεύθυνσης µιας ευθείας (ε) είναι η εφαπτοµένη της γωνίας που σχηµατίζει η ευθεία (ε) µε τον άξονα x x. Σ Λ. * Ο συντελεστής διεύθυνσης

Διαβάστε περισσότερα

2.2 ΓΕΝΙΚΗ ΜΟΡΦΗ ΕΞΙΣΩΣΗΣ ΕΥΘΕΙΑΣ

2.2 ΓΕΝΙΚΗ ΜΟΡΦΗ ΕΞΙΣΩΣΗΣ ΕΥΘΕΙΑΣ 63 ΓΕΝΙΚΗ ΜΟΡΦΗ ΕΞΙΣΩΣΗΣ ΕΥΘΕΙΑΣ Η Εξίσωση Αx + Βy + Γ = 0, με Α 0 ή Β 0 Έστω ε μια ευθεία στο καρτεσιανό επίπεδο Αν η ευθεία ε τέμνει τον άξονα yy στο σημείο Σ (, 0 β ) και έχει συντελεστή διεύθυνσης

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 1Ο : ΔΙΑΝΥΣΜΑΤΑ ΒΑΣΙΚΗ ΜΕΘΟΔΟΛΟΓΙΑ Διάνυσμα Θέσης ενός σημείου Αν θεωρήσουμε ένα οποιοδήποτε σημείο Ο του επιπέδου ως σημείο αναφοράς (ακόμα

Διαβάστε περισσότερα

Ο κύκλος με κέντρο την αρχή των αξόνων και ακτίνα ρ έχει εξίσωση: B,- 2 A 2

Ο κύκλος με κέντρο την αρχή των αξόνων και ακτίνα ρ έχει εξίσωση: B,- 2 A 2 3 0 ΛΥΚΕΙΟ ΚΕΡΑΤΣΙΝΙΟΥ Λ. ΒΟΥΛΓΑΡΗ ΜΑΘΗΜΑΤΙΚΟΣ ΚΥΚΛΟΣ Κύκλος είναι ο γεωμετρικός τόπος των σημείων του επιπέδου που απέχουν σταθερή απόσταση από ένα σταθερό σημείο του επιπέδου αυτού. Το σταθερό σημείο

Διαβάστε περισσότερα

Επαναληπτικό Διαγώνισμα Μαθηματικών Θετικής-Τεχνολογικής Κατεύθυνσης Β Λυκείου

Επαναληπτικό Διαγώνισμα Μαθηματικών Θετικής-Τεχνολογικής Κατεύθυνσης Β Λυκείου Επαναληπτικό Διαγώνισμα Μαθηματικών Θετικής-Τεχνολογικής Κατεύθυνσης Β Λυκείου Θέμα A. Να αποδείξετε ότι η εξίσωση της εφαπτομένης του κύκλου στο σημείο του Α, ) είναι 8 μονάδες) Β. Να δώσετε τον ορισμό

Διαβάστε περισσότερα

i. εστίες Ε' (-4, 0), Ε(4, 0) και η απόσταση των κορυφών είναι 5, ii. εστίες Ε'(0, -10), Ε(0, 10) και η απόσταση των κορυφών είναι 8.

i. εστίες Ε' (-4, 0), Ε(4, 0) και η απόσταση των κορυφών είναι 5, ii. εστίες Ε'(0, -10), Ε(0, 10) και η απόσταση των κορυφών είναι 8. ΥΠΕΡΒΟΛΗ ΕΞΙΣΩΣΗ ΚΑΙ ΣΤΟΙΧΕΙΑ ΥΠΕΡΒΟΛΗΣ 1) Να βρεθεί η εξίσωση της υπερβολής αν έχει: i) Εστιακή απόσταση γ=0 και άξονα β=16, 5 ii) Άξονα α=16 και εκκεντρότητα ε=. 4 ) Να βρείτε την εξίσωση της υπερβολής,

Διαβάστε περισσότερα

ΕΞΕΤΑΣΕΙΣ ΠΡΟΣΟΜΟΙΩΣΗΣ 2002 ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

ΕΞΕΤΑΣΕΙΣ ΠΡΟΣΟΜΟΙΩΣΗΣ 2002 ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΕΞΕΤΑΣΕΙΣ ΠΡΟΣΟΜΟΙΩΣΗΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑ ο Α) Έστω η συνάρτηση f, η οποία είναι συνεχής στο διάστημα [α,β] με f(α) f(β). Να αποδείξετε ότι για κάθε αριθμό η μεταξύ των f(α) και

Διαβάστε περισσότερα

AB. Αν το διάνυσμα AB έχει μέτρο 1, τότε λέγεται

AB. Αν το διάνυσμα AB έχει μέτρο 1, τότε λέγεται ΔΙΑΝΥΣΜΑΤΑ Στη Γεωμετρία το διάνυσμα ορίζεται ως ένα προσανατολισμένο ευθύγραμμο τμήμα, δηλαδή ως ένα ευθύγραμμο τμήμα του οποίου τα άκρα θεωρούνται διατεταγμένα Αν η αρχή και το πέρας ενός διανύσματος

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 1 ο : ΔΙΑΝΥΣΜΑΤΑ 1 ΜΑΘΗΜΑ 1 ο +2 ο ΕΝΝΟΙΑ ΔΙΑΝΥΣΜΑΤΟΣ Διάνυσμα ορίζεται ένα προσανατολισμένο ευθύγραμμο τμήμα, δηλαδή ένα ευθύγραμμο τμήμα

Διαβάστε περισσότερα

ΣΧΕ ΙΑ ΚΡΙΤΗΡΙΩΝ ΑΞΙΟΛΟΓΗΣΗΣ ΤΟΥ ΜΑΘΗΤΗ. ( Κεφάλαιο 4ο : Κωνικές τοµ ές)

ΣΧΕ ΙΑ ΚΡΙΤΗΡΙΩΝ ΑΞΙΟΛΟΓΗΣΗΣ ΤΟΥ ΜΑΘΗΤΗ. ( Κεφάλαιο 4ο : Κωνικές τοµ ές) ΣΧΕ ΙΑ ΚΡΙΤΗΡΙΩΝ ΑΞΙΟΛΟΓΗΣΗΣ ΤΟΥ ΜΑΘΗΤΗ ( Κεφάλαιο 4ο : Κωνικές τοµ ές) Τα κριτήρια αξιολόγησης που ακολουθούν είναι ενδεικτικά. Ο καθηγητής έχει τη δυνατότητα διαµόρφωσής τους σε ενιαία θέµατα, επιλογής

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 1 Ο ΔΙΑΝΥΣΜΑΤΑ

ΚΕΦΑΛΑΙΟ 1 Ο ΔΙΑΝΥΣΜΑΤΑ ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΤΗΣ ΤΡΑΠΕΖΑΣ ΘΕΜΑΤΩΝ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΟΥ Β ΛΥΚΕΙΟΥ ΣΧΟΛΙΚΟ ΕΤΟΣ 014-015 ΚΕΦΑΛΑΙΟ 1 Ο ΔΙΑΝΥΣΜΑΤΑ 1. ΘΕΜΑ ΚΩΔΙΚΟΣ_18556 Δίνονται τα διανύσματα α και β με ^, και,. α Να

Διαβάστε περισσότερα

Κωνικές τομές. Προκύπτουν σαν τομές ορθού κυκλικού κώνου με επίπεδο που δεν διέρχεται από την κορυφή του

Κωνικές τομές. Προκύπτουν σαν τομές ορθού κυκλικού κώνου με επίπεδο που δεν διέρχεται από την κορυφή του Κωνικές τομές Προκύπτουν σαν τομές ορθού κυκλικού κώνου με επίπεδο που δεν διέρχεται από την κορυφή του ΚΥΚΛΟΣ το επίπεδο είναι κάθετο στον άξονα του κώνου ΠΑΡΑΒΟΛΗ το επίπεδο είναι παράλληλο σε μια γενέτειρα

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 2Ο : Η ΕΥΘΕΙΑ ΣΤΟ ΕΠΙΠΕΔΟ ΒΑΣΙΚΗ ΜΕΘΟΔΟΛΟΓΙΑ

ΚΕΦΑΛΑΙΟ 2Ο : Η ΕΥΘΕΙΑ ΣΤΟ ΕΠΙΠΕΔΟ ΒΑΣΙΚΗ ΜΕΘΟΔΟΛΟΓΙΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ Ο : Η ΕΥΘΕΙΑ ΣΤΟ ΕΠΙΠΕΔΟ ΒΑΣΙΚΗ ΜΕΘΟΔΟΛΟΓΙΑ. Ένα σημείο Μ(x,y) ανήκει σε μια γραμμή C αν και μόνο αν επαληθεύει την εξίσωσή της. Π.χ. :

Διαβάστε περισσότερα

ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ ΚΥΚΛΟΣ ΠΑΡΑΒΟΛΗ ΕΛΛΕΙΨΗ. Εξίσωση Κέντρο Ακτίνα Εφαπτομένη στο Α( x ) (χ-χ 0

ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ ΚΥΚΛΟΣ ΠΑΡΑΒΟΛΗ ΕΛΛΕΙΨΗ. Εξίσωση Κέντρο Ακτίνα Εφαπτομένη στο Α( x ) (χ-χ 0 ΤΟΙΧΕΙΑ ΘΕΩΡΙΑ ΚΥΚΟ Εξίσωση Κέντρο Ακτίνα Εφαπτομένη στο Α( x ), y + y = r χ +ψ =ρ Κ(0,0) ρ x x y (χ-χ 0 ) +(ψ-ψ 0 ) =ρ Κ(χ 0,ψ 0 ) ρ (χ-χ 0 ) (χ -χ 0 )+(ψ-ψ 0 ) (ψ-ψ )=ρ Παρατήρηση : Η εξίσωση : χ +ψ

Διαβάστε περισσότερα

Τράπεζα Θεμάτων Διαβαθμισμένης Δυσκολίας-Μαθηματικά Ομάδας Προσανατολισμού Θετικών Σπουδών ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Β Λ Υ Κ Ε Ι Ο Υ

Τράπεζα Θεμάτων Διαβαθμισμένης Δυσκολίας-Μαθηματικά Ομάδας Προσανατολισμού Θετικών Σπουδών ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Β Λ Υ Κ Ε Ι Ο Υ Μ Α Θ Η Μ Α Τ Ι Κ Α ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Β Λ Υ Κ Ε Ι Ο Υ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΔΙΑΒΑΘΜΙΣΜΕΝΗΣ ΔΥΣΚΟΛΙΑΣ Σχολικό έτος : 04-05 Τα θέματα εμπλουτίζονται με την δημοσιοποίηση και των νέων θεμάτων

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ Φεργαδιώτης Αθανάσιος ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΤA ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ Θέμα 4 ο (16) -2- Τράπεζα θεμάτων Μαθηματικών προσανατολισμού Β Λυκείου -3- Τράπεζα θεμάτων Μαθηματικών προσανατολισμού Β

Διαβάστε περισσότερα

Χαρακτηρίστε τις παρακάτω προτάσεις ως σωστό (Σ) ή λάθος (Λ)

Χαρακτηρίστε τις παρακάτω προτάσεις ως σωστό (Σ) ή λάθος (Λ) ΕΡΩΤΗΣΕΙΣ ΑΝΤΙΚΕΙΜΕΝΙΚΟΥ ΤΥΠΟΥ ΕΥΘΕΙΑ Χαρακτηρίστε τις παρακάτω προτάσεις ως σωστό (Σ) ή λάθος (Λ) 1. Συντελεστής διεύθυνσης μιας ευθείας (ε) είναι η εφαπτομένη της γωνίας που σχηματίζει η ευθεία με τον

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ. γ)να υπολογίσετε το μέτρο του διανύσματος u. δ)αν το διάνυσμα v,

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ. γ)να υπολογίσετε το μέτρο του διανύσματος u. δ)αν το διάνυσμα v, ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 1. Δίνονται τα διανύσματα a, για τα οποία ισχύουν : 4, 5 και α)να αποδείξετε ότι 10 β)να βρείτε τη γωνία των και. 5. 8 γ)να υπολογίσετε το μέτρο του διανύσματος u. δ)αν το διάνυσμα

Διαβάστε περισσότερα

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ. Μαθηματικά Προσανατολισμού Β Γενικού Ημερησίου Λυκείου. 2 ο ΘΕΜΑ. Εκφωνήσεις Λύσεις των θεμάτων. Έκδοση 1 η (18/11/2014)

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ. Μαθηματικά Προσανατολισμού Β Γενικού Ημερησίου Λυκείου. 2 ο ΘΕΜΑ. Εκφωνήσεις Λύσεις των θεμάτων. Έκδοση 1 η (18/11/2014) ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ Μαθηματικά Προσανατολισμού Β Γενικού Ημερησίου Λυκείου ο ΘΕΜΑ Εκφωνήσεις Λύσεις των θεμάτων Έκδοση η (8//04) Θέματα ης Ομάδας ο ΘΕΜΑ Μαθηματικά Προσανατολισμού Β Λυκείου GI_V_MATHP 8556

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 1 ο ΔΙΑΝΥΣΜΑΤΑ

ΚΕΦΑΛΑΙΟ 1 ο ΔΙΑΝΥΣΜΑΤΑ taexeiolag ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΑΣΚΗΣΗ 1 uuuu uuuu uuuu Αν OA OB 3O 0 και ΚΕΦΑΛΑΙΟ 1 ο ΔΙΑΝΥΣΜΑΤΑ uuuu uuuu uuuu OA OB 1, O α Να δείξετε ότι τα σημεία Α, Β, Γ είναι συνευθειακά

Διαβάστε περισσότερα

ΚΩΝΙΚΕΣ ΤΟΜΕΣ. Κεφάλαιο 4ο: Ερωτήσεις του τύπου «Σωστό - Λάθος» k R

ΚΩΝΙΚΕΣ ΤΟΜΕΣ. Κεφάλαιο 4ο: Ερωτήσεις του τύπου «Σωστό - Λάθος» k R Κεφάλαιο 4ο: ΚΩΝΙΚΕΣ ΤΟΜΕΣ Α. ΚΥΚΛΟΣ Ερωτήσεις του τύπου «Σωστό - Λάθος» 1. * Η εξίσωση ( x x ) + ( y y ) = k, k R είναι πάντοτε εξίσωση κύκλου. o o. * Η εξίσωση x + y + Ax + By + Γ = 0 παριστάνει κύκλο

Διαβάστε περισσότερα

2 ΕΥΘΕΙΑ ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ

2 ΕΥΘΕΙΑ ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ ΕΥΘΕΙΑ ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ 1. Να βρείτε τον συντελεστή διεύθυνσης μιας ευθείας ε, που σχηματίζει με τον άξονα x x γωνία: π 3 α) ω = β) ω = γ) ω = π 3. Να βρείτε τη γωνία ω που σχηματίζει με

Διαβάστε περισσότερα

Ασκήσεις στην ευθεία. 2. Θεωρούµε την γραµµή µε εξίσωση x 2 +y 2-2x+y-5=0. Βρείτε τα σηµεία της καµπύλης, αν υπάρχουν, µε τετµηµένη -1.

Ασκήσεις στην ευθεία. 2. Θεωρούµε την γραµµή µε εξίσωση x 2 +y 2-2x+y-5=0. Βρείτε τα σηµεία της καµπύλης, αν υπάρχουν, µε τετµηµένη -1. Ασκήσεις στην ευθεία 1. Να βρείτε τα σηµεία τοµής των γραµµών µε εξισώσεις : α) 7x-11y+1=0, x+y-=0 β) y-3x-=0, x +y =4 γ) x +y =α, 3x+y+α=0. Θεωρούµε την γραµµή µε εξίσωση x +y -x+y-5=0. Βρείτε τα σηµεία

Διαβάστε περισσότερα

1 η δεκάδα θεµάτων επανάληψης

1 η δεκάδα θεµάτων επανάληψης 1 1 η δεκάδα θεµάτων επανάληψης 1. Α. Έστω α = (x 1, y 1 ) και β = (x, y ) δύο διανύσµατα Να γράψετε την αναλυτική έκφραση του εσωτερικού γινοµένου τους i Αν τα διανύσµατα δεν είναι παράλληλα προς τον

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΣΤΗΝ ΠΑΡΑΒΟΛΗ

ΑΣΚΗΣΕΙΣ ΣΤΗΝ ΠΑΡΑΒΟΛΗ ΑΣΚΗΣΕΙΣ ΣΤΗΝ ΠΑΡΑΒΟΛΗ ΕΞΙΣΩΣΗ ΠΑΡΑΒΟΛΗΣ 8. Να βρεθεί η εξίσωση της παραβολής με κορυφή το (0, 0) στις παρακάτω περιπτώσεις: α) είναι συμμετρική ως προς το θετικό ημιάξονα Οx και έχει παράμετρο p = 5 β)

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2014 ÊÏÑÕÖÁÉÏ

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2014 ÊÏÑÕÖÁÉÏ ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (ΟΕΦΕ) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 01 Ε_ΜλΘΤ(α) ΤΑΞΗ: Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ / ΚΑΤΕΥΘΥΝΣΗΣ Ηµεροµηνία: Κυριακή Μαΐου 01 ιάρκεια Εξέτασης:

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΑΞΙΟΛΟΓΗΣΗΣ

ΕΡΩΤΗΣΕΙΣ ΑΞΙΟΛΟΓΗΣΗΣ ΙΑΝΥΣΜΑΤΑ ΕΡΩΤΗΣΕΙΣ ΑΞΙΟΛΟΓΗΣΗΣ ΕΡΩΤΗΣΕΙΣ ΑΞΙΟΛΟΓΗΣΗΣ. Να σηµειώσετε το σωστό (Σ) ή το λάθος (Λ) στους παρακάτω ισχυρισµούς:. Αν ΑΒ + ΒΓ = ΑΓ, τότε τα σηµεία Α, Β, Γ είναι συνευθειακά.. Αν α = β, τότε

Διαβάστε περισσότερα

Μαθηματικά Θετικής Τεχνολογικής Κατεύθυνσης Β Λυκείου

Μαθηματικά Θετικής Τεχνολογικής Κατεύθυνσης Β Λυκείου Μαθηματικά Θετικής Τεχνολογικής Κατεύθυνσης Β Λυκείου Κεφάλαιο ο : Κωνικές Τομές Επιμέλεια : Παλαιολόγου Παύλος Μαθηματικός ΚΕΦΑΛΑΙΟ Ο : ΚΩΝΙΚΕΣ ΤΟΜΕΣ. Ο ΚΥΚΛΟΣ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ Ένας κύκλος ορίζεται αν

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2013 ÅÐÉËÏÃÇ

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2013 ÅÐÉËÏÃÇ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 0 Ε_ΜλΘΤ(α) ΤΑΞΗ: ΜΑΘΗΜΑ: ΘΕΜΑ A Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ / ΚΑΤΕΥΘΥΝΣΗΣ Ηµεροµηνία: Κυριακή Απριλίου 0 ιάρκεια Εξέτασης: ώρες ΑΠΑΝΤΗΣΕΙΣ Α Θεωρία Σχολικό Βιβλίο (έκδοση 0) σελίδα

Διαβάστε περισσότερα

Ερωτήσεις αντιστοίχισης

Ερωτήσεις αντιστοίχισης Ερωτήσεις αντιστοίχισης 1. ** Να αντιστοιχίσετε κάθε ευθεία που η εξίσωσή της βρίσκεται στη του πίνακα (Ι) µε τον συντελεστή της που βρίσκεται στη, συµπληρώνοντας τον πίνακα (ΙΙ) (α, β 0). 1. ε 1 : y =

Διαβάστε περισσότερα

32 ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ Β ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ 1 Ο Α1) Έστω το διάνυσμα a=

32 ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ Β ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ 1 Ο Α1) Έστω το διάνυσμα a= 32 ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ Β ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ 1 Ο Α1) Έστω το διάνυσμα a= ( xy, ). Να ορίσετε τις έννοιες α)μέτρο του διανύσματος και β) συντελεστής διεύθυνσης του διανύσματος Α2) Να γράψετε τους τύπους

Διαβάστε περισσότερα

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΤΗΣ Β ΛΥΚΕΙΟΥ

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΤΗΣ Β ΛΥΚΕΙΟΥ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΤΗΣ Β ΛΥΚΕΙΟΥ Για τις λύσεις συνεργάστηκαν οι μαθηματικοί: Βλαχόπουλος Αποστόλης Δικαιοσυνόπουλος Νίκος Κολλινιάτη Γιωργία Μάκος Σπύρος Μαρωνίτη

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ Φεργαδιώτης Αθανάσιος ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΤA ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ Θέμα 2 ο (39) -2- Τράπεζα θεμάτων Μαθηματικών προσανατολισμού Β Λυκείου -3- Τράπεζα θεμάτων Μαθηματικών προσανατολισμού Β

Διαβάστε περισσότερα

3 ΚΩΝΙΚΕΣ ΤΟΜΕΣ ΕΡΩΤΗΣΕΙΣ ΑΞΙΟΛΟΓΗΣΗΣ

3 ΚΩΝΙΚΕΣ ΤΟΜΕΣ ΕΡΩΤΗΣΕΙΣ ΑΞΙΟΛΟΓΗΣΗΣ ΚΩΝΙΚΕ ΤΟΜΕ ΕΡΩΤΗΕΙ ΑΞΙΟΟΓΗΗ ΕΡΩΤΗΕΙ ΑΞΙΟΟΓΗΗ 1. Να σημειώσετε το σωστό () ή το λάθος () στους παρακάτω ισχυρισμούς: 1. Η εξίσωση + = α (α > 0) παριστάνει κύκλο.. Η εξίσωση + + κ + λ = 0 µε κ, λ 0 παριστάνει

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2015 Β ΦΑΣΗ Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ / ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΑΠΑΝΤΗΣΕΙΣ ÏÅÖÅ

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2015 Β ΦΑΣΗ Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ / ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΑΠΑΝΤΗΣΕΙΣ ÏÅÖÅ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 05 Ε_.ΒΜλΘ(α) ΤΑΞΗ: ΜΑΘΗΜΑ: ΘΕΜΑ A Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ / ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Ηµεροµηνία: Κυριακή 6 Απριλίου 05 ιάρκεια Εξέτασης: ώρες ΑΠΑΝΤΗΣΕΙΣ Α. Θεωρία σχολικού βιβλίου, σελίδα.

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 2 ΕΥΘΕΙΑ ΑΣΚΗΣΕΙΣ Πηγή: KEE

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 2 ΕΥΘΕΙΑ ΑΣΚΗΣΕΙΣ Πηγή: KEE 1. Να βρείτε τον συντελεστή διεύθυνσης µιας ευθείας ε, που σχηµατίζει µε τον άξονα x x γωνία: α) ω = 3 π β) ω = π 3 γ) ω = π. Να βρείτε τη γωνία ω που σχηµατίζει µε τον άξονα x x µια ευθεία ε, η οποία

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΤΗΣ Β ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΤΗΣ Β ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΤΗΣ Β ΛΥΚΕΙΟΥ Διανύσματα ΑΣΚΗΣΕΙΣ ΣΤΑ ΔΙΑΝΥΣΜΑΤΑ ΠΡΟΣΘΕΣΗ ΚΑΙ ΑΦΑΙΡΕΣΗ ΔΙΑΝΥΣΜΑΤΩΝ 1. Δίνεται τετράγωνο ΑΒΓΔ.Σε καθεμία από τις παρακάτω περιπτώσεις να βρείτε το άθροισμα.

Διαβάστε περισσότερα

1.4 ΣΥΝΤΕΤΑΓΜΕΝΕΣ ΣΤΟ ΕΠΙΠΕΔΟ

1.4 ΣΥΝΤΕΤΑΓΜΕΝΕΣ ΣΤΟ ΕΠΙΠΕΔΟ 34 4 ΣΥΝΤΕΤΑΓΜΕΝΕΣ ΣΤΟ ΕΠΙΠΕΔΟ Άξονας Πάνω σε μια ευθεία επιλέγουμε δύο σημεία Ο και Ι, έτσι ώστε το διάνυσμα OI να έχει μέτρο και να βρίσκεται στην ημιευθεία O Λέμε τότε ότι έχουμε έναν άξονα με αρχή

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΣΤΑ ΔΙΑΝΥΣΜΑΤΑ ΕΣΩΤΕΡΙΚΟ ΓΙΝΟΜΕΝΟ

ΑΣΚΗΣΕΙΣ ΣΤΑ ΔΙΑΝΥΣΜΑΤΑ ΕΣΩΤΕΡΙΚΟ ΓΙΝΟΜΕΝΟ ΑΣΚΗΣΕΙΣ ΣΤΑ ΔΙΑΝΥΣΜΑΤΑ ΕΣΩΤΕΡΙΚΟ ΓΙΝΟΜΕΝΟ ΟΡΙΣΜΟΣ ΚΑΙ ΙΔΙΟΤΗΤΕΣ ΕΣΩΤΕΡΙΚΟΥ ΓΙΝΟΜΕΝΟΥ 1. Να υπολογιστεί το εσωτερικό γινόμενο a δύο διανυσμάτων a και αν: ι) a a 5, 7,(, ) 5, ιι) a 5,,( a, ). 6 6. Το διάνυσμα

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΨΗ ΔΙΑΝΥΣΜΑΤΑ

ΕΠΑΝΑΛΗΨΗ ΔΙΑΝΥΣΜΑΤΑ ΕΠΑΝΑΛΗΨΗ ΔΙΑΝΥΣΜΑΤΑ Στο ορθογώνιο σύστημα αξόνων Οxy θεωρούμε τα σημεία Α, Β, τα οποία έχουν τετμημένες τις ρίζες της εξίσωσης x - (4λ+6μ)x - 005 = 0 και τεταγμένες τις ρίζες της εξίσωσης y + ( 5λ + μ)y

Διαβάστε περισσότερα

Ερωτήσεις σωστού-λάθους

Ερωτήσεις σωστού-λάθους ΜΑΘΗΜΑΤΙΚΑ Θετικής & Τεχνολογικής Κατεύθυνσης Α ΜΕΡΟΣ (ΑΛΓΕΒΡΑ) ΚΕΦ ο : Μιγαδικοί Αριθμοί Φυλλάδιο ο Κεφ..: Η Έννοια του Μιγαδικού Αριθμού Κεφ..: Πράξεις στο Σύνολο C των Mιγαδικών Κεφ..: Πράξεις στο Σύνολο

Διαβάστε περισσότερα

ΣΧΕ ΙΑ ΚΡΙΤΗΡΙΩΝ ΑΞΙΟΛΟΓΗΣΗΣ ΤΟΥ ΜΑΘΗΤΗ. ( Κεφάλαιο 4ο : Θεωρία Αριθµ ών)

ΣΧΕ ΙΑ ΚΡΙΤΗΡΙΩΝ ΑΞΙΟΛΟΓΗΣΗΣ ΤΟΥ ΜΑΘΗΤΗ. ( Κεφάλαιο 4ο : Θεωρία Αριθµ ών) ΣΧΕ ΙΑ ΚΡΙΤΗΡΙΩΝ ΑΞΙΟΛΟΓΗΣΗΣ ΤΟΥ ΜΑΘΗΤΗ ( Κεφάλαιο 4ο : Θεωρία Αριθµ ών) Τα κριτήρια αξιολόγησης που ακολουθούν είναι ενδεικτικά. Ο καθηγητής έχει τη δυνατότητα διαµόρφωσής τους σε ενιαία θέµατα, επιλογής

Διαβάστε περισσότερα

ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γιώργος Πρέσβης ΜΑΘΗΜΑΤΙΚΑ B ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΚΕΦΑΛΑΙΟ Ο : ΕΞΙΣΩΣΗ ΕΥΘΕΙΑΣ ΕΠΑΝΑΛΗΨΗ Φροντιστήρια Φροντιστήρια ΜΕΘΟΔΟΛΟΓΙΑ ΑΣΚΗΣΕΩΝ 1η Κατηγορία : Εξίσωση Γραμμής 1.1 Να εξετάσετε

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΚΕΦΑΛΑΙΟ

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΚΕΦΑΛΑΙΟ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΚΕΦΑΛΑΙΟ ο: ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΘΕΜΑ Α Άσκηση, μιγαδικοί αριθμοί να αποδείξετε ότι: Αν = Έχουμε: = ( ) ( ) ( ) ( ) = = =. Το τελευταίο ισχύει, άρα ισχύει και η ισοδύναμη αρχική σχέση.

Διαβάστε περισσότερα

Μαθηµατικά Θετικής & Τεχν/κής Κατεύθυνσης Β Λυκείου 2001

Μαθηµατικά Θετικής & Τεχν/κής Κατεύθυνσης Β Λυκείου 2001 Μαθηµατικά Θετικής & Τεχν/κής Κατεύθυνσης Β Λυκείου 00 Ζήτηµα ο Α.. Έστω α, β, γ ακέραιοι αριθµοί. Να δείξετε ότι ισχύουν οι επόµενες ιδιότητες: α. Αν α β, τότε α λβ για κάθε ακέραιο λ. β. Αν α β και α

Διαβάστε περισσότερα

1. * Να βρείτε τον συντελεστή διεύθυνσης µιας ευθείας ε, που σχηµατίζει µε τον άξονα x x γωνία: 2π 3

1. * Να βρείτε τον συντελεστή διεύθυνσης µιας ευθείας ε, που σχηµατίζει µε τον άξονα x x γωνία: 2π 3 Ερωτήσεις ανάπτυξης 1. * Να βρείτε τον συντελεστή διεύθυνσης µιας ευθείας ε, που σχηµατίζει µε τον άξονα x x γωνία: α) ω = 3 π β) ω = 2π 3 γ) ω = π 2. * Να βρείτε τη γωνία ω που σχηµατίζει µε τον άξονα

Διαβάστε περισσότερα

ΙΑΝΥΣΜΑΤΑ Ερωτήσεις τύπου ΣΩΣΤΟ ΛΑΘΟΣ. 1.Αν ΑΓ+ΓΒ=ΒΓ, τότε τα σηµεία Α, Β, Γ είναι συνευθειακά. Σ Λ. 2. Αν α=β τότε α=β. Σ Λ. 3.

ΙΑΝΥΣΜΑΤΑ Ερωτήσεις τύπου ΣΩΣΤΟ ΛΑΘΟΣ. 1.Αν ΑΓ+ΓΒ=ΒΓ, τότε τα σηµεία Α, Β, Γ είναι συνευθειακά. Σ Λ. 2. Αν α=β τότε α=β. Σ Λ. 3. ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ - 1 - ΕΡΩΤΗΣΕΙΣ ΑΝΤΙΚΕΙΜΕΝΙΚΟΥ ΤΥΠΟΥ ΙΑΝΥΣΜΑΤΑ Ερωτήσεις τύπου ΣΩΣΤΟ ΛΑΘΟΣ 1.Αν ΑΓ+ΓΒ=ΒΓ, τότε τα σηµεία Α, Β, Γ είναι συνευθειακά.. Αν α=β τότε α=β. 3. Αν ΑΜ+ΒΜ = 0 Μ

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ - ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ. (εκπαιδευτικό υλικό Θετικής κατεύθυνσης ) ΜΕΡΟΣ Α : ΑΛΓΕΒΡΑ

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ - ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ. (εκπαιδευτικό υλικό Θετικής κατεύθυνσης ) ΜΕΡΟΣ Α : ΑΛΓΕΒΡΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ - ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ (εκπαιδευτικό υλικό Θετικής κατεύθυνσης 999-000) ΜΕΡΟΣ Α : ΑΛΓΕΒΡΑ Κεφάλαιο ο: ΜΙΓΑ ΙΚΟΙ ΑΡΙΘΜΟΙ Ερωτήσεις του τύπου «Σωστό - Λάθος».

Διαβάστε περισσότερα

Β Λυκείου- Μαθηματικά Κατεύθυνσης. Μέρος Α Θεωρία. (Ορισμοί, θεωρήματα, αποδείξεις, παρατηρήσεις)

Β Λυκείου- Μαθηματικά Κατεύθυνσης. Μέρος Α Θεωρία. (Ορισμοί, θεωρήματα, αποδείξεις, παρατηρήσεις) 1 Μέρος Α Θεωρία (Ορισμοί, θεωρήματα, αποδείξεις, παρατηρήσεις) Η έννοια του διανύσματος Ορισμός του Διανύσματος Διάνυσμα ονομάζεται ένα προσανατολισμένο ευθύγραμμο τμήμα, δηλαδή ένα ευθύγραμμο τμήμα του

Διαβάστε περισσότερα

2 Η ΕΥΘΕΙΑ ΣΤΟ ΕΠΙΠΕΔΟ. Εισαγωγή

2 Η ΕΥΘΕΙΑ ΣΤΟ ΕΠΙΠΕΔΟ. Εισαγωγή Η ΕΥΘΕΙΑ ΣΤΟ ΕΠΙΠΕΔΟ Εισαγωγή Η ιδέα της χρησιμοποίησης ενός συστήματος συντεταγμένων για τον προσδιορισμό της θέσης ενός σημείου πάνω σε μια επιφάνεια προέρχεται από την Γεωγραφία και ήταν γνωστή στους

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΣΤΟ ΕΜΒΑΔΟΝ ΤΡΙΓΩΝΟΥ. 1. Να βρείτε την απόσταση του σημείου Μ( ημθ, συνθ) από την ευθεία: i) ε : y = -xεφθ ii) ε : xσυνθ - yημθ = 2

ΑΣΚΗΣΕΙΣ ΣΤΟ ΕΜΒΑΔΟΝ ΤΡΙΓΩΝΟΥ. 1. Να βρείτε την απόσταση του σημείου Μ( ημθ, συνθ) από την ευθεία: i) ε : y = -xεφθ ii) ε : xσυνθ - yημθ = 2 ΑΠΟΣΤΑΣΗ ΣΗΜΕΙΟΥ ΑΠΟ ΕΥΘΕΙΑ ΑΣΚΗΣΕΙΣ ΣΤΟ ΕΜΒΑΔΟΝ ΤΡΙΓΩΝΟΥ 1. Να βρείτε την απόσταση του σημείου Μ( ημθ, συνθ) από την ευθεία: i) ε : y = -xεφθ ii) ε : xσυνθ - yημθ = 4. α) Να βρεθεί η απόσταση του σημείου

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Ο.Π. ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΥΝ ΥΑΣΤΙΚΑ ΘΕΜΑΤΑ. Γιάννης Ζαµπέλης Μαθηµατικός

ΜΑΘΗΜΑΤΙΚΑ Ο.Π. ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΥΝ ΥΑΣΤΙΚΑ ΘΕΜΑΤΑ. Γιάννης Ζαµπέλης Μαθηµατικός ΣΥΝ ΥΑΣΤΙΚΑ ΘΕΜΑΤΑ 4 5 Γιάννης Ζαµπέλης Μαθηµατικός 867 (Αναρτήθηκε 8 4 ) ίνονται τα διανύσµατα a και b µε µέτρα, 6 αντίστοιχα και ϕ [, π] a b+ x+ a b y 5= () δίνεται η εξίσωση ( ) ( ) α) Να αποδείξετε

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΛΥΜΕΝΕΣ & ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ. Επιμέλεια: Γ. Π. Βαξεβάνης (Γ. Π. Β.

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΛΥΜΕΝΕΣ & ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ. Επιμέλεια: Γ. Π. Βαξεβάνης (Γ. Π. Β. ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ Γ. Π. Β. ΦΡΟΝΤΙΣΤΗΡΙΑΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΛΥΜΕΝΕΣ & ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ Επιμέλεια: Γ. Π. Βαξεβάνης (Γ. Π. Β.) (Μαθηματικός) ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ [TΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ] (Μονάδες 13) β) Να δείξετε ότι τα διανύσματα ΔΕ και BΓ είναι παράλληλα.

ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ [TΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ] (Μονάδες 13) β) Να δείξετε ότι τα διανύσματα ΔΕ και BΓ είναι παράλληλα. ΔΙΑΝΥΣΜΑΤΑ ΘΕΜΑ Ο 863 Δίνεται τρίγωνο ΑΒΓ και σημεία Δ και Ε του επιπέδου τέτοια, ώστε: AΔ=AB+5AΓ και AΕ =5AB+AΓ α) Να γράψετε το διάνυσμα ΔΕ ως γραμμικό συνδυασμό των AB και AΓ ) Να δείξετε ότι τα διανύσματα

Διαβάστε περισσότερα

3.2 Η ΠΑΡΑΒΟΛΗ. Ορισμός Παραβολής. Εξίσωση Παραβολής

3.2 Η ΠΑΡΑΒΟΛΗ. Ορισμός Παραβολής. Εξίσωση Παραβολής 9 3 Η ΠΑΡΑΒΟΛΗ Ορισμός Παραβολής Έστω μια ευθεία δ και ένα σημείο Ε εκτός της δ Ονομάζεται παραβολή με εστία το σημείο Ε και διευθετούσα την ευθεία δ ο γεωμετρικός τόπος C των σημείων του επιπέδου τα οποία

Διαβάστε περισσότερα

1 ο Αχαρνών 197 Αγ. Νικόλαος 210.8651962 2 ο Αγγ. Σικελιανού 43 Περισσός 210.2718688. Ε. ΛΙΑΤΣΟΣ Μαθηµατικός 1

1 ο Αχαρνών 197 Αγ. Νικόλαος 210.8651962 2 ο Αγγ. Σικελιανού 43 Περισσός 210.2718688. Ε. ΛΙΑΤΣΟΣ Μαθηµατικός 1 1 ο Αχαρνών 197 Αγ Νικόλαος 10865196 ο Αγγ Σικελιανού 4 Περισσός 10718688 Ε ΛΙΑΤΣΟΣ Μαθηµατικός 1 1 Α ίνονται τα διανύσµατα á, â, x, y 1 για τα οποία ισχύουν: x+ â = y+ á και 11 y+ 11 â = á x Να αποδείξετε

Διαβάστε περισσότερα

9o Γεν. Λύκειο Περιστερίου ( 3.1) ΚΥΚΛΟΣ. ΚΕΦΑΛΑΙΟ 3 ο : KΩΝΙΚΕΣ ΤΟΜΕΣ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤ/ΝΣΗΣ Β ΛΥΚΕΙΟΥ

9o Γεν. Λύκειο Περιστερίου ( 3.1) ΚΥΚΛΟΣ. ΚΕΦΑΛΑΙΟ 3 ο : KΩΝΙΚΕΣ ΤΟΜΕΣ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤ/ΝΣΗΣ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙ 3 ο : KΩΝΙΚΕΣ ΤΜΕΣ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤ/ΝΣΗΣ Β ΛΥΚΕΙΥ ( 3.) ΚΥΚΛΣ Γνωρίζουµε ότι ένας κύκλος (, ρ) είναι ο γεωµετρικός τόπος των σηµείων του επιπέδου τα οποία απέχουν µια ορισµένη απόσταση ρ από ένα

Διαβάστε περισσότερα

ΙΑΝΥΣΜΑΤΑ ΘΕΩΡΙΑ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ. Τι ονοµάζουµε διάνυσµα; αλφάβητου επιγραµµισµένα µε βέλος. για παράδειγµα, Τι ονοµάζουµε µέτρο διανύσµατος;

ΙΑΝΥΣΜΑΤΑ ΘΕΩΡΙΑ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ. Τι ονοµάζουµε διάνυσµα; αλφάβητου επιγραµµισµένα µε βέλος. για παράδειγµα, Τι ονοµάζουµε µέτρο διανύσµατος; ΙΝΥΣΜΤ ΘΕΩΡΙ ΘΕΜΤ ΘΕΩΡΙΣ Τι ονοµάζουµε διάνυσµα; AB A (αρχή) B (πέρας) Στη Γεωµετρία το διάνυσµα ορίζεται ως ένα προσανατολισµένο ευθύγραµµο τµήµα, δηλαδή ως ένα ευθύγραµµο τµήµα του οποίου τα άκρα θεωρούνται

Διαβάστε περισσότερα

βοήθεια ευθείας και κύκλου. Δεν ισχύει όμως το ίδιο για την παρεμβολή δύο μέσων αναλόγων η οποία απαιτεί τη χρησιμοποίηση διαφορετικών 2

βοήθεια ευθείας και κύκλου. Δεν ισχύει όμως το ίδιο για την παρεμβολή δύο μέσων αναλόγων η οποία απαιτεί τη χρησιμοποίηση διαφορετικών 2 3 ΚΩΝΙΚΕΣ ΤΟΜΕΣ Εισαγωγή Η μελέτη της έλλειψης, της παραβολής και της υπερβολής από τους Αρχαίους Έλληνες μαθηματικούς φαίνεται ότι είχε αφετηρία τη σχέση αυτών των καμπύλων με ορισμένα προβλήματα γεωμετρικών

Διαβάστε περισσότερα

φέρουμε μια οποιαδήποτε χορδή ΑΒ του κύκλου και την προεκτείνουμε κατά τμήμα

φέρουμε μια οποιαδήποτε χορδή ΑΒ του κύκλου και την προεκτείνουμε κατά τμήμα 1. Δίνεται ο κύκλος + y ρ, όπου ρ>0. Από το σημείο A( - ρ,0) του C C :x = φέρουμε μια οποιαδήποτε χορδή ΑΒ του κύκλου και την προεκτείνουμε κατά τμήμα BM = AB. Να αποδείξετε ότι το Μ κινείται πάνω σε ένα

Διαβάστε περισσότερα

Η ΕΥΘΕΙΑ ΣΤΟ ΕΠΙΠΕΔΟ Μέρος Α : Θεωρία

Η ΕΥΘΕΙΑ ΣΤΟ ΕΠΙΠΕΔΟ Μέρος Α : Θεωρία 1 Η ΕΥΘΕΙΑ ΣΤΟ ΕΠΙΠΕΔΟ Μέρος Α : Θεωρία ΕΞΙΣΩΣΗ ΕΥΘΕΙΑΣ Εξίσωση Γραμμής Μια εξίσωση με δύο αγνώστους, λέγεται εξίσωση μιας γραμμής C, όταν οι συντεταγμένες των σημείων της C, και μόνο αυτές, την επαληθεύουν.

Διαβάστε περισσότερα

201 5 ΘΕΜΑΤΑ Σ ΤΟΝ ΚΥ ΚΛΟ Α. ΘΕΩΡΙΑ. i. η εξίσωση του κύκλου με κέντρο Ο(0,0) και ακτίνα ρ είναι η

201 5 ΘΕΜΑΤΑ Σ ΤΟΝ ΚΥ ΚΛΟ Α. ΘΕΩΡΙΑ. i. η εξίσωση του κύκλου με κέντρο Ο(0,0) και ακτίνα ρ είναι η 201 5 ΘΕΜΑΤΑ Σ ΤΟΝ ΚΥ ΚΛΟ - 1-1. Να αποδείξετε ότι: Α. ΘΕΩΡΙΑ i. η εξίσωση του κύκλου με κέντρο Ο(0,0) και ακτίνα ρ είναι η C : x 2 y 2 ρ 2. Να αποδείξετε ότι η εφαπτομένη του κύκλου C: χ 2 + ψ 2 = ρ 2

Διαβάστε περισσότερα

Κ ε φ α λ ά ( ) ( ) ηµθ + = ( )

Κ ε φ α λ ά ( ) ( ) ηµθ + = ( ) ΑΣΚΗΣΗ ίνονται οι µιγαδικοί αριθµοί z + 0i για τους οποίους ισχύει: z 4 =. z i. Να δείξετε ότι z =. ii. Αν επιπλέον ισχύει Re( z) Im( z) iii. = να υπολογίσετε τους παραπάνω µιγαδικούς αριθµούς. Για τους

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ B ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΜΑΘΗΜΑΤΙΚΑ B ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γιώργος Πρέσβης ΜΑΘΗΜΑΤΙΚΑ B ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΚΕΦΑΛΑΙΟ 3 Ο : ΚΩΝΙΚΕΣ ΤΟΜΕΣ ΕΠΑΝΑΛΗΨΗ Φροντιστήρια Φροντιστήρια ΜΕΘΟΔΟΛΟΓΙΑ ΠΑΡΑΔΕΙΓΜΑΤΑ η Κατηγορία : Ο Κύκλος και τα στοιχεία

Διαβάστε περισσότερα

ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Β ΛΥΚΕΙΟΥ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΗΜΕΡΟΜΗΝΙΑ: 4-5-006 ΘΕΜΑ ΠΡΩΤΟ Α. α) Έστω μια ευθεία δ και ένα σημείο Ε εκτός της δ, να δώσετε

Διαβάστε περισσότερα

Θέµατα Μαθηµατικών Θετικής Κατεύθυνσης Β Λυκείου 1999

Θέµατα Μαθηµατικών Θετικής Κατεύθυνσης Β Λυκείου 1999 Θέµατα Μαθηµατικών Θετικής Κατεύθυνσης Β Λυκείου 999 Ζήτηµα ο Α. Έστω a, ) και β, ) δύο διανύσµατα του καρτεσιανού επιπέδου Ο. α) Να εκφράσετε χωρίς απόδειξη) το εσωτερικό γινόµενο των διανυσµάτων a και

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΛΥΜΕΝΕΣ & ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΛΥΜΕΝΕΣ & ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΛΥΜΕΝΕΣ & ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ i ΛΥΜΕΝΕΣ & ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ: ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΝΙΚΟΣ ΑΛΕΞΑΝΔΡΗΣ ΠΤΥΧΙΟΥΧΟΣ ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΑΘΗΝΩΝ (ΕΚΠΑ)

Διαβάστε περισσότερα

Β' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΜΑΘΗΜΑΤΙΚΑ. Óõíåéñìüò ΑΠΑΝΤΗΣΕΙΣ

Β' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΜΑΘΗΜΑΤΙΚΑ. Óõíåéñìüò ΑΠΑΝΤΗΣΕΙΣ Επαναληπτικά Θέµατα ΟΕΦΕ 011 1 Β' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΘΕΜΑ 1 ο α. I. Σχολικό βιβλίο σελ. 41. ΙΙ. Σχολικό βιβλίο σελ. 89. β. Σχολικό βιβλίο σελ. 71. γ. Σχολικό βιβλίο σελ.60. δ. Σ, Λ,

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΣΤΗ ΓΕΝΙΚΗ ΜΟΡΦΗ ΕΞΙΣΩΣΗΣ ΕΥΘΕΙΑΣ

ΑΣΚΗΣΕΙΣ ΣΤΗ ΓΕΝΙΚΗ ΜΟΡΦΗ ΕΞΙΣΩΣΗΣ ΕΥΘΕΙΑΣ ΑΣΚΗΣΕΙΣ ΣΤΗ ΓΕΝΙΚΗ ΜΟΡΦΗ ΕΞΙΣΩΣΗΣ ΕΥΘΕΙΑΣ 1. Να σχεδιάσετε την καμπύλη που παριστάνει η εξίσωση x y x 2 y. x y 2. Να βρεθεί η εξίσωση της ευθείας, η οποία τέμνει : i) τον άξονα χ'χ σε σημείο με τετμημένη

Διαβάστε περισσότερα

1.2 Συντεταγμένες στο Επίπεδο

1.2 Συντεταγμένες στο Επίπεδο 1 Συντεταγμένες στο Επίπεδο Τι εννοούμε με την έννοια άξονας; ΑΠΑΝΤΗΣΗ Πάνω σε μια ευθεία επιλέγουμε δύο σημεία και Ι έτσι ώστε το διάνυσμα OI να έχει μέτρο 1 και να βρίσκεται στην ημιευθεία O Λέμε τότε

Διαβάστε περισσότερα

Μεθοδολογία Υπερβολής

Μεθοδολογία Υπερβολής Μεθοδολογία Υπερβολής Υπερβολή ονομάζεται ο γεωμετρικός τόπος των σημείων, των οποίων η απόλυτη τιμή της διαφοράς των αποστάσεων από δύο σταθερά σημεία Ε και Ε είναι σταθερή και μικρότερη από την απόσταση

Διαβάστε περισσότερα

Δ 1. Να βρείτε στο επίπεδο ενός τριγώνου ΑΒΓ σηµεία Μ και Ρ τέτοια ώστε να ισχύουν συγχρόνως : i. ΜΑ ΜΒ 3ΜΓ = Ο ii. 2 PA 2PB+ 3PΓ = Ο και στη συνέχεια

Δ 1. Να βρείτε στο επίπεδο ενός τριγώνου ΑΒΓ σηµεία Μ και Ρ τέτοια ώστε να ισχύουν συγχρόνως : i. ΜΑ ΜΒ 3ΜΓ = Ο ii. 2 PA 2PB+ 3PΓ = Ο και στη συνέχεια 185 Δ 1. Να βρείτε στο επίπεδο ενός τριγώνου ΑΒΓ σηµεία Μ και Ρ τέτοια ώστε να ισχύουν συγχρόνως : i. ΜΑ ΜΒ 3ΜΓ = Ο ii. 2 PA 2PB+ 3PΓ = Ο και στη συνέχεια να αποδείξετε ότι το ΑΒΜΡ είναι παρ/µο. Δ 2. Δίνεται

Διαβάστε περισσότερα

Βασικές Γνώσεις Μαθηματικών Α - Β Λυκείου

Βασικές Γνώσεις Μαθηματικών Α - Β Λυκείου Βασικές Γνώσεις Μαθηματικών Α - Β Λυκείου Αριθμοί 1. ΑΡΙΘΜΟΙ Σύνολο Φυσικών αριθμών: Σύνολο Ακέραιων αριθμών: Σύνολο Ρητών αριθμών: ακέραιοι με Άρρητοι αριθμοί: είναι οι μη ρητοί π.χ. Το σύνολο Πραγματικών

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ ΜΙΑ ΠΡΟΕΤΟΙΜΑΣΙΑ ΓΙΑ ΤΙΣ ΕΞΕΤΑΣΕΙΣ

ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ ΜΙΑ ΠΡΟΕΤΟΙΜΑΣΙΑ ΓΙΑ ΤΙΣ ΕΞΕΤΑΣΕΙΣ 2 ΓΥΜΝΑΣΙΟ ΥΜΗΤΤΟΥ ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ ΜΙΑ ΠΡΟΕΤΟΙΜΑΣΙΑ ΓΙΑ ΤΙΣ ΕΞΕΤΑΣΕΙΣ - Σελίδα 1 από 6 - 1. Η ΔΟΜΗ ΤΩΝ ΘΕΜΑΤΩΝ ΤΩΝ ΕΞΕΤΑΣΕΩΝ Στις εξετάσεις του Μαίου-Ιουνίου µας δίνονται δύο θέµατα θεωρίας και

Διαβάστε περισσότερα